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A collective Hamiltonian for a two alpha particles aggregate, which describe®Béaaucleus, encompass-
ing a collective potential and an inertia function of that system, is obtained and analyzed through the use of a
technique — derived from an approach of the generator coordinate mgg@d) — which allows for the
extraction of collective information. The nucleon-nucleon interaction considered here is the one proposed by
Volkov plus the Coulomb repulsion. It is shown that nonlocal effects appear in those collective functions
describing the spontaneously occurring breakup process. Furthermore, the result for the inertia function stands
for a microscopically generated evidence supporting a double-folding-based model of the real part of the
nucleus-nucleus nonlocal interaction recently propog8@556-281®8)03509-7

PACS numbd(s): 24.10—i, 25.90+k

[. INTRODUCTION effects in the scattering processes, much in the same spirit as
has been previously seen in nuclear fusion proce&a§).

The description of the interaction between two colliding The aim of the present paper is twofold. First, we intend
heavy nuclei has long been the subject of study in nucleato show that the exchange nonlocal effects, being primarily
physics and the determination of its features a major goal tof quantum mechanical origin, thus pervading general many-
be attained. In the past years systematic accurate and extdmdy phenomena, manifest themselves also in still another
sive measurements involving elastic scattering at intermeditype of nuclear process, namely the nuclear breakup. Second,
ate energies gave rise to a great improvement in the undewe intend to show that the microscopic extraction of the
standing of the nucleus-nucleus interactiph]. As a nonlocal effects presented here for that particular type of
consequence of the analysis of the nuclear rainbow scatterirgrocess do in fact stand for a microscopic support for the
that occurs in those cases the real part of that interaction caansatz previously proposed for the real part of the nucleus-
be nowadays unambiguously described and its determinarucleus interaction, as mentioned ab¢ves].
tion, not only at the surface, but also at smaller distances, can As the 8Be is known to be a spontaneous fissionable
be accomplished2,3]. The resulting phenomenological in- nucleus, it constitutes a convenient testing ground for study-
teractions present significant dependence upon the bombarig the nonlocal effects appearing in this particular process.
ing energies. To account for this dependence some theoreflhis convenience comes from the fact that this nucleus is
cal models have been developed which make explicit use dfght enough, thus leading to calculations much less involved
density dependent interactiofd—6]. On the other hand, it than those necessary for heavier nuclei where spontaneous
has been recently shown in a description of elastic scatteringission also occurs, and also because the nonlocal effects are
using an integrodifferential equation, that the real mean fieldnore manifest in this case due to the value of the corre-
(with no coupled channels effegtpotential dependence on sponding nonlocality range that is greater than for heavier
the bombarding energy comes mostly from nonlocal exsystems. Since it is known from the experience that%Re
change effect$7,8]. That mean field potential has been pro- nucleus decays into two alpha particles, it seems natural to
posed to be constructed using the usual double folding modelescribe it within the generator coordinate meti@LCM)
with an energy-independent nonlocal exchange interactiof11—-14 by a model consisting of a deformed two alpha par-
The results have shown that the obtained nucleus-nucleugles structure. In fact, the resonating group apprdddh
interaction can be written in such a form so as to embody theould be used as well, but here we will follow the GCM
nonlocal exchange effects through a simple form. The nonscheme. Thus, we see that we can describé®Benucleus
local real part of that potential can be rewritten as a locathrough a model consisting of a preformed structure of two
equivalent one which clearly displays the energy dependencapha clusters that can be accomplished by considering two
preconized by the phenomenological approach. Furthermordarmonic oscillator(HO) potentials symmetrically located
the double folding inspired inertia function that comes in theabout the origin of a coordinate system, each one describing
treatment reveals the fundamental character of the nonlocal single clustef16—19. Therefore, because we are inter-
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ested in studying the breakup of ti8e, after it is formeqg  of the GCM kernels, we took advantage of a procedure based
in the present treatment it is natural to choose the half dison the GCM and on the Weyl formalisii27] presented
tance between the centers of the two HO potentials onlynany years ag$28]. Using a numerical technique derived
along the breakup axis, say tkeaxis, as thegenerator co- from this approach29], it is possible to extract the collective
ordinate(GC). The same is not true if one wants to study thepotential (inertia function as the discretized version of a
general alpha-alpha scattering problem within the GG, zeroth-moment(second momentof a discretized trans-
where the generator coordinate is therthe spatial separa- formed GCM energy kernel. With these numerical results for
tion between the centers of the alpha clusters. The full ghose functions we were able to discuss the microscopically
X 8 Slater determinant wave function of tiiBe nucleus is generated nonlocal effects present in the breakup process.
constructed with the 4 single particle wave function of  This paper is organized as follows. In Sec. Il we present
these two HO's thus vyielding the parametrized generatinéhe calculations of the GCM kernels. In Sec. Il we briefly
function of the method. The microscopic nuclear potentialPresent the numerical technique and results, while in Sec. IV
acting between the nucleons that we consider here is the onf¢e discuss the nonlocal effects in our particular breakup pro-
proposed by Volkoy20], since it is simple enough to handle C€SS. Finally Sec. V is devoted to the conclusions and final
and suitable to light nuclei calculations. Furthermore, it hagemarks.

also been shown within the GCM that this kind of interaction

gives good results for the partial wavés0,2,4,6 phase

shifts of an alpha-alpha scatterifigg7]. As we concern our- Il. THE GCM KERNELS

selves with the breakup process, we expect both, this simple
Volkov potential and the Coulomb repulsive force, to be suf- An alpha cluster model, based on the GCM has been de-
ficient to give origin to that particular resonance level whichVeloPed by Brin 18] many years ago to study the structure

will characterize the®Be nucleus. The GCM energy kernel of light nuclei. We will follow here that method of Brink in

we propose is then composed of two parts, namely, th rder to calculate the overlap and energy kernels that enters

nuclear Volkov-generated contribution and a full micro- € Griffin-WheeleGW) equation,

scopic Coulomb term. In the present treatment of e

nuqleus we have not carried ah_eqd the calcula}tion of the f [{(a|H|a')—E(a|a’)]f(a’)da’'=0 (1)

projected ground state energy within the GCM, in order to

compare it with the experimental value. s . . .
In this description, the nonlocal effects come mostly fromor the “Be nucleus, since they constitute the essential quan-

two sources, namely from the nonorthogonality of the gemtities for the derivation of the collective potential, inertia

states and from the full 88 determinantal character of the function and energy spectrum, as already discusaef

associated GCM kernels. In fact, using the Volkov nucleon- We will choose a coordinate system whasaxis coin-

nucleon interaction plus the Coulomb repulsion we were abl&'des With the path along which the alpha particles motion
to explicitly obtain the GCM kernels which are manifestly °CCurs; €ach alpha cluster being described by a HO potential
nonlocal. whose center is located at a distazgeabout the origin. The

It has been shown in the past that it is possible to extractPatial part of the single particle wave function is written as

collective information from the GCM kernel21-26. How- L

ever, these procedures lack some quantum information be- _ 2, .2 2

cause they handle directly with the GC, which is a param- e(xy.2)= 773/4b3/28)q:[_(x Ty

eter. Although the GC itself is not a dynamical variable, a

pair of genuine collective coordinate-momentum variables Xexd — (2% 2,)%/207], ()
can be constructed out of the original GC, and, in fact, it has

been shown in the past that a collective Hamiltonian can b&here the sign+ in front of z, is introduced in order to
written which encompasses a collective potential and an inspecify to which cluster a particular nucleon belongs. The
ertia function as the GCM kernels are given. In the presenparameteiz,, the half distance between the fragments, will
case, the main feature of this new collective Hamiltonian isconstitute our generator coordinate amds the HO param-
that it embodies the nonlocal effects present in the initialeter whose value allows us to fix tkeradius.

GCM microscopic description of the breakup process. There- Once we have constructed th8 Slater determinant of
fore, in order to extract the collective potential and the inertiathe 8Be nucleus|¥(zy)), it is immediate to calculate the
function, which are the constituents of the Hamiltonian, outnormalized overlap kernel

[dex ¢i(Z5)|¢j(20))]*

N(zy,25) =(¥(z))|¥(zy)) =
0:20) = (W ()| (z0) [det ¢;(20)| ¢;(20))det ¢i(2o)| @;(20)) 12

{exd — (20— 20)%1202]— exd — (zo+z4)?1202]}14

[1—exp(—22)?/b?) ][ 1—exp( — 225/b?)]? ®




PRC 58 NONLOCAL EFFECTS IN THE®Be BREAKUP 1629

where ¢; corresponds to the occupied orbital states andvhere the factor 4 stands for the spin-isospin degeneiacy,
def ¢j| ¢;) stands for the determinant whose elements are this the matrix whose elements are
overlap of the single particle wave functions.
In the same fashion we calculate the contribution of the
kinetic energy term to the GCM energy kernel, Bi;=(¢i(z)| @;(20)), (5)

T(20,25) = (¥ (2)|T|¥ (20))

) o 1 andt is the one-body kinetic energy operator. The analytic
:4N(Zo,20)izj <‘Pi(ZO)|t|¢j(ZO)>(B )ij ) (4) expression Oﬂ'(zoyzé) is

72\ |3 [(zo—2zy/2b)12exd — (zo—z4)%I202] — [ (zo+ zh/2b) 1%exd — (zo+ 2§)%/2b?]
mb?/ | 2 exfd — (zo— z§)%/2b?]— exd — (zo+ ) 2/2b?]

wherem is the nucleon mass. The value of the diagonal expres3itm,, zo), in the limit zy— o, gives 62/mb?, which is
exactly the kinetic energy value of a system of tiee alpha particles, each being described lsyHO orbital states. In the
other limit, z,— 0, T(2y,2) goes to &2/mb?, which is exactly the kinetic energy of a system of eight nucleons occupying the

1s and 1p orbital states. Expressid) contains the spurious center-of-mass motion effect, however this can be corrected by
subtracting the contribution of the center-of-mass term,

T(20126)24N(20a26)<

P2 1 by
2mA A4 2m Z ™
which gives
p2 T(20,24) #2 N(Zo,25)
<wu@———wuw>= =t S T
2mA A 2mAR exd — (zo— 24)%12b%]— exd — (zo+ 2)%/2b?]
U%—éf (20— 2)° (20— 2p)*+(20+2p)°
X|————{exg —————|—exg —
b? 2b? 2b?
(2o+2p)? (2ot 2p)? (20— 20)*+ (20 2)?
+———{exg ————|—exg — , (8)
b? 2b? 2b?
|
where A is the total number of nucleons. Ag—x, the For a potential of the form
diagonal part of the second term in E&) vanishes, while A ) A
for zo—0 it goes to—A2/mAKP. V(ri—ro))=u(ri—raD[(1-M)+MP,], (10

The nuclear two-body potential of Volkd20], together
with the Coulomb repulsion, constitute the full interaction the corresponding GCM energy kernel[ i8]
between the nucleons,

A, . .. (V(z0)|V[¥(20))

V([ri=ro))=(1=M+MP){Vosex] — aq|r1—r,|*]

o &2 =N(20.2) 3% {i(20) ¢i(20)]ul ex(20)1(20))
+V0rexd—ar|f1—fz|2]}+ﬁ, €)

f17r2 X[Xg(B™Hki(B™ 1)+ Xe(B™ 1) (B~ Hyi1, (11)

whereP, is the coordinate exchange operator and the valuewhereXy=8—10M, X.=10M—2 and the matrix8 is that

of the constants are: Voa —76.69 MeV, V,  already introduced in Ed5). In this way, for the Coulomb
=408.27 MeV, a,=0.444 fm?, =494 fm2 M forces, we hav&X§=8 andXS=—2.

=0.60,e?=1.44 MeV-fm, andb= 1.27 fm is the value of Finally, the analytic expression of the energy kernel of the
the oscillator parameter; this value fbrfixes the alpha ra- full two-body potential is constituted of the following terms,
dius asR,=1.56 fm. namely: Gaussian terms
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2V, N(zq,2p)
(14 2a;b%)%2 {exd — (29— zp)2/2b%] — exq — (zo+ 24) ?/2b%]}?

_1\2 2 2 2
(Xd+xe){exl{_%l+exr{—m }_Z(Xd‘l‘xe)ex;{— (20— 2p) _(Zo+Zo)

Ka(zo,20) =

X

2b? 4p? 4p?
1 b2a; 20—20)% (zo+2))? b2q; 20— 24\ [ o+ 2}
xXexp | — | 1+ al ) (20~ 2) +( ot %) ex & { ¢ o=
47 14 2p2q, b2 b2 2(1+2b2%a;)\ b b
b’a;  (20-2) (202 b2 (20+20) (20— 2§)?
+expg — +exp — Xg&Xg ——————
p[ 2(1+2b%)\ b b 1+2b%\ b d b2

(ZO+26)2—(ZO_26)2H+exr{ b’ (20—26)2

(2o+2p)?
{ XdEX[{ - T

+ X EX -
¢ p[ 2h2 2h2 1+2b%a;\ b
(20+2))? (20—125)? )
+ XX - , 12
¢ p[ 2b? 2b? a3
and the Coulomb term
o 4e N(zo,2)) ( (20— 2)° (2o+2)°
Ke(20,20) = 2 2/opm2 2ozl B T 2 texp - 2
b(2m) Y2 {ex — (29— 2})2/2b%] — exp — (zo+2}) 220212\ b b
712 ®(29+ 75/ \2b) (20— 2p)? (20— 20)+ (20 + 29)?
2 zo+z)l\2b b 2b
72 D (29— 24/ /2b) (2o+24)? (20— 20)%+ (2o + 29)?
T 128X | —exd — 5
2 zo—z/\2b b 2b
20— 24) 2+ (zo+2p)? || D(z9/\2b) P (z)/\2b
gy  (20=20) "+ (20+ 29) (o\/—)+ (zg/\2b) | 13
2b? zo/\/2b z4/\[2b

respectively, wheré(x) is the probability integral30]. The  merical results, the adoption of the asymptotic expression for
complete GCM energy kernel can now be immediately writ-the overlap kernel, for all values of, and z}, induces a

ten out of these contributions. It is worth mentioning thatsmall distortion in the exact description of the collective po-
these expressions were specifically calculated for thdential and inertia function near the origi28,29. Besides,
breakup process, where the generator coordinate end for the exact overlap the numerical techniques used to extract
must not be directly compared with other energy kernelghe nuclear collective potential and inertia functions become
aiming at scattering problems. Besides, differently from ap£Xtremely complicated and the results at present are not re-
proxima‘[ed versions of the Coulomb term, as has been prdl.a.ble But, in faCt, it has been verified in a 50 pOintS mesh

posed[17], our expression for this contribution is fully mi- calculation that the lowest energy levels of the spectrum,
croscopic. obtained with the exact overlap, do not differ significantly

from those calculated with the translationally invariant ker-
nel. So, in spite of the approximated character of the descrip-
IIl. NUMERICAL CALCULATIONS tion, we adopt here the asymptotic translationally invariant
kernel, instead of the exact one, since the calculations can be
In order to extract numerically the nuclear collective po-performed with a high density of points in the interval of
tential and inertia function for théBe, we will follow the interest, which allows more reliable results. The introduction
procedure presented i29]. The first step consists in the of that approximation leads to a collective potential and an
diagonalization of the overlap kerndB). However, by inertia function that will present a slightly modified behavior
simple inspection of that expression we note that the overlapear the originlas compared to the expected exact results
is not translationally invariantit does not depend only on where the exact overlap and the adopted one differ; however,
the differencezy—zp) around the origin, but fory,z)=b it  this fact does not constitute a drastic drawback since the
goes as exfp-2(z—z)%b?], thus exhibiting a narrower physically interesting regiod,,zy=b will be correctly de-
width than that around the origin. In what refers to the nu-scribed.
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FIG. 1. Collective potential for théBe breakup. The constant FIG. 2. The intrinsic first and second GCM calculated dimen-
asymptotic nuclear behavior has been subtracted. The calculatioséonless wave functions for the two alpha system. The calculations
were performed with a 7070 mesh in the intervat 25<z,<25  were performed with a 7070 mesh in the interval-25<z,<25
and a step ofAz,=0.7. and a step oA zy=0.7.

q (fm)

IV. NONLOCAL EFFECTS
After the GCM kernels have been calculated, the sums of

the g_enerator goordlnatgso(vL Z)/2 are 'Fransformed, !nto 4 {0 be different from the diagonal part of the GCM energy
genuine collective coordinate and the differenzgs z, into L amel, which corresponds to the variational potential ap-
the canonically conjugated momentum through a Weylproach for the problem. The difference, which comes from
Wigner mapping 28]. In this way, we end up with an ex- the off-diagonal terms of the GCM energy kernel matrix,
pression for the collective Hamiltonian which has the half-reflects thenonlocal effectembodied in the formalism and,
distance between the centers of the densities of the two alphg the same time, clearly displays a strong repulsion in the
system as the quantum collective coordinate. Keeping thiner region. This feature of the potentialnot only due to
lowest order terms in its expansion in terms of anticommu-Coulomb repulsionin fact it is strongly marked by the
tators the collective Hamiltonian reads blocking effects of pure kinematical nature. As is well
known, the short life of théBe nucleus 10 '€ s) is ba-
sically due to these effects. Thus, at short range, the nuclear
part of the nucleon-nucleon interaction and the blocking ef-
fects dominate, whereas, asymptotically, the breakup poten-
tial tends to the two alphas Coulomb interaction, where no
nonlocal effects are expected.

The calculated ratio between the inertia function and the
reduced mass of the two alpha system is depicted in Fig. 3
where we identifyH(®)(q)=V(q) as the collective potential (we remind the reader that the GC adopted is half the dis-
for the ®Be breakup and(q)=7%%/2H(?)(q) as the inertia tance between the centers of the HO'’s potentials so that the
function[29]. The higher order terms will be neglected sincereduced mass of the system corresponds to eight nucleon
they are smaller than the first two. In the numerical schemeglasses The asymptotic behavior of the inertia function
H@)(q) is the second moment of the matrix representing théJ0es to the reduced mass of the two alpha system, as ex-
transformed mesh associated to the GCM energy kernel affCted. since, there, only the direct part of the nucleon-
the collective coordinateq, is now, naturally, the half- nucleon interaction effects show up, whereas in the alphas

distance between the alpha clusters. The numerical calcula-

The calculated breakup potential for tABe can be seen

1
H(q,p)=H%(q)— R{p,{p,H@(q)}}

+higher order terms, (14

. °

tions have been made with the GC taken in the interval rang- .
ing from —25.0 fm to 25.0 fm, with a step of 0.7 fm, 0.8 .
corresponding to matrices of ord&=70. This particular

choice of the interval permits a numerically reliable set of 0.6 .

points to be calculated in its central part, namely, up to 15 & .

fm. The collective potential is presented in Fig(vthere we 0.4}°

have subtracted-43.05 MeV, the constant asymptotic pure

nuclear contribution of the potentjawhile the first two in- 0.2

trinsic wave functions, obtained from a numerical diagonal-

ization of the transformed GW equation as indicate {2, o~

are depicted in Fig. 2. 0.5 1 1.5 2 2.5 3

Only two energy levels lie below the top of the barrier, q (fm)
namely at 1.14 MeV and 2.12 MeV, respectively, whereas all
others occur above. The discretization process and the finite- F|G. 3. The microscopically calculated dimensionless ratio
ness of the interval of variation of the GC constitute a con-R(q)= x* (q)/« for the Be breakup. The calculations were per-
straint in this procedure, leading, obviously, to a discret&ormed with a 76< 70 mesh in the intervat 25<z,<25 and a step
spectrum, while the actual one has a continuum. of Az;=0.7.
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overlapping region, by assuming a peculiar form, the inertia
function clearly reveals the nonlocal effects occurring at
short distances, due to the exchange effects. At the same time
that this result reveals important nonlocal contributions to

the breakup process, therefore strongly suggesting the pres-
ence of the same characteristics already found in the nuclear Ec:; '
fusion processef9,10, its behavior also confirms a recent 0.4
proposal for the description of nucleus-nucleus elastic scat-
tering[7,8]. There, it was proposed that the real part of the 02
nucleus-nucleus interaction is described by a nonlocal poten-

0.8

tial which amounts to having an inertia function that should 0 .
be given by the expressid1] 0 05 1 15 2 25 3 35
M q (fm)
©* ()= —— , (15 _ _ _ _
1+ uB21244V(q)| FIG. 4. Comparison between the microscopically calculated di-

mensionless ratigpointy and the phenomenological one using the
whereg is the nonlocality range of the nucleus-nucleus sysolding ansatz, the Volkov interaction, and the Jackson and Johnson
tem, u is its asymptotic reduced mass avi¢q) is a double nonlocality range(dashed ling Also shown is the same ratio cal-
folding potential culated from the nucleon-nucleon M3Y interaction with the param-
eters given in the texcontinuous ling

Vf(q)zf p1(r)v(q—r1+15)pa(ry)dridr,. (16)  for the description of nucleus-nucleus scattering—this means
that it can be quite well described by expressitb—and,

. . . . therefore, it is direct to see that it depends on the double

Herev(r) is the effective nucleon-nuc!epn |nteract|oq ‘.andfolding potential, but not on that describing the breakup,

p1(r1) andp,(ry) are the nuclear densities of the colliding namely the one presented in Fig. 1. In this form, besides

partners, respectively. We can directly compare that expregseing consistent with what is expected for the process, this

sion for the inertia function involving the folding potential, regyit also gives full microscopic support for the the ansatz

used to describe the nuclear scattering, with our previou roposed in the nuclear reactions contgks).

microscopically derived quantum numerical result, obtained For the sake of completeness, we have also calculated the

for the breakup using, by its turn, the completely antisym-inertia function from the double folding potential using the

metrized GCM wave function. For this purpose, we calculatenucleon-nucleon M3Y interactiof84]:

expression(15) using the Wigner part of the Volkov interac-

—4r —-2.5
tion asv(r). This can be analytically accomplished if we use r :79996 _2134e —2625(F 18
the HO wave functions for the calculations of the alpha den- v(1) 4r 2.5 . (18
;litlliensg(as we have done also for the GCM calculatiotimis and HO wave functions for the alpha densities. The pseudo-

potential, —2625(?) MeV, describes the knock-on ex-
o? 312 —4q? change collision at 10 MeV/nucled85]. The result practi-
a ) p(—) cally coincides with those of the previous calculation, as can

be seen also in Fig. 4.

Vf(q)ZG-A[VOa

2
r

a,?-l— 2b?

a V. CONCLUSIONS

Y

Vor

ag-i- 2b?
3/2 F{ _4q2
eXp — 2 i

ar+2b Recently, we have presented arguments that emphasized
) ~ the importance of the nonlocal effects arising from the quan-
expression for the nonlocality rangé32], namely 8 way to incorporate these effects in the description of the real
= Bom/u, wherep is the reduced mass of the systemjs  part of a nucleus-nucleus potential and we have also shown
the nucleon mass ar)ﬁo is the nucleon-nucleus nonloca”ty how these nonlocal effects can exp|ain the energy depen_
as given by Perey and Bu¢B3]. The comparison between dence present in the local-equivalent real part of the phenom-
the minOSCOpica”y based calculated inertia function and th%no|ogica| nucleus-nucleus potentia|s at intermediate ener-
one calculated from the Volkov double fOldlng potential US'gies[7,8]_ At the same time, that proposa| serves as a test for
ing expressiori17) is shown in Fig. 4. We verify that there is the nonlocality range for composed nuclear systems as ob-
a substantial agreement between the two results in the regiqgined in a simple folding model. In the present paper we
Zy,2p=D, which corresponds to the exact description of thehave shown that the same nonlocal effects also show up in
overlap kernel, while fozy,zj<b there appears a slight de- nuclear breakup processes. Here, we have adopted a full mi-
viation, since the overlap kernel was approximated in thatroscopic starting point, namely the generator coordinate
region. Besides, in the numerical results there are other quamethod, GCM, for the description of tH8e nucleus that is
tum exchange effects which are not present in E). known to undergo spontaneous fission into two alpha par-
Thus, we can see from the figure that the inertia function foticles. The nucleons degrees of freedom are washed out in
the breakup under study has the same form as that proposéte calculations so that one ends up with the GCM kernels
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which are then functions only of the parameter associated teembles the ones already found in other nuclear processes
the half distance between the clusters. By an appropriatand also that of a nucleon in a self-consistent potefigial.
transformation, the GCM energy kernel is converted into aFurthermore, we have compared the numerical result for that
collective Hamiltonian which is written in terms of a collec- ratio with the one analytically obtained from a double fold-
tive potential and an inertia function. Therefore, all the un-ing inspired expression and the Volkov interaction. The re-
derlying nonlocal effects of microscopic origin in tf8e  sults almost entirely match. We can therefore see that the
nucleus are taken into account now in these new functiongresent microscopic-based treatment of ¥Be exhibits the

The collective potential clearly reveals a shallow pocket thaimportance of nonlocal exchange effects in the breakup,
does not allow for a bound state and a strong repulsion awhich can be of great importance for more accurate descrip-
short distances, mainly due to Pauli blocking. In fact, thetions of astrophysical processes, such as the capture ef an
solution of the GCM equation admits two levels below theparticle by a breaking ufiBe in the process that populates
top of the barrier but above the asymptotic Coulomb tail; thethe 7.6 MeV Hoyle 0 resonance int“C.

lowest level is the candidate for representing 82 reso-
nance although its energy eigenvalue is above the 100 keV
expected for this case. The inertia function, by its turn, bears
the hallmark of the presence of nonlocal effects in a marked M.A.C.R. was supported by FAPESEontract No. 96/
way. Being a function of the half-distance degree of free-3240-5 and all other authors were partly supported by
dom, the ratio of the effective reduced mass to the reduce@NPq. D.G. wants to thank B.M. Pimentel for a valuable
mass for the breakup process has a form that clearly resuggestion.
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