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Radiative energy loss of high energy partons traversing an expanding QCD plasma
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We study analytically the medium-induced energy loss of a high energy parton passing through a finite size
QCD plasma, which is expanding longitudinally according to Bjorken’s model. We extend the Baier-
Dokshitzer-Mueller-Peign&chiff formalism already applied to static media to the case of a quark which hits
successive layers of matter of decreasing temperature, and we show that the resulting radiative energy loss can
be as large as 6 times the corresponding one in a static plasma at the reference temperafle which is
reached after the quark propagates a distandé&0556-28138)02109-9

PACS numbses): 12.38.Bx, 12.38.Mh, 24.8%.p, 25.75-q

[. INTRODUCTION with impunity. We shall also state results for the more real-
istic situation where the quark is produced7gt=0 in the
Recent work 1—8] on medium-stimulated gluon radiation (not yet thermalizedmedium. The quark, for simplicity, is
from fast partons traversingpot and coldl QCD matter starts assumed to propagate in the transverse direction with vanish-
from the assumption that the properties of the medium anéhg longitudinal momentum, such that its energy is equal to
its interactions with the energetic quark or gluon projectileits transverse momentum. On its way through the plasma the
do not change with time, i.e., the basic paramgtewhich is  quark hits layers of matter which are cooled down due to the
the typical transverse momentum given to the parton by &ongitudinal expansion. We also assume that the plasma lives
single scattering in the medium, and the parton’s mean frelong enough so that the quark is able to propagate a given
path\ are kept constant in time. This also means, in particudistancel. within the quark-gluon phase of matter.
lar, that the temperatur® remains constant during the time  The properties of the expanding plasma are described by
the parton is passing through the QCD plasma. the hydrodynamical model proposed by Bjorkei®]. The
In this paper we study analytically the propagation of aparameterg. and\ depend on temperature, and therefore on
quark, of high energy, traversing an expanding hot QCD time. The main relation is the scaling law
medium, i.e., we investigate jet broadening, induced gluon
radiation, and the resulting radiative energy loss of the quark. T37%=const, 1)
Thereby we extend the analysis of Rgf] to the case of
time-dependent parametegs and \. We follow Baier- Wwhere 7 is the proper time of the expanding medium; at
Dokshitzer-Mueller-Peign&chiff (BDMPS) [2,3] and we rapidity y=0 it coincides with the distancgime) the quark
take into account our recent woj4], in which we also show has propagated through the plasma. The pawerhich we
the equivalence of our approach with Zakharop7sg] for-  approximate by a constant, may take values betweerd
mulation of the Landau-Pomeranchuk-Migdal effg@t for anda=1 for an ideal fluid.
QCD. Let us state our main results for an expanding medium
For simplicity we consider a high energy quark enteringwith a<<1. As for the static medium the transverse momen-
and passing through a hot QCD medium. We may imaginéum broadening of the jet follows the random walk behavior,
the medium to be a quark-gluon plasma produced in a relanamely, the characteristic widthw is proportional to the
tivistic centralA— A collision, which occurs at=0. Attime  path lengthL. The radiative energy loss per unit distance
7o the quark enters the homogeneous plasma at high tem-dE/dz can be as large as @) times the corresponding
peratureT,, which expands longitudinally with respect to the loss in a static plasma at temperatdire T(L). The number
collision axis. We may consider, to be the thermalization 6 (2) corresponds to the situation where the quark enters the
time. For most of our results the limit,—~0 can be taken expanding plasma from outsidés produced inside the
plasma.
One expects indeed that the energy loss in an expanding
*Permanent address: Petersburg Nuclear Physics Instituténedium would be larger than in the static case for the same
Gatchina 188350, St. Petersburg, Russia. final temperature, since the parton passes through hotter lay-
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ers during the early phase of the expansion. Perhaps the sur- N2)=[p(2)0(2)] %, &)
prising feature is that there is no dependence of the enhance-

ment factor on the initial temperature. This result has to beeg. (2) can be written as

associated to the coherence pattern of the medium induced

radiation. Gluons contributing to the energy loss require fi- af(qf ,Z) ) 1 do -,
nite time for their emission, and therefore effects of the early M) — —=-faL.9)+ j - dg_-’,(qi Z)
stages of the quark-gluon plasma expansion are reduced. a.

This paper is organized as follows. In Sec. Il we treat jet > f[(qJ. Cu) z]dqu ' (4)

broadening due to multiple scattering in the case of an ex-

panding plasm:(iwnh a<1) and we estimate the character- which can be diagonalized by defining

istic width p?,,. Section Ill deals with the induced gluon

radiation. In Sec. IV we derive the energy loss of a quark and “o 22 —ibg 5

relate it top?,, . Following Bjorken[10] we review the main f(b ’Z)_J d“q.e f(qr,2), (5
characteristics of an expanding plasma in Appendix A. The

Green function of the Schdinger-like equation with the and

time-dependent “potential” is studied in Appendix B. Inte-

grals which are necessary in calculating the energy loss are N be _ipo 1l do .
presented in Appendix C. V(b%2)=| d°g,e o 9% 2). (6)
1
II. JET BROADENING IN AN EXPANDING MEDIUM The resulting equation becomes
In this section we consider a high energy parton propagat- af(b%,z) Lo 5 s
ing through an expanding QCD medium. By multiple scat- N2Z)—— =~ b7 (b%2)1(b%,2), (7)

tering a transverse momentum is given to the parton. In Ref.
[3] we summarized the derivation of the resulting transversgnare
momentum broadening for the case of a static uniform me-
dium. In the following we generalize this derivation taking 4
into account the space-time development of the medium. As Z(bZ,z): 7[1—V(b2,z)] (8)
described in Appendix A we assume longitudinal expansion. b2
Because of the evolution of the medium the parton propa-
gating in the transverse directiorz, is affected by the andV(0,z)=1. As discussed in Ref2] in QCDv(b?,z) has
position-dependent density of the plaspia) and the parton no finite limit for b>— 0, nevertheless, E¢7) may be solved

cross sectionda/d?q, (q, ,z). Based on the probabilistic N & logarithmic approximation
interpretatioh the master equation for the probability ~ b~
f(q?,z) for a quark to have transverse momentgm (or- v(b%,2)=p(2)v, ©

thogonal to its direction of motigrat positionz is ) - , )
independent ob. As in Refs.[2,3] we introduce the scale

5 w2, with u(z) representing a typical momentum transfer to
Jf(aL.2) _ - the parton in a parton-medium collision, evaluated at posi-
— f(a? Z)p(Z) > (Cu q.z)d%q : . - on i
9z ’ d2q] ’ tion z. An explicit model for the scattering cross section is

given by the screened “potential5]

f f(a;?,2)p(2) 2q, (9, —q, .2)d%q] . ., 1 do w?
R T T Y
2
For b2=0 we obtain, using Eq(9),
The first term(loss term accounts for partons which are
scattered out of the directiog, ,q, —q! , and the second af(b%z) B2, .
one(gain term counts those partons which are scattered into Tz ZQ(Z)f(bz’Z)v (11)
the directiong, from all other directions)] , g/ —q, . The
result given in Ref[3] is reproduced with Hdo/d?q, and ~ With the (transport coefficient[3] defined by
the mean free patih=1/po independent ofz, where o

= [d?q, do/d?q, . With az-dependent mean free path d(2)=

v p(Z)f OIJL e (12

a.

The main difference from the static case is the expression for thThe solution of Eq(11) is

absorption of the parton along its path between pomgtand z: b2 [z
exf —(z—zy)/\] for the static and e>{p—f§0dz’p(z’)a(z’)] for the (b2, 2) =?0(b2,zo)exp[ __j dz’a(z’)], (13
expanding plasma, respectively. 4
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from which the characteristic width of the distribution o 5 b )
f(q?,z) is deduced: fo(b)=—4wi[1—V(b2)]Ez—iw,u2?;b, (20)

z
piw(z):<Qi(Z)>EJz dz'q(z"). (14 where we work in the logarithmic approximatidof. Eq.
° (9)]. The two-dimensional vector structure &f andf takes
into account the two polarizations of the emitted gluon.
The induced gluon radiation spectryper unit length, in
e limit of soft gluon energy and in the largeN, limit (cf.
Eq. (4.249 in Ref.[2]), is given by

wdl _asN; 12 Re{fL% tzﬁ
Y

For a hot(masslessmedium thez dependence af(z) may
be determined from the temperature dependence of the X
panding fluid, T=T(z). The leading term of the high-
temperature expansion fg(z) in Eq. (12) is determined by
the T dependence of the densit{z) of the medium

a(2)=0(20)(T/To)*. (19 dodz 272 L o A
This implies that the medium undergoes cooling frégto d’b . . e 0
T when the parton propagates framto z. Using Bjorken’s XJ ﬂ_)zf(bth_tl)'fO (b) . (2D
model[10] summarized in Appendix A, we may wrifsee K

Eq. (A6)]
Instead of the variable used in the equations fqr, broad-
- - Zo\ ening it is equivalent to use the time varialpldn the large
Q(Z)ZQ(Zo)(Q) - (16) N, limit the coupling of the quark emitting a gluon is given
by aCr/m?=aN 27>
Let us consider the interesting case of an interacting and T"e factordt/A =podt counts the number of scatterers in
expanding plasma, i.e., the case 1. Inserting Eq(16) into  the medium. The factor IL/appears in Eq(21) because the
Eq. (14) the integration(with a=const) gives forz=L in  SPectrum is given per unit length.is the mean free path of

the limit zy—0 the random walk behavior the quark and<=)\,u_2/2w_. The« limits indicated in Eq(21)
eliminate the medium-independent factorization contribu-
a(L)L tion. . | |
p2(L)= ) (17) These characteristic properties are now taken into account
(1-a) to allow the natural generalization to the expanding medium.
By properly specifying the time dependences we rewrite Eq.
In general the relationship is (21) as
) . 1—(zo/L)t @
plW(L)ZQ(L)L?, (18 wdl _ach 1 fTO+L dtz ta dtl
dwdz 272 L o Mt ) N(ty)
which shows the delicacy of taking the limigg—0, a— 1. . w=o(k=0)
In the high temperature phase of QCD matter, we note d?b . - PR
thata=1/(1+A,/3) and, since\,=0(a?) [cf. Eq. (A7) in XJ(ZW)zf(b'tz’tU'fo (b,ty) :
Appendix A], «
(22
1—a=A,/3=0(a?). (19

where we assume that the quark hits the medium at tigne
and travels a path length, as discussed in the Introduction.
The gluon propagation fromy—t, is controlled by a Green
function
Here we generalize the derivation of the soft gluon emis-
sion spectrunj2] to the case of an expanding hot medium. . . . .
As described in the Introduction we assume that the fast f(b;thtl):f d?b’'G(b,t,;b" t)f(b';ty,ty). (23
quark is produced by a hard collision outside the medium.
Let us first start with the key equations—valid in the static
case—of Sec. 4 in Reff2], which are reexamined in Rd#].
Because of the Landau-Pomeranchuk-Migdal phenom-
enon[9], the induced spectrum is determined by an interfer- f(b;ty,ty)=Fo(b,ty), (24
ence, essentially by the gluon emission amplitudet at

f(b,t,—ty), evolved in time td,>t;, and the complex con- which is given by Eq(20), where now= u(t,). With the

jugate Born amplitudé,* (b) for emission at,. We keep all _ definition of the coefficieng(t) given in Eq.(12) the emis-
the variables unscaled, as we did in the previous section. Thelon spectrum is expressed in a rather symmetric form with
Born b-space amplitude for gluon emission is given by respect ta; andt,, namely, by

Ill. GLUON RADIATION SPECTRUM
IN AN EXPANDING MEDIUM

The initial condition is
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wdl 1 q q
dodz NcLR f tzf t,9(t,)q(ty)
deB de,b b’'G(b,t,:b’ o
X E o ( t2 tl) } .

(29

In the logarithmic approximation the amplitucfeB;tz,tl),

and therefore the Green function, satisfies a Sdihger
equation for the two-dimensional harmonic oscillatactu-
ally with imaginary potential[2,8]. For fixedt, the equation
reads

+1€2
200

}wwz(t )BZF(B-t t;)
olt2 12581

J . .
|ﬁt2f(b,t2,tl)— 5
(26)
with wg(t)zid(t)/w. For an expanding medium the fre-
guency of the oscillatorwg(t) is time dependent. In the
Bjorken model[10] the temperature of the hot medium
scales with time, as given in E@l), which translates to

a

WF(1)= m(? @7

The explicit expression for the Green function is derived in

Appendix B[12], and given by Eq(B13). In order to per-

form the B—Space integrations in E@25) it is convenient to
change variables

. t12 1/2v
Zi 1= 2ivw( 1) 1o T—(; . (28)

with the indexv=1/(2— @), such that < »< 1. Theb-space
integral is given by

=[5 %

1

a ™ (1)(2| Vwo( To) 7_0)211
y (ziz¢)?" 2
[1,-1(Z)K,—1(z) =1 ,-1(zp)K, - 1(2)]?

in terms of modified Bessel functions(z) andK,(z) [13].

Insertingl and the time dependence of the coefficigft) as
specified in Eq(16) into the spectrun{25) a rather simple
expression is obtained:

e

b'G(b,t,:b’ ;)

2
2vTg

(29

wdl  aN;1 1 R fTO+Ldt2 t2d'[1
dwdz_ o EE 70 t2 tl
1 o
X > .
[IV*l(zi)KV*l(Zf)_lV*l(zf)KV*l(Zi)] © ]
(30
If we set
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t12 1/21/
X t=To T_o) , (3D

and express the functidf,(z) in terms ofl .. ,(z) (excluding
the casev=1), we arrive at

25In7T(V l)} &{ffodxl Xde

1

[1,-1(2ivweX)l1-,(2ivweXs) — (Xi‘_’xf)]z

wdl
dowdz

aSNl
m L

w_oo]
’
w

(32

where we putwo=wg(7o) and 7o=7o(1+L/7)Y? for
shorter notation.

In order to compare with our previous result for the non-
expanding plasmg2] we takev=1/2. The induced spectrum
(32) then becomes

odl  agN f'—JrTodXi xi Xy

=—"Re| —| —

dwdz wL o Xi Jry X
4 o

X

72 yli o)l —1yali woXi) = (%= x0) 12|

(33

Using 11/0(2) = V2/7sinhz/\z and | _,/(z) = \2/ coshz/

Jz [13] gives
f dx,f dx¢

0. The remaining integrals can be

2

w=00

wdl
dde

aN

L

i(1)0
sinH i wg(Xs—

(34)

Xi)]
where we have puty,=

performed explicitly,
achRef L%
0 X

L
CRe{ In(

°In Sm(wOL)i. (35

wdl 3
deodz

i WX
tanh(i woX;)

B agN
7L

sink(i wOL)) ]

inL

a’s

L

woL

This is the radiation spectrum in thé,— oo limit, derived
and discussed in Ref$§2,4] for a hard quark entering the
static QCD medium and radiating a soft gluon.

On can easily go beyond the largg limit and the soft
gluon approximation in Eq€32) and (35). For a particle in
an arbitrary color representatidt) wé should be replaced by

(36)

1 Cr
wo ZCR X+ N_CX
wherex is the gluon energy fraction= w/E. In addition the
right-hand side of Eq€32) and(35) should be multiplied by
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2Cr L x2 3
N, Xt (37
for a spin3 fermion, and by
2Cr [1+x*+(1—x)*
rI[ (1-x)7] 38

N, 2(1-x)

for a spin 1 particlge.g., gluon,Cr=N,) [4].

IV. ENERGY LOSS IN AN EXPANDING MEDIUM

Next we integrate the radiation spectrum Eg§2) with

respect to the gluon energy in order to obtain the energy

loss per unit length

wdl

dE
dz “dwdz’

E
dz Jo d
where we extend the limE—-cc. In analogy with the static
case[2] we introduce new integration variablgsandz

(39

~ ~ X
2i vag( 7o)X =1 (1+i)X=X, z:X—f, (40)
i
leading to
2120
w=%(7-())xi2. (41

Taking 7o=0 and performing the; integration

To(L/79) Y2y N 1 .. L 1.
jo dXiXiQ(To):§T§Q(To) . EECI(L)LZ.
(42)
the energy loss can be written as
dE 2aN ] 2vsinm(v—1)]?

»dx
-5 = by

. 1dz
q(L)LRef -
02z

T | ox3

1 x=0

X = == ~= =
[1-10011-,(X2) =1, -1 (x2) 11—, () ]?

X

(43
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dE  a(Nc. . 2l (v+ DI (2—v)sinm(v—1) 2|
E_ 2 q T (V)l
(45)
where the function
I(v)= (46)

41— v)2(2-v)

for 3<v<1 is derived in Eqs(C4)—(C10). Notice that for
v=1/2 one recovers the energy loss for a quark traversing a
static medium of siz&., as discussed in Refl2—4]

dE

agNc~
dz

= q(L)L.

static

(47)

Equations(45) and(47) require that thew integration in Eq.
(39) be dominated by smaX gluons. These formulas remain
true beyond the largél. limit. The color properties of the
traversing particle are contained in ttteansport coefficient
q(L) given in Eq.(12).

Using Eqgs.(45) and(47) one finds

dE 61/2( dE )

dz 2-v»| dz stati
_ 6 dE _ 1
_(2—a)(3—2a) _E static| 1 a—2—;. (48)

In the case where the quark is produced in the medium rather
than outside,

dE ) ( dE )
- =2y ——
dz dz stati
B 2 dE
“2—a| dz| . (49
stati

replaces Eq(48), where — dE/dz| 4. also corresponds to a
quark produced in the medium and is 3 times the expression
given in Eq.(47) [4].

We notice that the limitv=1(a=1) for an expanding
ideal relativistic plasma can be taken. In this limit the maxi-
mal loss is achieved. It is bigger by a factor 6 for a quark

In order to obtain the subtraction term we expand the modiProduced outsidé2 for insidg than in the corresponding

fied Bessel functions arounk=0 [13], | (2)=(32)"/T'(v
+1). This enables us to write E¢43) as

dE  2aN,.

4

L)L

2I'(v+ 1) (2—v)sinm(v— 1)}2

™

1(v,2), (44

fl :
X N~ A~ . ~._ 5
0 Z[Zv—l_zl—v]Z

where the functior (v,2) is defined in Eq(C1) and evalu-
ated in Appendix C. We integrate over tkevariable (see

Appendix Q and obtain the analytic expression for the en-

ergy loss

static case. In this comparison the temperature is taken after

the expansion. The coefficiemf(L)=q[T(L)] has to be
evaluated at the temperatuféL) the quark finally “feels”
after having passed the distante through the medium
which during this propagation cools down TdL). Obvi-
ously in the expanding medium the energy loss should be
larger than in the case of constant temperature, since for the
same final temperature the quark has passed hotter, i.e.,
denser layers of the plasma. It is remarkable that the initial
temperaturdl ; of the hot medium does not enter the formu-
las (48) and (49), althoughT, is actually diverging in the
limit 75—0.

As a consequence it is straightforward to generalize the
relationship between energy loss gmd broadening derived
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in Ref.[3] for static nuclear matter to the case of an expand- dT(7) ,T ) i
ing plasma. We derive the relationships for a quark ap- gr = Vs vs=(B+Ap)T (A5)
proaching the medium

with v the sound velocity. In the approximation of;
_9E_ aNo 1 J (50  =const Eq(A5) gives

2
0z~ 2 (2=a)(3=2a) - oL Prwb)

(TITg)3=(7o/7)%, with a=3v2. (AB)
and for a quark produced in the medium
The parametera is bounded by &a<1, where =0
dE agN. 1 Ja , means constant temperature and a static mediul is an
T4z 2 ELIDLW“-)’ (31 ideal relativistic plasma.

In perturbative thermal QCIPL1] the parameted ; turns
relating the energy loss per unit distance in a hot expandingut to be small, indicating small deviations from ideal gas
medium with the typical transverse momentum squdfe®l  behavior. For the case of a gluon gas
a jet receives in traversing a length of a longitudinally
expanding plasma. Far=0 the results of Ref[4] are re- A :ﬁ(%
produced. ! B

2
[1+0(Vay)], (A7)

in terms of the QCD coupling constant;, which at very
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equation for a two-dimensional harmonic oscillator with

APPENDIX A: PROPERTIES OF AN EXPANDING PLASMA time-dependent frequency. Using variables familiar from

] ) ) ~quantum mechanics the equation is
Here we recall and briefly summarize the main properties

of the space-time evolution of a hadronic fluid, which is 0. 25 2ol
produced by highly relativistic nucleus-nucleus collisions. i—f(b,t)=] =5 Vi+ omag()b% f(b,1),  (B1)
We consider a hydrodynamical model and follow Bjorken
[10] in assuming one-dimensional longitudinal expansion. where the mass of the oscillator is identified with the energy
In order to obtain the dependence of the fluid’s temperaof the emitted gluonm=— w, and the time dependence of
ture T=T(7) on the proper-timer we use the conservation the frequency is given by the power behavior
law for the entropy densitg,
wh(t) = wi(to)(to /1), (B2)
ds/dr+s/7=0. (A1)

where the parameter was discussed in Appendix A and

We take into account the thermodynamic equation for the

pressure iq(to)

wp(to) = (B3)
dp/dT=¢[T(7)] (A2)
The Green function of the Schitimger equatiorfB1) can be
and expresp in terms of a monotonically increasing func- written in the form[12]

tion of temperaturen(T),

2 G(b,t;b’ t") = ————— exp{iSy(b,t;b’,t")},
r .
p=—n(T)T (A3) 2miD(t,t") ¢
90 (B4)
Defining the parameter where the fluctuation determinant satisfies the homogeneous
differential equation
T dn(T) "
=Ty AT (A4) 42 ’ , ’
ﬁD(t,t )+ w2(t)D(t,t")=0, (B5)
which we assume to be temperature indepentlérfollows
from Egs.(A1)—(A4) with the initial conditions
D(t',t")=0 tht’ =1 B6
2possibleT dependences af, are sketched in Ref10]. (t',t)=0, dt (t)-v=1. (B6)
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The classical actior8, in Eq. (B4) is determined by the

classical patkﬁd(t) obeying

j—:zﬁc.a)m?,(t)ﬁc.(t):o, (B7)
with
by(t)=b and by(t’')=b". (B8)
It follows that
Su(b.ti6" 1) = T[ Boi(t)- EBc.m} " e
2 dt o

The explicit solution of Eq(B5) with Eq. (B2) is found in
terms of modified Bessel functiong(z) andK,(z) [13] to
be

Vto

D(tt/)= —— 0
(t0) [2i vwo(to)te]?”

(zZ)'1 (DK (Z')

—K,(2)1,(2')], (B10)
where we introduce the variables
z=z(t)=2ivawy(to)to(t/ty) Y%, z'=2z(t"), (B11)
with
v=1/(2— @), (B12)

such that /2 v<1.
Using the solution to Eq$B7) and(B8) in Eq. (B9) gives
the Green functior{B4) as

N iw
G(b,t;b' t")= ———
27D(t,t")

—iw

2D(t,t')

exp [c,b2+ c25'2—25-5’]],

(B13
with the coefficients
c1=2(Z'12)'[1,-1(2)K(2") + K, _1(2)1 (2],

CZZZ,(Z/Z’)V[KV(Z)I V*l(Z,)+ I V(Z)KV*]_(Z’)]'
(B14)

The caser=1/2 is especially easy to handle, and allows a
direct comparison with the results already obtained in Refs.

[2,4]. The variables given in Eq(B11) become z(z')
=iwot(t’) with we=Viu%/\w. The functionsl;,,(z) and
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y=Isz

€ >\C4 C;

el —

€ x=Rez

FIG. 1. Integration contour for the integrts(lv,i).
K(z) are expressed in terms of hyperbolic functi¢hs],
so that the determinariB10) simplifies to

1 1
D(t,t")= E sinh(z—2')= w—o sin wg(t—t').

We note that the Green functigB13) is time-translational
invariant forv=1/2. It correctly reproduces the result of Eq.
(5.6) in Ref.[2].

APPENDIX C: THE INTEGRALS I(V,i) AND [ (»)

Here we evaluate the integral

. »dx
I(v,z)ERef =
0 X

X[l_ [z =2 T (T (2-)] 2
(11,011 (x2) = 11, (XD, -1 (0 1)
(G

with %Ei(1+i)x, by using the integration conto@®; 4
in the complexz=(x+iy) plane, which we already intro-
duced in Ref[2] (see Appendix ) and which for conve-
nience is reproduced here in Fig. 1.

Following the detailed discussion given in R¢2] the
integral is performed by calculating the residue of the pole at
x=0. Since the contribution along@, vanishes, we find the

result forl(v,z) by adding the contributions from the paths
C, andCg, i.e.,

~ 1 -
1(v,2)=5[1(».2)]c,+c,

1 ~
== E[I(V!Z)]C4

2i )
=+ 5 Residue

1
F{'/'}‘||X=Ov (CZ)



PRC 58

leading to

. mZ[U2-v)](Z"" 2= )+ (W) (2" -7 )]
I(V'Z): 4(21/71_2171/) '

(C3

For the reader who may not be convinced by the above ar-

guments we note that we have evaluated the inte@@a)
numerically using the prograrmATHEMATICA [14]. Stable
results were obtained agreeing with EG3) for a large do-
main of z and v, 0.1<2=<0.8, and:<r=<0.95.

In Eqg. (45 we stated that the energy lossdE/dz is
proportional to the integrdl(v) defined by

(=2 [122__ 12

mJo Z [ZV71_Zlfv:|2
J‘l
B 0

For the special case=1/2

[1(2—v)][2" 2= 22" "]+ (1lv)[2"— 2" "]
dz .

[Zv—l_zl— V]3

(C4

1(1/2)= 2J01d2= 2/3. (CH

For v in the interval;<v»<1 we evaluatd (v) as follows.
We change the integration variable to

2(1-v).

t=z (Co)

We regularize the integrand nea=1 by (1-t) 3—(1
—t)~3*%, £>0, and arrive at

RADIATIVE ENERGY LOSS OF HIGH ENERGY ...

1713
1 1
0= gz, o
" V[l_tll(l—v)+1]+(2_ V)[tll(l—v)_t]
(1_t)3—£ !
(C7)

where the limite—0 is to be taken after the integration.
Using the EulerB function[13] gives
1 [ v

_ 2_V
L(v)= 2v(1-1)(2-v)|e=2 (e~1)(z-2)

_ v2-»l(e+D) [ T[UAL-»)-1]
(1-v)2s(s—1)(e—2)| T[e+1/(1-v)—1]

|

One can easily check that(v) is regular ate=0. Using
[13]

I[1(1-v)]
Te+1(1-v)]

(C8

[(2)/T(e+2) —— 1—&y(z) +O(&?)

e—0

(C9

in terms of the digamma functiof(z), and with the recur-
rence formulay(z+1)= (z) + 1/z, we finally obtain

! L1
_—, —s=yp<l1.
4(1-v)2(2-v) 2

le(v) —— 1(v)=
e—0

(C10
This is in agreement with EqC5) for v=1/2.
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