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Continuum quasiparticle random-phase approximation description
of isovector E1 giant resonances
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IsovectorE1 giant resonances in nonmagic nuclei are calculated by using a method which takes into account
the single-particle continuum in the framework of a continuum quasiparticle random-phase approximation. A
special procedure is formulated which gives the spurious dipole state at zero energy. The calculations are
performed in a stable nonmagic tin isotope as well as unstable magic and nonmagic tin isotopes. The role of the
single-particle continuum and the spurious dipole state is discussed. It turned out that the first ingredient has a
noticeable influence on the resonance form.@S0556-2813~98!00607-4#

PACS number~s!: 24.30.Cz, 21.60.Jz, 27.60.1j
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I. INTRODUCTION

Giant resonances are excitations embedded in the
tinuum part of nuclear spectra and, therefore, one would
pect that the continuum has to be taken into account exp
itly in their description. However, the gross properties
these resonances can be studied suitably by means of b
~e.g., harmonic oscillator! representations@1#. This can be
understood, since the particle in the particle-hole excitati
moves in high angular momentum orbits. Therefore, the c
responding centrifugal and, for protons, Coulomb barri
tend to trap the system within the nuclear volume, hinder
the particle decay of the giant resonance. The effective
tential thus ‘‘felt’’ by the particle is well approximated by
harmonic-oscillator potential@2#. But bound representation
are not suited to describe quantities, like decay widths, wh
are closely linked to the continuum. In cases like this, o
has to include in the formalism the degrees of freedom
cause the particle decay of the giant resonance. The inclu
of the continuum in particle-hole~ph! excitations is usually
achieved by using the continuum random-phase approxi
tion ~CRPA! @3#. This formalism was recently used to eval
ate the poles and residues of theS matrix, that is, the position
and total decay width as well as the partial decay wid
corresponding to giant resonances@4#. More to the point of
the present paper, in Refs.@5,6# the CRPA ph excitations
were used as a basis to describe more complex st
namely, the 1p1h^ phonon excitations that induce th
spreading width of the giant resonance.

These investigations established the importance of tr
ing the continuum properly in order to evaluate quantit
related to the decay of the resonance. Thus, in Ref.@5#, it was
found that, forE1 giant resonances, the contribution of t
continuum to the total width, including the spreading wid
is large. For instance, the continuum contributes with 14%
the total width in 40Ca, with 28% in48Ca and 7% in208Pb.

All these calculations were performed in normal nucl
The importance of the continuum in such nuclei indica
that a similar feature may be present in superfluid nuclei a
PRC 580556-2813/98/58~1!/172~7!/$15.00
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therefore, a proper calculation, including both BCS and c
tinuum degress of freedom is necessary. That is, one ha
include from the outset a continuum quasiparticle RP
~QRPA! treatment of the ph degrees of freedom.

In Ref. @7#, such an approach was developed based on
projection operator method using a separable interaction
more elaborated approach, but for charge-exchange ex
tions, was presented in Ref.@8#. It uses the self-consisten
density-functional method, and takes into account the R
continuum exactly in both particle-hole and particle-partic
channels. To overcome difficulties related to basis trun
tions, which is necessary in superfluid nuclei, a method si
lar to the so-called (r ,l) representation@9# was used in Ref.
@8#.

In this paper we present a continuum QRPA approach
ph excitations, based on the Green-function method, for n
tral excitations. Our approach is similar to that of Ref.@8# in
the sense that we take into account the RPA continuum
actly, and use the (r ,l) representation in the ‘‘pairing’’ part
of our propagator. We use the standard Migdal theory
finite Fermi systems~TFFS’s! @10#, which in fact corre-
sponds to the QRPA with a Landau-Migdal-type interactio
We apply a special procedure to obtain the spurious dip
state at zero energy. The calculations are performed for
isovectorE1 resonances in stable and unstable isotopes
Sn.

In Sec. II, we present the outline of our approach. T
description of our ‘‘forced consistency’’ procedure is give
in Sec. III. In Sec. IV, the most important details of th
calculations, e.g., the choice and fitting of single-particle le
els in non-normal nuclei and the parameters of the Land
Migdal interaction, are discussed. The results of the calc
tions are in Sec. V, and the conclusions in Sec. VI.

II. THEORY

In this section we give the main formulas of the TFFS
@10#, as well as a generalization of this formalism whic
allows one to include the single-particle continuum in sup
fluid nuclei. We will consider neutral excitations only, b
172 © 1998 The American Physical Society
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the generalization to non-neutral channels is straightforw
The cross section for electric multipole photoabsorption

given by @1#

s~E!5
8p3~L11!e2

L@~2L11!!! #2S E

\cD 2L21

S~E!. ~2.1!

Under the influence of an external field carrying energyv,
the density matrixr changes bydr. The corresponding
strength functionS is

S~E!52
2L11

p
Im(

S,t
dS0etE

0

`

dr r J12drS,t~r ,v!,

~2.2!

wherev5E1ıh with h→10, L is the angular momentum
of the electric excitation,t andS are the isotopic (t5n,p)
and spin (S50,1) indexes,et is the local dimensionles
nucleon charge, andJ5L for L>1.

The corresponding system of TFFS equations can
solved conveniently in coordinate representation. After
separation of angular variables, this system has the form

drS,t~r 1 ,v!5drS,t
~0!~r 1 ,v!

2 (
S8,t8

E
0

`

dr2r 2
2ALS,LS8

~t!L
~r 1 ,r 2 ;v!

3FS8
tt8~r 2!drS8,t8~r 2 ,v! ~2.3!

where

drS,t
~0!~r 1 ,v!52etE

0

`

dr2r 2
J12ALS,L0

~t!L ~r 1 ,r 2 ;v!, ~2.4!

andF is the amplitude of the effective particle-hole intera
tion parametrized according to the TFFS, i.e.,

F S
tt8~r !5dtt8C0@dS,0~ f 1 f 8!1dS,1~g1g8!#1~12dtt8!

3C0@dS,0~ f 2 f 8!1dS,1~g2g8!#, ~2.5!

where the functionsf (r ) and f 8(r ) are determined by inter
polation. For this the parametersf ex, f in , f ex8 , and f in8 are
introduced such that, e.g., forf (r ), one obtains

f ~r !5 f ex1~ f in2 f ex!
r0~r !

r0~0!
, ~2.6!

wherer0(r ) is the nuclear density in the ground state.
The propagatorA(r 1 ,r 2 ;v) in Eq. ~2.3! contains both the

single-particle continuum and the pairing contribution.
Ref. @3#, difficulties related to truncations of the basis as w
as the problem of treating the continuum properly in norm
nuclei were overcome by using the Green-function meth
However, this is not the case for superfluid nuclei whe
there is a contribution of the particle-particle channel fro
static pairing fields. To take this into account, in Ref.@9# the
so-called method of mixed (r ,l) representation was pro
posed and used for the first 21 levels in nonmagic nuclei
We will apply this method to giant resonances. In additio
we will also consider the spin component of the density m
d.
s

e
e

l
l

d.
e

,
-

trix. The main idea is to single out the levels near the Fe
level, where the gap is not equal to zero, which contribute
the propagators. This part of the propagator is then evalu
in coordinate representation using standard techniques.
remaining part of the propagator, which contains the c
tinuum, is calculated using the method of Refs.@3#. Thus,
according to these ideas, the propagatorALS,LS8

(t)L has the form

ALS,LS8
~t!L

~r ,r 8;v!5ALS,LS8
cont~t!L

~r ,r 8;v!1ALS,LS8
disc~t!L

~r ,r 8;v!,
~2.7!

whereAcont is the part of the propagator containing the tra
sitions from the ‘‘paired’’ levels to the continuum, i.e.,

ALS,LS8
cont~t!L

~r ,r 8;v!

52(
1

dtt1
v1

2R1~r !R1~r 8!(
l 2 j 2

T12
LSS8

3@Gl 2 j 2

t ~r ,r 8;mt2E11v!1~21!S1S8

3Gl 2 j 2

t ~r ,r 8;mt2E12v!#, ~2.8!

wherev1
2 is the quasiparticle occupation number,R1(r ) the

corresponding radial single-particle wave function,E1 the
quasiparticle energy, andmt the chemical potential. The par
tial componentsGl j

t of the Green function without pairing
are expressed in closed form in terms of the regular
irregular solutions of the single-particle Schro¨dinger equa-
tion @3#. Therefore, we take into account exactly the con
bution of the single-particle continuum within this forma
ism.

In Eq. ~2.7!, Adisc is the ‘‘pairing’’ part of the propagator
which includes the sum(12

disc over discrete single-particle
levels near the Fermi surface, where the gap is not zero,

ALS,LS8
disc~t!L

~r ,r 8;v!

5(
12

disc

dtt1
dtt2

R1~r !R2~r !R1~r 8!R2~r 8!T21
LSS8

3F v1
2~12v2

2!

v1E11E2
2

~12v1
2!v2

2

v2E12E2

1~21!S
D1D2

4E1E2
S 1

v1E11E2
2

1

v2E12E2
D

1
v2

2

v1mt2e12E2
2

v1
2

v2mt1e21E1
G . ~2.9!

Here e1 are single-particle energies, the index
[(n1 ,l 1 , j 1) is the set of single-particle quantum numbe

and T12
LSS8 is the product of the reduced matrix elements

the spherical tensor operator:

T12
LSS85

1

2L11
^ j 1l 1iTLLSi j 2l 2&^ j 1l 1iTLLS8i j 2l 2&.

~2.10!
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III. ‘‘FORCED CONSISTENCY’’

Our approach is not self-consistent in the sense that t
is no connection between the mean field and the particle-
interaction used. The parameters of this interaction in
TFFS have been determined reliably, except for the par
eter f ex which is usually fitted so as to obtain the spurio
dipole state at zero energy. This phenomenological pro
dure is used very often, particularly when dealing with se
rable interactions. In this case it is the strength of the in
action which is fitted to obtain the spurious isoscalar dipo
state at zero energy@4#. However, one may doubt the rel
ability of this procedure, particularly regarding the exa
depletion of the Thomas-Reiche-Kuhn sum rule. It is the
fore important to investigate the possibility of obtaining t
spurious dipole state at zero energy without requiring any
of parameters. Here we will perform such a task following
rather simple procedure. That is, the condition that the s
rious dipole state should be at zero energy means that
density matrixdrS,t(r ,v) @Eq. ~2.3!#, must have a pole a
that energy forL51, i.e.,

drS,t~r ,v!5
zS,t~r !

v2v0
1drS,t

reg~r ,v!, ~3.1!

wherev0→0, and the functiondrS,t
reg(r ,v) is regular atv

5v0. This condition can be satisfied if one adds an ad
tional term to the particle-hole effective interaction in E

~2.3!. Thus, instead of the amplitudeF S
tt8 in Eq. ~2.3! one

obtains the more general amplitude

F̃St,S8t8~r ,r 8!5dS,S8

d~r 2r 8!

rr 8
F S

tt8~r !1F St,S8t8
rest

~r ,r 8!,

~3.2!

whereF rest is a restoring amplitude which is undefined
far.

Substituting Eqs.~3.1! and ~3.2! into Eq. ~2.3!, one finds
that there should be a solution to the following homogene
equation:

zSt~r 1!52 (
S8,S9,t8

E
0

`

dr2r 2
2E

0

`

dr3r 3
2

3A1S,1S9
~t!1

~r 1 ,r 2 ;v0!F̃S9t,S8t8~r 2 ,r 3!zS8t8~r 3!.

~3.3!

There are several methods to satisfy the condition of e
tence of a solution of this equation using the different for
of the amplitudeF rest in Eq. ~3.2!. An approximate method
suitable for the QRPA was used in Ref.@11#. We choose the
quantityF rest as follows:

F St,S8t8
rest

~r ,r 8!5 (
k51

2

kkf k
St~r ! f k

S8t8~r 8!, ~3.4!

where the functionsf 2
St(r ) and f 1

St(r ) are connected to eac
other by the expressions
re
le
e
-

e-
-

r-
r

t
-

t

u-
he

i-
.

s

s-
s

f 2
St~r !5(

t8
F S

tt8~r !jSt8~r !, ~3.5!

jSt~r !5(
S8

E
0

`

dr8r 82A1S,1S8
~t!1

~r ,r 8;v0! f 1
S8t~r 8!,

~3.6!

and the constantsk1 andk2 are determined by

kk52S (
St

E
0

`

dr r 2f k
St~r !jSt~r ! D 21

. ~3.7!

After substituting Eqs.~3.2! and ~3.4!–~3.7! in Eq. ~3.3!,
one readily finds that the functionjSt(r ) @Eq. ~3.6!# satisfies
Eq. ~3.3!. Moreover, this equation is satisfied for any arb

trary functionf 1
St(r ), any amplitudeF S

tt8(r ), and any mean-
field potential Ut(r ). These conditions are as general
those provided by a self-consistent treatment of the prob
and, therefore, the alternative to self-consistency prese
here is more realistic than the fitting of parameters m
tioned above.

In our model, the amplitudeF S
tt8 and the potentialU

have been already fixed. But we still have the functi
f 1

St(r ), which so far has not been defined. We determine
function by requiring that

f 1
St~r !5dS0

dUt~r !

dr
. ~3.8!

Thus we have defined the quantityF rest in such a way as to
obtain the ‘‘ghost’’ energy to be exactly equal to zero wit
out the usual procedure of fitting force parameters.

The choice of form~3.8! is very natural because if on
fulfills the usual self-consistency condition, i.e.,@10,12#,

dUt~r !

dr
52(

t8
F 0

tt8~r !E
0

`

dr8r 82A10,10
~t8!1~r ,r 8;v0!

dUt8~r 8!

dr8
~3.9!

then one obtains, from Eqs.~3.5!–~3.8!,

f 2
St~r !52 f 1

St~r !, k152k2 ~3.10!

and thenF St,S8t8
rest (r ,r 8)[0.

Further, we should take care of the condition of havi
the ‘‘ghost’’ excitation probability be equal to zero. Th
equality B0(E1)50 is a consequence of general equatio
~see, for example, Ref.@19#!, and must be fulfilled in the
self-consistent model. In our calculations we made this
renormalizing the well depth parameters of the potent
Ut(r ) in Eq. ~3.8! in order to obtain the spurious state pro
ability B0(E1) equal to zero. This can be done easily b
cause

B0~E1!53(
t

etE
0

`

dr r 3z0t~r !, ~3.11!

where ep5eN/A and en52eZ/A. Then, choosing the
potential-well depth parameters in Eq.~3.8! which ensure the
equality
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ZE
0

`

dr r 3j0n~r !5NE
0

`

dr r 3j0p~r !, ~3.12!

we obtainB0(E1)50. Our method of ‘‘forced consistency’
is suited for any propagatorA, e.g., when more comple
excitations than the QRPA are included since, by definiti
the spurious dipole state will in any case exactly appear
zero energy.

IV. NUMERICAL DETAILS

In the applications to be presented in this section we w
use the Landau-Migdal interaction with parameters as
Refs.@5,6,13#, i.e., @see Eqs.~2.5! and ~2.6!#,

f in520.002, f ex8 52.30, f in8 50.76, g50.05,

g850.96, C05300 MeV fm3. ~4.1!

For the parameterf ex, we choose the valuef ex521.73,
taken from a previous calculation@13#. We calculate the
ground-state nuclear densityr0(r ) in Eq. ~2.6! by using our
Woods-Saxon single-particle wave functions. This proced
of evaluating the nuclear density, instead of using the s
dard Fermi distribution form@5,6#, is more consistent with
our model.

Since here we are interested only in the isovectorE1
resonance, the results of the calculations should not be
sensitive to the value of the pairing gap. ForD, we therefore
use forD the standard odd-even mass formula. This is qu
reasonable, especially considering that the isotopes
nucleon numbers which differ by two nucleons from the n
mal magic core are not considered.

We take the single-particle energies and wave functi
as given by a realistic Woods-Saxon potential@14#. How-
ever, we renormalize the levels that lie near the Fermi s
face by changing the well depthU jl of the potential so as to
obtain agreement with the experimental single-particle en
gies. For nonmagic nuclei, these energies are given by

e1
expt5m6A~e12m!21D2 ~4.2!

FIG. 1. TheE1 photoabsorption cross section for the unsta
100Sn nucleus obtained in the RPA with the single-particle c
tinuum ~solid line! and without the continuum~dashed line!. The
smearing parameter is equal to 200 keV.
,
at
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re
n-
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e
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-

s

r-

r-

where the sign1 (2) is taken for thee1
expt determined from

the spectra of theN11 (N21) odd nucleus, ande1 is the
single-particle energy calculated with our Woods-Saxon
tential. The fitting procedure consists of changingU jl andm
in each iteration just to obtain the experimental value giv
by Eq. ~4.2!. We also impose the usual particle conservat
constraint. The experimental single-particle levels cor
sponding to120Sn are from Ref.@15#, those in100Sn are from
Ref. @16#, and those in132Sn are from Ref.@17#.

In the evaluation of the termAdisc in Eq. ~2.7!, we use a
substraction procedure to avoid a double counting in
propagator. The form of this equation is very useful to stu
the influence of the single-particle continuum, since one
readily compare the results obtained with and without
cluding the continuum in the framework of the same calc
lation scheme. Thus the results without the continuum
obtained by evaluating the propagatorA in Eq. ~2.9! without
the last two terms in the square brackets. The summation
performed over four shells near the Fermi surface.

To perform the calculations without continuum, whe
single-particle levels with positive energy may be necess
we used the standard procedure of immersing the system
box, with the boundary condition that on the walls of the b
the wave functions vanish. This procedure is even neces
in the continuum QRPA in order to obtain a reasona
single-particle basis in the ‘‘pairing’’ part of the propagato
Notice that in the continuum part of the propagator@the first
term in Eq. ~2.7!#, all single-particle wave functions an
Green-function partial components are evaluated by us
the more ‘‘natural’’ boundary condition of the continuum
RPA, i.e., by using the scattering single-particle Green fu
tion given byGl j

t in Eq. ~2.8!. This difference treatment o
the continuum in the two terms of Eq.~2.7! may induce
inaccuracies in the calculation procedure. We therefore c
rected the termAcont in this equation by choosing the bo
boundary condition for states with the samej and l as those
with positive energies enteringAdisc. For example, in120Sn
this correction was made for thei 13/2 and f 5/2 neutron com-
ponents. It is worthwhile to point out once again that the
corrections are necessary because the subtraction of
slightly different pole terms may have very unpleasant n
merical consequences.

e
-

FIG. 2. Same as in Fig. 1, but for the unstable104Sn nucleus
obtained in the QRPA with the continuum~solid line! and without it
~dashed line!.
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In all calculations the smearing parameterh5200 keV
has been used. This value allows one to see the role o
single-particle continuum clearly.

The mean energies of theE1 resonances were calculate
using the expression

Ē5~m1 /m21!1/2, mk5E dE S~E!Ek. ~4.3!

We give integral cross sections, i.e.,

s int5E dE s~E!, ~4.4!

as a percentage of the Thomas-Reiche-Kuhn cross sectio@1#
s int560(NZ/A) MeV mb. In the calculations below, th
cross sections were calculated by perfoming the integral
ing a contour in the complex energy plane@18#, which en-
closes the energy interval 0–200 MeV.

V. RESULTS AND DISCUSSION

In the applications to be presented below, we used
Landau-Migdal interaction with parameters as in Re
@5,6,13#, i.e., without any free parameter. The introduction
the pairing interaction in the case of superfluid systems
quires the quantization of the continuum for some par
waves. As mentioned above, we have carried this out
inmersing the nucleus in a box and using the boundary c
dition of vanishing wave function on the walls of the box

The calculated photoabsortion cross sections are
sented in Figs. 1–4. Since we did not include configurati
beyond the RPA, our results do not describe the width
giant resonances. For this, at least 1p1h^ phonon excitations
has also to be included, as was done for normal system
Refs. @5,6#. In superfluid nuclei the treatment of these ex
tations is more complicated. The formalism presented her
a first step in this direction.

The mean energies are presented in Table I. In this ta
we also give the percentage of the total cross section@Eq.
~4.4!# relative to the corresponding Thomas-Reiche-Ku

FIG. 3. Same as in Fig. 2, but for120Sn.
he
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e
.
f
-
l
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n-
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f
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-
is

le

n

value which is the depletion of the sum rule corresponding
the giant resonance.

As can be seen from the comparison of the results for
giant resonance envelope with and without the continuu
which is given in Figs. 1–4, the inclusion of the continuum
rather noticeable both for magic and nonmagic nuclei. I
clear that this effect will become even more appreciable
we take the smearing parameterh,200 keV. This means
that it is necessary to take the single-particle continuum i
account in QRPA calculations at least if one uses the sm
ing parameterh<200 keV.

However, the influence of the continuum on the integ
characteristics under investigation is not considerable;
Table I. Due to the inclusion of the continuum, we ha

obtained a small decrease ofĒ and an increase ofs int by 4%
to 6%. The reason for the latter is the influence of the tai
higher energies. The tail gives contributions at energiesE
.40 MeV. We have therefore integrated the curves with
continuum up to 200 MeV, and obtained an increase ofs int
by about 2%.

We have also calculated the mean energies using ano
definition for Ē, namely, Ē5(m3 /m1)1/2 @cf. Eq. ~4.3!#,
which emphasizes the role of the continuum and the re
nance high-energy tail. This definition ofĒ gives the values
18.3, 18.0, 17.2, and 17.0 MeV for100Sn, 104Sn, 120Sn, and
132Sn, respectively, and is decreased by about 2 MeV
to exclusion of the continuum. Thus we see a noticea
influence of the continuum on these mean energ

FIG. 4. Same as in Fig. 1, but for the unstable132Sn nucleus.

TABLE I. Mean energy@Eq. ~4.3!# and percentage of the inte
grated cross section@Eq. ~4.4!# with respect to the correspondin
Thomas-Reiche-Kuhn value.

Isotopes Ē, MeV
sint/60

NZ

A
,%

QRPA1cont QRPA2cont QRPA1cont QRPA2cont

100Sn 15.6 15.7 105.3 100.0
104Sn 15.3 15.3 108.3 102.2
120Sn 14.0 14.3 98.7 94.7
132Sn 13.8 14.2 101.5 97.2
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It is of interest to investigate the role of the ‘‘forced co
sistency’’ procedure. We have repeated the calculations w
the continuum without this procedure. It turned out that th
is a redistribution of the strength, especially for the nuc
120Sn and 132Sn. As an example, in Fig. 5 we present t
comparison of these results for120Sn. One can see an influ
ence of the spurious dipole state on the form of the cur
This influence is negligible in100Sn. The difference betwee
these two nuclei is probably due to the larger value ofN2Z
in 120Sn, which tends to mix theT50 and 1 isospin values

The similarity of the results with and without the ‘‘force
consistency’’ procedure means that the exclusion of
‘‘ghost’’ is satisfactory or, in other words, the force param
etrizations of the TFFS’s have been chosen reason
enough, and in this sense the theory gives results which
similar to the ones provided by the self-consistent theory

Finally, it is worthwhile to mention that the depletion o
the sum rule shown in Table I exceeds 100%. In our cal
lations, this is connected to the influence of pairing corre
tions ~which are ground-state correlations!, although it might
also have to do with the omission of the particle-parti
channel@20# or with the fitting of single-particle energies
which introduces a certain dependence of the single-par
potential on the operatorl 2. These effects can change th
calculated sum rule.

FIG. 5. TheE1 photoabsorption cross section for120Sn calcu-
lated within the continuum QRPA with~solid line! and without
~dashed line! the ‘‘forced self-consistent’’ procedure.
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VI. CONCLUSION

In this paper we have investigated the influence of
continuum on dipole giant resonances by using the c
tinuum RPA in the normal nuclei100Sn and132Sn. We have
also applied a continuum QRPA, which we have develop
for giant resonances, to the superfluid nuclei104Sn and
120Sn. We have introduced a method to avoid spuriosit
associated with the isoscalar dipole state which appears
result of the breaking of the translational symmetry, a
which, within the RPA, appears at zero energy if a se
consistent calculation is performed. Our method does not
any free parameter~like fitting the strength of a separabl
interaction to obtain the zero energy@4#!, and is general; i.e.
it is independent of the particle-hole interaction that o
uses. The resulting formalism allows one to make the ca
lation with or without the continuum in a clear and straigh
forward fashion.

The comparison of theE1 resonance envelope calculate
within the same numerical scheme with and without t
single-particle continuum showed that the inclusion of t
continuum gives a noticeable change of the envelope b
for magic and nonmagic nuclei. Moreover, the influence
the continuum is noticeable for the mean energies if these
defined asĒ5(m3 /m1)1/2. Thus the continuum at least re
distributes the strength and, therefore, photoabsortion c
sections, like those presented in Figs. 1–4, can provide
portant information about the influence of the continuum
nuclei.

Our ‘‘forced consistency’’ procedure to isolate the spu
ous state is general, independent of the interaction or
method used to study particle-hole excitations, and sets
spurious state at exactly zero energy in all cases. The
that the inclusion of this procedure does not change the
sults strongly confirms that the parameters used in the T
are reasonable. The approach developed in this paper ma
useful to treat cases in which more complex configuratio
are included in the formalism.
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