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Collisional damping of nuclear collective vibrations in a non-Markovian transport approach

S. Ayik,1 O. Yilmaz,2 A. Gokalp,2 and P. Schuck3
1Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505

2Physics Department, Middle East Technical University, 06531 Ankara, Turkey
3Institut des Sciences Nucle´aires, 38026, Grenoble, France

~Received 24 March 1998!

A detailed derivation of the collisional widths of collective vibrations is presented in both quantal and
semiclassical frameworks by considering the linearized limits of the extended time-dependent Hartree-Fock
and the Boltzmann-Uehling-Uhlenbeck model with a non-Markovian binary collision term. Damping widths of
giant dipole and giant quadrupole excitations are calculated by employing an effective Skyrme force, and the
results are compared with giant dipole resonance measurements in lead and tin nuclei at finite temperature.
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I. INTRODUCTION

Excitation energy dependence of the giant resonanc
still one of the open problems in the study of collecti
modes in nuclei at finite temperatures. Recent experime
investigations of the giant dipole resonance in the mass
gion A5110– 140@1,2# and the208Pb nucleus@3# show that
damping monotonically increases with excitation energy, a
in the former case, saturates at high excitations. In medi
weight and heavy nuclei at relatively low temperatures
owerwhelming contribution to damping arises from t
spreading widthG↓ due to mixing of collective states with
more complicated states, which is dominated by the coup
with 2p-2h doorway excitations@4–6#. There are essentially
two different approaches for calculation of the spread
width G↓: ~i! A coherent mechanism due to coupling wi
low-lying surface modes which provides an importa
mechanism for damping of giant resonance in particula
low temperatures@7,8#, and~ii ! Damping due to the coupling
with incoherent 2p-2h states which is usually referred to a
the collisional damping@9,10# and the Landau dampin
modified by two-body collisions@11,12#. Calculations car-
ried out on the basis of these approaches are partially
cessful in explaining the broadening of the giant dipole re
nance with increasing temperature, but the saturation is
an open problem@13#. In this work, we do not consider th
coherent contribution to the spreading width due to the c
pling with low-lying surface modes, but investigate in det
the collisional damping at finite temperature due to decay
the collective state into incoherent 2p-2h excitations in the
basis of a non-Markovian transport approach.

Semiclassical transport models of the Boltzman
Uehling-Uhlenbeck~BUU! type are often employed fo
studying nuclear collective vibrations@14#. Although these
models give a good description for the average resona
energies, they do not provide a realistic description for
collisional relaxation rates. In these standard models, the
lision term is treated in a Markovian approximation by a
suming that the two-body collisions are local in both spa
and time, in accordance with Boltzmann’s original treatme
This simplification is usually justified by the fact that th
duration of two-body collisions is short on the time sca
PRC 580556-2813/98/58~3!/1594~10!/$15.00
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characteristic of macroscopic evolution of the system. Ho
ever, when the system possesses fast collective modes
characteristic energies that are not small in comparison w
temperature, the standard Markovian treatment is inadequ
It leads to an incorrect energy conservation factor in the c
lision term, which severely restricts the available 2p-2h
phase space for damping of the collective modes. Theref
for a proper description of the collisional relaxation rates
is necessary to improve the transport model by including
memory effect due to finite duration of two-body collision
@15–17#.

Recently, we have investigated the collisional damping
giant resonances within the linearized limit of the BU
model with a non-Markovian collision term, and derive
closed-form expressions for damping width of isoscalar a
isovector collective vibrations@18,19#. Also, the model has
been applied to study the density fluctuations and the gro
of instabilities in the nuclear matter within the stochas
Boltzmann-Langevin approach@20,21#. As a result of the
non-Markovian structure of two-body collisions, in expre
sions of transport coefficients of collective modes~i.e.,
damping width and diffusion coefficient!, the available phase
space for decay into 2p-2h states is properly taken into ac
count with the correct energy conserving factor. In nucle
matter limit and for isotropic nucleon-nucleon cross sectio
by employing the standard approximation familiar in Ferm
liquid theory, it is possible to give analytical expression f
the collisional width asG5G0@(\v)21(2pT)2#, whereG0
is different for different resonance and determined by nucl
matter properties and in-medium cross sections. The q
dratic temperature dependence fits well with the measu
giant dipole resonance~GDR! widths in 120Sn and 208Pb
nuclei, however the factorG0 calculated with a cross sectio
of 40 mb underestimates the data by a factor of 2–3. I
recent work, we have performed calculations by employ
energy and angle-dependent free nucleon-nucleon cross
tions and by taking surface effects into account@22#.

In this work, we give a brief description of the non
Markovian extension of the nuclear transport theory in b
quantal and semiclassical frameworks, and present a det
derivation of the collisional widths of collective vibrations
The derivation is carried out in both quantal and semicla
1594 © 1998 The American Physical Society
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cal frameworks by considering linearized limits of the e
tended time-dependent Hartree-Fock~TDHF! and the BUU
model with memory effects. The major uncertainty in t
calculation of collisional widths arises from the lack of a
accurate knowledge of the in-medium cross sections in
vicinity of Fermi energy. The Skyrme force provides a go
description of the imaginary part of the single-particle op
cal potential and its radial dependence in the vicinity
Fermi energy@23#. Therefore, it may be suitable for descri
ing in-medium effects in the collision term around Fer
energy. By employing an effective Skyrme force, we p
form calculations of the damping widths of the giant dipo
and giant quadruple excitations in a semiclassical appr
mation and compare them with the GDR measurement
lead and tin nuclei at finite temperature.

II. ONE-BODY TRANSPORT MODEL
WITH MEMORY EFFECTS

In the extended TDHF approximation, the evolution
the single-particle density matrixr(t) is determined by a
transport equation@24#,

i\
]

]t
r2@h,r#5K~r!, ~1!

whereh(r) is the mean-field Hamiltonian and the quant
on the right-hand-side represents a quantal collision te
which is specified by the correlated part of the two-parti
density matrix asK(r1)5tr2@v,C12# with v as the effective
residual interactions. The correlated part of the two-part
density matrix is defined asC125r122r1r 2̃, where r1r 2̃
represents the antisymmetrized product of the single-par
density matrices, and it is determined by the second equa
of the Born-Bethe-Green-Kirkwood-Yvon hierarchy. Reta
ing only the lowest-order terms in the residual interactio
the hierarchy can be truncated on the second level, and h
the correlated part of the two-particle density matrix evolv
according to

i\
]

]t
C122@h,C12#5F12 ~2!

where

F125~12r1!~12r2!vr1r 2̃2r1r 2̃v~12r1!~12r2!.
~3!

An expression for the collision term can be obtained by f
mally solving Eq.~2!, and substituting the result into Eq.~1!,

K~r!52
i

\E0

t

dttr 2@v,G~ t,t2t!F12~ t2t!G†~ t,t2t!#,

~4!

where

G~ t,t2t!5T•expF2
i

\Et2t

t

dt8h~ t8!G ~5!

denotes the mean-field propagator.
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The transport equation~1! is usually considered in the
semiclassical approximation. In this case, one deals with
phase-space densityf (r,p) defined as the Wigner transform
of the density matrix,

f ~r,p !5E dk

~2p\!3
e2 i [ ~k–r !/\] K p1

k

2
urup2

k

2L . ~6!

Performing the Wigner transform of Eq.~1! and retaining the
lowest-order terms in gradients in accordance with the s
dard treatment@25,26#, yields a semiclassical transport equ
tion for the phase-space density,

]

]t
f ~r ,p!2$h~ f !, f ~r ,p!%5K~ f !. ~7!

Here, the left-hand side describes the Vlasov propagatio
terms of the self-consistent one-body Hamiltonianh( f ), and
K( f ) represents the collision term in the semiclassical
proximation, which has a non-Markovian form due to t
memory effects arising from the finite duration of two-bod
collisions,

K~ f !5E dp2dp3dp4E
0

t

dtw~12;34;t!@~12 f !~12 f 2! f 3f 4

2 f f 2~12 f 3!~12 f 4!# t2t . ~8!

In this expression the phase-space density is evaluate
time t2t according to f j (t2t)5 f (r2tpj /m,pj1t¹U,t
2t) and the collision kernel is given by

w~12;34;t!5
1

2p
W~12;34!@g1~t!g2~t!g3* ~t!g4* ~t!

1c.c.#, ~9!

where gj (t) is the Wigner transform of the mean-fiel
propagator

gj~t!5E dk

~2p\!3
e2 i [ ~k–r !/\] K pj1

k

2
uG~ t,t2t!upj2

k

2 L
~10!

andW(12;34) denotes the basic two-body transition rate

W~12;34!5
p

~2p\!6U K p12p2

2
uvu

p32p4

2 L
A
U2

3d~p11p22p32p4!, ~11!

which can be expressed in terms of the scattering cross
tion as

W~12;34!5
1

~2p\!3

4\

m2

ds

dV
d~p11p22p32p4!. ~12!

The collision term involves different characteristic tim
scales including the average duration time of two-body c
lisions td , the characteristic time associated with the me
field fluctuationstmf , and the mean-free-time between tw
body collisionstl . The range of the integration over the pa
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history in the collision term~8! @and also in Eq.~4!# is es-
sentially determined by the duration time of two-body co
sions. Usually, two-body collisions are treated in a Marko
ian approximation by assuming the duration time
collisions is much shorter than the other time scalestd
!tmf ,tl , which would be appropriate if two-body colli
sions can be considered instantaneous. In this case, tt
dependence of the phase-space density in the collision
can be neglectedf j (t2t)' f j (t), and the mean-field propa
gator can be approximated by the kinetic energy alonegj

'exp@2itej# with e j5pj
2/2m. This yields energy conservin

two-body collisions, and the resultant semiclassical trans
equation is known as the BUU model@27#. The standard
description provides a good approximation at intermed
energies when the system does not involve fast collec
modes, since the weak-coupling condition is well satisfi
due to the relatively long mean-free-path of nucleons. Wh
the system possesses fast collective modes, for exam
high-frequency collective vibrations or rapidly growing u
stable modes, the Markovian approximation breaks do
and the influence of the mean-field fluctuations in the co
sion term becomes important. The finite duration time allo
for a direct coupling between two-body collisions and t
mean-field fluctuations, which strongly modifies the co
sional relaxation properties of the collective modes as co
pared to the Markovian limit, in particular at low temper
tures @28#. In this work we consider the mean-field
dominated regime in which the nucleon mean-free-time
long as compared to the characteristic time associated
the mean-field fluctuations and the duration time of co
sionstd ,tmf!tl , which may be referred to as the weak
non-Markovian regime. In this case, thet dependence of the
phase-space density in the collision term can be neglecte
before, and the collision term takes essentially a Markov
form with an effective transition rate given b
*0

t dtw(12;34;t). When all different time scales are of th
same order of magnitude, the collision term becom
strongly non-Markovian, and the time evolution of the sy
tem is accompanied by off-shell two-body collisions.

III. TRANSPORT DESCRIPTION
OF COLLECTIVE VIBRATIONS

We apply the non-Markovian transport model develop
in the previous section to describe small-amplitude collec
vibrations around a stable equilibrium in the linear-respo
approximation, and present an explicit derivation of the
pression for the collisional damping widths of the collecti
modes in both quantal and semiclassical frameworks.

A. Quantal treatment

To describe small-amplitude collective vibrations arou
a finite-temperature equilibrium stater0, we linearize Eqs.
~1! and ~2! for small deviationsdr5r2r0 and dC125C12

2C12
0 ,

i\
]

]t
dr2@dh,r0#2@h0 ,dr#5tr2@v,dC12# ~13!

and
-
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i\
]

]t
dC122@dh,C12

0 #2@h0 ,dC12#5dF12, ~14!

wheredh5(]U/]r)0•dr represents the small deviations
the single-particle density matrix, the quantitydF12 is

dF1252dr1~12r2
0!vr1

0r2
0̃2~12r1

0!dr2vr1
0r2

0̃1~12r1
0!

3~12r2
0!vdr1r0

2̃1~12r1
0!~12r2

2!vr1
0dr 2̃2H.c.,

~15!

and the equilibrium correlation functionC12
0 is determined

by

2@h0 ,C12
0 #5F12

0 ~16!

with F12
0 as the equilibrium value ofF12.

We can analyze the collective vibration by expanding
small deviationsdr in terms of normal modes of the syste
@29#,

dr~ t !5( @zl~ t !rl
†1zl* ~ t !rl#, ~17!

whererl
† andrl represent the normal modes of the syste

When the damping width is small as compared to the m
frequency of the mode, we can follow a perturbation a
proach and determine the normal modes by the stand
random-phase approximation~RPA! without including the
collision term,

\vlrl
†2@hl

† ,r0#2@h0 ,rl
†#50. ~18!

Here,vl is the frequency of the normal mode andhl
† repre-

sents the positive frequency part of the vibrating mean-fie
It is convenient to introduce the RPA amplitudesÔl

† andÔl

associated with normal modes according torl
†5@Ôl

† ,r0#
and its Hermitian conjugate. In the representation which
agonalizesr0, the RPA amplitudes can be expressed as

^nuÔl
†um&5

^nuhl
†um&

\vl2en1em
~19!

and they are normalized as tr@Ôl ,Ôl
†#r051. Substituting

the expansion~17! into Eq.~13! and projecting byÔl yields

dzl

dt
1 ivlzl52

1

2
Glzl ~20!

for the amplitudes of the normal modes. These amplitu
execute a damped harmonic motion with a damping coe
cient given by

Gl5tr@Ôl ,v#Cl
† ~21!

and it describes the spreading width of the RPA mode du
coupling with the two particle–two hole states, which is us
ally referred to as the collisional damping. In this expressi
Cl

† denotes the positive frequency part of the correlatio
and it is determined by
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\vlCl
†2@hl

† ,C12
0 #2@h0 ,Cl

†#5Fl
† , ~22!

whereFl
† represents the positive frequency part ofdF12. In

the representation diagonalizingr0, the correlation can be
expressed as

^nmuCl
†ukl&5

^nmu@hl
† ,C12

0 #1Fl
†ukl&

\vl2en2em1ek1e l2 ih

5
^nmu@Ôl

† ,F12
0 #1Fl

†ukl&
\vl2en2em1ek1e l2 ih

. ~23!

According to expression~16!, the matrix elements of the
equilibrium correlation is given by ^nmuC12

0 ukl&
5^nmuF12

0 ukl&/(ek1e l2en2em2 ih), in which only the
principal value part is nonvanishing. The second line of
above expression is obtained by replacing the energy fac
in the intermediate states according tod(\vl2en2em1ek
1e l) and using the definition of the RPA amplitudes. Fu
thermore following the observation

@Ôl
† ,F12

0 #52Fl
†1~12r1

0!~12r2
0!@Ôl

† ,v#r1
0r2

0̃

2r1
0r2

0̃@Ôl
† ,v#~12r1

0!~12r2
0!, ~24!

the correlation can be expressed as

^nmuCl
†ukl&

5^nmu@Ôl
† ,v#ukl&A

@rnrmr̄kr̄ l2rkr l r̄nr̄m#

\vl2en2em1ek1e l2 ih
, ~25!

wherern denotes the Fermi-Dirac occupation factor,r̄n51
2rn and ^nmu@Ôl

† ,v#ukl&A represents the antisymmetr
matrix elements. As a result, the damping width of the R
states is given by@16#

Gl5
p

2( u^nmu@Ôl ,v#ukl&Au2d~\vl2en2em1ek1e l !

3@rkr l r̄nr̄m2rnrmr̄kr̄ l #. ~26!

The same expression for the damping width has been der
in Ref. @30# by employing a different approach. It also can
obtained in using the Green’s-function method@31#, or more
intuitive approaches@7#. It should be mentioned that expre
sion ~26! was written down by Landau, and it has becom
classical result of Fermi-liquid theory. However in th
nuclear physics literature several expressions of Eq.~26! ex-
ist which are at variance with Landau’s result@32#. The
subtlety hinges on expression~19! for Ôl

† . Indeed, contrary
to the ordinary RPA amplitudes, which at zero temperat
have onlyph or hp components, no phase-space factors
pear in Eq.~19!, thus allowing nonzero values of^nuÔl

†um&
also forpp andhh configurations@see also expression~30!,
below#.

B. Semiclassical treatment

It is possible to describe the collective vibrations in sem
classical approximation. In this case, one considers
e
rs

-

ed

a

e
-

-
e

phase-space densityd f (r,p) associated with small-amplitud
vibrations. The equation of motion of the small-amplitu
vibrations in the semiclassical limit is obtained by linearizi
the transport equation~7!,

]

]t
d f ~r ,p!1v•¹d f ~r ,p!2v•¹dh

]

]e
f 05dK~r ,p!,

~27!

wheredK(r ,p) denotes the linearized collision term,

dK~r ,p!52
i

\E dk

~2p\!3
e2 i [ ~k–r !\]dp2

3 K p1
k

2
,p2U@v,dC12#Up2

k

2
,p2L , ~28!

v5p/m, and the equilibrium statef (e) is taken to be homo-
geneous for simplicity. In a manner similar to quantal tre
ment, the phase-space density can be expanded in term
normal modes as

d f ~r ,p!5( @2 i\zl~ t !v•¹Ol* 1 i\zl* v•¹Ol#
]

]e
f ,

~29!

where Ol* and Ol are the Wigner transform of the RPA

amplitudesÔl
† and Ôl . In the perturbation approach, thes

amplitudes are given by

Ol* ~r ,p!5S 1

\v2 i\v•¹ D •hl~r ! ~30!

and its complex conjugate. In a similar manner, we can
pand the correlation function in terms of the normal mod
asdC12(t)5(@zl(t)Cl

†1zl* (t)Cl#. By inserting this expan-
sion into Eq.~28!, we obtain an expression of the collisio
term in terms of the RPA amplitudes,

dK~r ,p!5
1

2(l
E dp2dp3dp4W~12;34!@zlDOl* 1zl* DOl#

3@d~\vl2De!2d~\vl1De!#

3@ f̄ 1 f̄ 2f 3f 42 f 1f 2 f̄ 3 f̄ 4#, ~31!

where, De5e31e42e12e2, DOl5Ol(3)1Ol(4)
2Ol(1)2Ol(2) with e( j )5pj

2/2m and Ol( j )5Ol(r ,pj),
and W(12;34) is the transition rate given by Eqs.~11! or
~12!. Substituting the normal mode decomposition of t
phase-space density into Eq.~27! and carrying out a projec
tion with Ol , we find the expression

Gl5
1

2

1

~2p\!3E drdp1dp2dp3dp4uDOlu2W~12;34!

3@d~\vl2De!2d~\vl1De!# f̄ 1 f̄ 2f 3f 4 ~32!

for the collisional width, where the normal modes in th
semiclassical approximation are normalized according to
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2E i

~2p\!3
drdpOlv•¹Ol*

]

]e
f 51. ~33!

We note that this result for the collisional width can direc
be obtained by evaluating the quantal expression~26! in the
Thomas-Fermi approximation@33#. We also note that in or-
der to obtain expressions~26! and ~32! for the collisional
width in quantal or semiclassical forms, the non-Markovi
collision term should be linearized in a consistent manner
including the contributions arising from the mean-fie
propagator and the phase-space factors. The result is,
consistent with Landau’s expression for damping of z
sound modes, and also is in accordance with the qua
fluctuation-dissipation relation@20,21#. If the term involving
the mean-field fluctuations@the second term in the left-han
side of Eq.~14!# is ignored, one obtains a wrong expressi
for the collisional damping which gives a value that is fac
of 3 larger than its correct value in the nuclear matter@18#.

It is more convenient to express the semiclassical R
modes in terms of real functionsQl(r ,p) and Pl(r ,p) de-
fined as

Ql~r ,p!5
1

A2vl

@Ol* ~r ,p!1Ol~r ,p!# ~34!

and

Pl~r ,p!5 iAvl

2
@Ol* ~r ,p!2Ol~r ,p!#. ~35!

As a result, the normal mode expansion~29! becomes

d f ~r ,p!5( @ql~ t !xl
q~r ,p!1pl~ t !xl

p~r ,p!#S 2
]

]e
f D ,

~36!

where xl
q52\v•¹Pl and xl

p52\v•¹Ql represent the
distortion factors of the phase-space density associ
with the real variables ql5(1/A2vl)@zl* 1zl# and
pl5 iAvl/2@zl* 2zl#, respectively. In the collision term
~31!, the factorzlDOl* 1zl* DOl is replaced by

zlDOl* 1zl* DOl5 i
zl

vl
~v•¹!DOl* 2 i

zl*

vl
~v•¹!DOl

5
1

\vl
@qlxl

q~r ,p!1plxl
p~r ,p!#, ~37!

where the first line follows from an identity satisfie
by the semiclassical RPA amplitudes,Ol* (r ,p)5@hl(r )
1 i\v•¹Ol* (r )#/\vl . In order to deduce the equations f
the real variablesql(t) and pl(t), we substitute expansio
~36! into Eq. ~27! and project the resultant equation byOl

and Pl , or equivalently byxl
q and xl

p . This gives two
coupled equations forql(t) and pl(t), which can be com-
bined to yield an equation in the form of a damped harmo
oscillator,

q̈l1Fvl
21S Gl

2\ D 2Gql52
Gl

\
q̇l , ~38!
y

en,
o
tal

r

A

ed

c

where the collisional width is given by

Gl5
1

~2p\!3E drdp1dp2dp3dp4

3@~Dxl
q!21~Dxl

p!2#W~12;34!

3Fd~\vl2De!2d~\vl1De!

4\vl
G f̄ 1 f̄ 2f 3f 4 ~39!

with the distortion factors normalized according to

E 1

~2p\!3
drdp~xl

q!2S 2
]

]e
f D

5E 1

~2p\!3
drdp~xl

p!2S 2
]

]e
f D51. ~40!

This expression, which is equivalent to the one given by
~32!, provides a useful formula to calculate collisional dam
ing in terms of distortion factors of the momentum distrib
tion associated with the collective modes. The distortion f
tors may be determined from the RPA treatment, or can
directly parametrized on physical grounds. In practice, o
one of the factors,xl

q or xl
p which is associated with a dis

tortion of the momentum distribution, contributes the col
sional damping.

Spin-isospin effects in collective vibration can be eas
incorporated in the semiclassical RPA treatment by con
ering proton and neutron degrees of freedom separately.
small deviations of the phase-space densitiesd f p(r ,p),
d f n(r ,p) of protons and neutrons are determined by t
coupled equations analogous to Eq.~27!. The collision terms
in these equations involve binary collisions between prot
proton, neutron-neutron, and proton-neutron, and a sum
tion over the spins of the colliding particles. Observing th
in isoscalar/isovector modes protons and neutrons vibrate
phase/out-of phase,d f p(r ,p)57d f n(r ,p), we can deduce
equations of motion for describing isoscalar/isovector vib
tions by adding and subtracting the corresponding equat
for protons and neutrons. Carrying out the semiclassical R
treatment presented above, we obtainGl5*drGl(r ) with

Gl
s~r !5

1

Nl
E dp1dp2dp3dp4@Wpp1Wnn12Wpn#

3S Dxl

2 D 2

Z f1f 2 f̄ 3 f̄ 4 ~41!

and

Gl
v5

1

Nl
E dp1dp2dp3dp4F ~Wpp1Wnn!S Dxl

2 D 2

12WpnS Dx̃l

2
D 2GZ f1f 2 f̄ 3 f̄ 4 ~42!

for the collisional widths of isoscalar and isovector mod
respectively. Here,Nl5*drdp(xl)2@2(]/]e) f # is a nor-
malization, Dxl5xl(1)1xl(2)2xl(3)2xl(4), Dx̃l
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5xl(1)2xl(2)2xl(3)1xl(4), and Z5@d(\vl2De)
2d(\vl1De)#/\vl . In these expressions, transition rat
associated with proton-proton, neutron-neutron, and pro
neutron collisions are given by Eq.~12! with the correspond-
ing cross sections

S ds

dV D
pp

5S ds

dV D
nn

5
p

~2p\!3

m2

4\

1

4(S
~2S11!

3U K p12p2

2
;S,T51uvu

p32p4

2
;S,T51L

A
U2

~43!

and

S ds

dV D
pn

5
p

~2p\!3

m2

4\

1

8(S,T
~2S11!

3U K p12p2

2
;S,Tuvu

p32p4

2
;S,TL

A
U2

, ~44!

where^p12p2/2;S,Tuvup32p4/2;S,T&A represents the fully
antisymmetric two-body matrix element of the residual int
action between states with total spin and isospinS and T.
The residual interactionsv should be understood as an effe
tive density-dependent force. It can indeed be shown th
reasonable approximation forv is the so-calledG matrix
@29#. MicroscopicG matrices are not very practical for ex
plicit use, and thus we adopt below a more phenomenol
f-
o

n-

-

a

i-

cal point of view replacing theG matrix by one of the more
recent Skyrme forces. In doing so, we, however, should
careful, since in the vicinity of nuclear surface Skyrme-ty
forces usually do not match at all the free nucleon-nucle
cross sections.

IV. DAMPING OF GD AND GQ EXCITATIONS

We apply formulas~41! and ~42! to calculate the colli-
sional widths of the giant quadruple and dipole modes
parametrizing the distortion factors of the momentum dis
bution in terms of Legendre functions asxQ5p2P2(cosu)
andxD5pP1(cosu). In our calculations, we employ an e
fective Skyrme force, which is parametrized as

v5t0~11x0Ps!d~r 12r 2!

1
t1

2
@d~r 12r 2!k̂

21 k̂82d~r 12r 2!#

1t2k̂8•d~r 12r 2!k̂1
t3

6
rad~r 12r 2!, ~45!

where k̂5(p12p2)/2\ represents the relative momentu
operator withk̂ acting to the right andk̂8 acting to the left. In
the case of the quadrupole mode the collisional width is
termined by the spin-isospin averaged nucleon-nucleon c
section, (ds/dV)05@(ds/dV)pp1(ds/dV)nn12(ds/
dV)pn#/4. In the case of the dipole mode the only contrib
tion comes from the spin-averaged proton-neutron cross
tion, (ds/dV)pn . In terms of the effective Skyrme forc
these cross sections are given by
S ds

dV D
0

5
p

~2p\!3

m* 2

4\ H 3

4F t0~12x0!1
t1

2
~k21k82!1

t3

6
raG2

1
5

2
@ t2k–k8#21

3

4F t0~11x0!1
t1

2
~k21k82!1

t3

6
raG2J

~46!

and

S ds

dV D
pn

5
p

~2p\!3

m* 2

4\ H 1

2F t0~12x0!1
t1

2
~k21k82!1

t3

6
raG2

12@ t2k–k8#21
3

2F t0~11x0!1
t1

2
~k21k82!1

t3

6
raG2J ,

~47!
m
ns-
wherek5(p12p2)/2\ andk85(p32p4)/2\ are the relative
momenta before and after the binary collision, andm* de-
notes the effective mass

1

m* ~r !
5

1

mF11
2m

\2

1

16
~3t115t2!r~r !G . ~48!

In the bulk of the nucleus the Pauli blocking is very e
fective, and hence, the overwhelming contributions to m
 -

mentum integrals in expressions~41! and ~42! arise in the
vicinity of the Fermi surface. We can approximately perfor
these integrals by employing the standard coordinate tra
formation @34#,

E dp1dp2dp3dp4d~p11p22p32p4!•••

'E pF

m* 4

2
de1de2de3de4

dV1dV

cosu/2
df2••• . ~49!
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Furthermore, for temperatures small compared to the Fe
energy,T!eF , the energy integrals can be calculated a
lytically using the formula@34,35#,

E de1de2de3de4d~\v6De! f 1̄f 2̄f 3f 4

'7
\v

6

~\v!21~2pT!2

12exp~2\v/T!
. ~50!

Then, the bulk contribution to the collisional widths of th
quadrupole and dipole modes can be expressed as

GQ
bulk~r !5

\

NQ

4p

5
m* 2rpF

2 I Q~r !@~\v!21~2pT!2#

~51!

and

GD
bulk~r !5

\

ND

2p

3
m* 2rI D~r !@~\v!21~2pT!2#. ~52!

Here, r denotes the particle density, r5@4/
(2p\)3#(4p/3)pF

3 , the normalizations areNQ5(4p/
5)*drm* pF

5 , ND5(4p/3)*drm* pF
3 , and the quantities

I Q , I D are given by

I Q5E sin
u

2
dudf@11P2~cosu!22P2~cosu38!#S ds

dV D
0

~53!

and

I D5E sin
u

2
dudf@12P1~cosu!#S ds

dV D
pn

. ~54!

In these expressions, the angular integrals can be perfor
analytically by noting that in the vicinity of Fermi surfac
the momentum-dependent terms in the cross sections ca
expressed in terms of the standard variables ask•k85
2kF

2sin2u/2 cosf and k25k825kF
2sin2u/2, and cosu38

5(cosu/2)22(sinu/2)2cosf. As already mentioned earlie
the cross sections based on Skyrme forces have a stro
erroneous behavior at very low densities. For this reason
cannot use expressions~51! and~52! far out in the surface. It
is therefore absolutely necessary to develop effective fo
which have the correct free cross-section limit. For the ti
being, we develop an interpolation scheme. In the vicinity
nuclear surface,r(r )!r0, the Pauli blocking is not effective
In this case, it is convenient to transform the integration va
ables in Eqs.~41! and ~42! into the total momentaP5p1
1p2, P85p31p4 and relative momentaq5(p12p2)/2, q8
5(p32p4)/2 before and after the collision. Due to the e
ergy conservation, the magnitude of the relative momen
after the collision is restricted according toq8
5Aq27m* \v. In the tail region foreF ,T!\v, expres-
sions~41! and ~42! may be estimated by omitting the Pau
blocking factors and neglecting theq-dependent terms. Thi
gives
i
-

ed

be

gly
e

es
e
f

i-

m

GQ
surf~r !'

\

NQ

2p

3
rpF

3~m* \v!3/2I Q~r ! ~55!

and

GD
surf~r !'

\

NQ

p

3
rpF

3~m* \v!1/2I D~r !. ~56!

We define an effective Pauli blocking factor as the ratio
the damping width with and without the Pauli blocking fa
tors in expressions~41! and~42!, Fl5Gl(r )/Gl

no Pauli(r ), for
l5Q or D, and parametrize it in the following form:

Fl~r !511S eF~r !

eF~0! D
b

@Fl~0!21#, ~57!

whereeF(0) is the Fermi energy at the bulk corresponding
the central densityr0, Fl(0) is the effective factor at the
bulk andb5\vl/2eF(0). As afunction of r , the effective
blocking factor remains essentially constant and equals
bulk value until the density reaches about 1/2 of the cen
density, and then it smoothly goes to one at the surface of
nucleus. This form provides a good approximation for t
exact calculations of the effective Pauli blocking of 2p– 1h
excitations in connection with the collisional damping
single-particle states as reported in Ref.@36#. Therefore we
expect, it provides a reasonable approximation for 2p– 2h
excitations, and calculate the collisional widths in an a
proximate manner by smoothly joining the bulk contributio
with the surface contribution in accordance with the appro
mate blocking factor~57!,

GQ5E dr H GQ
bulk~r !S eF~r !

eF~0! D
b10.5

1GQ
surf~r !F12S eF~r !

eF~0! D
bG J

[E drGQ~r ! ~58!

and

GD5E dr H GD
bulk~r !S eF~r !

eF~0! D
b11.5

1GD
surf~r !F12S eF~r !

eF~0! D
bG J

[E drGD~r !. ~59!

We determine the nuclear density in the Thomas-Fe
approximation using a Wood-Saxon potential with a de
V05244 MeV, thicknessa50.67 fm, and sharp radiusR0
51.27A1/3 fm. We perform the calculations with a Skyrm
force with the SkM parametersa51/6, x050.09, t05
22645 MeV fm3, t15410 MeV fm5, t252135 MeV fm5,
and t3515.595 MeV fm7/2. For the mass dependence of th
resonance energies for spherical medium mass and h
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nuclei we use the formulas,\v564A21/3 MeV for giant
quadrupole resonance~GQR! and \v580A21/3 MeV for
GDR. Figures 1 and 2 illustrate the relative contribution
the damping widths of GDR and GQR for a nucleus w
A5120 as a function ofr . In these figures and also in th
other figures, the dashed and dotted lines show the resu
the calculations with the effective massm* and the bare
massm, respectively. The sharp rise ofG(r ) in the vicinity
of the surface is largely due to the effective mass, which
small in the bulk and approaches its bare value at the surf
and to a lesser extent due to the increase of the Skyrme c
section at low densities. For comparison, the results for c
stant cross sections ofs0530 mb andspn540 mb are
shown in the same figures by solid lines. These cons
cross sections correspond to a zero range force wit
strengtht052300 MeV fm3 and all other parameters ar

FIG. 1. The relative contribution to the collisional dampin
width of GDR as a function ofr for A5120 at zero temperature
Solid, dashed, and dotted lines are calculations with a constant c
sectionspn540 mb, with the SkM force with the effective mas
and with the SkM force with the bare mass, respectively.

FIG. 2. The relative contribution to the collisional dampin
width of GQR as a function ofr for A5120 at zero temperature
Solid, dashed, and dotted lines are calculations with a constant c
sectionspn530 mb, with the SkM force with the effective mas
and with the SkM force with the bare mass, respectively.
f

of

is
e,
ss

n-

nt
a

set equal to zero in Eq.~45!. Figures 3 and 4 show the atom
mass dependence of the GDR and GQR widths and comp
son with data, respectively. The SkM force with the effecti
mass underestimates the average trend of GDR for med
weight and heavy nuclei by about a factor of 2. The calc
lations with the bare mass give a better description of
average trend. In the GQR case, the discrepancy betwee
calculations and the average trend of data is larger than in
GDR case. In Figs. 5 and 6, the measured GDR widths
120Sn and208Pb nuclei are plotted as a function of temper
ture, and compared with the calculations performed with
effective mass and the bare mass shown by dashed and
ted lines, respectively. The calculations with the effect
mass provide a reasonable description of the temperature
pendence of the data, but the magnitude of damping is
derestimated in both cases. The calculation with the b

ss

ss

FIG. 3. The collisional damping width of GDR as a function
mass numberA at zero temperature. Solid, dashed, and dotted li
are calculations with a constant cross sectionspn540 mb, with the
SkM force with the effective mass, with the SkM force with th
bare mass, respectively, and the points show the data.

FIG. 4. The collisional damping width of GQR as a function
mass numberA at zero temperature. Solid, dashed, and dotted li
are calculations with a constant cross sectionspn530 mb, with the
SkM force with the effective mass, with the SkM force with th
bare mass, respectively, and the points show the data.
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mass gives larger damping, but the damping widths appe
grow faster than data as a function of temperature.

V. CONCLUSIONS

In the standard nuclear transport models~mean-field
transport models and their stochastic extensions in the s
classical or quantal form!, the binary collisions are treated i
a Markovian approximation by assuming the duration ti
of a collision is much shorter than the mean-field fluctuatio
and the mean-free-time between collisions, which would

FIG. 5. The collisional damping width of GDR in120Sn as a
function of temperature. Dashed, dotted lines, and points are ca
lations with the SkM force with the effective mass, with the Sk
force with the bare mass, and data taken from@2#, respectively.

FIG. 6. The collisional damping width of GDR in208Pb as a
function of temperature. Dashed, dotted lines, and points are ca
lations with the SkM force with the effective mass, with the Sk
force with the bare mass, and data taken from@3#, respectively.
to

i-

e
s
e

appropriate if two-body collisions can be considered inst
taneous. As a result, the standard model provides a clas
description of transport properties of collective motion tha
valid at the low-frequency–high-temperature limit. When t
system possesses fast collective modes, the standard de
tion breaks down and it is necessary to incorporate a mem
effect associated with the finite duration of binary collision
This yields a non-Markovian extension of the transport d
scription in which the basic transition rate is modified
involving a direct coupling between collective modes a
two-body collisions. The extended model leads to a desc
tion of the transport properties of collective modes that is
accordance with the quantal fluctuation-dissipation relati
In this work, we present a detailed derivation of the co
sional widths of isoscalar and isovector collective nucle
vibrations in both quantal and semiclassical frameworks
considering the linearized limits of the extended TDHF a
the BUU model with non-Markovian collision term. Th
standard treatment with a Markovian collision term leads
vanishing collisional widths at zero temperature, whereas
the non-Markovian treatment the collisional widths are fin
and consistent with Landau’s expression for damping of z
sound in Fermi liquids. The numerical result of the col
sional damping is rather sensitive to the in-medium nucle
nucleon cross sections around Fermi energy, for which ac
rate information is not available. In the prese
investigations, by employing an effective Skyrme force w
SkM parameters, we carry out calculations of the damp
widths of giant quadrupole and giant dipole excitations in
semiclassical framework, and compare the results with
GDR measurements in120Sn and208Pb nuclei at finite tem-
peratures. In particular for GDR, the magnitude of the co
sional damping with the bare nucleon mass is a sizable f
tion of the observed damping widths at zero temperatu
however the effective mass further reduces the magnitud
damping in both cases. Aside from the magnitude, calcu
tions are qualitatively in agreement with the broadening
GDR widths as a function of temperature in both120Sn and
208Pb nuclei.

One of the main aims of the present investigation was
assess how much of the the total width of giant resona
excitations is exhausted by decay into the incoherent 2p-2h
states. The calculations have been performed within
Thomas-Fermi approximation, which is known from ind
pendent studies to be very reliable for description of
2p-2h level densities@23#. However, our results remain
semiquantitative, since in the Thomas-Fermi framework
need the in-medium cross sections locally down to very l
densities, i.e., we need cross sections which interpolate
rectly between the free space and the medium. At the m
ment such cross sections are not available~at least not ana-
lytically!, and thus we were forced to invent our ow
interpolation scheme, which, although reasonable, is sub
to some uncertainties. We found that a sizable fraction ofG↓

is accounted for by the incoherent decay. This is the case
instance, for the GDR and also to a lesser extent for
GQR. In addition, we found for the GDR that the percenta
of the incoherent decay, depending somewhat on the nuc
effective mass, strongly increases with temperature. T
finding is not very surprising, since at temperatureT.3
MeV shell effects are absent and the collectivity of the

u-

u-
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brational states is strongly reduced. Therefore to a good
proximation, a hot nucleus can be regarded as a finite blo
a hot Fermi gas. In spite of this, in particular at lower te
peratures, the influence of the low-lying collective states
the damping is missing in our description. Also, the quest
of the saturation of the GDR width has not been addresse
this work. Further studies are needed for a quantitative
scription of the damping of nuclear giant resonances.
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