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Two center light cone calculation of pair production induced by ultrarelativistic heavy ions
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An exact solution of the two center time-dependent Dirac equation for pair production induced by ultrarela-
tivistic heavy ion collisions is presented. Cross sections to specific final states approach those of perturbation
theory. Multiplicity rates are reduced from perturbation the¢80556-281®38)03409-§

PACS numbds): 25.75~q, 34.90:+q

I. INTRODUCTION Central production will mean electrons and positrons which
havex,y<1. This can be satisfied for some range of longi-

In this paper, we shall compute the production of  °. .
. L . ) tudinal momenta of the electron or positron so long as the
electron-positron pairs in the central region for highly rela- o . "
%ondltlon on the Compton wavelength is satisfied.

tivistic charged ions. We base our calculations on an exac . . .
When the electron or positron in the central region sees

e D e g e Mg ks, i s two oppostely Lorertz boste
' P b Coulomb fields. These are the higrd-Wiechert potentials

effects the exact cross section for any specific final electron
positron state equals the perturbation theory result. On the

other hand, we argue that the rate for processes correlated V(p.z,t)= aZ(1-vay)
with low impact parametergsuch as pair multiplicity are VI(b/2— p) %+ (z—vt)?
reduced from the perturbation theory rate.
Our notation will vary at times between that of high en- aZ(l+tva,)
S : . , + : (4)
ergy physicglight cone variables and Dirag matrice$ and J[(0612+ p) [ y12+ (z+v1)?

that of atomic physi¢Dirac @ and 8 matrices and the usual
four momentum and space time variabl@s convenience b is the impact parameter, perpendicular to thexis along
and the connection to previous work dictates. The relatiofhich the ions travelp, z, andt are the coordinates of the
between different notations should be clear. potential, a, is the Dirac matrix, andZ,v and y are the
To properly define what we mean by central region anccharge, velocity, ang factor of the oppositely moving ions.
highly relativistic, it is useful to define light cone coordi- We have specialized to the case of eqidbns; unequalZ
nates, would only require a trivial change in what follows. If one
makes the gauge transformation on the wave function
1 1
pi=ﬁ(pot P), xi=ﬁ(tt2), 1) g=e Xty (5)

) o ) ) ) ) where
where thez direction is the beam direction. In this coordinate

system, the invariant dot product of momenta psq aZ
=p*q +p q"—pr-gr. We will take the nucleus propa- x(r)=—-n[y(z—vt)+ Vo?I4+ y*(z—v1)?]
gating along the positive axis to have a large light cone
momentumP " and that along the negative axis to have aZ > > 5

large light cone moment®~. By highly relativistic we —T|n[7(2+vt)+\/b 144+ v“(z+vt)“], (6)
mean, for example, the case of RHIC, colliding ions each

with y(=1/J1—v?) of 100. Note that the Compton wave- the interactionV(p,z,t) is gauge transformed {d]

length of the electron is large compared to the radius of

either nucleus and thus the nucleus can be considered a poiitp,z,t)

chargeaZ.
To define what we mean by centrally produced, we define aZ(l-vay)
the lightcone momentum fractions of an electron or positron JL(b/2=p) [y ]2+ (z—vt)?
to be
aZ(1— (1) ay) aZ(l+vay,)
x=p*/P" 2 NI A 2 2
Vb214y2+(z—vt)?  [(bI2+ p)ly]?+ (z+vt)

and aZ(1+ (1) a) -

y=p /Q". 3) Vo242 + (z+vt)?’
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This gauge transformation reduces the rangezin(t) to  and will use conventional Green’s functions methods. In the
more closely map th® and E fields (which have the de- third section we work in light cone gauge. We show that the
nominator to thed power rather than thé power of the result for the pair production amplitude agrees between the
untransformed Lorentz gaugen the ultrarelativistic limit two computations. In the fourth section, we discuss the cross
(ignoring correction terms if(b/2+ p)/v]?) Eq. (7) takes sections and their relation to perturbation theory. In Appen-
the form[2] dix A, we write down our conventions for light cone coordi-
nates and projection operators in the Dirac equation. In Ap-
V(p,z,t)=8(z—t)(1—a,) A~ (p)+ 8(z+t)(1+ a) A" (p) pendix B, we evaluate the transverse integral of the Coulomb
(8)  field which is necessary for the solution in both gauges. In
Appendix C, we show how to solve the Dirac equation
across a boundary corresponding to a charged nucleus in
light cone gauge. We show how this result maps into the

A*(p)= —Zaln(pi b/2)? © similar result computed in singular gauge.
P b12)°

where

Il. SOLUTION IN SINGULAR GAUGE
The potential as written here will be referred to as the sin- EOR PAIR PRODUCTION
gular gauge solution. In this gauge the field vanishes every- ] ) ) ] .
where except along the lightcone®=0. We can gauge A strategy to find the exact semiclassical solution for pair

transform from this field to the less singular light cone gaugeProduction in a two-center model is to first find the exact
by again utilizingyy= efi)((r,t)lpr where wave function at the point of interactiofin terms of the

appropriate Green'’s functigrmnd then to construct the exact
amplitude(incorporating the initial exact wave function, the
interaction, and the final plane wave function

I In particular, one would like to solve the two center time-
ependent Dirac equation,

x(r,)=0(t=2)A"(p)+ 6(t+2)A" (p). (10

This leads to added gauge terms in the transformed potenti%

3 ax(r,t) 3

- a-V=—58z—1t)(1—a,)A " (p) [ap+B—V(p,z,t)—E]V¥(r,t)=0, (13
—8(z+t)(1+ *
o(z+ (1t a)A (p) in terms of a Dirac Green'’s function based on the plane wave
—0(t—2)a- VA~ (p) solutions,
—0(t+2)a-VA™ (p) (11
[ap+B—E]¢(r,t)=0. (14)
and we thus obtain the light cone gauge
One obtains
V(pzt)=—0(t—2)a-VA (p)— 0(t+2)a- VA" (p),
(12 [ap+B—E]¥(r,t)=V(p,z,t)¥(r,t)
with @ the Dirac matrix. This construction fits in well with +[ap+B—E]o(r,t). (19

the similar non-Abelian treatment for QC3]. _ . .
The reason why we expect that we can exactly computéf one acts on both sides with the Dirac plane wave Green’s
pair production in the central region should be obvious. Infunction
either of the gauges above, the propagation of the electron or
positron is essentially trivial. Except af =0, the electron .
or positron propagates as a free particle. Therefore, to con- Go=[ap+B—E] (16)
struct the propagator for the electron, one needs to solve a )
boundary value problem with free propagation everywheré&n€ obtains the usual form
e:xg.ept at the surfaces of discontinuity at the lightcarte W=+ GV 17
In fact to solve the problem of pairs production is argu- , . .
ably a little simpler than constructing the propagator. WhatThe Green's functiorG, obeys the equation
we will do is assume we begin with a negative energy solu-
tion of the Dirac equation in the initial state. This will cor-
respond to a positive energy positron. We will then let it[ ap+ B8—E]Gy(r,t;r',t")
propagate forward in time. At late times we will compute the

amplitude that this state is a positive energy electron. =8(r—r")s(t—t")

The organization of this paper is as follows. In the second
section, we compute the amplitude for electron positron pair _ 1 f 43K deelk(r— ) —iv(t-t') (18
production in the singularq function) gauge. The technique (2m? we ’

used will closely follow that previously used in the exact
calculation of bound electron positron pair producti@g),  and the solution is
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Y 1 3
Go(r,t;r 1 )ij d°k dw

f1
aik(r =) =iw(t-t’) ¢ D
X[ak+ B+ o] . (19 b
kK2+1—w? v
Note the positive sign o in the brackets. We will get the
boundary conditions later. z
We now make use of the usual light cone coordinates, I o

x*,x7,q%, andq ™, as in Eq.(1) in place oft,z,q,, andq,.
Begin with a plane wave representing one of the electrons
in the filled negative energy Dirac sea. Our convention will
be thatqg is positive, corresponding to the positron energy I
we eventually are interested in, and likewise the three mo-
mentum is opposite in sign to that of the negative electron

$=v(d,s)e” " P=p(q,s)e X FIAXTHIXT (90
FIG. 1. Light cone boundaries of the four regions of thet
The functionv(q,si) is the usual Spinor of a positron. The plane for an ultrarelativistic collision.
Green'’s function can likewise be written in light cone coor-

dinates In region | we have the initial plane wawg. We would
1 like to begin by constructing the solutions in regions Il and
! — F L2 LB+ I1l. We will work out region Il explicitly and then region Il
Golxix") (277)4f dk"dk d’k, [ak+ B+ o] will follow by symmetry. We have from Eq17)

eikL(xL—xi)—ik*(x*—x’j—ik*(x*—x'*) .
X P , ‘If|,|(x)=¢>(x)+J d*zGy(x,2)V(2)¥(z). (23
— T+ L+

(21 But we have on the boundary between | and[4]

and in light cone coordinates the two center time-dependent 1 S
potential Eq.(8) takes the form V(2)¥(2)= E&Z*)(l—az)/\*(zﬁe' 2N 20 g(2),
1 (29
V(X)=—=86x")(1—a,)A~
X) 2 () (1= ar)A7(x,) which can be expressed equivalently
(
1 . - o
+E5(X J(1+a) AT (X)), (22 V(Z)‘I’(Z)=ﬁ5(2 J(1-ay) (e ®)=1)(2).
(25
A space-time diagram is presented in Fig. 1. Obviod4ly)
only acts on the boundaries between regions |, 11, lll, and IV.We now obtain

+ 45— 2 1 +Alk— A2 1 - 1 +
Vi(x)=¢(x)— | dz"dz d ZL(ZT)“ dk"dk d°k, | a k, + B+ E(l_aZ)k +E(1+az)k
eikL(xL7zl)fik+(x_72_)7ik_(x+7z+) ; o . L
2k k™ + k% +1 ﬁé(z‘)(l—ozz)(eIA ) —1)v(g,s)e e tlarz Ha 2zt (26)
- 1

The term in (I «,) obviously vanishes. Now integrate over,z", andk™ to obtain

glkix, —ik™x"+ig™x"

dk*d?k,
2m)3

—ay)

1
\If,”(x):(ﬁ(x)—f alki"‘ﬁ_ﬁ(l_az)(f

—(1
2ktq +k>+1 \/E(

xf d?z e Murkiz et (20 —1)y(q,s). (27)
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ously specify the boundary condition @} and we must do — = 2mieilkE DA
s0 now. We want th6&, term in Eq.(27) to be nonvanishing = KT+ (KL +1/297) +ie

for x”>0 and to vanish fox~<O0. If we move the singu- (28)
larity just below the real axis by addirig to the denomina-

tor then this physical boundary condition will be fulfilled. and our expression for the wave function in region Il now

Now consider the integration ovér . We did not previ- fw dk+e-ik x

We have becomes
Wy (X) JdZKLl(kJrﬁ)(l )—(1—a,)q”
X)=— — —=& —Qa,)— -
i 2m? V2 1K z 24
eikixiﬂ[(ki+1)/(2q’)]x’+iq’x+
X fdzzle*i(qi*"NZLeiA_(Zﬂv(q,si). (29
2q~

As a check on the validity of our expression we note that ifBegin by constructing/ times the exact wave function on
we project with (- «,) the expected boundary condition the boundary between regions Il and IV. In analogy to Eqg.
holds forx™ = +e€: (25) we have

—i N
(1= a )W =(1— e @, (30 V(X)W(x)zﬁé(x+)(1+az)(e/‘ CD) =)Wy, (x).
(32

Now the exact amplitude takes the form Note that we need the projection {l,) for this boundary
due to the opposite direction of motion of the ion producing

. theV as compared to th¥ on the boundary between | and
M _If dKHIVIP). (3D Ill. Thus we have ak*=0,x">0

V(x)\lf(x)zi—a(x+)(1+a)eiﬂxﬂf dzkl i(a Kk, +8)(1—a,)
\/E z (277)2 \/E 1™ z
eikai+i[(ki+l)/(2q_)]x_+iq_x+
X = fdzzLe““h+kl)ZLe‘A7<ZL)v(q,si). (33
q

Likewise atx =0,xt>0

V(x)‘I’(x)=i—5(x‘)(1—a )eiﬂxﬂf il i(a k. +8)(1+a,)
\/5 z (277)2 \/E 10D z
eikal+i[(ki+1)/(2q+)]x++iq+x’
X J d?z e (A TkZgiN 2y (q,5). (39)
29"
|
In constructing the transition amplitude one makes use of M(p,a)=M (P, Q). +M(P, Dy - (35)

the fact that only two interactiottwo photor) terms have a The final state is a positive energy electron

net contribution(Single interaction terms integrated over the

four boundaries give a null contributigriChe amplitude then d=u(p,s;)eP*= u(p,sf)eipLXfip*x:ip’X*_ (36)
has two pieces corresponding to the boundary of region IV

with regions Il and I Then we have
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. _ L - d%, 1
M(p, =if dx‘de+dx u(p,s;) e Prx TP X HiP X s(x ) (14 @) (e -1 J —
(P, @v, i1 . Lu(p,se)B 2 (XT)(1+a,)( ) (2m? 12

eikixi+i[(ki+1)/(2q’)]x’+iq’x+

X(a k +B8)(1-a) -

f dzzle7i(qL+kL)zLeiA7(zL)v(q,Si)_ (37)
2q

Now integrate ovex™ andx™ to obtain

. —
M(p-q)IVHI:_f d°k, u(p,s)B(l+a,)(a k, +B)v(q,s) dzxie‘“pL‘kl)XLeiA+<Xl)f (22,6 @z A @),
’ (21)2 2ptq +k3+1

(38)

The transverse spatial integrals can be done in closed form as is shown in Appendix B. We obtain

. - _ b2\'"7 47 T(1-iny)
2 =ik, y, QlAT(Y ) — _ aFibk, /2| Z_

f dy, e Ve 1 er'’PrL (16) @20 T(i7) ) (39

where n=+Za.
The amplitude now becomes
T2(1—in) [, u(p,s)B(l+ay)(a k +B)v(a,s)

M(p, D), =—4 T2(i 7) d7k, 2p g +K2+1 e PPL2ma 2T (p, — K, )k, +q, )%,
1L

(40)

where trivialb dependent and constant phases have been removed.
The other piece of the amplitude coming from the boundary between region Il and region IV has the corresponding form

I%(1-in)  , U(p,soﬁ(l—az><alkl+/s>v<q,si>e

M , =—4 i +ib(p, /2—q,/2—k)) —k 2 k, + 217in—1
(P, D v, T%(i7) 1 20 q" +K211 [(pL—k)(k +0a.)7]

~ Fz(l—in)J’ 2 UPS)B(=a)la (P —d, —ki)+Blv(a,s)
(i) : 2p q* +(p. —q, —k)?+1

xe PP kOR(p, —k )2(k, +0,)%17 (41)

and the total amplitude takes the form

u(p,sp)B(1+ ay)(a k, +B)v(a,s)
2ptq +k*+1

M<D’Q>=4n2f dszeibkian—kL>2<kl+qL>2]iv-1(

+U(p,sfm(l—az>[ai<pi—ql—ki>+/3]v<q,si>) @
2p q*+(p.—q,—k)?+1
|
where trivial phases depending gnand on initial and final At this point one notices that the infinite range of the
momenta have been removed. o transverse potential provides us with a result lacking an in-
~ Rewriting with the mass of the electron explicit, and mak-frared cutoff. In Appendix B, we introduce a convergence
ing use of more modern notation we have parametere to regularize this infrared singular behavior.
i i Strictly speaking we were not allowed to let the convergence
— 2 2 ibk _ 2 27in—1
M(p.a)=47 f %k, e (P —k )"k +0,)7] parametek take on the value zero. In the previous use of the
_ singular interaction for calculating bound electron positron
% u(p,sp)(1—ay)(—k +mu(q,s) pair production, the transverse integrals were cut off by the
2pTq + kf +m? finite range of the bound state wave funct{dd. With plane
o waves there is no such natural cutoff. This suggests that we
u(p,sp))(1+a,)(—p, +4, +k, +myv(q,s;) attach a physical interpretation to the convergence facior
g L 2.2 Appendix B. In fact if we set equal tow/y, wherew is the
2p-a" F(pr—a—k,)THm energy of the produced electron or positron, then we obtain

(43)  the expected spatial cutoff in a heavy ion electromagnetic
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interaction, and a result that can naturally be compared with P (X)=e%%, (—q). (44)
the corresponding perturbation theory result of Bottcher and
Strayer[5]. We discuss this further in Sec. IV. But first we

shall come to the same solution in the light cone gauge. €r€ vy is @ positron spinor. The labél on the solution

refers to the fact that this is a solution in regib@as in Fig.
1, and as in Sec. Il.

Recall that the background field in light cone gauge is of
the form

In this section, we present an alternative derivation to the
results presented above in singular gauge. This serves as a oy — o= i A — RPN
check on the results of the previous section. Also the tech- A()==00C)VIA(xr) = 6O VIA T (xr) - (45)
nigue which we present here appears to generalize directly to
the non-Abelian problem. as was discussed in the Introduction.

We begin by considering a negative energy plane wave. Let us first construct the solution in region Il. This in-
Here we will takeq™<0. This negative energy incoming volves constructing the solution in region across the bound-
plane wave will eventually be interpreted as an incomingary atx* =0 from region I. Everywhere in region I~
positron with momentung— —q. So we begin with an in- <0. Using the results of Appendix C, a general solution is of
coming wave the form

Ill. THE SOLUTION TO THE TWO CHARGE PROBLEM
IN LIGHT CONE GAUGE

1 Td? prt
¢II(X):_e—iA+(XT)fdp—dSTe{—iDW+iPTXT—i(P%+m2)X+/2(p++i6)} 1+m atv,(—q)
V2 (2m) V2(p* +ie)
1 1 _ -
X .—#I d?zrel (4 Pr2re! A 20+ H(pr ,p*,q) ¢ (46)
i pf—qgqt-ie

In this equationH has all its singularities in the negative half plane. Therefore at™ =0, this contribution gives nothing.
In fact throughout region I, there is no contribution so titatcan be dropped. The choice of singularity fof in the
exponential is so that there is convergence at large positiveNotice that forx™ <0 corresponding to region Il, the term
which does not involveH may be evaluated by closing in the upper half plane. Here the solution satisfies the correct
boundary condition ax* =0 and solves the Dirac equation in region Il. It is unique.

In exactly the same way, we have in region lll, that the solution is

1 ~d? prt
wm(x):_e—m<xﬂfw_d§Te{—ipx*+ipTxT—i<p$+mz>xlz(p+ie>} 1+m @ v\(—q)
V2 (2m) V2(p~+ie)
1 1 _ L
X ——f d?ze! (G PrzrgiA (zr) | (47)
i pT—q —ie

We now write down an ansatz for the solution in region 1V. After writing down the solution, we will show that it solves the
Dirac equation and the boundary conditions<at=0 whenx*>0. Consider

d?pd?z; d?prd?z; f dp* 1
(2m? (2m)? 2m p*—(p$+m2)/2q7+ie

i
Py (X)= _e—iAJr(XT)—i/\*(XT)J’
2

% e—ip*x’ +ip-'rx-r—i(p-'|-2+ m2)x+/2(p++is)eiz-'r(p1—— p-'r)+izT(qT—pT)eiA+(zT)+iA’(z-’r)

a v \(—Qq)

( ar-prtpm|  ar-prt+pm
X @

1+
V2(pt+ie) V2q~

d - 1 ’ ’ !
f P e—ip*x*+ip+xT—i(p+2+m2)x+/2(p*+ie)eizT(pT—pT)+izT(qT—pT)eiA*(zT)JriA*(zT)
27 p —(p3+m?)/2qT +ie

_ar-prtAm

NG . (48
\/Eq+ a v)\( Q)

( ar-pr+Am
x| 1+ a

V2(p*+ie)
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First it is straightforward to apply the Dirac equation to the Dirac equation and the boundary conditions in region IV.

v, and show that it solves the Dirac equation. What about
tion from this wave function. To do this, we observe that

after a little algebra, and making the substituttps — g that

the behavior on the boundarie$ =0, x*>07? First consider
X~ =0 andx™>0. We first evaluata},, on this boundary.
We require that the)™ be continuous. Using),,, we see
that

2
T eipTxT—i(p-2r+m2)x+/2q+

(2m)?

1 -
'ﬂl_l|x’:0,x+>0: ﬁe"A (XT)f

at-prtpAm
X—

Vaq+

XJ d2z€(ar-prizrgiA " (zn)

a’v,(—q)

(49

Now, how doesy,,, behave on this boundary? The first
integral overp™ in the integral representation faf,, van-
ishes atx” =0 as all the singularities of the integration over
p* are in the same side of the rgal axis in the complex
p* plane. In the second term which involvps, we must
close in the lower halp~ planes wherx =0 andx®>0.
Closing in this plane and doing the integrals ozérandpt

shows that our formula solves the correct boundary condi-

tion.

Now we must extract the matrix element for pair produc-

d*p’ d?p;

(2m)* (2m)?

1
hv(X)=— Ee_iM(XT)_iAi(XT)f d’zrd®zy
—n’.
« m—p -y R
2. 2
p'c+m—ie
’r+

2p

eiz+(pT7P+)7iZT(qT+pT)
pZ+m)/2q" +ie

|
p/++(

o m+pr-y
Xe|A+(zT)+|A (ZT)aﬁ v)\(Q)
V2qp'*

2p'~

X ei2+(pT* py)—izr(dr+pr)
p' "+ (pi+m?)/2qT+ie

m+pr-y
—u\(Q).
V2qtp'~

XeiA‘(z+)+iA+(zT)a+ (50)

By symmetry, we see that along the other boundary at Amputating the external line which corresponds to the

x"=0 for x">0 the boundary condition is solved for the
plus component of the wave function. Therefarg solves

d%pt 1

propagator for the electron, we find the matrix element for
pair production to be

M= W{K*(pé—pﬂx(pﬁqﬂ

I \
X(pt PT/2q+p,—+p+2+m

Here the quantity
K= (pr)= f dPxrePreretinTom, (52

IV. DISCUSSION

29 p' THpittmitie

U, (P)\2a" (m+ph Y)or(a)

U, (P)V2a™ (m+ph- Yoy (@) + & (ph+an k™

(51)

Eq. (B5) for the nonperturbative transverse momentum inte-
gral. They did argue that the transverse integral went appro-
priately to the ultrarelativistic perturbative limit in agreement
with the result of Bottcher and Strayfs]. In this limit their
perturbative amplitude simply takes the form of H¢3)
without thei » in the exponent.

We now have the suggestion of an ansatz for a physical

After we had finished the derivation of the amplitudes Eq.cutoff of the exact result in line with the discussion at the

(43) and its equivalent Eq51) we became aware of similar
results recently obtained by Segev and WElF These au-

end of Sec. Il. The perturbation theory result of Bottcher and
Strayer not taken to the ultrarelativistic limit actually has

thors obtained an amplitude with the same structure as ourggnominators of the forrkf + w?/(y?>—1) rather tharkf .

but they did not obtain our closed form, Eq40), (B6) or

2
w
([pj__kj_]2+;2

M(p’q):47]2J dszeibki

W
[kL‘Hh]Z‘*‘ 72‘

Our ansatz then is to modify E¢43) to

N

2 u(p,s)(1—a,)(—k +muv(q,s)

2ptq +k2+m?

+U<p,sf><1+az>(—m+m+h+m>v<q.si>

2p gt +(p.—q,—k,)Z+m?

| 3
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We have effectively retained (set to w/vy) in the factor ACKNOWLEDGMENTS
taken to the *i# power of Eq.(B5) and ignored it else-
where. Retainingy elsewhere in Eq(B5) would cut off a
little more sharply at smakl;, but is not necessary. It would
not necessarily be more exact to retain all factorsydbe-
cause the cutoff comes in response to the spatial region
=yl w where both the singular and light cone potentials be
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the integral over the intermediate transverse momentum. | 0328 with the U. S. Department of Energy.

one is only interested in a the cross section for pair produc-
tion in a given small momentum and/or energy bin then one
must obtain the same answer independent of the order of APPENDIX A: CONVENTIONS FOR LIGHT CONE
integration. In that case performing the integral over the im- VARIABLES AND THE USE OF PROJECTION
pact parameter first seems convenient. One has an impact OPERATORS

parameter integral of the form We will let the light cone coordinates for any vector be

f dzbf IM(p,a)|? 1
VE=— (VO£ V?). (A1)

V2
~fd2bf dzkieib"if(kl)J'dzkie"bkif*(ki).
The metric convention we will use =1 andg'/ = — §'
(54)  for spatial components so that in light cone gauge the dot

. ) product is
The integral overd?b gives (27)26@)(k, —k|) and the
*ipy exponents vanish, giving a result identical to what we A-B=A*B +A B —A;-Br. (A2)
would obtain in perturbation theory.

If we are interested in high multiplicity events or a total . . _

: . . - \We shall use ordinary gamma matrices for fermions so that
cross section for events in which at least one pair is produced
then we must perform the integral over the intermediate Ll — e
transverse momentum first. For the highest multiplicity {r* vt =297 (A3)
events we need to evaluate the square of the amplitude at i o )
small but nonintersecting values of the impact parameter: we We can define projection operators for fermions as
need the mean number of pairs at a given impact parameter.

From the mean number of pairs produced at each impact .1 01

parameter, one can obtain the probabi(lgss than oneof at P- =E e =§(1i az). (A4)
least one pair being produced. Thus a total pair production

cross section can be defined and computed.

Note that for a given impact parameter the square of th
amplitude is not identical in the exact solution to what it is in €
the the perturbation theory solution. For the exact solutiori€!d aré
thei» in the exponent gives a rotating phase in the the inte-

Jhese projection operators satighy + P~ =1, P*2=P*,
andP*P*=0. The plus and minus components of a fermion

gral overk, that is absent in the perturbative case. For ex- Y= =Py, (A5)
ample if we look at a dominant contribution near one of the L
cutoffs the amplitude goes as wherey™ + ¢~ = ¢
In light cone coordinates, the Dirac equation for a free
J‘k k, dk, particle becomes
o (ki +aw?y?)t 7 1
Yy~ =——(pr-artBm)y", (AB)
= i(ei nIn(K2+ w2l y?) _ ei 7in wzlyz), (55) \/Eer

2inp

which decreases with increasing Here the exact contribu- wherey™ solve

tion is less than perturbation theory would be. NP
To sum up, we have a situation where one can say both (2p"p~ —pr—m) ¢ =0. (A7)

that the exact cross section for pair production to any final

state is identical to the perturbation theory cross section, anth an external field which is independent »f, the trans-

that measurements of high multiplicity pair events will showverse momentum is converted into a transverse covariant

deviations from perturbation theory probably by beingmomentum. Also, the relationships can be reversed under the

smaller. transformationy™ — ¢~ .
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APPENDIX B: EVALUATION OF THE TRANSVERSE INTEGRAL

We would like to evaluate the integral
|:f d2p e—ik.pe—i1,|n(p1b/2)2/(b/2)2' (B1)
A coordinate shift gives us
b2 i7] n 2 o) . . 2
| = Z e+|[k-b/2]f dd’f pdpef(lkLcos¢+e\cos¢|)pef|nlnp , (BZ)
0 0

where we have added a convergence faetoos¢|. The integral ovep can then be carried ouf8] 3.381.5 and we obtain

2\ i o
| = (b_)meﬂ[kblz]JZWd F(Z 2i 7]) : e(—2i—2n)arctakacos¢/e|cos¢|). (B3)
4 0 [(K?+e?)cogp]t 17

Making use of quadrant symmetry this may be rewritten

| 47 ilK- b/2]<b2>"7(e —kz)cosr(znarctarﬁk le])+i2ek, sinn(2narctaik, /e]) T'(2—2in) (=2 d¢
— e+

(€+k?) (k2+ et mJo  (cosp)?-27
(B4)

The integral overp can then be carried out by Wallis’ formulg7] 6.1.49 giving

| 4o ilkbi2 (bz)"?(e —kz)cosr(znarctarﬂkL/e])+|26kLsmr(277arctarﬁkL/e]) rz-2iyn) \/—F( 0.5+in)
4 (2+k?) (k2 +e?)t7in 2T (i)
(B5)
|
Letting € approach zero from the positive direction and ex- A
ploiting I' function relations finally leads to ' (x)=¢€ (XT)J ﬁFW(DT,QT)
| _ gritkbz| 2 b2\'7 47 T(1—ip) (86) Xu)'\(p)e(ipTxT—iQ’X*—ip*x’), (C3)
16 ki 2in T'(in)
where
APPENDIX C: SOLVING THE DIRAC EQUATION p12_.|_ m?2
FOR THE LIE NARD-WIECHERT POTENTIAL p+= 2q (Co

In this appendix, we discuss solving the Dirac equation _ _ _ _ _
for Liénard-Wiechert potentials appropriate for the centralThe integral above is two dimensional singe labels the
region. We will show how to construct a solution for a light solution on both sides of the boundary as the potential‘is

cone potential of the form independent, and because the value of plus component of
. . light cone momenta is determined by the mass shell condi-
A= —0(x")V'A(X7). (C1) tion.

What are the boundary conditions>at =07? Recall that
We will then show how to convert this solution into that for the form of the Dirac equation is

the singular gauge and how this problem in singular gauge
translates into a boundary condition on the Dirac wave func- (Pr a1+ Bm—2p*P~—\2p P*)y=0, (CH
tion atx™ =0. In the text, we will use this to construct solu-
tions across the boundaries»at=0. whereP™ are the projection operators described in Appendix
We assume that fox™ <0, we are given a plane wave A. Here Py is the covariant momentum operator. We see
solution of the form there for theys~ can be chosen to be continuous across the
. boundary. On the other hand, the plus component of the
p(X)=e'Yuy(x), (C2)  wave function must be discontinuous since by the Dirac

. o . equation
where \ is a polarization label on the electron spinor. At

X~ >0, the solution must be a linear combination of plane
wave solutions to the Dirac equation modulo a gauge rota- Y=

tion \/—p

—— (Pr-ax+8m)y~ (Co)
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and the covariant momentum operator contains the vector 1 d2p
. . . . . . T . ) PRI
potential which is discontinuous. ,/,(X):_EIMXT)f deZTe iA(zr)giprxr—ig X" —ipTx

This tells us what the proper boundary condition is in (2m)

singular gauge. Recall that to transform between the two

gauges ar-pr+ Bm

V2q~

><eizT(qT—pT>| 1+ ]a_UA(CI). (C9

where
‘/’singulan(x) =¢ fOCINxD) ‘plightconéx)- (C7) 1

at=
V2
We therefore have that the boundary condition in singular o . .
gauge is the the component Againp™ = (p3+m?)/2q~. It is easy to see that this function

solves the Dirac equation. At =0, the term involvingp*
disappears so that the integrals opgrandz; can be done
with the result

‘p;n ulal(X)|x‘=0+:eiMxT)¢;n u|a|(x)|x‘:0‘- (C8) 1 Q +ﬁm .
i ’ w(x)=\—5 a_+a+a-r\/§;q, ey, (g). (C11)

(1*+ a,)=+2P". (C10

with the plus components determined by the Dirac equationysing the definition of the projection operatd®s, and the
All components of the wave function in singular gauge arerelationship betweens+, this is juste'®u, (q). To derive

therefore discontinuous. _ _ this, we must use the definition of the vector potential in
It is now straightforward to determine the solution for terms ofA. This solution therefore solves the boundary con-
X~ >0. Consider ditions.
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