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Radiative energy loss of high energy partons traversing an expanding QCD plasma
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We study analytically the medium-induced energy loss of a high energy parton passing through a finite size
QCD plasma, which is expanding longitudinally according to Bjorken’s model. We extend the Baier-
Dokshitzer-Mueller-Peigne´-Schiff formalism already applied to static media to the case of a quark which hits
successive layers of matter of decreasing temperature, and we show that the resulting radiative energy loss can
be as large as 6 times the corresponding one in a static plasma at the reference temperatureT5T(L), which is
reached after the quark propagates a distanceL. @S0556-2813~98!02109-8#

PACS number~s!: 12.38.Bx, 12.38.Mh, 24.85.1p, 25.75.2q
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I. INTRODUCTION

Recent work@1–8# on medium-stimulated gluon radiatio
from fast partons traversing~hot and cold! QCD matter starts
from the assumption that the properties of the medium
its interactions with the energetic quark or gluon projec
do not change with time, i.e., the basic parameterm, which is
the typical transverse momentum given to the parton b
single scattering in the medium, and the parton’s mean
pathl are kept constant in time. This also means, in parti
lar, that the temperatureT remains constant during the tim
the parton is passing through the QCD plasma.

In this paper we study analytically the propagation o
quark, of high energyE, traversing an expanding hot QC
medium, i.e., we investigate jet broadening, induced glu
radiation, and the resulting radiative energy loss of the qu
Thereby we extend the analysis of Ref.@1# to the case of
time-dependent parametersm and l. We follow Baier-
Dokshitzer-Mueller-Peigne´-Schiff ~BDMPS! @2,3# and we
take into account our recent work@4#, in which we also show
the equivalence of our approach with Zakharov’s@7,8# for-
mulation of the Landau-Pomeranchuk-Migdal effect@9# for
QCD.

For simplicity we consider a high energy quark enteri
and passing through a hot QCD medium. We may imag
the medium to be a quark-gluon plasma produced in a r
tivistic centralA2A collision, which occurs att50. At time
t0 the quark enters the homogeneous plasma at high
peratureT0, which expands longitudinally with respect to th
collision axis. We may considert0 to be the thermalization
time. For most of our results the limitt0→0 can be taken

*Permanent address: Petersburg Nuclear Physics Insti
Gatchina 188350, St. Petersburg, Russia.
PRC 580556-2813/98/58~3!/1706~8!/$15.00
d

a
e
-

n
k.

e
a-

m-

with impunity. We shall also state results for the more re
istic situation where the quark is produced att050 in the
~not yet thermalized! medium. The quark, for simplicity, is
assumed to propagate in the transverse direction with van
ing longitudinal momentum, such that its energy is equa
its transverse momentum. On its way through the plasma
quark hits layers of matter which are cooled down due to
longitudinal expansion. We also assume that the plasma l
long enough so that the quark is able to propagate a g
distanceL within the quark-gluon phase of matter.

The properties of the expanding plasma are described
the hydrodynamical model proposed by Bjorken@10#. The
parametersm andl depend on temperature, and therefore
time. The main relation is the scaling law

T3ta5const, ~1!

where t is the proper time of the expanding medium;
rapidity y50 it coincides with the distance~time! the quark
has propagated through the plasma. The powera, which we
approximate by a constant, may take values betweena50
anda51 for an ideal fluid.

Let us state our main results for an expanding medi
with a,1. As for the static medium the transverse mome
tum broadening of the jet follows the random walk behavi
namely, the characteristic widthp'W

2 is proportional to the
path lengthL. The radiative energy loss per unit distan
2dE/dz can be as large as 6~2! times the corresponding
loss in a static plasma at temperatureT5T(L). The number
6 ~2! corresponds to the situation where the quark enters
expanding plasma from outside~is produced inside the
plasma!.

One expects indeed that the energy loss in an expan
medium would be larger than in the static case for the sa
final temperature, since the parton passes through hotter

te,
1706 © 1998 The American Physical Society
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ers during the early phase of the expansion. Perhaps the
prising feature is that there is no dependence of the enha
ment factor on the initial temperature. This result has to
associated to the coherence pattern of the medium indu
radiation. Gluons contributing to the energy loss require
nite time for their emission, and therefore effects of the ea
stages of the quark-gluon plasma expansion are reduced

This paper is organized as follows. In Sec. II we treat
broadening due to multiple scattering in the case of an
panding plasma~with a,1) and we estimate the characte
istic width p'W

2 . Section III deals with the induced gluo
radiation. In Sec. IV we derive the energy loss of a quark a
relate it top'W

2 . Following Bjorken@10# we review the main
characteristics of an expanding plasma in Appendix A. T
Green function of the Schro¨dinger-like equation with the
time-dependent ‘‘potential’’ is studied in Appendix B. Inte
grals which are necessary in calculating the energy loss
presented in Appendix C.

II. JET BROADENING IN AN EXPANDING MEDIUM

In this section we consider a high energy parton propa
ing through an expanding QCD medium. By multiple sc
tering a transverse momentum is given to the parton. In R
@3# we summarized the derivation of the resulting transve
momentum broadening for the case of a static uniform m
dium. In the following we generalize this derivation takin
into account the space-time development of the medium
described in Appendix A we assume longitudinal expansi

Because of the evolution of the medium the parton pro
gating in the transverse direction,z is affected by the
position-dependent density of the plasmar(z) and the parton
cross sectionds/d2qW'(qW' ,z). Based on the probabilistic
interpretation1 the master equation for the probabili
f (q'

2 ,z) for a quark to have transverse momentumqW' ~or-
thogonal to its direction of motion! at positionz is

] f ~q'
2 ,z!

]z
52E f ~q'

2 ,z!r~z!
ds

d2qW'8
~qW'2qW'8 ,z!d2qW'8

1E f ~q'8
2 ,z!r~z!

ds

d2qW'8
~qW'8 2qW' ,z!d2qW'8 .

~2!

The first term~loss term! accounts for partons which ar
scattered out of the directionqW' ,qW'→qW'8 , and the second
one~gain term! counts those partons which are scattered i
the directionqW' from all other directionsqW'8 , qW'8→qW' . The

result given in Ref.@3# is reproduced with 1/sds/d2qW' and
the mean free pathl51/rs independent ofz, where s

5*d2qW'ds/d2qW' . With a z-dependent mean free path

1The main difference from the static case is the expression for
absorption of the parton along its path between pointsz0 and z:
exp@2(z2z0)/l# for the static and exp@2*z0

z dz8r(z8)s(z8)# for the
expanding plasma, respectively.
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l~z!5@r~z!s~z!#21, ~3!

Eq. ~2! can be written as

l~z!
] f ~q'

2 ,z!

]z
52 f ~q'

2 ,z!1E 1

s

ds

d2qW'8
~qW'8 ,z!

3 f @~qW'8 2qW'!2,z#d2qW'8 , ~4!

which can be diagonalized by defining

f̃ ~b2,z!5E d2qW'e2 ibW •qW' f ~q'
2 ,z!, ~5!

and

Ṽ~b2,z!5E d2qW'e2 ibW •qW'
1

s

ds

d2qW'

~qW' ,z!. ~6!

The resulting equation becomes

l~z!
] f̃ ~b2,z!

]z
52

1

4
bW 2ṽ~b2,z! f̃ ~b2,z!, ~7!

where

ṽ~b2,z!5
4

bW 2
@12Ṽ~b2,z!# ~8!

andṼ(0,z)51. As discussed in Ref.@2# in QCD ṽ(b2,z) has
no finite limit for b2→0, nevertheless, Eq.~7! may be solved
in a logarithmic approximation

ṽ~b2,z!.m2~z!ṽ, ~9!

independent ofbW . As in Refs.@2,3# we introduce the scale
m2, with m(z) representing a typical momentum transfer
the parton in a parton-medium collision, evaluated at po
tion z. An explicit model for the scattering cross section
given by the screened ‘‘potential’’@5#

V~qW'
2 !5

1

s

ds

d2qW'

5
m2

p~qW'
2 1m2!2

. ~10!

For bW 2.0 we obtain, using Eq.~9!,

] f̃ ~b2,z!

]z
.2

bW 2

4
q̂~z! f̃ ~b2,z!, ~11!

with the ~transport! coefficient@3# defined by

q̂~z![
m2~z!

l~z!
ṽ.r~z!E

0

1/b2

d2qW'qW'
2 ds

d2qW'

. ~12!

The solution of Eq.~11! is

f̃ ~b2,z!5 f̃ 0~b2,z0!expH 2
b2

4 E
z0

z

dz8q̂~z8!J , ~13!

e
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from which the characteristic width of the distributio
f (q'

2 ,z) is deduced:

p'W
2 ~z!5^q'

2 ~z!&[E
z0

z

dz8q̂~z8!. ~14!

For a hot~massless! medium thez dependence ofq̂(z) may
be determined from the temperature dependence of the
panding fluid, T5T(z). The leading term of the high
temperature expansion forq̂(z) in Eq. ~12! is determined by
the T dependence of the densityr(z) of the medium

q̂~z!5q̂~z0!~T/T0!3. ~15!

This implies that the medium undergoes cooling fromT0 to
T when the parton propagates fromz0 to z. Using Bjorken’s
model @10# summarized in Appendix A, we may write@see
Eq. ~A6!#

q̂~z!5q̂~z0!S z0

z D a

. ~16!

Let us consider the interesting case of an interacting
expanding plasma, i.e., the casea,1. Inserting Eq.~16! into
Eq. ~14! the integration~with a5const) gives forz5L in
the limit z0→0 the random walk behavior

p'W
2 ~L !5

q̂~L !L

~12a!
. ~17!

In general the relationship is

p'W
2 ~L !5q̂~L !L

12~z0 /L !12a

12a
, ~18!

which shows the delicacy of taking the limitsz0→0, a→1.
In the high temperature phase of QCD matter, we n

thata51/(11D1/3) and, sinceD15O(as
2) @cf. Eq. ~A7! in

Appendix A#,

12a.D1/35O~as
2!. ~19!

III. GLUON RADIATION SPECTRUM
IN AN EXPANDING MEDIUM

Here we generalize the derivation of the soft gluon em
sion spectrum@2# to the case of an expanding hot mediu
As described in the Introduction we assume that the
quark is produced by a hard collision outside the mediu
Let us first start with the key equations—valid in the sta
case—of Sec. 4 in Ref.@2#, which are reexamined in Ref.@4#.

Because of the Landau-Pomeranchuk-Migdal pheno
enon@9#, the induced spectrum is determined by an interf
ence, essentially by the gluon emission amplitude att1,
fW(bW ,t22t1), evolved in time tot2.t1, and the complex con
jugate Born amplitudefW0* (bW ) for emission att2. We keep all
the variables unscaled, as we did in the previous section.
Born bW -space amplitude for gluon emission is given by
x-

d

e

-
.
st
.

-
-

he

fW0~bW !524p i @12Ṽ~b2!#
bW

b2
.2 ipm2ṽbW , ~20!

where we work in the logarithmic approximation@cf. Eq.
~9!#. The two-dimensional vector structure offW0 and fW takes
into account the two polarizations of the emitted gluon.

The induced gluon radiation spectrum~per unit length!, in
the limit of soft gluon energyv and in the largeNc limit „cf.
Eq. ~4.24! in Ref. @2#…, is given by

vdI

dvdz
5

asNc

2p2

1

L
2 ReH E0

Ldt2
l E

0

t2dt1
l

3E d2bW

~2p!2
fW~bW ,t22t1!• fW0* ~bW !U

k

k50J . ~21!

Instead of the variablez used in the equations forp' broad-
ening it is equivalent to use the time variablet. In the large
Nc limit the coupling of the quark emitting a gluon is give
by asCF /p2.asNc/2p2.

The factordt/l5rsdt counts the number of scatterers
the medium. The factor 1/L appears in Eq.~21! because the
spectrum is given per unit length.l is the mean free path o
the quark andk5lm2/2v. Thek limits indicated in Eq.~21!
eliminate the medium-independent factorization contrib
tion.

These characteristic properties are now taken into acco
to allow the natural generalization to the expanding mediu
By properly specifying the time dependences we rewrite
~21! as

vdI

dvdz
5

asNc

2p2

1

L
2 ReH E

t0

t01L dt2
l~ t2!

E
t0

t2 dt1
l~ t1!

3E d2bW

~2p!2
fW~bW ;t2 ,t1!• fW0* ~bW ,t2!U

k

v5`~k50!J ,

~22!

where we assume that the quark hits the medium at timet0
and travels a path lengthL, as discussed in the Introduction
The gluon propagation fromt1→t2 is controlled by a Green
function

fW~bW ;t2 ,t1!5E d2bW 8G~bW ,t2 ;bW 8,t1! fW~bW 8;t1 ,t1!. ~23!

The initial condition is

fW~bW ;t1 ,t1!5 fW0~bW ,t1!, ~24!

which is given by Eq.~20!, where nowm5m(t1). With the
definition of the coefficientq̂(t) given in Eq.~12! the emis-
sion spectrum is expressed in a rather symmetric form w
respect tot1 and t2, namely, by
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vdI

dvdz
5asNc

1

L
ReH E

t0

t01L

dt2E
t0

t2
dt1q̂~ t2!q̂~ t1!

3E d2bW

2p E d2bW 8

2p
bW •bW 8G~bW ,t2 ;bW 8,t1!U

v

v5`J .

~25!

In the logarithmic approximation the amplitudefW(bW ;t2 ,t1),
and therefore the Green function, satisfies a Schro¨dinger
equation for the two-dimensional harmonic oscillator~actu-
ally with imaginary potential! @2,8#. For fixedt1 the equation
reads

i
]

]t2
fW~bW ;t2 ,t1!5F1

1

2v
¹W b

22
1

2
vv0

2~ t2!bW 2G fW~bW ;t2 ,t1!,

~26!

with v0
2(t)[ i q̂(t)/v. For an expanding medium the fre

quency of the oscillatorv0(t) is time dependent. In the
Bjorken model @10# the temperature of the hot mediu
scales with time, as given in Eq.~1!, which translates to

v0
2~ t !5v0

2~t0!S t0

t D a

. ~27!

The explicit expression for the Green function is derived
Appendix B @12#, and given by Eq.~B13!. In order to per-
form thebW -space integrations in Eq.~25! it is convenient to
change variables

zi , f52inv0~t0!t0S t1,2

t0
D 1/2n

, ~28!

with the indexn51/(22a), such that12 <n,1. ThebW -space
integral is given by

I[E d2bW

2p E d2bW 8

2p
bW •bW 8G~bW ,t2 ;bW 8,t1!

52
1

pF 2nt0

v„2inv0~t0!t0…
2nG 2

3
~zizf !

2n22

@ I n21~zi !Kn21~zf !2I n21~zf !Kn21~zi !#
2

~29!

in terms of modified Bessel functionsI n(z) andKn(z) @13#.
InsertingI and the time dependence of the coefficientq̂(t) as
specified in Eq.~16! into the spectrum~25! a rather simple
expression is obtained:

vdI

dvdz
5

asNc

p

1

L

1

4n2
ReH Et0

t01Ldt2
t2
E

t0

t2dt1
t1

3
1

@ I n21~zi !Kn21~zf !2I n21~zf !Kn21~zi !#
2U

v

v5`J .

~30!

If we set
xi , f5t0S t1,2

t0
D 1/2n

, ~31!

and express the functionKn(z) in terms ofI 6n(z) ~excluding
the casen51), we arrive at

vdI

dvdz
5

asNc

p

1

LF2 sinp~n21!

p G2

ReH Et0

t̂0dxi

xi
E

t0

xi dxf

xf

3
1

@ I n21~2inv0xi !I 12n~2inv0xf !2~xi↔xf !#
2U

v

v5`J ,

~32!

where we putv0[v0(t0) and t̂0[t0(11L/t0)1/2n for
shorter notation.

In order to compare with our previous result for the no
expanding plasma@2# we taken51/2. The induced spectrum
~32! then becomes

vdI

dvdz
5

asNc

pL
ReE

t0

L1t0dxi

xi
E

t0

xi dxf

xf

3
4

p2@ I 1/2~ iv0xf !I 21/2~ iv0xi !2~xi↔xf !#
2U

v

v5`

.

~33!

Using I 1/2(z)5A2/p sinhz/Az and I 21/2(z)5A2/p coshz/
Az @13# gives

vdI

dvdz
5

asNc

pL
ReE

0

L

dxiE
0

xi
dxfF iv0

sinh@ iv0~xf2xi !#
G2U

v

v5`

,

~34!

where we have putt050. The remaining integrals can b
performed explicitly,

vdI

dvdz
5

asNc

pL
ReE

0

Ldxi

xi
F iv0xi

tanh~ iv0xi !
21G

5
asNc

pL
ReH lnS sinh~ iv0L !

iv0L D J
5

asNc

pL
lnUsin~v0L !

v0L U. ~35!

This is the radiation spectrum in theNc→` limit, derived
and discussed in Refs.@2,4# for a hard quark entering the
static QCD medium and radiating a soft gluon.

On can easily go beyond the largeNc limit and the soft
gluon approximation in Eqs.~32! and ~35!. For a particle in
an arbitrary color representationR, v0

2 should be replaced by

v0
2 Nc

2CR
S 12x1

CR

Nc
x2D , ~36!

wherex is the gluon energy fractionx5v/E. In addition the
right-hand side of Eqs.~32! and~35! should be multiplied by
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2CR

Nc
S 12x1

x2

2 D ~37!

for a spin 1
2 fermion, and by

2CR

Nc

@11x41~12x!4#

2~12x!
~38!

for a spin 1 particle~e.g., gluon,CR5Nc) @4#.

IV. ENERGY LOSS IN AN EXPANDING MEDIUM

Next we integrate the radiation spectrum Eq.~32! with
respect to the gluon energyv in order to obtain the energ
loss per unit length

2
dE

dz
5E

0

E

dv
vdI

dvdz
, ~39!

where we extend the limitE→`. In analogy with the static
case@2# we introduce new integration variablesx and ẑ

2inv0~t0!xi5 i ~11 i !x[ x̂, ẑ5
xf

xi
, ~40!

leading to

v5
2n2q̂~t0!

x2
xi

2 . ~41!

Taking t050 and performing thexi integration

E
0

t0~L/t0!1/2n

dxixi q̂~t0!5
1

2
t0

2q̂~t0!S L

t0
D[

1

2
q̂~L !L2,

~42!

the energy loss can be written as

2
dE

dz
5

2asNc

p F2n sinp~n21!

p G2

q̂~L !LReE
0

1dẑ

ẑ
E

0

`dx

x3

3
1

@ I n21~ x̂!I 12n~ x̂ẑ!2I n21~ x̂ẑ!I 12n~ x̂!#2U
x

x50

.

~43!

In order to obtain the subtraction term we expand the mo

fied Bessel functions aroundx50 @13#, I n(z).( 1
2 z)n/G(n

11). This enables us to write Eq.~43! as

2
dE

dz
5

2asNc

p
q̂~L !LF2G~n11!G~22n!sinp~n21!

p G2

3E
0

1 dẑ

ẑ@ ẑn212 ẑ12n#2
I ~n,ẑ!, ~44!

where the functionI (n,ẑ) is defined in Eq.~C1! and evalu-
ated in Appendix C. We integrate over theẑ variable ~see
Appendix C! and obtain the analytic expression for the e
ergy loss
i-

-

2
dE

dz
5

asNc

2
q̂~L !LF2G~n11!G~22n!sinp~n21!

p G2

I ~n!,

~45!

where the function

I ~n!5
1

4~12n!2~22n!
, ~46!

for 1
2 <n,1 is derived in Eqs.~C4!–~C10!. Notice that for

n51/2 one recovers the energy loss for a quark traversin
static medium of sizeL, as discussed in Refs.@2–4#

2
dE

dz U
static

5
asNc

12
q̂~L !L. ~47!

Equations~45! and~47! require that thev integration in Eq.
~39! be dominated by smallx gluons. These formulas remai
true beyond the largeNc limit. The color properties of the
traversing particle are contained in the~transport! coefficient
q̂(L) given in Eq.~12!.

Using Eqs.~45! and ~47! one finds

2
dE

dz
5

6n2

22nS 2
dE

dz U
static

D
5

6

~22a!~322a!S 2
dE

dz UstaticD , a522
1

n
. ~48!

In the case where the quark is produced in the medium ra
than outside,

2
dE

dz
52nS 2

dE

dz U
static

D
5

2

22aS 2
dE

dz U
static

D ~49!

replaces Eq.~48!, where2dE/dzustatic also corresponds to a
quark produced in the medium and is 3 times the expres
given in Eq.~47! @4#.

We notice that the limitn51(a51) for an expanding
ideal relativistic plasma can be taken. In this limit the ma
mal loss is achieved. It is bigger by a factor 6 for a qua
produced outside~2 for inside! than in the corresponding
static case. In this comparison the temperature is taken a
the expansion. The coefficientq̂(L)5q̂@T(L)# has to be
evaluated at the temperatureT(L) the quark finally ‘‘feels’’
after having passed the distanceL through the medium
which during this propagation cools down toT(L). Obvi-
ously in the expanding medium the energy loss should
larger than in the case of constant temperature, since for
same final temperature the quark has passed hotter,
denser layers of the plasma. It is remarkable that the in
temperatureT0 of the hot medium does not enter the form
las ~48! and ~49!, althoughT0 is actually diverging in the
limit t0→0.

As a consequence it is straightforward to generalize
relationship between energy loss andp' broadening derived
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in Ref. @3# for static nuclear matter to the case of an expa
ing plasma. We derive the relationships for a quark
proaching the medium

2
dE

dz
5

asNc

2

1

~22a!~322a!
L

]

]L
p'W

2 ~L ! ~50!

and for a quark produced in the medium

2
dE

dz
5

asNc

2

1

22a
L

]

]L
p'W

2 ~L !, ~51!

relating the energy loss per unit distance in a hot expand
medium with the typical transverse momentum squared~14!
a jet receives in traversing a lengthL of a longitudinally
expanding plasma. Fora50 the results of Ref.@4# are re-
produced.
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APPENDIX A: PROPERTIES OF AN EXPANDING PLASMA

Here we recall and briefly summarize the main proper
of the space-time evolution of a hadronic fluid, which
produced by highly relativistic nucleus-nucleus collision
We consider a hydrodynamical model and follow Bjork
@10# in assuming one-dimensional longitudinal expansion

In order to obtain the dependence of the fluid’s tempe
ture T5T(t) on the proper-timet we use the conservatio
law for the entropy densitys,

ds/dt1s/t50. ~A1!

We take into account the thermodynamic equation for
pressure

dp/dT5s@T~t!# ~A2!

and expressp in terms of a monotonically increasing func
tion of temperaturen(T),

p5
p2

90
n~T!T4. ~A3!

Defining the parameter

D1[
T

n~T!

dn~T!

dT
, ~A4!

which we assume to be temperature independent.2 It follows
from Eqs.~A1!–~A4!

2PossibleT dependences ofD1 are sketched in Ref.@10#.
-
-

g

s

e

f

s

.

-

e

dT~t!

dt
52vs

2 T

t
, vs

25~31D1!21/2, ~A5!

with vs the sound velocity. In the approximation ofvs
5const Eq.~A5! gives

~T/T0!35~t0 /t!a, with a[3vs
2 . ~A6!

The parametera is bounded by 0<a<1, where a50
means constant temperature and a static medium.a51 is an
ideal relativistic plasma.

In perturbative thermal QCD@11# the parameterD1 turns
out to be small, indicating small deviations from ideal g
behavior. For the case of a gluon gas

D15
165

8 S as

p D 2

@11O~Aas!#, ~A7!

in terms of the QCD coupling constantas , which at very
high temperatures should be evaluated at the scaleT.

APPENDIX B: GREEN FUNCTION

In order to discuss the solution of Eq.~26! we make a
logarithmic approximation and assume that ln(1/bW2) is slowly
varying for smallbW 2. We then have to solve the Schro¨dinger
equation for a two-dimensional harmonic oscillator wi
time-dependent frequency. Using variables familiar fro
quantum mechanics the equation is

i
]

]t
fW~bW ,t !5F2

1

2m
¹W b

21
1

2
mv0

2~ t !bW 2G fW~bW ,t !, ~B1!

where the mass of the oscillator is identified with the ene
of the emitted gluon,m[2v, and the time dependence o
the frequency is given by the power behavior

v0
2~ t !5v0

2~ t0!~ t0 /t !a, ~B2!

where the parametera was discussed in Appendix A and

v0
2~ t0!5

i q̂~ t0!

v
. ~B3!

The Green function of the Schro¨dinger equation~B1! can be
written in the form@12#

G~bW ,t;bW 8,t8!5
m

2p iD ~ t,t8!
exp $ iScl~bW ,t;bW 8,t8!%,

~B4!

where the fluctuation determinant satisfies the homogene
differential equation

d2

dt2
D~ t,t8!1v0

2~ t !D~ t,t8!50, ~B5!

with the initial conditions

D~ t8,t8!50,
d

dt
D~ t,t8!u t5t851. ~B6!
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The classical actionScl in Eq. ~B4! is determined by the
classical pathbW cl(t) obeying

d2

dt2
bW cl~ t !1v0

2~ t !bW cl~ t !50, ~B7!

with

bW cl~ t !5bW and bW cl~ t8!5bW 8. ~B8!

It follows that

Scl~bW ,t;bW 8,t8!5
m

2 FbW cl~ t !•
d

dt
bW cl~ t !GU

t8

t

. ~B9!

The explicit solution of Eq.~B5! with Eq. ~B2! is found in
terms of modified Bessel functionsI n(z) andKn(z) @13# to
be

D~ t,t8!5
2nt0

@2inv0~ t0!t0#2n
~zz8!n@ I n~z!Kn~z8!

2Kn~z!I n~z8!#, ~B10!

where we introduce the variables

z5z~ t ![2inv0~ t0!t0~ t/t0!1/2n, z85z~ t8!, ~B11!

with

n51/~22a!, ~B12!

such that 1/2<n<1.
Using the solution to Eqs.~B7! and~B8! in Eq. ~B9! gives

the Green function~B4! as

G~bW ,t;bW 8,t8!5
iv

2pD~ t,t8!

3exp H 2 iv

2D~ t,t8!
@c1bW 21c2bW 8222bW •bW 8#J ,

~B13!

with the coefficients

c15z~z8/z!n@ I n21~z!Kn~z8!1Kn21~z!I n~z8!#,

c25z8~z/z8!n@Kn~z!I n21~z8!1I n~z!Kn21~z8!#.
~B14!

The casen51/2 is especially easy to handle, and allows
direct comparison with the results already obtained in R
@2,4#. The variables given in Eq.~B11! become z(z8)

5 iv0t(t8) with v0[Aim2ṽ/lv. The functionsI 1/2(z) and
s.

K1/2(z) are expressed in terms of hyperbolic functions@13#,
so that the determinant~B10! simplifies to

D~ t,t8!5
1

iv0
sinh ~z2z8!5

1

v0
sin v0~ t2t8!.

We note that the Green function~B13! is time-translational
invariant forn51/2. It correctly reproduces the result of E
~5.6! in Ref. @2#.

APPENDIX C: THE INTEGRALS I „n,ẑ… AND I „n…

Here we evaluate the integral

I ~n,ẑ![ReE
0

`dx

x3

3H 12
@ ẑn212 ẑ12n#2@G~n!G~22n!#22

@ I 12n~ x̂!I n21~ x̂ẑ!2I 12n~ x̂ẑ!I n21~ x̂!#2J ,

~C1!

with x̂[ i (11 i )x, by using the integration contourC1, . . . ,4
in the complexz5(x1 iy) plane, which we already intro
duced in Ref.@2# ~see Appendix D!, and which for conve-
nience is reproduced here in Fig. 1.

Following the detailed discussion given in Ref.@2# the
integral is performed by calculating the residue of the pole
x50. Since the contribution alongC2 vanishes, we find the
result for I (n,ẑ) by adding the contributions from the path
C1 andC3, i.e.,

I ~n,ẑ!5
1

2
@ I ~n,ẑ!#C11C3

52
1

2
@ I ~n,ẑ!#C4

51
2p i

8
Residue F 1

x3
$•/.%G ux50 , ~C2!

FIG. 1. Integration contour for the integralI (n,ẑ).
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leading to

I ~n,ẑ!5
p ẑ@@1/~22n!#~ ẑn222 ẑ22n!1~1/n!~ ẑn2 ẑ2n!#

4~ ẑn212 ẑ12n!
.

~C3!

For the reader who may not be convinced by the above
guments we note that we have evaluated the integral~C1!
numerically using the programMATHEMATICA @14#. Stable
results were obtained agreeing with Eq.~C3! for a large do-
main of z andn, 0.1<z<0.8, and1

2 <n<0.95.
In Eq. ~45! we stated that the energy loss2dE/dz is

proportional to the integralI (n) defined by

I ~n![
4

pE0

1dz

z

I ~n,z!

@zn212z12n#2

5E
0

1

dz
@1/~22n!#@zn222z22n#1~1/n!@zn2z2n#

@zn212z12n#3
.

~C4!

For the special casen51/2

I ~1/2!5
2

3E0

1

dz52/3. ~C5!

For n in the interval 1
2 <n,1 we evaluateI (n) as follows.

We change the integration variable to

t5z2~12n!. ~C6!

We regularize the integrand neart51 by (12t)23→(1
2t)231«, «.0, and arrive at
f,
-

r-

I «~n![
1

2n~12n!~22n!
E

0

1

dt

3
n@12t1/~12n!11#1~22n!@ t1/~12n!2t#

~12t !32«
,

~C7!

where the limit«→0 is to be taken after the integration
Using the Eulerb function @13# gives

I «~n!5
1

2n~12n!~22n!H n

«22
2

22n

~«21!~«22!

2
n~22n!G~«11!

~12n!2«~«21!~«22!
F G@1/~12n!21#

G@«11/~12n!21#

2
G@1/~12n!#

G@«11/~12n!#G J . ~C8!

One can easily check thatI «(n) is regular at«50. Using
@13#

G~z!/G~e1z! ——→
«→0

12«c~z!1O~«2! ~C9!

in terms of the digamma functionc(z), and with the recur-
rence formulac(z11)5c(z)11/z, we finally obtain

I «~n! ——→
«→0

I ~n!5
1

4~12n!2~22n!
,

1

2
<n,1.

~C10!

This is in agreement with Eq.~C5! for n51/2.
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