
PHYSICAL REVIEW C SEPTEMBER 1998VOLUME 58, NUMBER 3
Methods for analyzing anisotropic flow in relativistic nuclear collisions
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The strategy and techniques for analyzing anisotropic flow~directed, elliptic, etc.! in relativistic nuclear
collisions are presented. The emphasis is on the use of the Fourier expansion of azimuthal distributions. We
present formulas relevant for this approach, and in particular, show how the event multiplicity enters into the
event plane resolution. We also discuss the role of nonflow correlations and a method for introducing flow into
a simulation.@S0556-2813~98!04109-0#
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I. INTRODUCTION: SUBJECT AND TERMINOLOGY

Recently, the study of collective flow in nuclear collision
at high energies has attracted increased attention of
theoreticians and experimentalists@1#. There are several rea
sons for this:~i! the observation of anisotropic flow at th
AGS @2–7# and at the SPS@8–11#, ~ii ! progress in the theo
retical understanding of the relation between the appeara
and development of flow during the collision evolution, a
processes such as thermalization, creation of the quark-g
plasma, phase transitions, etc.@12–18#, ~iii ! the study of
mean field effects@14,19#, ~iv! the importance of flow for
other measurements such as identical and nonidentical
particle correlation analyses@20–23#, ~v! the development of
new techniques suitable for flow studies at high energ
@24–26,1,9#. Although all forms of flow are interrelated an
represent only different parts of one global picture, usua
people discuss different forms of collective flow, such
longitudinal expansion, radial transverse flow, and ani
tropic transverse flow of which the most well established
directed flow@24,19# and elliptic flow @27#.

The study of flow in ultrarelativistic nuclear collisions ha
just begun and it is very important to define the subject a
establish the terminology. At high energies the longitudi
flow is well decoupled from transverse flow. The flow~po-
lar! angles observed at low energies are relatively large a
rotation of the coordinate system was done in order to a
lyze the event shape in the plane perpendicular to the m
axis of the flow ellipsoid. At high energies the flow angl
become very small,uflow'^px&/pbeam!1, so that not doing
such a rotation ‘‘induces’’ an elliptic anisotropy of the ord
of the square of the flow angle and usually can be neglec
This means that at high energies one does not have to r
to the flow axis to study the flow pattern@27#, but one can
use the plane transverse to the beam axis. Thus we dis
only anisotropic transverse flow from the particle azimut
distributions at fixed rapidity or pseudorapidity. It appea
very convenient to describe the azimuthal distributions
means of a Fourier expansion@28,25,24#, and below we
characterize different kinds of anisotropies as correspond

*On leave from Moscow Engineering Physics Institute, Mosco
115409, Russia.
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to different harmonics~in analogy and/or contrast to the de
scription at low energies, where the three-dimensional ev
shape is characterized using multipole terminology!. Aniso-
tropic flow corresponding to the first two harmonics plays
very important role and we use special terms for them:
rected and elliptic flow, respectively. The word ‘‘directed
comes from the fact that such flow has a direction, and
word ‘‘elliptic’’ is due to the fact that in polar coordinate
the azimuthal distribution with nonzero second harmo
represents an ellipse.

II. CORRELATIONS WITH RESPECT
TO AN EVENT PLANE

Strategy. In this section we summarize an approach to
study of anisotropic flow which is particularly suitable
high ~AGS/SPS/RHIC! energies. It uses the Fourier expa
sion of azimuthal distributions, introduced in this way for th
analysis in Ref.@25#. The essence of the method is to fir
estimate the reaction plane. The estimated reaction plane
call the event plane. The Fourier coefficients in the exp
sion of the azimuthal distribution of particles with respect
this event plane are evaluated. Because the finite numbe
detected particles produces limited resolution in the angle
the measured event plane, these coefficients must be
rected up to what they would be relative to the real react
plane. This is done by dividing the observed coefficients
the event plane resolution, which is estimated from the c
relation of the planes of independent subevents@29# ~sub-
groups of the particles used for the event plane determ
tion!. The resolution obtained from the subevents can
converted to that for the full event by means of the mu
plicity dependence of the resolution which will be describ
below. Also, if the detector does not have full azimuth
acceptance, the acceptance bias has to be removed.

Fourier expansion. The quantity under study in the mos
general case is the triple differential distribution. In this, t
dependence on the particle emission azimuthal angle m
sured with respect to the reaction plane can be written i
form of Fourier series

E
d3N

d3p
5

1

2p

d2N

ptdptdyS 11 (
n51

`

2vncos@n~f2C r !# D ,

~1!
,
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1672 PRC 58A. M. POSKANZER AND S. A. VOLOSHIN
where C r denotes the~true! reaction plane angle, and th
sine terms vanish due to the reflection symmetry with resp
to the reaction plane. The main advantage of the Fou
method is that the Fourier coefficients, evaluated using
served event planes, can be corrected for the event p
resolution caused by the finite multiplicity of the events. Th
correction always raises the value of the coefficients. T
great importance of this is that then the results for particle
a certain phase space region may be compared direct
theoretical predictions, or to simulations unfiltered for t
detector acceptance, and for which the reaction plane
been taken to be the plane containing the theoretical im
parameter. Note the factor of 2 in front of eachvn coeffi-
cient. We propose to use it because in this case the mea
of the coefficients vn becomes transparent@25#, vn
5^cos@n(f2Cr)#&, where^ & indicates an average over a
particles in all events. For the particle number distributio
the coefficient v1 is ^px /pt& and v2 is ^(px /pt)

2

2(py /pt)
2&.

Estimation of the reaction plane. The method uses th
anisotropic flow itself to determine the event plane. It a
means that the event plane can be determined independ
for each harmonic of the anisotropic flow. The event flo
vector Qn and the event plane angleCn from the nth har-
monic of the distribution are defined by the equations

Qncos~nCn!5Xn5(
i

wicos~nf i !, ~2!

Qnsin~nCn!5Yn5(
i

wisin~nf i !, ~3!

or

Cn5S tan21

(
i

wisin~nf i !

(
i

wicos~nf i !
D Y n. ~4!

The sums go over thei particles used in the event plan
determination and thewi are weights. In general the weigh
are also optimized to make the reaction plane resolution
best that is possible. Sometimes it can be done by selec
the particles of one particular type, or weighting with tran
verse momentum of the particles, etc. Usually the weig
for the odd and even harmonic planes are different. Opti
weights are discussed in footnote 2 of@17#. For symmetric
collisions reflection symmetry says that particle distributio
in the backward hemisphere of the center of mass shoul
the same as in the forward hemisphere if the azimu
angles of all particles are shifted byp. This explains why for
the odd harmonics the signs of the weights are reverse
the backward hemisphere while for the even harmonics
signs of the weights are not reversed. Note that the ev
plane angleCn determined from thenth harmonic is in the
range 0<Cn,2p/n. For the case ofn51, Eqs.~2!–~4! are
equivalent to obtainingC1 for number flow from@29#

Q5( wpt /uptu ~5!
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where the sum is over all the particles. The case ofn52 is
equivalent to the event plane determined from the transv
sphericity matrix@24#.

Acceptance correlations. Biases due to the finite accep
tance of the detector which cause the particles to be azim
ally anisotropic in the laboratory system can be removed
making the distribution of event planes isotropic in the lab
ratory. We know of several different methods to remove
effects of anisotropy which have been used~sometimes in a
combination with each other!. Each of them has some adva
tages along with disadvantages.

The simplest one is to recenter@3,4,10,30# the distribu-
tions (Xn ,Yn) @Eqs.~2! and~3!# by subtracting the (Xn ,Yn)
values averaged over all events. The main disadvantag
this method is that it does not remove higher harmonics fr
the resulting distribution ofCn . If such harmonics are
present then the method requires additional flattening of
event plane distribution by one of the other methods. T
second, one of the most commonly used methods, is to
the distribution of the particles themselves as a measur
the acceptance@3,4,9#. One accumulates the laboratory az
muthal distribution of the particles for all events and uses
inverse of this as weights in the above calculation of
event planes. The limitation of this approach is that it do
not take into account the multiplicity fluctuations around t
mean value. The third method is to use mixed events@3,4,9#.
Correlations with the raw event planes are stored in his
grams and correlations with event planes from previo
events are also stored. The real correlations are then div
by the mixed event correlations to remove the accepta
correlations. This third method suffers from the proble
that, if one uses only one mixed event for each real event,
errors areA2 larger. If one uses many mixed events for ea
real event, the errors decrease asnmix

1/4 instead ofAnmix be-
cause the same events are being usednmix times @31#. The
fourth method fits the unweighted laboratory distribution
the event planes, summed over all events, to a Fourier
pansion and devises an event-by-event shifting of the pla
needed to make the final distribution isotropic@3,4#.1 In all
these methods one has to check that the event plane d
butions indeed become isotropic.

Particle distributions with respect to the event plane. The
next step is to study the particle distributions with respec
the event planes. Note that for a givenn the corresponding
Fourier coefficientvn can be evaluated using the reactio
planes determined from any harmonicm, with n>m, if n is
a multiple ofm. If n.m, the sign ofvn is determined rela-
tive to vm . That is, the first harmonic plane can be used,
principle, to evaluate allvn . The second harmonic plane ca
be used to evaluatev2 , v4 , etc. For the event plane evalu
ated from themth harmonic the Fourier expansion is

d~wN!

d~f2Cm!
5

^wN&
2p S 11 (

k51

`

2vkm
obscos@km~f2Cm!# D .

~7!

1The equation for the shift is~see Appendix in Ref.@3#!

nDCn5(
i51

imax 2

i
@2^sin~inCn!&cos~inCn!1^cos~inCn!&sin~inCn!#.

~6!
We have usually takeni max54/n for n51,2.
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Writing the equation in terms ofkm instead ofn insures, for
instance, that whenm51 all terms are present, but whe
m52 only the even terms are present. The quantityw is a
weight which could bept of the particle if one studies trans
verse momentum flow, or just unity, if one studies flow
the number of particles. The coefficientsvn

obs are evaluated
by ^cos@n(f2Cm)#&. The quantity (f2Cm) has a lowest
order periodicity of 2p/m. To graph the distribution one ca
shift the negative values to positive by adding 2p, and then
fold the distribution with this periodicity using the modu
function. When a particle has been used in the calculatio
an event plane, the auto-correlation effect in its distribut
with respect to this plane is removed by recalculating t
plane without this particle@29#. This is easily done if one
saves the sums of sines and cosines from Eqs.~2!–~4!, and
subtracts the contribution of the particle and its weight fro
these sums. This method of removing autocorrelations
sumes that contributions from conservation of moment
are small.

The event plane resolution. The coefficients in the Fourie
expansion of the azimuthal distributions with respect to
real reaction plane are then evaluated by dividing by
event plane resolution@29,32,25,3,4,26#,

vn5vn
obs/^cos@km~Cm2C r !#&. ~8!

The mean cosine values are less than one and thus this
rection always increases the flow coefficients.

The resolution depends both on the harmonic used to
termine the event planem and the order of the calculate
coefficientn. It is generally true that better accuracy for th
determination ofvn is achieved by using the event plan
(Cn) determined from the same harmonic (m5n, k51)
because the resolution deteriorates ask increases~see be-
low!. For example, better accuracy forv2 can be achieved
using C2 even when the elliptic flow is somewhat weak
than the directed flow.

To calculate the resolution we start with the distributi
of m(Cm2C r), which can be written as@25#

dP

d@m~Cm2C r !#
5E vm8 dvm8

2ps2

3expS 2
vm

2 1vm8
222vmvm8 cos@m~Cm2C r !#

2s2 D . ~9!

The parameters, which to second order in flow is commo
for all m, is inversely proportional to the square-root ofN,
the number of particles used to determine the event plan

s25
1

2N

^w2&

^w&2
. ~10!

The integral~9! can be evaluated analytically@24,25#, and
then the event plane resolution can be expressed as
of
n
t

s-

e
e

or-

e-

^cos@km~Cm2C r !#&5
Ap

2A2
xmexp~2xm

2 /4!

3@ I ~k21!/2~xm
2 /4!1I ~k11!/2~xm

2 /4!#,

~11!

wherexm[vm /s (5vmA2N for number flow! andI n is the
modified Bessel function of ordern. This resolution function
is plotted in Fig. 1. Please note thatx used in this paper isA2
larger than that used by Ollitrault.2

Note that^cos@m(Cm2Cr)#& is a correction for the recon
struction of the signal if the event plane is derived using
flow of the same harmonic (k51). In the case when the
harmonic orders do not coincide, for example, when one u
the event plane derived from the first harmonic~directed
flow! and studies the second harmonic~elliptic flow! of the
particle distribution with respect to this plane@the m51,k
52 term in Eq. ~7!# the correction would bê cos@2(C1
2Cr)#&. For practical use all such functions can be calcula
numerically as in the subsection onApproximationsbelow.

The resolution correction used in earlier times at t
Bevalac@28# is close to the present curve for values ofx1
5v1A2N greater than about 1.5, which was generally true
the Bevalac. However, using the old procedure at the hig
beam energies of the AGS or SPS would greatly overe
mate the resolution and make the flow values too small.

The correlation between flow angles of independent s
of particles. If one constructs the event planes in two diffe
ent windows,~a! and ~b!, or from two random subevents,3

the corresponding correlation function also can be writ
analytically. But more important in this case is the simp
relation for such correlations,

^cos@n~Cm
a 2Cm

b !#&5^cos@n~Cm
a 2C r !#&

3^cos@n~Cm
b 2C r !#&. ~12!

2The parameterx used in this paper is a factor ofA2 larger than

the one used in Refs.@1,26#; it is equivalent to the parameterj̃ in
Ref. @25#.

3The random subevents can be made to have equal multipl
using the CERN library routineSORTZV.

FIG. 1. The event plane resolution for thenth (n5km) har-
monic of the particle distribution with respect to themth harmonic
plane, as a function ofxm5vm /s.
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Here, the assumption is made that there are no other co
lations except the ones due to flow, or that such other co
lations can be neglected.~For example, two-particle correla
tions due to resonance decays should scale with multipli
as 1/N and usually can be neglected.! If this is not true, then
special precautions have to be made to avoid or correct
such correlations. See the subsection below onNonflow cor-
relations.

Note that the correlation of two planes~the distribution in
Ca2Cb) is not well represented by a Fourier expansion. F
a strong correlation it should be Gaussian. For no flow
correlation between two random planes of the same o
should be a triangular distribution. If one takes the abso
value ofCn

a2Cn
b and folds this distribution about the ang

p/n, the triangle becomes flat. This does not affect
^cos@n(Cn

a2Cn
b)#& value needed for Eq.~12!, but makes it

easier to see a real flow effect by the non-flatness of
distribution in the graph.

For the correlation between angles determined from
subevents of different harmonics one can write similar re
tions. For example, the correlation betweenC1

a andC2
b is

^cos@2~C1
a2C2

b!#&5^cos@2~C1
a2C r !#&

3^cos@2~C2
b2C r !#&. ~13!

This expression is proportional tov1
2v2 /s3 and can be rathe

small in magnitude, but it can be useful for the determinat
of the relative orientation of the flow of different orders~see
also the subsection onApproximationsbelow!. On the other
hand, the relative orientation also can be determined u
Eq. ~7! with k.1.

The determination of the event plane resolution. The
above relations permit the evaluation of the event plane re
lution directly from the data. For example, if one knows t
correlation between two equal multiplicity subevents~where
the resolution of each is expected to be the same! then from
Eq. ~12! the resolution of each of them is

^cos@n~Cm
a 2C r !#&5A^cos@n~Cm

a 2Cm
b !#&, ~14!

where, as before,n5km, andk is not necessarily equal to 1
If the subevents are correlated, then the term inside
square-root is always positive.4 Note that the event plan
resolution determined in such a way is the event plane re
lution of the subevents. If one wants to use the full event~all
detected particles from the event! to determine the even
plane, then the full event plane resolution can be calcula
from the sub-event resolution using Eq.~11! or the approxi-
mations below, Eqs.~23! and ~24!, taking into account tha
the multiplicity of the full event is twice as large as th
multiplicity of the sub-event. Becausexm5vm /s is propor-
tional toAN, in a case of low resolution where the curves
Fig. 1 are linear, this reduces to

^cos@n~Cm2C r !#&5A2^cos@n~Cm
a 2C r !#&. ~15!

4For small amounts of flow, fluctuations and/or nonflow corre
tions can cause this term to be negative when the totalpt is required
to be zero.
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If the subevents are not ‘‘equal,’’ or if you have only corr
lations between particles in different windows, and the re
lution in each window can be different, then one needs
least three windows to determine the event plane resolu
in each of them. In this case, for example, the resolution
the first window is determined as@3,4#

^cos@n~Cm
a 2C r !#&

5A^cos@n~Cm
a 2Cm

b !#&^cos@n~Cm
a 2Cm

c !#&

^cos@n~Cm
b 2Cm

c !#&
.

~16!

Approximations. We want to discuss two limits. In a case
weak flow,xm!1 (vm!s, which also means that the eve
plane resolution is low! one can expand the exponent und
the integral in Eq.~9! before the integration. It will follow
that in this limit

dP

d~m~Cm2C r !!
}11Ap

2
xmcos@m~Cm2C r !#. ~17!

Then the event plane resolution can be estimated analytic
to be ~the casek51)

^cos@m~Cm2C r !#&'Ap

8
xm . ~18!

In this case the resolution is linear inx and, sinces is the
same for allm, the resolution for differentm scales withvm .

Combining Eqs.~14!, ~10!, and~18! one can estimate the
flow signal directly from the correlation between two su
events

vm'A~4/p!^w2&/^w&2A^cos@m~Cm
a 2Cm

b !#&/Nsub,
~19!

whereNsub is the multiplicity of the subevents.
Keeping the second order terms in the expansion of

~9! it can be shown that

^cos@2m~Cm2C r !#&'
xm

2

4
'

2

p
$^cos@m~Cm2C r !#&%

2.

~20!

The latter relation fork52 is needed as a resolution corre
tion for v2 in the case where the event plane was determi
by the directed flow (m51). The approximate relation
~18!–~20! are rather accurate forxm,0.5.

Using the above approximations the correlation betwe
flow angles of subevents of different harmonics (m51 and
m52) can be written as

^cos@2~C1
a2C2

b!#&'6
2

p
^cos~C1

a2C1
b!&

3A^cos@2~C2
a2C2

b!#&. ~21!

As stated above, the sign of the left-hand side shows
relative orientation of the flow of the different harmonic
while the right-hand side after the6 sign is always positive.
Note that all quantities in this equation are evaluated fr

-
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the data independently, so the comparison of the magnitu
is an additional consistency check.

In the second limiting case of strong flowxm@1, one can
expand the cosine in the exponent of Eq.~9! and get approxi-
mately

dP

d„m~Cm2C r !…
'

xm

A2p
expF2

xm
2
„m~Cm2C r !

2
…

2 G ,
~22!

which also can be used to calculate the reaction plane r
lution. The case of strong flow is important mostly for rel
tively low energy collisions and we will not discuss it i
detail. Note that in this case~andonly in this case! the dis-
tribution of m(Cm2C r) can be described by a Gaussian.

Here we present interpolation formulas of Eq.~11! for the
most needed cases ofk51,2

^cos@m~Cm2C r !#&50.626657xm20.09694xm
3

10.02754xm
4 20.002283xm

5 ,

~23!

^cos@2m~Cm2C r !#&50.25xm
2 20.011414xm

3 20.034726xm
4

10.006815xm
5 . ~24!

The interpolation formulas are valid forxm,3.
In order to use the above equations to go from the sub

ent resolution to the full-event resolution, one has to set
equation equal to the subevent resolution and take the ro
obtainxm . One multiplies this byA2 becausexm is propor-
tional to AN, and then evaluates the full-event resoluti
from the same equation. Our routines for finding the roots
these equations use an iterative method, and the routine
propagating the errors involve a calculation for the chang
the result with a small finite change in the input.

Another approximate method is to evaluatexm5vm /s of
the full event from the fraction of events where the corre
tion of the planes of the subevents is greater thanp/2 @26#,

Nevents~muCm
a 2Cm

b u . p/2!

Ntotal
5

e2xm
2 /4

2
. ~25!

This fraction, and therefore the equation, is only accur
whenxm is small.

III. EVENT-BY-EVENT ANALYSIS
OF AZIMUTHAL DISTRIBUTIONS

Here we study the anisotropies in the azimuthal distri
tions of particles within a relatively large rapidity~pseudo-
rapidity! window without determining an event plane. Fini
multiplicities used in each event for the evaluation of t
event flow vectorQn , defined in Eqs.~2! and ~3!, causes
both finite event plane resolution and also fluctuations in
vector magnitudeQn . In the case of zero floŵQn

2&5^N&.
~In this section for simplicity we assumewi51.) Anisotropic
flow, which shifts the vectorQn in each event in the~ran-
dom! flow direction by a valuevnN, results effectively in
broadening the distribution inQn . Keeping the first non-
es

o-

v-
e
to

f
for
in

-

e

-

e

vanishing contribution from flow one has

^Qn
2&5^N&1 v̄n

2^N2&. ~26!

This equation can be used to estimate the flow signalv̄n ,
which is the average ofvn over the rapidity region used fo
the Qn calculation.

Another method@25# involves fitting the distribution in
r n5Qn /N to the theoretical formula, which hasv̄n ~more
exactly its absolute value! as a parameter. In this method th
distribution of r n has to be fitted by the function

dP

r n drn
5

1

s2
expS 2

v̄n
21r n

2

2s2 D I 0S r nv̄n

s2 D , ~27!

whereI 0 is the modified Bessel function,v̄n is the parameter
of interest, ands is the parameter related to finite multiplic
ity fluctuations. The distribution~27! was derived using the
central limit theorem, requiring the particle multiplicityN to
be large. Note that in principle Eq.~26! does not have this
limitation, although effectively the ‘‘signal to noise ratio’’ is
proportional toN and one would needN large to apply the
equation to data.

Note also that both methods do not require the deter
nation of the event plane and can be performed within o
~pseudo!rapidity window, but they do require this window t
be rather wide in order to have a relatively large number
particles. The distribution~27! can be used to select even
with larger or smaller values of flow.

IV. NONFLOW CORRELATION CONTRIBUTION

The methods described so far in this paper are cor
when correlations induced by flow dominate all others.
all others we mean correlations due to momentum conse
tion @29#, long- and short-range two- and many-particle co
relations ~due to quantum statistics, resonances, mini a
real jet production, etc.!. Below, we discuss the contributio
of such nonflow correlations to the correlation of the eve
planes determined from two independent subevents. Very
ten the contribution of nonflow correlations scales as 1N,
whereN is the multiplicity of particles used to determine th
event plane. But one should remember that the contribu
due to momentum conservation increases with the fractio
particles detected, and that the relative contribution of Bo
Einstein correlations can be independent of multiplicity~the
later can be important if the subevents are formed by rand
division of all particles from the same phase space reg
into two subgroups, where the particles contributing to
different subevents can be very close to each other in ph
space!. The study of the effects of nonflow correlations~from
the point of view of a flow analysis! in real data is rather
complicated, so we start with the analysis of Monte-Ca
events.

Nonflow correlations in Monte Carlo generated even.
When the true reaction plane is known~as it is in any gen-
erated event! the contribution of nonflow correlations can b
studied by analyzing correlations along the axis perpend
lar to the reaction plane (y axis!. For example, let us con
sider the correlation betweenQa andQb, the vectors@see Eq.
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~5!# defined by two independent subevents. One can thin
these vectors as the total transverse momentum of all
ticles of the sub-event@which is the case if the transvers
momentum is used as a weight in Eq.~5!#. Then if there are
no other correlations except flow

^QaQb&5^Qa&^Qb&5^Qx
a&^Qx

b&, ~28!

the very relation our first method is based on. It was assum
here that the twoQ vectors are totally uncorrelated exce
that both of them are correlated with the reaction plane.5 If
this is not true and there exist other correlations, then th
contribution in first order would be the same to the corre
tions of x components andy components. Then

^Qx
aQx

b&5^Qx
a&^Qx

b&1^Qx
aQx

b&nonflow

'^Qx
a&^Qx

b&1^Qy
aQy

b&nonflow

5^Qx
a&^Qx

b&1^Qy
aQy

b& ~29!

^Qx
a&^Qx

b&'^Qx
aQx

b&2^Qy
aQy

b&. ~30!

Analyzing the correlation ^Qy
aQy

b& „and in particular
^sin@n(Cn

a2Cr)#sin@n(Cn
b2Cr)#&… one can estimate the co

rections to the formulas~8! and ~12!–~15!.
Nonflow correlations in real data. The direct application

of the above described method to real data is not poss
What can be done is the analysis of similar correlations
ing, instead ofC r , the event plane derived from the seco
harmonic, where as the analysis of different models sho
the contribution of nonflow effects is significantly less. Th
with the ~second harmonic! event plane resolution know
one can carry out the above analysis.

There exists in the literature other methods for estimat
and accounting for nonflow correlations, see, for exam
Refs. @30,33#. Here we briefly describe the method@33#,
which was applied to the data of the WA93 Collaborati
@34#. It was proposed@33,34# to characterize the nonflow
correlation contribution by the value of the parameter

c5
^QaQb&2^Qx

a&^Qx
b&

A^~Qa!2&A^~Qb!2&
'

^QaQb&2^Qx
a&^Qx

b&
N

, ~31!

whereN is the subevent multiplicity and, as in Sec. III, fo
simplicity we assumewi51. The parameterc can strongly
depend on the particular choice of subevents, but if the n
flow contribution is dominated by two-particle correlation
it is largely independent of multiplicity@33#. The nonflow
correlation changes the distribution of event flow vecto
and in particular Eq.~26! now reads

^Qn
2&'^N&1 v̄n

2^N2&12c^N&. ~32!

If the parameterc is relatively large, it can bias the resul
derived from an application of Eq.~26! to the data. However
the nonflow correlations contribute to theshapeof the dis-
tribution in Qn @Eq. ~27!# in a different way than flow. They

5Strictly speaking there is one more assumption here, namely
the strength of the flow does not fluctuate event by event.
of
r-

ed

ir
-

le.
s-

s,

g
le

n-
,

,

produce mostly a change ins, the ‘‘Gaussian width’’ of the
distribution @Eq. ~10!#, which is modified to

s25
1

2N
~112c!, ~33!

and the parameterc can be directly extracted from the dat
The analysis@34# of S1S and S1Au data gave~for their
particular subevent selection! c'0.03460.025 which is not
negligible compared withv2'0.04–0.05 found in this analy
sis at multiplicities of about 30–50. Another possible con
quence of nonflow contributions could be the change in
shape of the distribution of the difference of flow angles
subevents@33#.

V. SIMPLE WAY TO INTRODUCE FLOW
IN A MONTE-CARLO EVENT GENERATOR

Sometimes in order to investigate different detector
fects or the reliability of the method, one needs to introdu
anisotropic flow into a Monte Carlo event generator. It c
be done by changing the azimuthal angle of each part
~and consequently changing the density in the azimu
angle space!

f→f85f1Df, ~34!

where

Df5(
n

22

n
ṽnsin@n~f2c0!#, ~35!

ṽn are then parameters of the transformation, andc0 is the
direction of the added flow. Theṽn can be functions of ra-
pidity and transverse momentum and, in particular, theṽn for
n odd should reverse sign in the backward hemisphere.
can check that such a change in the azimuthal angle resu
the required change in the distribution. To first order

ṽn, vn[^cos@n(f82Cr)#&5ṽn. Small higher order correc
tions (; ṽn

2), if needed, can also be easily calculated,
example, numerically.

VI. DISCUSSION

Higher harmonics(n>3). Note that the flow analysis
methods presented in this paper are valid for all harmo
orders of anisotropy. The higher harmonics look at the ev
with higher symmetry on a finer scale. It should be emp
sized that the study of anisotropic flow corresponding to h
monic orders ofn>3 has interesting aspects. For instan
one would expect large differences between the theore
predictions of hydro- and cascade-type models in the hig
harmonics of the particle azimuthal distributions. Also the
are physics processes which could lead to nonzero hig
harmonics. It is widely accepted that one of the main reas
for pion ‘‘antiflow,’’ directed flow in the direction opposite
to that of the protons, is caused by pion shadowing by
moving nucleons. Such shadowing could affect pion hig
harmonic azimuthal distributions, and affect them differen
at different rapidities. Another effect is the transition fro
out-of-plane elliptic flow~squeeze-out! which is very impor-
at
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tant at low energies to in-plane elliptic flow which is th
main effect at high energies. At the transition beam ene
both effects may be important and the fourth harmonic m
peak at this energy. Even at high beam energies, the ou
plane squeeze-out effect could dominate at short times
the in-plane expansion at long times, leading to an ove
fourth order harmonic coefficient.

Transverse radial and anisotropic flow.We would like
also to emphasize that the above methods permit the re
struction of the triple differential distribution with respect
the reaction plane, and in particular are convenient for
analysis of thept dependence of the anisotropy. The impo
tance of such a study was stressed in Ref.@35#, where the
effect of the interplay of~transverse! radial and directed flow
has been studied. In that analysis transverse directed flo
considered a result of the movement of an effective sourc
the transverse plane. It is assumed that in the source
frame the first moment of the azimuthal distribution (v1) is
zero, and the final anisotropy appears only as a consequ
of the source movement in the transverse direction.

In this case the transverse momentum dependence ov1
has a rather specific shape. The radial expansion resul
decreasingv1 at low pt . For some sets of parameters~tem-
perature, radial and directed velocities! it becomes negative
Physically it corresponds to the case, when particle prod
tion with such a value ofpt is more probable from the part o
the effective source which moves in the opposite direct
from the flow direction, because in this case the directed fl
and the radial flow tend to compensate each other.

The same considerations can be applied to elliptic flow
well. If one assumes that elliptic flow is a consequence
more rapid expansion of the effective source in some pla
then thept dependence ofv2 would exhibit exactly the same
features as has been observed forv1 in the case of directed
flow.
th
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Pair-wise azimuthal correlations. Two-particle large-
angle azimuthal correlations are often proposed as a too
study anisotropic flow@36#. Not rejecting this possibility we
note that the expected signal in such correlations can be
small in magnitude. It can be easily shown that the pair-w
distribution in the azimuthal angle difference (Df5f1
2f2) is

dNpairs

dDf
}S 11 (

n51

`

2vn
2cos~nDf!D . ~36!

Note that the ‘‘signal’’ isvn
2 , and thus is small. It does no

imply though, that the ‘‘signal to noise ratio’’ is small, an
the method, in principle, can be successfully applied to d
to obtain the flow signal. However, the reconstruction of t
triple differential distribution with respect to the reactio
plane~the goal of the flow analysis! becomes more involved

This method does not require the determination of
event plane. Usually such a distribution is constructed us
all possible pair combinations in each event. Note that in t
case each particle enters into many pairs~on the order of the
mean multiplicity of an event! and, consequently, the pair
are not statistically independent. Thus special precauti
have to be taken for the evaluation of the error of the res
@31#.
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