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Nonlocal effects in the 8Be breakup
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A collective Hamiltonian for a two alpha particles aggregate, which describes the8Be nucleus, encompass-
ing a collective potential and an inertia function of that system, is obtained and analyzed through the use of a
technique — derived from an approach of the generator coordinate method~GCM! — which allows for the
extraction of collective information. The nucleon-nucleon interaction considered here is the one proposed by
Volkov plus the Coulomb repulsion. It is shown that nonlocal effects appear in those collective functions
describing the spontaneously occurring breakup process. Furthermore, the result for the inertia function stands
for a microscopically generated evidence supporting a double-folding-based model of the real part of the
nucleus-nucleus nonlocal interaction recently proposed.@S0556-2813~98!03509-2#

PACS number~s!: 24.10.2i, 25.90.1k
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I. INTRODUCTION

The description of the interaction between two collidi
heavy nuclei has long been the subject of study in nuc
physics and the determination of its features a major goa
be attained. In the past years systematic accurate and e
sive measurements involving elastic scattering at interm
ate energies gave rise to a great improvement in the un
standing of the nucleus-nucleus interaction@1#. As a
consequence of the analysis of the nuclear rainbow scatte
that occurs in those cases the real part of that interaction
be nowadays unambiguously described and its determ
tion, not only at the surface, but also at smaller distances,
be accomplished@2,3#. The resulting phenomenological in
teractions present significant dependence upon the bomb
ing energies. To account for this dependence some theo
cal models have been developed which make explicit us
density dependent interactions@4–6#. On the other hand, i
has been recently shown in a description of elastic scatter
using an integrodifferential equation, that the real mean fi
~with no coupled channels effects! potential dependence o
the bombarding energy comes mostly from nonlocal
change effects@7,8#. That mean field potential has been pr
posed to be constructed using the usual double folding m
with an energy-independent nonlocal exchange interact
The results have shown that the obtained nucleus-nuc
interaction can be written in such a form so as to embody
nonlocal exchange effects through a simple form. The n
local real part of that potential can be rewritten as a lo
equivalent one which clearly displays the energy depende
preconized by the phenomenological approach. Furtherm
the double folding inspired inertia function that comes in t
treatment reveals the fundamental character of the nonl
PRC 580556-2813/98/58~3!/1627~7!/$15.00
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effects in the scattering processes, much in the same spir
has been previously seen in nuclear fusion processes@9,10#.

The aim of the present paper is twofold. First, we inte
to show that the exchange nonlocal effects, being prima
of quantum mechanical origin, thus pervading general ma
body phenomena, manifest themselves also in still ano
type of nuclear process, namely the nuclear breakup. Sec
we intend to show that the microscopic extraction of t
nonlocal effects presented here for that particular type
process do in fact stand for a microscopic support for
ansatz previously proposed for the real part of the nucle
nucleus interaction, as mentioned above@7,8#.

As the 8Be is known to be a spontaneous fissiona
nucleus, it constitutes a convenient testing ground for stu
ing the nonlocal effects appearing in this particular proce
This convenience comes from the fact that this nucleus
light enough, thus leading to calculations much less involv
than those necessary for heavier nuclei where spontan
fission also occurs, and also because the nonlocal effect
more manifest in this case due to the value of the co
sponding nonlocality range that is greater than for heav
systems. Since it is known from the experience that the8Be
nucleus decays into two alpha particles, it seems natura
describe it within the generator coordinate method~GCM!
@11–14# by a model consisting of a deformed two alpha p
ticles structure. In fact, the resonating group approach@15#
could be used as well, but here we will follow the GC
scheme. Thus, we see that we can describe the8Be nucleus
through a model consisting of a preformed structure of t
alpha clusters that can be accomplished by considering
harmonic oscillator~HO! potentials symmetrically located
about the origin of a coordinate system, each one describ
a single cluster@16–19#. Therefore, because we are inte
1627 © 1998 The American Physical Society
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1628 PRC 58D. GALETTI et al.
ested in studying the breakup of the8Be, after it is formed,
in the present treatment it is natural to choose the half
tance between the centers of the two HO potentials o
along the breakup axis, say thez-axis, as thegenerator co-
ordinate~GC!. The same is not true if one wants to study t
general alpha-alpha scattering problem within the GCM@17#,
where the generator coordinate is thenr , the spatial separa
tion between the centers of the alpha clusters. The fu
38 Slater determinant wave function of the8Be nucleus is
constructed with the 1s single particle wave function o
these two HO’s thus yielding the parametrized genera
function of the method. The microscopic nuclear poten
acting between the nucleons that we consider here is the
proposed by Volkov@20#, since it is simple enough to hand
and suitable to light nuclei calculations. Furthermore, it h
also been shown within the GCM that this kind of interacti
gives good results for the partial wavesl 50,2,4,6 phase
shifts of an alpha-alpha scattering@17#. As we concern our-
selves with the breakup process, we expect both, this sim
Volkov potential and the Coulomb repulsive force, to be s
ficient to give origin to that particular resonance level whi
will characterize the8Be nucleus. The GCM energy kern
we propose is then composed of two parts, namely,
nuclear Volkov-generated contribution and a full micr
scopic Coulomb term. In the present treatment of the8Be
nucleus we have not carried ahead the calculation of
projected ground state energy within the GCM, in order
compare it with the experimental value.

In this description, the nonlocal effects come mostly fro
two sources, namely from the nonorthogonality of the GC
states and from the full 838 determinantal character of th
associated GCM kernels. In fact, using the Volkov nucle
nucleon interaction plus the Coulomb repulsion we were a
to explicitly obtain the GCM kernels which are manifest
nonlocal.

It has been shown in the past that it is possible to ext
collective information from the GCM kernels@21–26#. How-
ever, these procedures lack some quantum information
cause they handle directly with the GC, which is a para
eter. Although the GC itself is not a dynamical variable
pair of genuine collective coordinate-momentum variab
can be constructed out of the original GC, and, in fact, it h
been shown in the past that a collective Hamiltonian can
written which encompasses a collective potential and an
ertia function as the GCM kernels are given. In the pres
case, the main feature of this new collective Hamiltonian
that it embodies the nonlocal effects present in the ini
GCM microscopic description of the breakup process. The
fore, in order to extract the collective potential and the ine
function, which are the constituents of the Hamiltonian, o
s-
ly
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of the GCM kernels, we took advantage of a procedure ba
on the GCM and on the Weyl formalism@27# presented
many years ago@28#. Using a numerical technique derive
from this approach@29#, it is possible to extract the collectiv
potential ~inertia function! as the discretized version of
zeroth-moment~second moment! of a discretized trans-
formed GCM energy kernel. With these numerical results
those functions we were able to discuss the microscopic
generated nonlocal effects present in the breakup proces

This paper is organized as follows. In Sec. II we pres
the calculations of the GCM kernels. In Sec. III we briefl
present the numerical technique and results, while in Sec
we discuss the nonlocal effects in our particular breakup p
cess. Finally Sec. V is devoted to the conclusions and fi
remarks.

II. THE GCM KERNELS

An alpha cluster model, based on the GCM has been
veloped by Brink@18# many years ago to study the structu
of light nuclei. We will follow here that method of Brink in
order to calculate the overlap and energy kernels that en
the Griffin-Wheeler~GW! equation,

E @^auHua8&2E^aua8&# f ~a8!da850 ~1!

for the 8Be nucleus, since they constitute the essential qu
tities for the derivation of the collective potential, inert
function and energy spectrum, as already discussed@29#.

We will choose a coordinate system whosez-axis coin-
cides with the path along which the alpha particles mot
occurs, each alpha cluster being described by a HO pote
whose center is located at a distancez0 about the origin. The
spatial part of the single particle wave function is written

w~x,y,z!5
1

p3/4b3/2
exp@2~x21y2!/2b2#

3exp@2~z6z0!2/2b2#, ~2!

where the sign6 in front of z0 is introduced in order to
specify to which cluster a particular nucleon belongs. T
parameterz0, the half distance between the fragments, w
constitute our generator coordinate andb is the HO param-
eter whose value allows us to fix thea radius.

Once we have constructed the 838 Slater determinant o
the 8Be nucleus,uC(z0)&, it is immediate to calculate the
normalized overlap kernel
N~z0 ,z08!5^C~z08!uC~z0!&5
@det̂ w i~z08!uw j~z0!&#4

@det̂ w i~z08!uw j~z08!&det̂ w i~z0!uw j~z0!&#2

5
$exp@2~z02z08!2/2b2#2exp@2~z01z08!2/2b2#%4

@12exp~22z08
2/b2!#2@12exp~22z0

2/b2!#2
, ~3!
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PRC 58 1629NONLOCAL EFFECTS IN THE8Be BREAKUP
where w i corresponds to the occupied orbital states a
det̂ w i uw j& stands for the determinant whose elements are
overlap of the single particle wave functions.

In the same fashion we calculate the contribution of
kinetic energy term to the GCM energy kernel,

T~z0 ,z08!5^C~z08!uT̂uC~z0!&

54N~z0 ,z08!(
i , j

^w i~z08!u t̂ uw j~z0!&~B21! i j , ~4!
n

lue
d
e

e

where the factor 4 stands for the spin-isospin degeneracB
is the matrix whose elements are

Bi j 5^w i~z08!uw j~z0!&, ~5!

and t̂ is the one-body kinetic energy operator. The analy
expression ofT(z0 ,z08) is
the
ted by
T~z0 ,z08!54N~z0 ,z08!S \2

mb2D H 3

2
2

@~z02z08/2b!#2exp@2~z02z08!2/2b2#2@~z01z08/2b!#2exp@2~z01z08!2/2b2#

exp@2~z02z08!2/2b2#2exp@2~z01z08!2/2b2#
J , ~6!

wherem is the nucleon mass. The value of the diagonal expression,T(z0 ,z0), in the limit z0→`, gives 6\2/mb2, which is
exactly the kinetic energy value of a system of twofree alpha particles, each being described by 1s HO orbital states. In the
other limit,z0→0, T(z0 ,z0) goes to 8\2/mb2, which is exactly the kinetic energy of a system of eight nucleons occupying
1s and 1p orbital states. Expression~6! contains the spurious center-of-mass motion effect, however this can be correc
subtracting the contribution of the center-of-mass term,

P̂2

2mA
5

1

A(
i

p̂i
2

2m
1(

iÞ j

p̂i• p̂ j

mA
, ~7!

which gives

K C~z08!U P̂2

2mA
UC~z0!L 5

T~z0 ,z08!

A
1

\2

2mAb2

N~z0 ,z08!

exp@2~z02z08!2/2b2#2exp@2~z01z08!2/2b2#

3S ~z02z08!2

b2 H expF2
~z02z08!2

2b2 G2expF2
~z02z08!21~z01z08!2

2b2 G J
1

~z01z08!2

b2 H expF2
~z01z08!2

2b2 G2expF2
~z02z08!21~z01z08!2

2b2 G J D , ~8!
he
s,
where A is the total number of nucleons. Asz0→`, the
diagonal part of the second term in Eq.~8! vanishes, while
for z0→0 it goes to2\2/mAb2.

The nuclear two-body potential of Volkov@20#, together
with the Coulomb repulsion, constitute the full interactio
between the nucleons,

V̂~ urW12rW2u!5~12M1M P̂x!$V0aexp@2aaurW12rW2u2#

1V0rexp@2a r urW12rW2u2#%1
e2

urW12rW2u
, ~9!

whereP̂x is the coordinate exchange operator and the va
of the constants are: V0a5276.69 MeV, V0r
5408.27 MeV, aa50.444 fm22, a r54.94 fm22, M
50.60,e251.44 MeV•fm, andb51.27 fm is the value of
the oscillator parameter; this value forb fixes the alpha ra-
dius asRa51.56 fm.
s

For a potential of the form

V̂~ urW12rW2u!5u~ urW12rW2u!@~12M !1M P̂x#, ~10!

the corresponding GCM energy kernel is@18#

^C~z08!uV̂uC~z0!&

5N~z0 ,z08!(
i jkl

^w i~z08!w j~z08!uuuwk~z0!w l~z0!&

3@Xd~B21!ki~B21! l j 1Xe~B21!k j~B21! l i #, ~11!

whereXd58210M , Xe510M22 and the matrixB is that
already introduced in Eq.~5!. In this way, for the Coulomb
forces, we haveXd

C58 andXe
C522.

Finally, the analytic expression of the energy kernel of t
full two-body potential is constituted of the following term
namely: Gaussian terms
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KG~z0 ,z08!5
2Vo

~112a ib
2!3/2

N~z0 ,z08!

$exp@2~z02z08!2/2b2#2exp@2~z01z08!2/2b2#%2

3S ~Xd1Xe!H expF2
~z02z08!2

2b2 G1expF2
~z01z08!2

2b2 G J 22~Xd1Xe!expF2
~z02z08!2

4b2
2

~z01z08!2

4b2 G
3expH F2

1

4S 11
b2a i

112b2a i
D GF ~z02z08!2

b2
1

~z01z08!2

b2 G J H expF b2a i

2~112b2a i !
S z02z08

b D S z01z08

b D G
1expF2

b2a i

2~112b2a i !
S z02z08

b D S z01z08

b D G J 1expF2
b2a i

112b2a i
S z01z08

b D 2G H XdexpF2
~z02z08!2

b2 G
1XeexpF ~z01z08!2

2b2
2

~z02z08!2

2b2 G J 1expF2
b2a i

112b2a i
S z02z08

b D 2G H XdexpF2
~z01z08!2

b2 G
1XeexpF ~z01z08!2

2b2
2

~z02z08!2

2b2 G J D , ~12!

and the Coulomb term

KC~z0 ,z08!5
4e2

b~2p!1/2

N~z0 ,z08!

$exp@2~z02z08!2/2b2#2exp@2~z01z08!2/2b2#%2S expF2
~z02z08!2

b2 G1expF2
~z01z08!2

b2 G
1

p1/2

2

F~z01z08/A2b!

z01z08/A2b
H 2 expF2

~z02z08!2

b2 G2expF2
~z02z08!21~z01z08!2

2b2 G J
1

p1/2

2

F~z02z08/A2b!

z02z08/A2b
H 2expF2

~z01z08!2

b2 G2expF2
~z02z08!21~z01z08!2

2b2 G J
2p1/2expF2

~z02z08!21~z01z08!2

2b2 GFF~z0 /A2b!

z0 /A2b
1

F~z08/A2b!

z08/A2b
G D , ~13!
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respectively, whereF(x) is the probability integral@30#. The
complete GCM energy kernel can now be immediately w
ten out of these contributions. It is worth mentioning th
these expressions were specifically calculated for
breakup process, where the generator coordinate isz, and
must not be directly compared with other energy kern
aiming at scattering problems. Besides, differently from
proximated versions of the Coulomb term, as has been
posed@17#, our expression for this contribution is fully mi
croscopic.

III. NUMERICAL CALCULATIONS

In order to extract numerically the nuclear collective p
tential and inertia function for the8Be, we will follow the
procedure presented in@29#. The first step consists in th
diagonalization of the overlap kernel~3!. However, by
simple inspection of that expression we note that the ove
is not translationally invariant~it does not depend only on
the differencez02z08) around the origin, but forz0 ,z08*b it
goes as exp@22(z02z08)

2/b2#, thus exhibiting a narrowe
width than that around the origin. In what refers to the n
-
t
e

s
-
o-

-

p

-

merical results, the adoption of the asymptotic expression
the overlap kernel, for all values ofz0 and z08 , induces a
small distortion in the exact description of the collective p
tential and inertia function near the origin@28,29#. Besides,
for the exact overlap the numerical techniques used to ext
the nuclear collective potential and inertia functions beco
extremely complicated and the results at present are no
liable. But, in fact, it has been verified in a 50 points me
calculation that the lowest energy levels of the spectru
obtained with the exact overlap, do not differ significan
from those calculated with the translationally invariant ke
nel. So, in spite of the approximated character of the desc
tion, we adopt here the asymptotic translationally invaria
kernel, instead of the exact one, since the calculations ca
performed with a high density of points in the interval
interest, which allows more reliable results. The introduct
of that approximation leads to a collective potential and
inertia function that will present a slightly modified behavi
near the origin~as compared to the expected exact resul!,
where the exact overlap and the adopted one differ; howe
this fact does not constitute a drastic drawback since
physically interesting regionz0 ,z08*b will be correctly de-
scribed.
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PRC 58 1631NONLOCAL EFFECTS IN THE8Be BREAKUP
After the GCM kernels have been calculated, the sum
the generator coordinates (z01z08)/2 are transformed into a
genuine collective coordinate and the differencesz02z08 into
the canonically conjugated momentum through a We
Wigner mapping@28#. In this way, we end up with an ex
pression for the collective Hamiltonian which has the ha
distance between the centers of the densities of the two a
system as the quantum collective coordinate. Keeping
lowest order terms in its expansion in terms of anticomm
tators the collective Hamiltonian reads

H~q,p!5H ~0!~q!2
1

4\2
$p,$p,H ~2!~q!%%

1higher order terms, ~14!

where we identifyH (0)(q)[V(q) as the collective potentia
for the 8Be breakup andB(q)[\2/2H (2)(q) as the inertia
function @29#. The higher order terms will be neglected sin
they are smaller than the first two. In the numerical sche
H (2)(q) is the second moment of the matrix representing
transformed mesh associated to the GCM energy kernel
the collective coordinate,q, is now, naturally, the half-
distance between the alpha clusters. The numerical calc
tions have been made with the GC taken in the interval ra
ing from 225.0 fm to 25.0 fm, with a step of 0.7 fm
corresponding to matrices of orderN570. This particular
choice of the interval permits a numerically reliable set
points to be calculated in its central part, namely, up to
fm. The collective potential is presented in Fig. 1~where we
have subtracted243.05 MeV, the constant asymptotic pu
nuclear contribution of the potential!, while the first two in-
trinsic wave functions, obtained from a numerical diagon
ization of the transformed GW equation as indicated in@28#,
are depicted in Fig. 2.

Only two energy levels lie below the top of the barrie
namely at 1.14 MeV and 2.12 MeV, respectively, whereas
others occur above. The discretization process and the fi
ness of the interval of variation of the GC constitute a co
straint in this procedure, leading, obviously, to a discr
spectrum, while the actual one has a continuum.

FIG. 1. Collective potential for the8Be breakup. The constan
asymptotic nuclear behavior has been subtracted. The calcula
were performed with a 70370 mesh in the interval225<z0<25
and a step ofDz050.7.
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IV. NONLOCAL EFFECTS

The calculated breakup potential for the8Be can be seen
to be different from the diagonal part of the GCM ener
kernel, which corresponds to the variational potential a
proach for the problem. The difference, which comes fro
the off-diagonal terms of the GCM energy kernel matr
reflects thenonlocal effectsembodied in the formalism and
at the same time, clearly displays a strong repulsion in
inner region. This feature of the potentialis not only due to
Coulomb repulsion; in fact it is strongly marked by the
blocking effects of pure kinematical nature. As is we
known, the short life of the8Be nucleus (;10216 s) is ba-
sically due to these effects. Thus, at short range, the nuc
part of the nucleon-nucleon interaction and the blocking
fects dominate, whereas, asymptotically, the breakup po
tial tends to the two alphas Coulomb interaction, where
nonlocal effects are expected.

The calculated ratio between the inertia function and
reduced mass of the two alpha system is depicted in Fi
~we remind the reader that the GC adopted is half the
tance between the centers of the HO’s potentials so that
reduced mass of the system corresponds to eight nuc
masses!. The asymptotic behavior of the inertia functio
goes to the reduced mass of the two alpha system, as
pected, since, there, only the direct part of the nucle
nucleon interaction effects show up, whereas in the alph

ns
FIG. 2. The intrinsic first and second GCM calculated dime

sionless wave functions for the two alpha system. The calculat
were performed with a 70370 mesh in the interval225<z0<25
and a step ofDz050.7.

FIG. 3. The microscopically calculated dimensionless ra
R(q)5m* (q)/m for the 8Be breakup. The calculations were pe
formed with a 70370 mesh in the interval225<z0<25 and a step
of Dz050.7.
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1632 PRC 58D. GALETTI et al.
overlapping region, by assuming a peculiar form, the ine
function clearly reveals the nonlocal effects occurring
short distances, due to the exchange effects. At the same
that this result reveals important nonlocal contributions
the breakup process, therefore strongly suggesting the p
ence of the same characteristics already found in the nuc
fusion processes@9,10#, its behavior also confirms a rece
proposal for the description of nucleus-nucleus elastic s
tering @7,8#. There, it was proposed that the real part of t
nucleus-nucleus interaction is described by a nonlocal po
tial which amounts to having an inertia function that shou
be given by the expression@31#

m* ~q!5
m

11mb2/2\2uV~q!u
, ~15!

whereb is the nonlocality range of the nucleus-nucleus s
tem,m is its asymptotic reduced mass andV(q) is a double
folding potential

Vf~q!5E r1~r 1!v~qW 2rW11rW2!r2~r 2!drW1drW2 . ~16!

Here v(r ) is the effective nucleon-nucleon interaction a
r1(r 1) and r2(r 2) are the nuclear densities of the collidin
partners, respectively. We can directly compare that exp
sion for the inertia function involving the folding potentia
used to describe the nuclear scattering, with our previ
microscopically derived quantum numerical result, obtain
for the breakup using, by its turn, the completely antisy
metrized GCM wave function. For this purpose, we calcul
expression~15! using the Wigner part of the Volkov interac
tion asv(r ). This can be analytically accomplished if we u
the HO wave functions for the calculations of the alpha d
sities ~as we have done also for the GCM calculations! thus
giving

Vf~q!56.4FV0aS aa
2

aa
212b2D 3/2

expS 24q2

aa
212b2D

1V0rS a r
2

a r
212b2D 3/2

expS 24q2

a r
212b2D G . ~17!

Now, in order to compare the two results for the iner
function, we must first introduce the Jackson and John
expression for the nonlocality range@32#, namely b
5b0m/m, wherem is the reduced mass of the system,m is
the nucleon mass andb0 is the nucleon-nucleus nonlocalit
as given by Perey and Buck@33#. The comparison betwee
the microscopically based calculated inertia function and
one calculated from the Volkov double folding potential u
ing expression~17! is shown in Fig. 4. We verify that there i
a substantial agreement between the two results in the re
z0 ,z08*b, which corresponds to the exact description of t
overlap kernel, while forz0 ,z08&b there appears a slight de
viation, since the overlap kernel was approximated in t
region. Besides, in the numerical results there are other q
tum exchange effects which are not present in Eq.~17!.
Thus, we can see from the figure that the inertia function
the breakup under study has the same form as that prop
a
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ed

for the description of nucleus-nucleus scattering—this me
that it can be quite well described by expression~15!—and,
therefore, it is direct to see that it depends on the dou
folding potential, but not on that describing the breaku
namely the one presented in Fig. 1. In this form, besid
being consistent with what is expected for the process,
result also gives full microscopic support for the the ans
proposed in the nuclear reactions context@7,8#.

For the sake of completeness, we have also calculated
inertia function from the double folding potential using th
nucleon-nucleon M3Y interaction@34#:

v~r !57999
e24r

4r
22134

e22.5r

2.5r
2262d~rW !, ~18!

and HO wave functions for the alpha densities. The pseu
potential, 2262d(rW) MeV, describes the knock-on ex
change collision at 10 MeV/nucleon@35#. The result practi-
cally coincides with those of the previous calculation, as c
be seen also in Fig. 4.

V. CONCLUSIONS

Recently, we have presented arguments that emphas
the importance of the nonlocal effects arising from the qu
tum exchange which are present in many-body systems
in particular in nuclear ones. Specifically we have propose
way to incorporate these effects in the description of the r
part of a nucleus-nucleus potential and we have also sh
how these nonlocal effects can explain the energy dep
dence present in the local-equivalent real part of the phen
enological nucleus-nucleus potentials at intermediate e
gies@7,8#. At the same time, that proposal serves as a test
the nonlocality range for composed nuclear systems as
tained in a simple folding model. In the present paper
have shown that the same nonlocal effects also show u
nuclear breakup processes. Here, we have adopted a ful
croscopic starting point, namely the generator coordin
method, GCM, for the description of the8Be nucleus that is
known to undergo spontaneous fission into two alpha p
ticles. The nucleons degrees of freedom are washed ou
the calculations so that one ends up with the GCM kern

FIG. 4. Comparison between the microscopically calculated
mensionless ratio~points! and the phenomenological one using t
folding ansatz, the Volkov interaction, and the Jackson and John
nonlocality range~dashed line!. Also shown is the same ratio ca
culated from the nucleon-nucleon M3Y interaction with the para
eters given in the text~continuous line!.
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which are then functions only of the parameter associate
the half distance between the clusters. By an appropr
transformation, the GCM energy kernel is converted into
collective Hamiltonian which is written in terms of a colle
tive potential and an inertia function. Therefore, all the u
derlying nonlocal effects of microscopic origin in the8Be
nucleus are taken into account now in these new functio
The collective potential clearly reveals a shallow pocket t
does not allow for a bound state and a strong repulsio
short distances, mainly due to Pauli blocking. In fact, t
solution of the GCM equation admits two levels below t
top of the barrier but above the asymptotic Coulomb tail;
lowest level is the candidate for representing the8Be reso-
nance although its energy eigenvalue is above the 100
expected for this case. The inertia function, by its turn, be
the hallmark of the presence of nonlocal effects in a mar
way. Being a function of the half-distance degree of fre
dom, the ratio of the effective reduced mass to the redu
mass for the breakup process has a form that clearly
rt,
B

nd

r,

s.

s-

f

to
te
a

-

s.
t
at
e

e

V
rs
d
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d

e-

sembles the ones already found in other nuclear proce
and also that of a nucleon in a self-consistent potential@36#.
Furthermore, we have compared the numerical result for
ratio with the one analytically obtained from a double fol
ing inspired expression and the Volkov interaction. The
sults almost entirely match. We can therefore see that
present microscopic-based treatment of the8Be exhibits the
importance of nonlocal exchange effects in the break
which can be of great importance for more accurate desc
tions of astrophysical processes, such as the capture ofa
particle by a breaking up8Be in the process that populate
the 7.6 MeV Hoyle 01 resonance in12C.
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