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IsovectorE1l giant resonances in nonmagic nuclei are calculated by using a method which takes into account
the single-particle continuum in the framework of a continuum quasiparticle random-phase approximation. A
special procedure is formulated which gives the spurious dipole state at zero energy. The calculations are
performed in a stable nonmagic tin isotope as well as unstable magic and nonmagic tin isotopes. The role of the
single-particle continuum and the spurious dipole state is discussed. It turned out that the first ingredient has a
noticeable influence on the resonance fof80556-28188)00607-4

PACS numbds): 24.30.Cz, 21.60.Jz, 27.60;

[. INTRODUCTION therefore, a proper calculation, including both BCS and con-
tinuum degress of freedom is necessary. That is, one has to
Giant resonances are excitations embedded in the cofaclude from the outset a continuum quasiparticle RPA
tinuum part of nuclear spectra and, therefore, one would extQRPA) treatment of the ph degrees of freedom.
pect that the continuum has to be taken into account explic- In Ref.[7], such an approach was developed based on the
ity in their description. However, the gross properties ofProjection operator method using a separable interaction. A
these resonances can be studied suitably by means of bouRtPre elaborated approach, but for charge-exchange excita-
(e.g., harmonic oscillatdrrepresentation§l]. This can be tions, was presented in Rd#8]. It uses the self-consistent

understood, since the particle in the particle-hole excitationdensity-functional method, and takes into account the RPA

moves in high angular momentum orbits. Therefore, the COrg:ontinuum exactly in both particle-hole and particle-particle

responding centrifugal and, for protons, Coulomb barrierschannels. To overcome difficulties related to basis trunca-
L ' : . _tions, which is necessary in superfluid nuclei, a method simi-

tend to trap the system within the nuclear volume, hmderlnqar 0 the so-calledr(\) ryepresé)ntatioﬁsa] was used in Ref

the particle decay of the giant resonance. The effective po[-s] ' '

tential thus “felt” by the particle is well approximated by a

harmonic-oscillator potentidl]. But blpkund repres_enr:atlor;]s_ h excitations, based on the Green-function method, for neu-
are not suited to describe quantities, like decay widths, whicky,| axcitations. Our approach is similar to that of R in

are closely linked to the continuum. In cases like this, Ongnhe sense that we take into account the RPA continuum ex-
has to include in the formalism the degrees of freedom thaéctly, and use ther(\) representation in the “pairing” part
cause the particle decay of the giant resonance. The inclusigd gyr propagator. We use the standard Migdal theory of
of the continuum in partiCIe-hOI@h) excitations is Usua”y finite Fermi SystemiTFFS’g [10], which in fact corre-
achieved by using the continuum random-phase approximaponds to the QRPA with a Landau-Migdal-type interaction.
tion (CRPA) [3]. This formalism was recently used to evalu- We apply a special procedure to obtain the spurious dipole
ate the poles and residues of Benatrix, that is, the position state at zero energy. The calculations are performed for the
and total decay width as well as the partial decay widthgsovectorE1l resonances in stable and unstable isotopes of
corresponding to giant resonandd$. More to the point of S,
the present paper, in Reff5,6] the CRPA ph excitations  |n Sec. Il, we present the outline of our approach. The
were used as a basis to describe more complex stategescription of our “forced consistency” procedure is given
namely, the Pplh®phonon excitations that induce the in Sec. Ill. In Sec. IV, the most important details of the
spreading width of the giant resonance. calculations, e.g., the choice and fitting of single-particle lev-
These investigations established the importance of treakls in non-normal nuclei and the parameters of the Landau-
ing the continuum properly in order to evaluate quantitiesMigdal interaction, are discussed. The results of the calcula-
related to the decay of the resonance. Thus, in [Béfit was  tions are in Sec. V, and the conclusions in Sec. VI.
found that, forE1 giant resonances, the contribution of the
continuum to the total width, including the spreading width,
is large. For instance, the continuum contributes with 14% of
the total width in“°Ca, with 28% in“8Ca and 7% in’°%Pb. In this section we give the main formulas of the TFFS’s
All these calculations were performed in normal nuclei.[10], as well as a generalization of this formalism which
The importance of the continuum in such nuclei indicatesallows one to include the single-particle continuum in super-
that a similar feature may be present in superfluid nuclei andjuid nuclei. We will consider neutral excitations only, but

In this paper we present a continuum QRPA approach to

II. THEORY
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the generalization to non-neutral channels is straightforwardrix. The main idea is to single out the levels near the Fermi
The cross section for electric multipole photoabsorption idevel, where the gap is not equal to zero, which contribute to

given by[1] the propagators. This part of the propagator is then evaluated
in coordinate representation using standard techniques. The
873(L+1)e? [ E\2-71 remaining part of the propagator, which contains the con-
e TRRTTE %) S(E). @D tinyum, is calculated using the method of Refa). Thus,

according to these ideas, the propag@t@is, has the form
Under the influence of an external field carrying enesgy
the density matrixp changes byép. The corresponding A(LTS)VLLS,(r,r’;w)zACO”(”L(r,r’;w)+Ad'Sqr)L(r,r’;w),

strength functiorts is LsLs’ LSLs 5.7
2L+1 £ Jin . N
S(B)=——— ImSE 5soeffo dr r'*28pg (1, ), whereA® s the part of the propagator containing the tran-

2.2 sitions from the “paired” levels to the continuum, i.e.,

wherew=E+17 with 7—+0, L is the angular momentum A2 25(r,r"; w)

of the electric excitationy and S are the isotopic £=n,p) '

and spin §=0,1) indexes,e, is the local dimensionless _ 2 / LSS

nucleon charge, andi=L for L=1. B ; S iRUNRY(T 2 T3
The corresponding system of TFFS equations can be )

solved conveniently in coordinate representation. After the X[GP(r.r" i, —Eq+ w)+(—1)5*S

separation of angular variables, this system has the form

l2i2

© XGL (1w~ Ei—w)], (2.9
5pS,T(rl=w):5pS,T(rllw)
o wherev? is the quasiparticle occupation numbBy,(r) the

_ z d ZA(T)L . 1= . . . .

< |, 0rer2 LsLs(M1:72;0) corresponding radial single-particle wave functid®, the

ST quasiparticle energy, and. the chemical potential. The par-
Xf;j’(rz) Spsy (1 2,) (2.3 fial component@ﬁ of the Green function without pairing

are expressed in closed form in terms of the regular and
where irregular solutions of the single-particle ScHioger equa-

tion [3]. Therefore, we take into account exactly the contri-
* bution of the single-particle continuum within this formal-
5p<s?;(rl,w):—e,fo drory PA (), 24 oy

In Eq. (2.7), A%Cis the “pairing” part of the propagator
and F is the amplitude of the effective particle-hole interac- which includes the sunESs® over discrete single-particle
tion parametrized according to the TFFS, i.e., levels near the Fermi surface, where the gap is not zero, i.e.,

FE ()= 87Col 85 f+1)+ 0510+ 0]+ (1= 6,)  ABSL vy
X Cl 850l 1= 1)+ 851(90")], @9 e

— ’ ’ LSS
where the functiong(r) andf’(r) are determined by inter- % Orry Orr,Ra(N RN RA(MR(I ) T

polation. For this the parametefs,, fi,, féx, andf{ are (1-02)  (1-02)2
introduced such that, e.g., fé(r), one obtains 1 2) V72
w+E1+E2 a)_El_Ez

po(r)
£(1) = et (Fin— fed—rar (2.6 Ajdy [ 1 1
po(0) +(—1)S —
4E.E,\ w+E;+E, w—E;—E,
wherepg(r) is the nuclear density in the ground state. ) ’
The propagatoA(r,,r,;w) in Eq. (2.3 contains both the + U2 _ V1 2.9
single-particle continuum and the pairing contribution. In ot+tu,—€e,—Ey o—u,+et+Eq] '

Ref.[3], difficulties related to truncations of the basis as well
as the problem of treating the continuum properly in normalyere ¢, are single-particle energies, the index 1
nuclei were overcome by using the Green-function method=p,, |, j,) is the set of single-particle quantum numbers,
However, this is not the case for superfluid nuclei where LSS .

: A : : and T1,~ is the product of the reduced matrix elements of
there is a contribution of the particle-particle channel fromthe spherical tensor oberator:
static pairing fields. To take this into account, in Réf| the P P |
so-called method of mixedr(\) representation was pro-

. o+ N . n 1

posed and used for the first 2evels in nonmagic nuclei. Lsg:_<. LT Lslial ) Gl Tois lial)
We will apply this method to giant resonances. In addition, 12 = o1 szl s l2f2)-
we will also consider the spin component of the density ma- (2.10
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Ill. “FORCED CONSISTENCY”

157(r)= > FT (1) ég (1), 3.
Our approach is not self-consistent in the sense that there 2(1) ; s (Nésr (1) 39
is no connection between the mean field and the particle-hole

interaction used. The parameters of this interaction in the _ ERPINC T ’ S'rp

TEFS have been determined reliably, except for the param- gsf(r)—g o drir“Arsas (1.1 S wo) I (1),

eter f., which is usually fitted so as to obtain the spurious (3.6

dipole state at zero energy. This phenomenological proce-

dure is used very often, particularly when dealing with sepaand the constants,; and x, are determined by

rable interactions. In this case it is the strength of the inter- .

action which is fitted to obtain the spurious isoscalar dipolar _ - 2¢Sr

state at zero energyt]. However, one may doubt the reli- = (% Jo dr PR EsAn |- S
ability of this procedure, particularly regarding the exact

depletion of the Thomas-Reiche-Kuhn sum rule. It is there- After substituting Eqs(3.2) and (3.4 —(3.7) in Eqg. (3.3,

fore important to investigate the possibility of obtaining the one readily finds that the functiafs,(r) [Eq. (3.6)] satisfies
spurious dipole state at zero energy without requiring any fiq. (3.3). Moreover, this equation is satisfied for any arbi-
of parameters. Here we will perform such a _task following atrary functionf$"(r), any amplitude?-“g'(r), and any mean-
rgther §|mple procedure. That is, the condition that the spufg|q potential U™(r). These conditions are as general as
rious dipole state should be at zero energy means that those provided by a self-consistent treatment of the problem
density matrixdps (r,) [Eq. (2.3)], must have a pole at and, therefore, the alternative to self-consistency presented

that energy fol.=1, i.e., here is more realistic than the fitting of parameters men-
tioned above.
{sAr) | del, th litudeFS” and the potentiall
Soe (rw)=3"1 4 soreacr oy 31 n our model, the amplituderZ” and the potentia
psr.w) w— wg ps(r.) SE have been already fixed. But we still have the function

ffT(r), which so far has not been defined. We determine this
where wy,—0, and the functionSps¥(r,w) is regular atw  function by requiring that
= wq. This condition can be satisfied if one adds an addi-
tional term to the particle-hole effective interaction in Eq. fff(r)zﬁsodUT(r) 38
(2.3). Thus, instead of the amplitudﬁg/ in Eq. (2.3 one dr
obtains the more general amplitude

Thus we have defined the quantif/®in such a way as to
5 " obtain the “ghost” energy to be exactly equal to zero with-
= "N r—r 7' rest , out the usual procedure of fitting force parameters.
Forgm(11)=dss rr Fs (NH Fspen(Nr), The choice of form(3.8) is very natural because if one
(3.2 fuffills the usual self-consistency condition, i.610,17,

}/a\;r:.ere}‘“?St is a restoring amplitude which is undefined so dlgr(r) -3 férr(r)J:dr'r'zAgB’,)ﬁ)(r,r';wo)dUdTr(,r,)
Substituting Eqgs(3.1) and(3.2) into Eq.(2.3), one finds T (3.9
that there should be a solution to the following homogeneous
equation: then one obtains, from Eq§3.5—(3.8),
f57(r)=—137(r), k1=—k, (3.10

{sr)=— 2> f drzrgJ' drgr}
.57 0 0 and thenF g, ,(r.r')=0.
(11 Y- Further, we should take care of the condition of having
X Arsag (1125000 Ferrs(2,f3) s (Tg). the “ghost”’ excitation probability be equal to zero. The
(3.3  equalityBy(E1)=0 is a consequence of general equations
(see, for example, Refl9]), and must be fulfilled in the
There are several methods to satisfy the condition of exisself-consistent model. In our calculations we made this by
tence of a solution of this equation using the different formsrenormalizing the well depth parameters of the potentials
of the amplitudeF™tin Eq. (3.2). An approximate method U’(r) in Eg.(3.8) in order to obtain the spurious state prob-
suitable for the QRPA was used in REE1]. We choose the ability Bo(E1) equal to zero. This can be done easily be-
quantity F"*s'as follows: cause

2
Foe (=2 xdgmiF "), @4

BO(E1)=3ET eTf:dr r3Zo.1), (3.11)

where e,=eN/A and e,=—eZ/A. Then, choosing the
where the functionigf(r) andff’(r) are connected to each potential-well depth parameters in E§.8) which ensure the
other by the expressions equality
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FIG. 1. TheE1 photoabsorption cross section for the unstable FIG. 2. Same as in Fig. 1, but for the unstaBféSn nucleus
10%n nucleus obtained in the RPA with the single-particle con-obtained in the QRPA with the continuugsolid line) and without it
tinuum (solid line) and without the continuunfdashed ling The (dashed ling
smearing parameter is equal to 200 keV.
where the signt (—) is taken for thee$™™ determined from
the spectra of thé\+1 (N—1) odd nucleus, and; is the
single-particle energy calculated with our Woods-Saxon po-
tential. The fitting procedure consists of changihg and u
we obtainBy(E1)=0. Our method of “forced consistency” in each iteration just Fo obtain the experimgntal value giyen

by Eq.(4.2). We also impose the usual particle conservation

is suited for any propagatok, e.g., when more complex constraint. The experimental single-particle levels corre
excitations than the QRPA are included since, by definition, o e )
xerat Q incu ! y detinit ponding to'?°Sn are from Ref[15], those in*%Sn are from

the spurious dipole state will in any case exactly appears %ef [16], and those in¥2Sn are from Ref[17]

Zero energy. In the evaluation of the terrA%s¢in Eq. (2.7), we use a

substraction procedure to avoid a double counting in the
propagator. The form of this equation is very useful to study
In the applications to be presented in this section we willthe influence of the single-particle continuum, since one can

use the Landau-Migdal interaction with parameters as ifeadily compare the results obtained with and without in-
Refs.[5,6,13, i.e.,[see Eqs(2.5 and(2.6)], cluding the continuum in the framework of the same calcu-

lation scheme. Thus the results without the continuum are
obtained by evaluating the propagatoin Eq. (2.9) without

the last two terms in the square brackets. The summation was
performed over four shells near the Fermi surface.

To perform the calculations without continuum, where
For the parametef.,, we choose the valué.,=—1.73, single-particle levels with positive energy may be necessary,
taken from a previous calculatiofl3]. We calculate the we used the standard procedure of immersing the system in a
ground-state nuclear densipy(r) in Eq. (2.6) by using our  box, with the boundary condition that on the walls of the box
Woods-Saxon single-particle wave functions. This procedurgne wave functions vanish. This procedure is even necessary
of evaluating the nuclear density, instead of using the stanin the continuum QRPA in order to obtain a reasonable
dard Fermi distribution forni5,6], is more consistent with  single-particle basis in the “pairing” part of the propagator.
our model. Notice that in the continuum part of the propagdtbie first

Since here we are interested only in the isoveddr term in Eqg.(2.7)], all single-particle wave functions and
resonance, the results of the calculations should not be ver@reen-function partial components are evaluated by using
sensitive to the value of the pairing gap. Porwe therefore the more “natural” boundary condition of the continuum
use forA the standard odd-even mass formula. This is quiteRPA, i.e., by using the scattering single-particle Green func-
reasonable, especially considering that the isotopes witflon given byGf; in Eq. (2.8). This difference treatment of
nucleon numbers which differ by two nucleons from the nor-the continuum in the two terms of E¢2.7) may induce
mal magic core are not considered. inaccuracies in the calculation procedure. We therefore cor-

We take the single-particle energies and wave functiongected the termA®™ in this equation by choosing the box
as given by a realistic Woods-Saxon potenfitl]. How-  houndary condition for states with the sainand| as those
ever, we renormalize the levels that lie near the Fermi suryith positive energies enterings®. For example, in'?°Sn
face by changing the well depth; of the potential so as to  this correction was made for thigs, and f,, neutron com-
obtain agreement with the experimental single-particle enefponents. It is worthwhile to point out once again that these
gies. For nonmagic nuclei, these energies are given by  corrections are necessary because the subtraction of two
slightly different pole terms may have very unpleasant nu-
merical consequences.

Zfo dr r3§On(r)=Nj0 dr r3&p,(1), (3.12

IV. NUMERICAL DETAILS

fn=—0.002, f,=2.30, f/=0.76, g=0.05,

g'=0.96, C,=300 MeV fn?. (4.1

€7P= ux (e~ p)*+ A% (4.2
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FIG. 3. Same as in Fig. 2, but fd#%n. FIG. 4. Same as in Fig. 1, but for the unstabf&Sn nucleus.

In all calculatlon_s the smearing parametgs200 keV value which is the depletion of the sum rule corresponding to
has been gsed. Th|s value allows one to see the role of tqﬁe giant resonance.
Smglr?e_pniz:r!ee%%?g::ausucr:‘ frgirlrxésonances were calculated . As can be seen from the co mparison of the results_for the
using the expression gla_nt resonance e_nvelope Wlth_ and ywthout the cc_)ntlnuu.m,
which is given in Figs. 1-4, the inclusion of the continuum is
rather noticeable both for magic and nonmagic nuclei. It is
_ clear that this effect will become even more appreciable if
E=(my/m_y)*? mk:f dE SE)EX. (4.3 we take the smearing parametgr 200 keV. This means
that it is necessary to take the single-particle continuum into
We give integral cross sections, i.e., account in QRPA calculations at least if one uses the smear-
ing parametem=<200 keV.
However, the influence of the continuum on the integral
characteristics under investigation is not considerable; see
‘Tim:j dE o(E), (44 Table I. Due to the inclusion of the continuum, we have
) ~ obtained a small decrease®fand an increase af;,; by 4%
as a percentage of the Thomas-Reiche-Kuhn cross s¢tfion (4 go5 The reason for the latter is the influence of the tail at
oin=60(NZ/A) MeVmb. In the calculations below, the higher energies. The tail gives contributions at energies

cross sections were calculated by perfoming the integral uss 40 Mev. We have therefore integrated the curves with the

ing a contour in the complex energy plafs], which en-  oniinuum up to 200 MeV, and obtained an increasegf
closes the energy interval 0—200 MeV. by about 2%.

We have also calculated the mean energies using another

definition for E, namely, E=(ms/m;)*2 [cf. Eq. (4.3)],
V. RESULTS AND DISCUSSION which emphasizes the role of the continuum and the reso-

In the applications to be presented below, we used th&ance high-energy tail. This definition &f gives the values
Landau-Migdal interaction with parameters as in Refs.18.3, 18.0, 17.2, and 17.0 MeV fdf%n, 1%sn, 12%n, and
[5,6,13, i.e., without any free parameter. The introduction of **Sn, respectively, and is decreased by about 2 MeV due
the pairing interaction in the case of superfluid systems reto exclusion of the continuum. Thus we see a noticeable
quires the quantization of the continuum for some partialinfluence of the continuum on these mean energies.
waves. As mentioned above, we have carried this out by

inmersing the nucleus in a box and using the boundary con- tagLE |. Mean energy[Eq. (4.3)] and percentage of the inte-

dition of vanishing wave function on the walls of the box. grated cross sectiofEq. (4.4)] with respect to the corresponding
The calculated photoabsortion cross sections are preérhomas-Reiche-Kuhn value.

sented in Figs. 1-4. Since we did not include configurations
beyond the RPA, our results do not describe the width ofsotopes E. MeV NZ
giant resonances. For this, at leaptlth® phonon excitations (Tim/GOT,%
has also to be included, as was done for normal systems in

) . . RPA+cont QRPA- t QRPArcont QRPA- t
Refs.[5,6]. In superfluid nuclei the treatment of these exci- Q cont Q cont Q cont Q eon

tations is more complicated. The formalism presented here i¥°sn 15.6 15.7 105.3 100.0
a first step in this direction. 10450 15.3 15.3 108.3 102.2

The mean energies are presented in Table I. In this tabléogp 14.0 14.3 98.7 94.7
we also give the percentage of the total cross sediitm 1325 13.8 14.2 101.5 97.2

(4.4)] relative to the corresponding Thomas-Reiche-Kuhn
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1200 : : : . VI. CONCLUSION
1000 4 i In. this paper we ha\(e investigated the ianu_ence of the
0 continuum  on dipole giant resonances by using the con-
Sn . El tinuum RPA in the normal nuclei®®sn and**?Sn. We have
— 8007 i also applied a continuum QRPA, which we have developed
£ for giant resonances, to the superfluid nuckéfSn and
— 6007 i 1205, We have introduced a method to avoid spuriosities
associated with the isoscalar dipole state which appears as a
4007 B result of the breaking of the translational symmetry, and
which, within the RPA, appears at zero energy if a self-
<00 7 T consistent calculation is performed. Our method does not use
o y any free parameteflike fitting the strength of a separable
0 : 0 5 20 o5 0 interaction to obtain the zero enerf#]), and is general; i.e.,

£ [MeV] it is independent of the particle-hole interaction that one
uses. The resulting formalism allows one to make the calcu-
FIG. 5. TheE1 photoabsorption cross section f#°Sn calcu-  lation with or without the continuum in a clear and straight-
lated within the continuum QRPA witlisolid line) and without  forward fashion.
(dashed lingthe “forced self-consistent” procedure. The comparison of th&1 resonance envelope calculated
within the same numerical scheme with and without the
It is of interest to investigate the role of the “forced con- single-particle continuum showed that the inclusion of the
sistency” procedure. We have repeated the calculations witBontinuum gives a noticeable change of the envelope both
the continuum without this procedure. It turned out that thergor magic and nonmagic nuclei. Moreover, the influence of
ifz a redistrliabution of the strength, especially for the nucleithe continuum is noticeable for the mean energies if these are
*Sn and ’Sn. As an example, in Fig. 5 we present the gefined asE = (my/m,)Y2 Thus the continuum at least re-
comparison of these results fof°Sn. One can see an influ- gistripytes the strength and, therefore, photoabsortion cross
ence of the spurious dipole state on the form of the curvegetions, like those presented in Figs. 1—4, can provide im-
This influence is negligible it®Sn. The difference between porant information about the influence of the continuum in
these two nuclei is probably due to the larger valut&NefZ |, clei.
in 2°Sn, which tends to mix th&=0 and 1 isospin values. " our “forced consistency” procedure to isolate the spuri-
The similarity of the results with and without the “forced s state is general, independent of the interaction or the
consistency” procedure means that the exclusion of thgnethod used to study particle-hole excitations, and sets the
“ghost” is satisfactory or, in other words, the force param- spyrious state at exactly zero energy in all cases. The fact
etrizations of the TFFS's have been chosen reasonablat the inclusion of this procedure does not change the re-
enough, and in this sense the theory gives results which argits strongly confirms that the parameters used in the TFFS
similar to the ones provided by the self-consistent theory. gre reasonable. The approach developed in this paper may be

Finally, it is worthwhile to mention that the depletion of gefy to treat cases in which more complex configurations
the sum rule shown in Table I exceeds 100%. In our calcuzre included in the formalism.

lations, this is connected to the influence of pairing correla-
tions (which are ground-state correlationalthough it might
also have to do with the omission of the particle-particle
channel[20] or with the fitting of single-particle energies, = We are very grateful to J. Blomqvist for useful discus-
which introduces a certain dependence of the single-particlsions. This work was supported by the Royal Swedish Acad-
potential on the operatd?. These effects can change the emy of Sciences and by the Russian Foundation for Funda-
calculated sum rule. mental Research.
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