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Methods for analyzing anisotropic flow in relativistic nuclear collisions
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The strategy and techniques for analyzing anisotropic fldirected, elliptic, etg.in relativistic nuclear
collisions are presented. The emphasis is on the use of the Fourier expansion of azimuthal distributions. We
present formulas relevant for this approach, and in particular, show how the event multiplicity enters into the
event plane resolution. We also discuss the role of nonflow correlations and a method for introducing flow into
a simulation[S0556-28188)04109-7

PACS numbd(s): 25.75.Ld

[. INTRODUCTION: SUBJECT AND TERMINOLOGY to different harmonicgin analogy and/or contrast to the de-
scription at low energies, where the three-dimensional event
Recently, the study of collective flow in nuclear collisions shape is characterized using multipole terminojogyniso-

at high energies has attracted increased attention of bothopic flow corresponding to the first two harmonics plays a
theoreticians and experimentali§id. There are several rea- Very important role and we use special terms for them: di-
sons for this:(i) the observation of anisotropic flow at the rected and elliptic flow, respectively. The word “directed”
AGS [2-7] and at the SP$3—11], (ii) progress in the theo- comes from the fact that such flow has a direction, and the
retical understanding of the relation between the appearangtord “elliptic” is due to the fact that in polar coordinates
and development of flow during the collision evolution, andthe azimuthal distribution with nonzero second harmonic
processes such as thermalization, creation of the quark-gludgpresents an ellipse.
plasma, phase transitions, efd2-1§, (iii) the study of
mean field effect§14,19, (iv) the importance of flow for Il. CORRELATIONS WITH RESPECT
other measurements such as identical and nonidentical two- TO AN EVENT PLANE
particle correlation analys¢20-23, (v) the development of . . .
new techniques suitable for flow studies at high energies Strategy I_n this s_ectlon We summariz€ an approach to the
[24-26,1,9. Although all forms of flow are interrelated and study of anisotropic flow which is particularly suitable at

represent only different parts of one global picture, usuallyi9" (AGS/SPS/RHIC energies. It uses the Fourier expan-

people discuss different forms of collective flow, such asSion of azimuthal distributions, introduced in this way for the

longitudinal expansion, radial transverse flow, and anisofjmaIySiS in Ref[25]. The essence of the method is to first

tropic transverse flow of which the most well established aréStimate the reaction plane. The estimated reaction plane we
directed flow[24,19 and elliptic flow[27]. call the event plane. The Fourier coefficients in the expan-

sion of the azimuthal distribution of particles with respect to

just begun and it is very important to define the subject ancﬁhiS event pIane are evaluate.d..Because the f!nite number of
establish the terminology. At high energies the IongitudinaldeteCted particles produces limited resolution in the angle of

flow is well decoupled from transverse flow. The fldpo- the measured event plane, these coefficients must be cor-

lar) angles observed at low energies are relatively large and £¢t€d _urﬁ_to_ wgat thsy é"o‘gd behrelagve to (tjhe ref?l r eactlgn
rotation of the coordinate system was done in order to anaP'2n€- This Is done by dividing the observed coetficients by

lyze the event shape in the plane perpendicular to the maiW? gventfplﬁne Tesolutic;n., \éVhiCh (ijs estimgted from ths cor-
axis of the flow ellipsoid. At high energies the flow angleselation of the planes of independent subeve@s (sub-

: f the particles used for the event plane determina-
become very smallfgo,~{Py)/Ppeari<l, SO that not doing groups o . ;
such a rotation “induces” an elliptic anisotropy of the order tion). The resolution obtained from the subevents can be

fth fthe i | I | _qnyerted to that for the full eve_nt by means of the m.ulti—
of the square of the flow angle and usually can be neg eae&%cny dependence of the resolution which will be described

This means that at high energies one does not have to rotab | Al if the detector d th full azimuthal
to the flow axis to study the flow pattef@7], but one can P€'OW. AISO, [T the detector does not have Tull azimutha
geeptance, the acceptance bias has to be removed.

use the plane transverse to the beam axis. Thus we discu® Fouri ionTh it der studv in th ¢
only anisotropic transverse flow from the particle azimuthal ourler expansion the quantity under study in the mos
general case is the triple differential distribution. In this, the

distributions at fixed rapidity or pseudorapidity. It appears q th ol Y imuthal |
very convenient to describe the azimuthal distributions b)fiepedn e?]ce on the par: icle e”.“ss"}” azimu ba angle mea-
means of a Fourier expansidi28,25,24, and below we sured with respect to the reaction plane can be written in a

characterize different kinds of anisotropies as correspondin5Orrn of Fourier series

The study of flow in ultrarelativistic nuclear collisions has

CN_1 _dW 1+§ 2v,co4n(¢p—"V,)]
—— === v,cogn(p— ,
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where ¥, denotes thgtrue) reaction plane angle, and the where the sum is over all the particles. The casesR is

sine terms vanish due to the reflection symmetry with respeatquivalent to the event plane determined from the transverse
to the reaction plane. The main advantage of the Fouriesphericity matrix24].

method is that the Fourier coefficients, evaluated using ob- Acceptance correlationsBiases due to the finite accep-
served event planes, can be corrected for the event plari@nce of the detector which cause the particles to be azimuth-
resolution caused by the finite multiplicity of the events. Thisally anisotropic in the laboratory system can be removed by
correction always raises the value of the coefficients. Théhaking the distribution of event planes isotropic in the labo-
great importance of this is that then the results for particles ifatory- We know of several different methods to remove the

a certain phase space region may be compared directly ﬁffeck')[_s of anisc_)tr:opy ;’]Vhiﬁh Eavi b?err: us{ﬁdmetimes ijn a
theoretical predictions, or to simulations unfiltered for theCOmpination with each othrEach of them has some advan-

; : ges along with disadvantages.
detector acceptance, and for which the reaction plane hd& The simplest one is to recentfs,4,10,3Q the distribu-

been taken to be the plane containing the theoretical impact .
parameter. Note the factor of 2 in front of each coeffi- Yons (n,Yn) [Egs.(2) and(3)] by subtracting theX,, Yn)

ent. W ¢ itb in thi h .values averaged over all events. The main disadvantage of
clent. Ve propose 1o use It because In this case the meaniffs method is that it does not remove higher harmonics from
of the coefficients v, becomes transparenf25], v,

o the resulting distribution of¥,,. If such harmonics are
=(cogn(¢—"V,)]), where( ) indicates an average over all present then the method requires additional flattening of the
particles in all events. For the particle number distribution,gyent plane distribution by one of the other methods. The
the coefficient v, is (p,/p) and vy is ((Px/P)®  second, one of the most commonly used methods, is to use
—(py/py)?). the distribution of the particles themselves as a measure of
Estimation of the reaction planeThe method uses the the acceptancg3,4,9. One accumulates the laboratory azi-
anisotropic flow itself to determine the event plane. It alsomuthal distribution of the patrticles for all events and uses the
means that the event plane can be determined independentiywerse of this as weights in the above calculation of the
for each harmonic of the anisotropic flow. The event flowevent planes. The limitation of this approach is that it does
vector Q,, and the event plane angi, from the nth har-  not take into account the multiplicity fluctuations around the

monic of the distribution are defined by the equations mean value. The third method is to use mixed evesis, 9.
Correlations with the raw event planes are stored in histo-

grams and correlations with event planes from previous
QncognW ) =X,= >, Wicogne)), (20 events are also stored. The real correlations are then divided
' by the mixed event correlations to remove the acceptance
correlations. This third method suffers from the problem
Qsinn¥,)=Y, = 2 wisin(ng,), (3) that, if one uses only one mixed event fqr each real event, the
i errors arey2 larger. If one uses many mixed events for each
real event, the errors decreaseréq‘é‘x instead ofynp,x be-
or cause the same events are being usgg times[31]. The
fourth method fits the unweighted laboratory distribution of
S wisin(ng;) the event planes, summed over all events, to a Fourier ex-
— : pansion and devises an event-by-event shifting of the planes
v,=| tan!— / n. (4)  needed to make the final distribution isotropg4]. In all
> wicogng) these methods one has to check that the event plane distri-
i butions indeed become isotropic.
Particle distributions with respect to the event plafiée
The sums go over the particles used in the event plane next step is to study the particle distributions with respect to
determination and the; are weights. In general the weights the event planes. Note that for a givarthe corresponding
are also optimized to make the reaction plane resolution theourier coefficientv,, can be evaluated using the reaction
best that is possible. Sometimes it can be done by selectinganes determined from any harmomig with n=m, if n is
the particles of one particular type, or weighting with trans-a multiple ofm. If n>m, the sign ofv, is determined rela-
verse momentum of the particles, etc. Usually the weightsive to v,,,. That is, the first harmonic plane can be used, in
for the odd and even harmonic planes are different. Optimaprinciple, to evaluate alh,. The second harmonic plane can
weights are discussed in footnote 2[df7]. For symmetric  pe used to evaluate,, v,, etc. For the event plane evalu-

collisions reflection symmetry says that particle distributionsated from themth harmonic the Fourier expansion is
in the backward hemisphere of the center of mass should be

the same as in the forward hemisphere if the azimuthal d(wN) (wN){ obs
angles of all particles are shifted by This explains why for AoV, 2m | 1+;<§=:1 20gmecogkm(d—"Pp)] |.
the odd harmonics the signs of the weights are reversed in 7)
the backward hemisphere while for the even harmonics the

signs of the weights are not reversed. Note that the event———

plane angle¥ , determined from theath harmonic is in the L ) o o

range 6=V, <2#/n. For the case ofi=1, Egs.(2)—(4) are The equation for the shift issee Appendix in Ref.3])

ivalent to obtainingV f ber flow from[29 i
equivalent to obtaining’; for number flow from[29] nA\Ifn=2i—[—(sir‘(in\lfn))coiin\lfn)+(cos{in\Ifn)>sin(in\Ifn)].
i=1

Q=2 wp//|py (5) 6)

We have usually taket,.,=4/n for n=1,2.

o0
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Writing the equation in terms dfm instead ofn insures, for A F T
instance, that whem=1 all terms are present, but when ;*- i ; ; ; : ;
m=2 only the even terms are present. The quantitis a "B 08 |
weight which could bep, of the particle if one studies trans- = b §k:1f
verse momentum flow, or just unity, if one studies flow of E o
the number of particles. The coefficient§® are evaluated z 06 I T N 45 B
by (cogn(¢—"¥)]). The quantity ¢p—¥,) has a lowest \?; - ‘ ‘ ‘ : ‘

order periodicity of 2r/m. To graph the distribution one can 0.4 _ __________ 3 i
shift the negative values to positive by adding,2and then ‘ : : ’ i
fold the distribution with this periodicity using the module -

function. When a particle has been used in the calculation of 02 [
an event plane, the auto-correlation effect in its distribution B : : :

with respect to this plane is removed by recalculating that 0 0 05 1 = ‘lls' = ';' = '2|5' = '3
plane without this particl¢29]. This is easily done if one ’ ) ) i
saves the sums of sines and cosines from E2)s«(4), and Vil O

subtracts the contribution of the particle and its weight from ] B
these sums. This method of removing autocorrelations as- F'G- 1. The event plane resolution for tinth (n=km) har-

sumes that contributions from conservation of momenturﬁnonic of the particle distribution with respect to thth harmonic
are small plane, as a function of,,=v,/o.

The event plane resolutioithe coefficients in the Fourier \/;
expansion of the azimuthal distributions with respect to thecog km(W ,,—¥,)]) = ——= xmeXp — x2/4)

real reaction plane are then evaluated by dividing by the 2.2
event plane resolutiof29,32,25,3,4,2b X e 12 Xl )+ s 12 X D)1,
11

wherex,=vm/o (=vm\2N for number flow andl , is the

modified Bessel function of order. This resolution function
The mean cosine values are less than one and thus this cég-plotted in Fig. 1. Please note thatised in this paper i§2
rection always increases the flow coefficients. larger than that used by Ollitradit.

The resolution depends both on the harmonic used to de- Note that{co§m(V¥,,—W¥,)]) is a correction for the recon-
termine the event plane and the order of the calculated struction of the signal if the event plane is derived using the
coefficientn. It is generally true that better accuracy for the flow of the same harmonick=1). In the case when the
determination ofv, is achieved by using the event plane harmonic orders do not coincide, for example, when one uses
(¥,) determined from the same harmonim£n, k=1) the event plane derived from the first harmortdirected
because the resolution deteriorateskamicreasessee be- flow) and studies the second harmonétiiptic flow) of the
low). For example, better accuracy fop can be achieved particle distribution with respect to this plafithe m=1k

using ¥, even when the elliptic flow is somewhat weaker =2 €rm in Eq.(7)] the correction would b&cog2(¥,
than the directed flow. —W,)]). For practical use all such functions can be calculated

To calculate the resolution we start with the distribution "UMerically as in the subsection dpproximationsbelow.
of m(W,.— W), which can be written ak25] The resolution correction used in earlier times at the

m r Bevalac[28] is close to the present curve for values xgf
=v,V2N greater than about 1.5, which was generally true at
the Bevalac. However, using the old procedure at the higher

vn=02"%(cogkm(¥,—V¥)]). )

dp :f vmdvm beam energies of the AGS or SPS would greatly overesti-
dlm(V¥n—¥,)] 2o’ mate the resolution and make the flow values too small.
The correlation between flow angles of independent sets
vfn+vr’nz—2vmv mcogm(¥,—W¥ )] of particles If one constructs the event planes in two differ-
xXexp — g2 . (9 ent windows,(a and (b), or from two random subevents,

the corresponding correlation function also can be written
analytically. But more important in this case is the simple

. . . relation for such correlations,
The parameter, which to second order in flow is common

for all m, is inversely proportional to the square-rootf <co§n(\p;—qu)]):(co{n(\]f;—\lfr)p

the number of particles used to determine the event plane b
x{(cogn(¥y—T)H]). (12

,_ 1 (w?)

’The parametey used in this paper is a factor o2 larger than
the one used in Ref§1,26]; it is equivalent to the parametérin
Ref.[25].
The integral(9) can be evaluated analyticall24,25, and 3The random subevents can be made to have equal multiplicity
then the event plane resolution can be expressed as using the CERN library routineoRrTzv.
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Here, the assumption is made that there are no other corré-the subevents are not “equal,” or if you have only corre-
lations except the ones due to flow, or that such other corrdations between particles in different windows, and the reso-
lations can be neglecte@~or example, two-particle correla- lution in each window can be different, then one needs at
tions due to resonance decays should scale with multiplicityeast three windows to determine the event plane resolution
as 1N and usually can be neglectgdf. this is not true, then in each of them. In this case, for example, the resolution in
special precautions have to be made to avoid or correct fahe first window is determined 48,4|
such correlations. See the subsection beloviNonflow cor-
relations (cogn(¥r—V)])

Note that the correlation of two planéhe distribution in 3 5 3 S
Wa—¥b) is notwell represented by a Fourier expansion. For ~ [{eogn(Wr—¥ ) ) (cogn(Vi—V)])
a strong correlation it should be Gaussian. For no flow the B (cogn(¥E—we)]) '
correlation between two random planes of the same order
should be a triangular distribution. If one takes the absolute (16)

value of W2— WP and folds this distribution about the angle ApproximationsWe want to discuss two limits. In a case of
win, thea triat?gle becomes flat. This does not affect_ the,eak flow,x, <1 (v, <o, which also means that the event
(cogn(¥;—Wy)]) value needed for Eq12), but makes it jane resolution is loyvone can expand the exponent under
easier to see a real flow effect by the non-flatness of thene integral in Eq(9) before the integration. It will follow

distribution in the graph. that in this limit
For the correlation between angles determined from two
subevents of different harmonics one can write similar rela- dp T
tions. For example, the correlation betwe&f and ¥} is mml"- SXmCOgM(W = Wr)]. (17)
(cod2(¥5—-W)])=(cod2(¥i-¥,)]) Then the event plane resolution can be estimated analytically

X(cog2(V3—-w)l). (13 to be (the casek=1)

This expression is proportional tdv, /o and can be rather (cogm(¥,,— T ,)])~ ng_ (18
small in magnitude, but it can be useful for the determination
of the relative orientation of the flow of different ordes®e |, ihis case the resolution is linear jnand, sinceo is the

also the subsection opproximationsbelow. On the other ¢, 6 for alim, the resolution for differenth scales withy .

hand, the relative orientation also can be determined using Combining Eqs(14), (10), and(18) one can estimate the

Eq. (7) with k>,l- i . flow signal directly from the correlation between two sub-
The determination of the event plane resolutigthe  ,\ants

above relations permit the evaluation of the event plane reso-

lution directly from the data. For example, if one knows the < \[(4/7)(W2)/(w)Z\[(cog m(¥2 —¥E)])/Ngyp,
correlation between two equal multiplicity subevetidere (19)

the resolution of each is expected to be the gamen from

Eq. (12) the resolution of each of them is whereNg,;, is the multiplicity of the subevents.

Keeping the second order terms in the expansion of Eq.
(cogn(¥2—¥)])=(cogn(W2—-¥>2)]), (14  (9) it can be shown that

. . 2
where, as beforey=km, andk is not necessarily equal to 1. _Xm _ 2 2
If the subevents are correlated, then the term inside the<coi2m(\1’m—llf,)]>~T~;{<cos{m(‘1'm—\lfr)])} :
square-root is always positiVeNote that the event plane (20)

resolution determined in such a way is the event plane reso-

lution of the subevents. If one wants to use the full evatit The latter relation fok=2 is needed as a resolution correc-
detected particles from the evertb determine the event tion foruv, in the case where the event plane was determined
plane, then the full event plane resolution can be calculateBY the directed flow h=1). The approximate relations
from the sub-event resolution using Ea1) or the approxi- (18)—(20) are rather accurate fo,,<0.5.

mations below, Eqs(23) and (24), taking into account that Using the above approximations the correlation between
the multiplicity of the full event is twice as large as the flow angles of subevents of different harmonies<1 and
multiplicity of the sub-event. Becausg,=v,/o is propor- M=2) can be written as

tional to YN, in a case of low resolution where the curves in

Fig. 1 are linear, this reduces to <C0i2(q,i_\pg)]>~i3<cos(q;i_\pk1))>
v
(cogn(¥n=¥)])=V2(cogn(¥i-¥)]). (15

X \(cog2(¥3-¥)]). (21)

As stated above, the sign of the left-hand side shows the
“For small amounts of flow, fluctuations and/or nonflow correla-relative orientation of the flow of the different harmonics,
tions can cause this term to be negative when the pptalrequired  while the right-hand side after the sign is always positive.
to be zero. Note that all quantities in this equation are evaluated from
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the data independently, so the comparison of the magnitude&nishing contribution from flow one has
is an additional consistency check.

In the second limiting case of strong floyy,> 1, one can (Qﬁ>=<N>+;2n<N2>_ (26)
expand the cosine in the exponent of E2).and get approxi-
mately This equation can be used to estimate the flow signal
) ) which is the average af,, over the rapidity region used for
dp _Xm exp{ XMW= P0)%) the Q,, calculation.
dm(V,,—%,) 27 2 ' Another method 25] involves fitting the distribution in

(220 r,=Q,/N to the theoretical formula, which has, (more

, ) exactly its absolute valyas a parameter. In this method the
which also can be used to calculate the reaction plane resgstribution ofr, has to be fitted by the function

lution. The case of strong flow is important mostly for rela-

tively low energy collisions and we will not discuss it in dp 1 22412 -
detail. Note that in this cas@ndonly in this case¢ the dis- = —ex;{ _-n n |0( n “>, (27)
tribution of m(¥,,—¥,) can be described by a Gaussian. rhdry o2 207 o?
Here we present interpolation formulas of Efyl) for the
most needed cases k¥ 1,2 wherel q is the modified Bessel function,, is the parameter
3 of interest, andr is the parameter related to finite multiplic-
(cogm(¥,—W¥,)])=0.62665%,—0.09694, ity fluctuations. The distributiori27) was derived using the
a 5 central limit theorem, requiring the particle multiplicity to
+0.02759(m = 0.002283m, be large. Note that in principle E@26) does not have this
(23 limitation, although effectively the “signal to noise ratio” is

proportional toN and one would needll large to apply the
(co§2m(W¥ ,—¥,)])=0.25¢2—0.0114143 —0.03472¢;  equation to data.

Note also that both methods do not require the determi-

5
+0.00681 %, (24 nation of the event plane and can be performed within one
. . . (pseudgrapidity window, but they do require this window to
The interpolation formulas are valid faf, <3 be rather wide in order to have a relatively large number of

In order to use the above equations to go from the subev-
ent resolution to the full-event resolution, one has to set th
equation equal to the subevent resolution and take the root to
obtain y,,. One multiplies this by/2 becausey,, is propor-

tional to YN, and then evaluates the full-event resolution  'V- NONFLOW CORRELATION CONTRIBUTION

from the same equation. Our routines for finding the roots of The methods described so far in this paper are correct
these equations use an iterative method, and the routines f@hen correlations induced by flow dominate all others. By
propagating the errors involve a calculation for the change iry|| others we mean correlations due to momentum conserva-
the result with a small finite change in the input. tion [29], long- and short-range two- and many-particle cor-

Another approximate method is to evalugig=vm/o of  relations (due to quantum statistics, resonances, mini and
the full event from the fraction of events where the correla-real jet production, et. Below, we discuss the contribution

articles. The distributiori27) can be used to select events
ith larger or smaller values of flow.

tion of the planes of the subevents is greater théh[26],  of such nonflow correlations to the correlation of the event
) planes determined from two independent subevents. Very of-
NeverdMWa—WP| > m/2) e X/t ten the contribution of nonflow correlations scales as,1/
Niotal T (25) whereN is the multiplicity of particles used to determine the

event plane. But one should remember that the contribution
This fraction, and therefore the equation, is only accuratelue to momentum conservation increases with the fraction of

when x, is small. particles detected, and that the relative contribution of Bose-
Einstein correlations can be independent of multipli¢ttye

lIl. EVENT-BY-EVENT ANALYSIS later can be important if the subevents are formed by random

OF AZIMUTHAL DISTRIBUTIONS division of all particles from the same phase space region

into two subgroups, where the particles contributing to the
Here we study the anisotropies in the azimuthal distribudifferent subevents can be very close to each other in phase
tions of particles within a relatively large rapiditpseudo-  space. The study of the effects of nonflow correlatioffiom
rapidity) window without determining an event plane. Finite the point of view of a flow analysjsin real data is rather
multiplicities used in each event for the evaluation of thecomplicated, so we start with the analysis of Monte-Carlo
event flow vectorQ,,, defined in Egs(2) and (3), causes events.

both finite event plane resolution and also fluctuations in the Nonflow correlations in Monte Carlo generated events
vector magnitudeQ,,. In the case of zero flowQ2)=(N).  When the true reaction plane is knowas it is in any gen-

(In this section for simplicity we assunvg =1.) Anisotropic  erated eventthe contribution of nonflow correlations can be
flow, which shifts the vectoR, in each event in théran-  studied by analyzing correlations along the axis perpendicu-
dom) flow direction by a valuev,N, results effectively in lar to the reaction planey(axig). For example, let us con-
broadening the distribution i®,,. Keeping the first non- sider the correlation betwed®? andQP, the vector§see Eq.
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(5)] defined by two independent subevents. One can think gbroduce mostly a change in, the “Gaussian width” of the
these vectors as the total transverse momentum of all padistribution[Eq. (10)], which is modified to
ticles of the sub-evenfwhich is the case if the transverse

momentum is used as a weight in E)]. Then if there are , 1
no other correlations except flow o —m(1+20), (33
(Q*Q%)=(Q*NQ")=(Q(QY), (28)  and the parametar can be directly extracted from the data.

. i . The analysiq34] of S+S and S-Au data gave(for their
the very relation our first method is based on. It was assumeﬂarticular subevent selectipn~0.034+0.025 which is not
here that the twa) vectors are tOtE.i”y uncorrelfated except negligible compared with,~0.04—0.05 found in this analy-
that both of them are correlated with the reaction pfaife. Sis at multiplicities of about 30—50. Another possible conse-

this is not true and there exist other correlations, then the'ﬁuence of nonflow contributions could be the change in the

contribution in first order would be the same to the correla—shape of the distribution of the difference of flow angles of

tions of x components ang components. Then subevent§33].

(Q2Q0) = (QA(QR) +(QEQR) nonfiow
V. SIMPLE WAY TO INTRODUCE FLOW

~(QI{ Q) +(Q3QY) nonfiow IN A MONTE-CARLO EVENT GENERATOR
=(QI(QN+(QQH) (29 Sometimes in order to investigate different detector ef-
fects or the reliability of the method, one needs to introduce
(QI(QU~(Q3Q) —(QQM). (300  anisotropic flow into a Monte Carlo event generator. It can

be done by changing the azimuthal angle of each particle

Analyzing the correlation(Q?,QS) (and in particular (and consequently changing the density in the azimuthal
(sinn(¥3—w,)]sin(¥2—W,)])) one can estimate the cor- angle space
rections to the formulag8) and(12)—(15).

Nonflow correlations in real dataThe direct application p—od'=d+Ag, (34)
of the above described method to real data is not possible.
What can be done is the analysis of similar correlations usnere
ing, instead of¥', , the event plane derived from the second —2
harmonic, where as the analysis of different models shows, A¢:E —usinn(é— o)1, (35)
the contribution of nonflow effects is significantly less. Then no N
with the (second harmonjcevent plane resolution known _
one can carry out the above analysis. v, are then parameters of the transformation, a#glis the

There exists in the literature other methods for estimatingiirection of the added flow. The,, can be functions of ra-

and accounting for nonfloyv correlati_ons, see, for examplepidity and transverse momentum and, in particularf;tp&)r
Refs. [30,33. Here we briefly describe the methd83], o4d should reverse sign in the backward hemisphere. One
which was applied to the data of the WA93 Collaborationcap check that such a change in the azimuthal angle results in
[34]. It was proposed33,34 to characterize the nonflow e required change in the distribution. To first order in

correlation contribution by the value of the parameter o vnE<C05{n(¢’—‘Pr)]>=;n. Small higher order correc-

<QaQb>_<Q§><QE> <QaQb>_<Q)a(l><Q)t()> tions (~vy), if ljeeded, can also be easily calculated, for
c= > =~ N , (3D example, numerically.
V(@A V(QD?)
whereN is the subevent multiplicity and, as in Sec. lll, for VI. DISCUSSION
simplicity we assumav;=1. The parametec can strongly Higher harmonics(n=3). Note that the flow analysis

depend on the particular choice of subevents, but if the nonmethods presented in this paper are valid for all harmonic
flow contribution is dominated by tWO-partiCle correlations, orders of anisotropy_ The h|ghe|’ harmonics look at the event
it is largely independent of multiplicity33]. The nonflow  with higher symmetry on a finer scale. It should be empha-
correlation changes the distribution of event flow vectorssjzed that the study of anisotropic flow corresponding to har-

and in particular Eq(26) now reads monic orders oh=3 has interesting aspects. For instance,
) — one would expect large differences between the theoretical
(Qn)~(N)+v (N +2¢(N). (32 predictions of hydro- and cascade-type models in the higher

harmonics of the particle azimuthal distributions. Also there

. L are physics processes which could lead to nonzero higher
derived from an application of E(26) to the data. However, p5monics. It is widely accepted that one of the main reasons
the nonflow correlations contribute to tiskapeof the dis- ¢, pion “antiflow,” directed flow in the direction opposite

tribution in Q, [Eq. (27)] in a different way than flow. They (5 that of the protons, is caused by pion shadowing by co-
moving nucleons. Such shadowing could affect pion higher
harmonic azimuthal distributions, and affect them differently
Sstrictly speaking there is one more assumption here, namely that different rapidities. Another effect is the transition from
the strength of the flow does not fluctuate event by event. out-of-plane elliptic flon(squeeze-oditwhich is very impor-

If the parametec is relatively large, it can bias the results
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tant at low energies to in-plane elliptic flow which is the  Pair-wise azimuthal correlations Two-particle large-
main effect at high energies. At the transition beam energyngle azimuthal correlations are often proposed as a tool to
both effects may be important and the fourth harmonic maystudy anisotropic flow36]. Not rejecting this possibility we
peak at this energy. Even at high beam energies, the out-opote that the expected signal in such correlations can be very
plane squeeze-out effect could dominate at short times arigmall in magnitude. It can be easily shown that the pair-wise
the in-plane expansion at long times, leading to an overaflistribution in the azimuthal angle differenced ¢= ¢,
fourth order harmonic coefficient. — o) is
Transverse radial and anisotropic flowVe would like gNPairs
also to emphasize that the above methods permit the recon- N
struction of the triple differential distribution with respect to dA¢
the reaction plane, and in particular are convenient for the e _
analysis of thep, dependence of the anisotropy. The impor- Note that the “signal ISUn and thus is S'f”"f‘,"; It does not
tance of such a study was stressed in R8%], where the imply though_, tha_t the signal to noise ratio” is sr_nall, and
effect of the interplay oftransversgradial and directed flow the method, in principle, can be successfully applied to data
has been studied. In that analysis transverse directed flow [§ obtain the flow signal. However, the reconstruction of the
considered a result of the movement of an effective source iffiPle differential distribution with respect to the reaction
the transverse plane. It is assumed that in the source reBlane(the goal of the flow analysidecomes more involved.

ol 1+ 21 2v2cognA¢) |. (36)

frame the first moment of the azimuthal distributian is This method does not require the determination of the
zero, and the final anisotropy appears only as a consequeng¥ent plane. Usually such a distribution is constructed using
of the source movement in the transverse direction. all possible pair combinations in each event. Note that in this

In this case the transverse momentum dependeneg of CaS€ each particle enters into many pé&ins the order of the

has a rather specific shape. The radial expansion results [i€an multiplicity of an eveptand, consequently, the pairs
decreasing; at low p,. For some sets of parametdtem- &€ not statistically mdependen_t. Thus special precautions
perature, radial and directed velocitiésbecomes negative. have to be taken for the evaluation of the error of the results
Physically it corresponds to the case, when particle producBl]'
tion with such a value op; is more probable from the part of
the effective source which moves in the opposite direction
from the flow direction, because in this case the directed flow The discussions with G. Cooper, S. Esumi, G. Rai, H.-G.
and the radial flow tend to compensate each other. Ritter, and T. Wienold as well as with many other members
The same considerations can be applied to elliptic flow asf the E877, NA49, and E895 Collaborations are apprecia-
well. If one assumes that elliptic flow is a consequence otively acknowledged. One of the authaiS.V. thanks the
more rapid expansion of the effective source in some plane\uclear Science Division at LBNL for financial support dur-
then thep, dependence af, would exhibit exactly the same ing his visit to LBNL, where this work was started. This
features as has been observedderin the case of directed work was supported by the U.S. Department of Energy under
flow. Contract No. DE-ACO3-76SFO0098.
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