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Two center light cone calculation of pair production induced by ultrarelativistic heavy ions
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An exact solution of the two center time-dependent Dirac equation for pair production induced by ultrarela-
tivistic heavy ion collisions is presented. Cross sections to specific final states approach those of perturbation
theory. Multiplicity rates are reduced from perturbation theory.@S0556-2813~98!03409-8#

PACS number~s!: 25.75.2q, 34.90.1q
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I. INTRODUCTION

In this paper, we shall compute the production
electron-positron pairs in the central region for highly re
tivistic charged ions. We base our calculations on an ex
solution of the time dependent Dirac equation in the
trarelativistic limit. We show that except for possible cuto
effects the exact cross section for any specific final elec
positron state equals the perturbation theory result. On
other hand, we argue that the rate for processes corre
with low impact parameters~such as pair multiplicity! are
reduced from the perturbation theory rate.

Our notation will vary at times between that of high e
ergy physics~light cone variables and Diracg matrices! and
that of atomic physic~Dirac a andb matrices and the usua
four momentum and space time variables! as convenience
and the connection to previous work dictates. The relat
between different notations should be clear.

To properly define what we mean by central region a
highly relativistic, it is useful to define light cone coord
nates,

p65
1

A2
~p06pz!, x65

1

A2
~ t6z!, ~1!

where thez direction is the beam direction. In this coordina
system, the invariant dot product of momenta isp•q
5p1q21p2q12pT•qT . We will take the nucleus propa
gating along the positivez axis to have a large light con
momentumP1 and that along the negativez axis to have
large light cone momentaQ2. By highly relativistic we
mean, for example, the case of RHIC, colliding ions ea
with g(51/A12v2) of 100. Note that the Compton wave
length of the electron is large compared to the radius
either nucleus and thus the nucleus can be considered a
chargeaZ.

To define what we mean by centrally produced, we defi
the lightcone momentum fractions of an electron or posit
to be

x5p1/P1 ~2!

and

y5p2/Q2. ~3!
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Central production will mean electrons and positrons wh
havex,y!1. This can be satisfied for some range of lon
tudinal momenta of the electron or positron so long as
condition on the Compton wavelength is satisfied.

When the electron or positron in the central region s
the moving nuclei, it sees two oppositely Lorentz boos
Coulomb fields. These are the Lie´nard-Wiechert potentials

V~r,z,t !5
aZ~12vaz!

A@~b/22r!/g#21~z2vt !2

1
aZ~11vaz!

A@~b/21r!/g#21~z1vt !2
. ~4!

b is the impact parameter, perpendicular to thez axis along
which the ions travel,r, z, and t are the coordinates of th
potential, az is the Dirac matrix, andZ,v and g are the
charge, velocity, andg factor of the oppositely moving ions
We have specialized to the case of equalZ ions; unequalZ
would only require a trivial change in what follows. If on
makes the gauge transformation on the wave function

c5e2 ix~r ,t !c8, ~5!

where

x~r ,t !5
aZ

v
ln@g~z2vt !1Ab2/41g2~z2vt !2#

2
aZ

v
ln@g~z1vt !1Ab2/41g2~z1vt !2#, ~6!

the interactionV(r,z,t) is gauge transformed to@1#

V~r,z,t !

5
aZ~12vaz!

A@~b/22r!/g#21~z2vt !2

2
aZ„12~1/v !az…

Ab2/4g21~z2vt !2
1

aZ~11vaz!

A@~b/21r!/g#21~z1vt !2

2
aZ„11~1/v !az…

Ab2/4g21~z1vt !2
. ~7!
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1680 PRC 58A. J. BALTZ AND LARRY McLERRAN
This gauge transformation reduces the range in (z6vt) to
more closely map theB and E fields ~which have the de-
nominator to the3

2 power rather than the12 power of the
untransformed Lorentz gauge!. In the ultrarelativistic limit
„ignoring correction terms in@(b/26r)/g#2

… Eq. ~7! takes
the form @2#

V~r,z,t !5d~z2t !~12az!L
2~r!1d~z1t !~11az!L

1~r!

~8!

where

L6~r!52Za ln
~r6b/2!2

~b/2!2
. ~9!

The potential as written here will be referred to as the s
gular gauge solution. In this gauge the field vanishes ev
where except along the lightconex650. We can gauge
transform from this field to the less singular light cone gau
by again utilizingc5e2 ix(r ,t)c8 where

x~r ,t !5u~ t2z!L2~r!1u~ t1z!L1~r!. ~10!

This leads to added gauge terms in the transformed pote

2
]x~r ,t !

]t
2a•¹52d~z2t !~12az!L

2~r!

2d~z1t !~11az!L
1~r!

2u~ t2z!a•¹L2~r!

2u~ t1z!a•¹L1~r! ~11!

and we thus obtain the light cone gauge

V~r,z,t !52u~ t2z!a•¹L2~r!2u~ t1z!a•¹L1~r!,
~12!

with a the Dirac matrix. This construction fits in well with
the similar non-Abelian treatment for QCD@3#.

The reason why we expect that we can exactly comp
pair production in the central region should be obvious.
either of the gauges above, the propagation of the electro
positron is essentially trivial. Except atx650, the electron
or positron propagates as a free particle. Therefore, to c
struct the propagator for the electron, one needs to solv
boundary value problem with free propagation everywh
except at the surfaces of discontinuity at the lightconex6

50.
In fact to solve the problem of pairs production is arg

ably a little simpler than constructing the propagator. W
we will do is assume we begin with a negative energy so
tion of the Dirac equation in the initial state. This will co
respond to a positive energy positron. We will then let
propagate forward in time. At late times we will compute t
amplitude that this state is a positive energy electron.

The organization of this paper is as follows. In the seco
section, we compute the amplitude for electron positron p
production in the singular (d function! gauge. The technique
used will closely follow that previously used in the exa
calculation of bound electron positron pair production@4#,
-
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and will use conventional Green’s functions methods. In
third section we work in light cone gauge. We show that t
result for the pair production amplitude agrees between
two computations. In the fourth section, we discuss the cr
sections and their relation to perturbation theory. In Appe
dix A, we write down our conventions for light cone coord
nates and projection operators in the Dirac equation. In A
pendix B, we evaluate the transverse integral of the Coulo
field which is necessary for the solution in both gauges.
Appendix C, we show how to solve the Dirac equati
across a boundary corresponding to a charged nucleu
light cone gauge. We show how this result maps into
similar result computed in singular gauge.

II. SOLUTION IN SINGULAR GAUGE
FOR PAIR PRODUCTION

A strategy to find the exact semiclassical solution for p
production in a two-center model is to first find the exa
wave function at the point of interaction~in terms of the
appropriate Green’s function! and then to construct the exa
amplitude~incorporating the initial exact wave function, th
interaction, and the final plane wave function!.

In particular, one would like to solve the two center tim
dependent Dirac equation,

@ap1b2V~r,z,t !2E#C~r ,t !50, ~13!

in terms of a Dirac Green’s function based on the plane w
solutions,

@ap1b2E#f~r ,t !50. ~14!

One obtains

@ap1b2E#C~r ,t !5V~r,z,t !C~r ,t !

1@ap1b2E#f~r ,t !. ~15!

If one acts on both sides with the Dirac plane wave Gree
function

G05@ap1b2E#21 ~16!

one obtains the usual form

C5f1G0VC. ~17!

The Green’s functionG0 obeys the equation

@ap1b2E#G0~r ,t;r 8,t8!

5d~r2r 8!d~ t2t8!

5
1

~2p!4E d3k dveik~r2r8!2 iv~ t2t8!, ~18!

and the solution is
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G0~r ,t;r 8,t8!5
1

~2p!4E d3k dv

3@ak1b1v#
eik~r2r8!2 iv~ t2t8!

k2112v2
. ~19!

Note the positive sign ofv in the brackets. We will get the
boundary conditions later.

We now make use of the usual light cone coordinat
x1,x2,q1, andq2, as in Eq.~1! in place oft,z,q0, andqz .
Begin with a plane wavef representing one of the electron
in the filled negative energy Dirac sea. Our convention w
be thatq0 is positive, corresponding to the positron ener
we eventually are interested in, and likewise the three m
mentum is opposite in sign to that of the negative electro

f5v~q,si !e
2 iqx5v~q,si !e

2 iq'x'1 iq1x21 iq2x1
. ~20!

The functionv(q,si) is the usual spinor of a positron. Th
Green’s function can likewise be written in light cone coo
dinates

G0~x;x8!5
1

~2p!4E dk1dk2d2k'@ak1b1v#

3
eik'~x'2x'8 !2 ik1~x22x82!2 ik2~x12x81!

22k1k21k'
2 11

,

~21!

and in light cone coordinates the two center time-depend
potential Eq.~8! takes the form

V~x!5
1

A2
d~x2!~12az!L

2~x'!

1
1

A2
d~x1!~11az!L

1~x'!. ~22!

A space-time diagram is presented in Fig. 1. ObviouslyV(x)
only acts on the boundaries between regions I, II, III, and
s,

l

-

nt

.

In region I we have the initial plane wavef. We would
like to begin by constructing the solutions in regions II a
III. We will work out region III explicitly and then region II
will follow by symmetry. We have from Eq.~17!

C III ~x!5f~x!1E d4zG0~x,z!V~z!C~z!. ~23!

But we have on the boundary between I and III@4#

V~z!C~z!5
1

A2
d~z2!~12az!L

2~z'!eiu~z2!L2~z'!f~z!,

~24!

which can be expressed equivalently

V~z!C~z!5
2 i

A2
d~z2!~12az!~eiL2~z'!21!f~z!.

~25!

We now obtain

FIG. 1. Light cone boundaries of the four regions of thez, t
plane for an ultrarelativistic collision.
C III ~x!5f~x!2E dz1dz2d2z'

1

~2p!4E dk1dk2d2k'Fa'k'1b1
1

A2
~12az!k

21
1

A2
~11az!k

1G
3

eik'~x'2z'!2 ik1~x22z2!2 ik2~x12z1!

22k1k21k'
2 11

i

A2
d~z2!~12az!~eiL2~z'!21!v~q,si !e

2 iq'z'1 iq1z21 iq2z1
. ~26!

The term in (11az) obviously vanishes. Now integrate overz2,z1, andk2 to obtain

C III ~x!5f~x!2E dk1d2k'

~2p!3 Fa'k'1b2
1

A2
~12az!q

2Geik'x'2 ik1x21 iq2x1

2k1q21k'
2 11

i

A2
~12az!

3E d2z'e2 i ~q'1k'!z'~eiL2~z'!21!v~q,si !. ~27!
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Now consider the integration overk1. We did not previ-
ously specify the boundary condition onG0 and we must do
so now. We want theG0 term in Eq.~27! to be nonvanishing
for x2.0 and to vanish forx2,0. If we move the singu-
larity just below the real axis by addingi e to the denomina-
tor then this physical boundary condition will be fulfilled
We have
t i
n

o

he

I

E
2`

` dk1e2 ik1x2

k11 ~k'
2 11/2q2! 1 i e

522p iei [ ~k'
2

11!/~2q2!]x2

~28!

and our expression for the wave function in region III no
becomes
C III ~x!52E d2k'

~2p!2F 1

A2
~a'k'1b!~12az!2~12az!q

2G
3

eik'x'1 i [ ~k'
2

11!/~2q2!]x21 iq2x1

2q2 E d2z'e2 i ~q'1k'!z'eiL2~z'!v~q,si !. ~29!
n
q.

ng
d

As a check on the validity of our expression we note tha
we project with (12az) the expected boundary conditio
holds forx251e:

~12az!C III 5~12az!e
iL2~z'!f. ~30!

Now the exact amplitude takes the form

M5 i E dt^fuVuC&. ~31!
fBegin by constructingV times the exact wave function o
the boundary between regions III and IV. In analogy to E
~25! we have

V~x!C~x!5
2 i

A2
d~x1!~11az!~eiL1~x'!21!C III ~x!.

~32!

Note that we need the projection (11az) for this boundary
due to the opposite direction of motion of the ion produci
the V as compared to theV on the boundary between I an
III. Thus we have atx150,x2.0
V~x!C~x!5
i

A2
d~x1!~11az!e

iL1~x'!E d2k'

~2p!2

1

A2
~a'k'1b!~12az!

3
eik'x'1 i [ ~k'

2
11!/~2q2!]x21 iq2x1

2q2 E d2z'e2 i ~q'1k'!z'eiL2~z'!v~q,si !. ~33!

Likewise atx250,x1.0

V~x!C~x!5
i

A2
d~x2!~12az!e

iL2~x'!E d2k'

~2p!2

1

A2
~a'k'1b!~11az!

3
eik'x'1 i [ ~k'

2
11!/~2q1!]x11 iq1x2

2q1 E d2z'e2 i ~q'1k'!z'eiL1~z'!v~q,si !. ~34!
In constructing the transition amplitude one makes use
the fact that only two interaction~two photon! terms have a
net contribution.~Single interaction terms integrated over t
four boundaries give a null contribution.! The amplitude then
has two pieces corresponding to the boundary of region
with regions II and III
f

V

M ~p,q!5M ~p,q! IV,III 1M ~p,q! IV,II . ~35!

The final state is a positive energy electron

f5u~p,sf !e
ipx5u~p,sf !e

ip'x'2 ip1x22 ip2x1
. ~36!

Then we have
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M ~p,q! IV,III 5 i E
0

`

dx2E dx1dx'ū~p,sf !be2 ip'x'1 ip1x21 ip2x1 i

A2
d~x1!~11az!~eiL1~x'!21!E d2k'

~2p!2

1

A2

3~a'k'1b!~12az!
eik'x'1 i [ ~k'

2
11!/~2q2!]x21 iq2x1

2q2 E d2z'e2 i ~q'1k'!z'eiL2~z'!v~q,si !. ~37!

Now integrate overx1 andx2 to obtain

M ~p,q! IV,III 52E d2k'

~2p!2

ū~p,sf !b~11az!~a'k'1b!v~q,si !

2p1q21k'
2 11

E d2x'e2 i ~p'2k'!x'eiL1~x'!E d2z'e2 i ~q'1k'!z'eiL2~z'!.

~38!

The transverse spatial integrals can be done in closed form as is shown in Appendix B. We obtain

E d2y'e2 ik'y'eiL6~y'!52e7 ibk'/2S b2

16D
ih 4p

k'
222ih

G~12 ih!

G~ ih!
, ~39!

whereh51Za.
The amplitude now becomes

M ~p,q! IV,III 524
G2~12 ih!

G2~ ih!
E d2k'

ū~p,sf !b~11az!~a'k'1b!v~q,si !

2p1q21k'
2 11

e2 ib~p'/22q'/22k'!@~p'2k'!2~k'1q'!2# ih21,

~40!

where trivialb dependent and constant phases have been removed.
The other piece of the amplitude coming from the boundary between region II and region IV has the correspondi

M ~p,q! IV,II 524
G2~12 ih!

G2~ ih!
E d2k'

ū~p,sf !b~12az!~a'k'1b!v~q,si !

2p2q11k'
2 11

e1 ib~p'/22q'/22k'!@~p'2k'!2~k'1q'!2# ih21

524
G2~12 ih!

G2~ ih!
E d2k'

ū~p,sf !b~12az!@a'~p'2q'2k'!1b#v~q,si !

2p2q11~p'2q'2k'!211

3e2 ib~p'/22q'/22k'!@~p'2k'!2~k'1q'!2# ih21, ~41!

and the total amplitude takes the form

M ~p,q!54h2E d2k'eibk'@~p'2k'!2~k'1q'!2# ih21S ū~p,sf !b~11az!~a'k'1b!v~q,si !

2p1q21k'
2 11

1
ū~p,sf !b~12az!@a'~p'2q'2k'!1b#v~q,si !

2p2q11~p'2q'2k'!211
D , ~42!
he
in-
ce
r.

nce
the
on
the

t we

tain
etic
where trivial phases depending onh and on initial and final
momenta have been removed.

Rewriting with the mass of the electron explicit, and ma
ing use of more modern notation we have

M ~p,q!54h2E d2k'eibk'@~p'2k'!2~k'1q'!2# ih21

3S ū~p,sf !~12az!~2k”'1m!v~q,si !

2p1q21k'
2 1m2

1
ū~p,sf !~11az!~2p”'1q”'1k”'1m!v~q,si !

2p2q11~p'2q'2k'!21m2 D .

~43!
k-

At this point one notices that the infinite range of t
transverse potential provides us with a result lacking an
frared cutoff. In Appendix B, we introduce a convergen
parametere to regularize this infrared singular behavio
Strictly speaking we were not allowed to let the converge
parametere take on the value zero. In the previous use of
singular interaction for calculating bound electron positr
pair production, the transverse integrals were cut off by
finite range of the bound state wave function@4#. With plane
waves there is no such natural cutoff. This suggests tha
attach a physical interpretation to the convergence factore in
Appendix B. In fact if we sete equal tov/g, wherev is the
energy of the produced electron or positron, then we ob
the expected spatial cutoff in a heavy ion electromagn
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interaction, and a result that can naturally be compared w
the corresponding perturbation theory result of Bottcher
Strayer@5#. We discuss this further in Sec. IV. But first w
shall come to the same solution in the light cone gauge.

III. THE SOLUTION TO THE TWO CHARGE PROBLEM
IN LIGHT CONE GAUGE

In this section, we present an alternative derivation to
results presented above in singular gauge. This serves
check on the results of the previous section. Also the te
nique which we present here appears to generalize direct
the non-Abelian problem.

We begin by considering a negative energy plane wa
Here we will takeq6,0. This negative energy incomin
plane wave will eventually be interpreted as an incom
positron with momentumq→2q. So we begin with an in-
coming wave
th
d

e
s a
h-
to

e.

g

c I~x!5eiqxvl~2q!. ~44!

Here vl is a positron spinor. The labelI on the solution
refers to the fact that this is a solution in regionI as in Fig.
1, and as in Sec. II.

Recall that the background field in light cone gauge is
the form

Ai~x!52u~x2!¹ iL2~xT!2u~x1!¹ iL1~xT! ~45!

as was discussed in the Introduction.
Let us first construct the solution in region II. This in

volves constructing the solution in region across the bou
ary at x150 from region I. Everywhere in region II,x2

,0. Using the results of Appendix C, a general solution is
the form
.

ct

s the
c II ~x!5
1

A2
e2 iL1~xT!E dp1d2pT

~2p!3 e$2 ip1x21 ipTxT2 i ~pT
2

1m2!x1/2~p11 i e!%H 11
aT•pT1m

A2~p11 i e!
J a1vl~2q!

3H 1

i

1

p12q12 i e
E d2zTei ~qt2pT!zTeiL1~zT!1H~pT ,p1,q!J . ~46!

In this equation,H has all its singularities in the negative halfp1 plane. Therefore atx150, this contribution gives nothing
In fact throughout region II, there is no contribution so thatH can be dropped. The choice of singularity forp1 in the
exponential is so that there is convergence at large positivex1. Notice that forx2,0 corresponding to region II, the term
which does not involveH may be evaluated by closing in the upper halfp1 plane. Here the solution satisfies the corre
boundary condition atx150 and solves the Dirac equation in region II. It is unique.

In exactly the same way, we have in region III, that the solution is

c III ~x!5
1

A2
e2 iL2~xT!E dp2d2pT

~2p!3 e$2 ip2x11 ipTxT2 i ~pT
2

1m2!x2/2~p21 i e!%H 11
aT•pT1m

A2~p21 i e!
J a2vl~2q!

3H 1

i

1

p22q22 i e
E d2zTei ~qt2pT!zTeiL2~zT!J . ~47!

We now write down an ansatz for the solution in region IV. After writing down the solution, we will show that it solve
Dirac equation and the boundary conditions atx650 whenx7.0. Consider

c IV~x!5
i

2
e2 iL1~xT!2 iL2~xT!E d2pTd2zT

~2p!2

d2pT8d2zT8

~2p!2 H E dp1

2p

1

p12~pT
21m2!/2q21 i e

3e2 ip1x21 ipT8xT2 i ~pT8
2
1m2!x1/2~p11 i e!eizT8~pT2pT8 !1 izT~qT2pT!eiL1~zT!1 iL2~zT8 !

3S 11
aT•pT81bm

A2~p11 i e!
D a1

aT•pT1bm

A2q2
a2vl~2q!

1E dp2

2p

1

p22~pT
21m2!/2q11 i e

e2 ip2x11 ipT8xT2 i ~pT8
2
1m2!x1/2~p21 i e!eizT8~pT2pT8 !1 izT~qT2pT!eiL2~zT!1 iL1~zT8 !

3S 11
aT•pT81bm

A2~p11 i e!
D a2

aT•pT1bm

A2q1
a1vl~2q!J . ~48!
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First it is straightforward to apply the Dirac equation
c IV , and show that it solves the Dirac equation. What ab
the behavior on the boundariesx650, x7.0? First consider
x250 andx1.0. We first evaluatec II on this boundary.
We require that thec2 be continuous. Usingc II , we see
that

c II
2ux250,x1.05

1

A2
e2 iL1~xT!E d2pT

~2p!2eipTxT2 i ~pT
2

1m2!x1/2q1

3
aT•pT1bm

A2q1
a1vl~2q!

3E d2zTei ~qT2pT!zTeiL1~zT!. ~49!

Now, how doesc IV
2 behave on this boundary? The fir

integral overp1 in the integral representation forc IV
2 van-

ishes atx250 as all the singularities of the integration ov
p1 are in the same side of the realp1 axis in the complex
p1 plane. In the second term which involvesp2, we must
close in the lower halfp2 planes whenx250 andx1.0.
Closing in this plane and doing the integrals overzT8 andpT8
shows that our formula solves the correct boundary con
tion.

By symmetry, we see that along the other boundary
x150 for x2.0 the boundary condition is solved for th
plus component of the wave function. Thereforec IV solves
q
r

u

t

i-

t

the Dirac equation and the boundary conditions in region
Now we must extract the matrix element for pair produ

tion from this wave function. To do this, we observe th
after a little algebra, and making the substitutionq→2q that

c IV~x!52
1

2
e2 iL1~xT!2 iL2~xT!E d4p8

~2p!4

d2pT

~2p!2d2zTd2zT8

3
m2p8•g

p821m22 i e
e2 ip8x

3H 2p81

p811~pT
21m2!/2q21 i e

eizT8~pT2pT8 !2 izT~qT1pT!

3eiL1~zT8 !1 iL2~zT!a2
m1pT•g

A2q2p81
vl~q!

3
2p82

p821~pT
21m2!/2q11 i e

eizT8~pT2pT8 !2 izT~qT1pT!

3eiL2~zT8 !1 iL1~zT!a1
m1pT•g

A2q1p82
vl~q!. ~50!

Amputating the external line which corresponds to t
propagator for the electron, we find the matrix element
pair production to be
Mhl5E d2pT8

~2p!2H k1~pT82pT!k2~pT81qT!
1

2q2p811pT8
21m21 i e

ūh~p!A2a2~m1pT8•g!vl~q!1k1~pT81qT!k2

3~pT82pT!
1

2q1p821pT8
21m21 i e

ūh~p!A2a1~m1pT8•g!vl~q!J . ~51!
te-
ro-

nt

ical
he
nd

as
Here the quantity

k6~pT!5E d2xTe2 ipTxTe1 iL6~xT!. ~52!

IV. DISCUSSION

After we had finished the derivation of the amplitudes E
~43! and its equivalent Eq.~51! we became aware of simila
results recently obtained by Segev and Wells@6#. These au-
thors obtained an amplitude with the same structure as o
but they did not obtain our closed form, Eqs.~40!, ~B6! or
.

rs,

Eq. ~B5! for the nonperturbative transverse momentum in
gral. They did argue that the transverse integral went app
priately to the ultrarelativistic perturbative limit in agreeme
with the result of Bottcher and Strayer@5#. In this limit their
perturbative amplitude simply takes the form of Eq.~43!
without theih in the exponent.

We now have the suggestion of an ansatz for a phys
cutoff of the exact result in line with the discussion at t
end of Sec. II. The perturbation theory result of Bottcher a
Strayer not taken to the ultrarelativistic limit actually h
denominators of the formk'

2 1v2/(g221) rather thank'
2 .

Our ansatz then is to modify Eq.~43! to
M ~p,q!54h2E d2k'eibk'F S @p'2k'#21
v2

g2 D S @k'1q'#21
v2

g2 D G ih21S ū~p,sf !~12az!~2k”'1m!v~q,si !

2p1q21k'
2 1m2

1
ū~p,sf !~11az!~2p”'1q”'1k”'1m!v~q,si !

2p2q11~p'2q'2k'!21m2 D . ~53!
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We have effectively retainede ~set to v/g) in the factor
taken to the 12 ih power of Eq.~B5! and ignored it else-
where. Retainingh elsewhere in Eq.~B5! would cut off a
little more sharply at smallk' but is not necessary. It would
not necessarily be more exact to retain all factors ofh be-
cause the cutoff comes in response to the spatial regior
5g/v where both the singular and light cone potentials
gin to lose their validity.

At this point one is left with a choice whether to perfor
the integral over the impact parameter either before or a
the integral over the intermediate transverse momentum
one is only interested in a the cross section for pair prod
tion in a given small momentum and/or energy bin then o
must obtain the same answer independent of the orde
integration. In that case performing the integral over the
pact parameter first seems convenient. One has an im
parameter integral of the form

E d2bE uM ~p,q!u2

;E d2bE d2k'eibk' f ~k'!E d2k'8 e2 ibk'8 f * ~k'8 !.

~54!

The integral overd2b gives (2p)2d (2)(k'2k'8 ) and the
6 ih exponents vanish, giving a result identical to what
would obtain in perturbation theory.

If we are interested in high multiplicity events or a tot
cross section for events in which at least one pair is produ
then we must perform the integral over the intermedi
transverse momentum first. For the highest multiplic
events we need to evaluate the square of the amplitud
small but nonintersecting values of the impact parameter:
need the mean number of pairs at a given impact param
From the mean number of pairs produced at each imp
parameter, one can obtain the probability~less than one! of at
least one pair being produced. Thus a total pair produc
cross section can be defined and computed.

Note that for a given impact parameter the square of
amplitude is not identical in the exact solution to what it is
the the perturbation theory solution. For the exact solut
the ih in the exponent gives a rotating phase in the the in
gral overk' that is absent in the perturbative case. For
ample if we look at a dominant contribution near one of t
cutoffs the amplitude goes as

M;E
0

k k'dk'

~k'
2 1v2/g2!12 ih

5
1

2ih
~eih ln~k21v2/g2!2eih ln v2/g2

!, ~55!

which decreases with increasingh. Here the exact contribu
tion is less than perturbation theory would be.

To sum up, we have a situation where one can say b
that the exact cross section for pair production to any fi
state is identical to the perturbation theory cross section,
that measurements of high multiplicity pair events will sho
deviations from perturbation theory probably by bei
smaller.
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APPENDIX A: CONVENTIONS FOR LIGHT CONE
VARIABLES AND THE USE OF PROJECTION

OPERATORS

We will let the light cone coordinates for any vector be

V65
1

A2
~V06Vz!. ~A1!

The metric convention we will use isg0051 andgi j 52d i j

for spatial components so that in light cone gauge the
product is

A•B5A1B21A2B12AT•BT . ~A2!

We shall use ordinary gamma matrices for fermions so t

$gm,gn%52gmn. ~A3!

We can define projection operators for fermions as

P65
1

A2
g0g65

1

2
~16az!. ~A4!

These projection operators satisfyP11P251, P625P6,
andP6P750. The plus and minus components of a fermi
field are

c65P6c, ~A5!

wherec11c25c.
In light cone coordinates, the Dirac equation for a fr

particle becomes

c25
1

A2p1
~pT•aT1bm!c1, ~A6!

wherec1 solve

~2p1p22pT
22m2!c150. ~A7!

In an external field which is independent ofx6, the trans-
verse momentum is converted into a transverse covar
momentum. Also, the relationships can be reversed unde
transformationc6→c7.
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APPENDIX B: EVALUATION OF THE TRANSVERSE INTEGRAL

We would like to evaluate the integral

I 5E d2r e2 ik•re2 ih ln~r6b/2!2/~b/2!2
. ~B1!

A coordinate shift gives us

I 5S b2

4 D ih

e7 i [k•b/2]E
0

2p

dfE
0

`

r d re2~ ik'cosf1eucosfu!re2 ih ln r2
, ~B2!

where we have added a convergence factoreucosfu. The integral overr can then be carried out~@8# 3.381.5! and we obtain

I 5S b2

4 D ih

e7 i [k•b/2]E
0

2p

df
G~222ih!

@~k'
2 1e2!cos2f#12 ih

e~22i 22h!arctan~k'cosf/eucosfu!. ~B3!

Making use of quadrant symmetry this may be rewritten

I 54e7 i [k•b/2]S b2

4 D ih ~e22k'
2 !cosh~2h arctan@k' /e#!1 i2ek'sinh~2h arctan@k' /e#!

~e21k'
2 !

G~222ih!

~k'
2 1e2!12 ihE0

p/2 df

~cosf!222ih
.

~B4!

The integral overf can then be carried out by Wallis’ formula~@7# 6.1.49! giving

I 54e7 i [k•b/2]S b2

4 D ih ~e22k'
2 !cosh~2h arctan@k' /e#!1 i2ek'sinh~2h arctan@k' /e#!

~e21k'
2 !

G~222ih!

~k'
2 1e2!12 ih

ApG~20.51 ih!

2G~ ih!
.

~B5!
x
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e
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ee
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Letting e approach zero from the positive direction and e
ploiting G function relations finally leads to

I 52e7 i [k•b/2]S b2

16D
ih 4p

k'
222ih

G~12 ih!

G~ ih!
. ~B6!

APPENDIX C: SOLVING THE DIRAC EQUATION
FOR THE LIÉ NARD-WIECHERT POTENTIAL

In this appendix, we discuss solving the Dirac equat
for Liénard-Wiechert potentials appropriate for the cent
region. We will show how to construct a solution for a lig
cone potential of the form

AT
i 52u~x2!¹ iL~xT!. ~C1!

We will then show how to convert this solution into that f
the singular gauge and how this problem in singular ga
translates into a boundary condition on the Dirac wave fu
tion atx250. In the text, we will use this to construct solu
tions across the boundaries atx650.

We assume that forx2,0, we are given a plane wav
solution of the form

c~x!5eiqxul~x!, ~C2!

where l is a polarization label on the electron spinor.
x2.0, the solution must be a linear combination of pla
wave solutions to the Dirac equation modulo a gauge ro
tion
-

n
l

e
-

-

c8~x!5eiL~xT!E d2pT

~2p!2 Fll8~pT ,qT!

3ul8~p!e~ ipTxT2 iq2x12 ip1x2!, ~C3!

where

p15
pT

21m2

2q2 . ~C4!

The integral above is two dimensional sinceq2 labels the
solution on both sides of the boundary as the potential isx1

independent, and because the value of plus componen
light cone momenta is determined by the mass shell co
tion.

What are the boundary conditions atx250? Recall that
the form of the Dirac equation is

~PT•aT1bm2A2p1P22A2p2P1!c50, ~C5!

whereP6 are the projection operators described in Appen
A. Here PT is the covariant momentum operator. We s
there for thec2 can be chosen to be continuous across
boundary. On the other hand, the plus component of
wave function must be discontinuous since by the Di
equation

c15
1

A2p2
~PT•aT1bm!c2 ~C6!
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and the covariant momentum operator contains the ve
potential which is discontinuous.

This tells us what the proper boundary condition is
singular gauge. Recall that to transform between the
gauges

csingular~x!5eiu~x2!l~xT!c lightcone~x!. ~C7!

We therefore have that the boundary condition in singu
gauge is the the component

csingular
2 ~x!ux25015eil~xT!csingular

2 ~x!ux2502 , ~C8!

with the plus components determined by the Dirac equat
All components of the wave function in singular gauge a
therefore discontinuous.

It is now straightforward to determine the solution f
x2.0. Consider
e

or

o

r

n.
e

c~x!5
1

A2
eiL~xT!E d2pT

~2p!2d2zTe2 iL~zT!eipTxT2 iq2x12 ip1x2

3eizT~qT2pT!H 11
aT•pT1bm

A2q2 J a2ul~q!, ~C9!

where

a65
1

A2
~16az!5A2P6. ~C10!

Again p15(pT
21m2)/2q2. It is easy to see that this functio

solves the Dirac equation. Atx250, the term involvingp1

disappears so that the integrals overpT andzT can be done
with the result

c~x!5
1

A2
S a21a1

aT•QT1bm

A2q2 D eiqxul~q!. ~C11!

Using the definition of the projection operatorsP6, and the
relationship betweenc6, this is justeiqxul(q). To derive
this, we must use the definition of the vector potential
terms ofL. This solution therefore solves the boundary co
ditions.
,
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