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Collisional damping of nuclear collective vibrations in a non-Markovian transport approach
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A detailed derivation of the collisional widths of collective vibrations is presented in both quantal and
semiclassical frameworks by considering the linearized limits of the extended time-dependent Hartree-Fock
and the Boltzmann-Uehling-Uhlenbeck model with a non-Markovian binary collision term. Damping widths of
giant dipole and giant quadrupole excitations are calculated by employing an effective Skyrme force, and the
results are compared with giant dipole resonance measurements in lead and tin nuclei at finite temperature.
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[. INTRODUCTION characteristic of macroscopic evolution of the system. How-
ever, when the system possesses fast collective modes with
Excitation energy dependence of the giant resonance isharacteristic energies that are not small in comparison with
still one of the open problems in the study of collective temperature, the standard Markovian treatment is inadequate.
modes in nuclei at finite temperatures. Recent experimentat leads to an incorrect energy conservation factor in the col-
investigations of the giant dipole resonance in the mass rdision term, which severely restricts the availabl@-2h
gion A=110-140[1,2] and the?°®Pb nucleug3] show that phase space for damping of the collective modes. Therefore,
damping monotonically increases with excitation energy, andor a proper description of the collisional relaxation rates, it
in the former case, saturates at high excitations. In mediumis necessary to improve the transport model by including the
weight and heavy nuclei at relatively low temperatures thememory effect due to finite duration of two-body collisions
owerwhelming contribution to damping arises from the[15-17.
spreading widthl'! due to mixing of collective states with Recently, we have investigated the collisional damping of
more complicated states, which is dominated by the couplingiiant resonances within the linearized limit of the BUU
with 2p-2h doorway excitation§4—6]. There are essentially model with a non-Markovian collision term, and derived
two different approaches for calculation of the spreadingclosed-form expressions for damping width of isoscalar and
width T': (i) A coherent mechanism due to coupling with isovector collective vibrationf18,19. Also, the model has
low-lying surface modes which provides an importantbeen applied to study the density fluctuations and the growth
mechanism for damping of giant resonance in particular aof instabilities in the nuclear matter within the stochastic
low temperaturef7,8], and(ii) Damping due to the coupling Boltzmann-Langevin approacf20,21. As a result of the
with incoherent »-2h states which is usually referred to as non-Markovian structure of two-body collisions, in expres-
the collisional damping[9,10] and the Landau damping sions of transport coefficients of collective modés.,
modified by two-body collisiong11,12. Calculations car- damping width and diffusion coefficienthe available phase
ried out on the basis of these approaches are partially suspace for decay into[®22h states is properly taken into ac-
cessful in explaining the broadening of the giant dipole resocount with the correct energy conserving factor. In nuclear
nance with increasing temperature, but the saturation is stilinatter limit and for isotropic nucleon-nucleon cross sections,
an open probleni13]. In this work, we do not consider the by employing the standard approximation familiar in Fermi-
coherent contribution to the spreading width due to the coukiquid theory, it is possible to give analytical expression for
pling with low-lying surface modes, but investigate in detail the collisional width ad”=T'g[ (A w)2+ (27T)?], wherel',
the collisional damping at finite temperature due to decay ofs different for different resonance and determined by nuclear
the collective state into incoherenp2h excitations in the matter properties and in-medium cross sections. The qua-
basis of a non-Markovian transport approach. dratic temperature dependence fits well with the measured
Semiclassical transport models of the Boltzmann-giant dipole resonancéGDR) widths in 12°Sn and 2%Pb
Uehling-Uhlenbeck(BUU) type are often employed for nuclei, however the factdr, calculated with a cross section
studying nuclear collective vibratior{d4]. Although these of 40 mb underestimates the data by a factor of 2-3. In a
models give a good description for the average resonanaecent work, we have performed calculations by employing
energies, they do not provide a realistic description for theenergy and angle-dependent free nucleon-nucleon cross sec-
collisional relaxation rates. In these standard models, the cotions and by taking surface effects into accof2].
lision term is treated in a Markovian approximation by as- In this work, we give a brief description of the non-
suming that the two-body collisions are local in both spaceMarkovian extension of the nuclear transport theory in both
and time, in accordance with Boltzmann'’s original treatmentquantal and semiclassical frameworks, and present a detailed
This simplification is usually justified by the fact that the derivation of the collisional widths of collective vibrations.
duration of two-body collisions is short on the time scaleThe derivation is carried out in both quantal and semiclassi-
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cal frameworks by considering linearized limits of the ex- The transport equatiofl) is usually considered in the
tended time-dependent Hartree-FddOHF) and the BUU  semiclassical approximation. In this case, one deals with the
model with memory effects. The major uncertainty in thephase-space densifyr,p) defined as the Wigner transform
calculation of collisional widths arises from the lack of an of the density matrix,

accurate knowledge of the in-medium cross sections in the

vicinity of Fermi energy. The Skyrme force provides a good dk
description of the imaginary part of the single-particle opti- f(r,p)=f (27h)3
cal potential and its radial dependence in the vicinity of
Fermi energ)y23]. Therefore, it may be suitable for describ- performing the Wigner transform of E€L) and retaining the

ing in-medium effects in the collision term around Fermi |owest-order terms in gradients in accordance with the stan-

energy. By employing an effective Skyrme force, we per-dard treatmen25,26, yields a semiclassical transport equa-
form calculations of the damping widths of the giant dipoletjon for the phase-space density,

and giant quadruple excitations in a semiclassical approxi-

. k k
—i[(k-r)/h] _ _
e <p+2|p|p 2>- 6

mation and compare them with the GDR measurements in d B
lead and tin nuclei at finite temperature. 5 [(0.P) = {h(F),f(r,p)} =K(f). (7)
Il. ONE-BODY TRANSPORT MODEL Here, the left-hand side describes the Vlasov propagation in
WITH MEMORY EFFECTS terms of the self-consistent one-body Hamiltonke(), and

o _ K(f) represents the collision term in the semiclassical ap-
In the extended TDHF approximation, the evolution of proximation, which has a non-Markovian form due to the
the single-particle density matrig(t) is determined by a memory effects arising from the finite duration of two-body

transport equatiofi24], collisions,

.0 t

i1 2 p[np]=K(p), @ k()= [ dppstp, | drw12:38 11 D111,
whereh(p) is the mean-field Hamiltonian and the quantity —ffa(1=F3)(1=F4)]i— ;. (8)

on the right-hand-side represents a quantal collision term, , o
which is specified by the correlated part of the two-particle!n thiS expression the phase-space density is evaluated at
density matrix ad(p;) =tr,[v,Cy,] with v as the effective M€ t—7 according tof;(t—7)=f(r—mp;/m,p;+7VU,t
residual interactions. The correlated part of the two-particle

— 7) and the collision kernel is given by
density matrix is defined a€>=p1,— p1p>, Wherepp, 1
represents the antisymmetrized product of the single-particle W(12;34;7)= ZW(12;3‘D[91(7)92(T)9§(T)QZ(T)
density matrices, and it is determined by the second equation
of the Born-Bethe-Green-Kirkwood-Yvon hierarchy. Retain- +c.cl, (9
ing only the lowest-order terms in the residual interactions,
the hierarchy can be truncated on the second level, and heneéere g;(7) is the Wigner transform of the mean-field
the correlated part of the two-particle density matrix evolvespropagator
according to

: k k
P gj(T):f 2 ﬁ)se'[“"”’“<p,-+ SIG(tt=7)lp;— §>
i —=Cyo—[h,Cp]=F 2 m

ot 12 [ ll-l 12 ( ) (10)

where andW(12;34) denotes the basic two-body transition rate
—(1— _ e N _ _ _ 2
F12=(1=p1)(1=p2)vpipz—p1p2v(1=p1)(1—p3). . W(12:34= 6‘ < P1 szv|p3 p4>
@ml 2 T 2 ],

An expression for the collision term can be obtained by for- X 8(P1+ Pa—Ps—Pa), (12)

mally solving Eq.(2), and substituting the result into E@),
_ which can be expressed in terms of the scattering cross sec-
it '
Kp)== 3| @rtro, Gt t-DFut-nGTtt-n), 1"
0

@ W(12:34= — A AT oo ). (12
; (2mh)? m? QY P11t P2— P37~ Pa).
where
The collision term involves different characteristic time
dt’h(t’) (5) scales including the average duration time of two-body col-
lisions 74, the characteristic time associated with the mean-
field fluctuationsr,;, and the mean-free-time between two-

denotes the mean-field propagator. body collisionsr, . The range of the integration over the past

t

G(t,t—r)=T~ex;{—;i—

t—7
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history in the collision term(8) [and also in Eq(4)] is es- 9 o
sentially determined by the duration time of two-body colli- it = 6C15=[ 80, C1pl ~[ho, 6C12] = 6F 12, (14
sions. Usually, two-body collisions are treated in a Markov-

ian approximation by assuming the duration time ofwhere sh=(gU/dp),- Sp represents the small deviations in

collisions is much shorter than the other time scalgS the single-particle density matrix, the quantii ., is
<Tmi, T, Which would be appropriate if two-body colli-

sions can be considered instantaneous. In this caser the _ _ 0y, 00_(1_ 0 "0 0, ,q_ .0
dependence of the phase-space density in the collision termyT 12~ ~ P11 p2)upape (1= p1) Spovpipat (17 p1)
can be neglecteé;(t— 7)~f:(t), and the mean-field propa- N N ooy 2 0

gator can be appiroximateé by the kinetic energy alaje, X(1=p3)vdopipgt (1= p1)(1—p3)vpidp—H.C.,
~exd —irg] with ;= pj2/2m. This yields energy conserving (15
two-body collisions, and the resultant semiclassical transport . . 0 . _
equation is known as the BUU modf27]. The standard and the equilibrium correlation functioB8;, is determined
description provides a good approximation at intermediat®y
energies when the system does not involve fast collective
modes, since the weak-coupling condition is well satisfied

due to the relatively long mean-free-path of nucleons. Wher\1Nith ng as the equilibrium value ofF ,,.

the system possesses fast collective modes, for example, We can analyze the collective vibration by expanding the

high-frequency collective vibrations or rapidly growing un- o .
stable modes, the Markovian approximation breaks dow 2”25‘ Il deviationssp in terms of normal modes of the system

and the influence of the mean-field fluctuations in the colli-
sion term becomes important. The finite duration time allows
for a direct coupling between two-body collisions and the 5p(t)=2 [Z)\(t)p)t-i-zt(t)ph], a7
mean-field fluctuations, which strongly modifies the colli-

sional relaxation properties of the collective modes as Com\'/vherep{ andp, represent the normal modes of the system.
pared to the Markowan limit, in pam_cular at low tempera- \yhen the damping width is small as compared to the mean
tureg [28]. In .th's_ Work we consider the mean-fleld-. frequency of the mode, we can follow a perturbation ap-
dominated regime in which the nucleon mean-free-time i roach and determine the normal modes by the standard

long as cor_npared to the characteristic time as_somated WIE ndom-phase approximatidiiRPA) without including the
the mean-field fluctuations and the duration time of CO”"coIIision term

sions 74, Tmi<< 7, ,» Which may be referred to as the weakly

non-Markovian regime. In this case, thelependence of the hwypl —[hl,pol—[ho.pi1=0. (18
phase-space density in the collision term can be neglected, as

before, and the collision term takes essentially a MarkoviarHere, w, is the frequency of the normal mode ahb repre-
form with an effective fransition rate given Dby sents the positive frequency part of the vibrating mean-field.

t . . H H A A~
Jod7w(12;34;7). When all different time scales are of the | j5 conyenient to introduce the RPA amplitudd$ and®,
same order of magnitude, the collision term becomes iated with | mod ding =[O
strongly non-Markovian, and the time evolution of the sys-asso.Clae With normal modes accor Ing 7 .[ N’pc.’] .
tem is accompanied by off-shell two-body collisions. and its Hermitian conjugate. In the representation which di-

agonalizeg, the RPA amplitudes can be expressed as

—[ho,CH1=F2, (16)

ll. TRANSPORT DESCRIPTION (n|h{|m)

n|Ofmy= ——2—"— 19
OF COLLECTIVE VIBRATIONS (oAM= 4 e e (19)

We apply the non-Markovian transport model developed A
in the previous section to describe small-amplitude collectiveand they are normalized ag @, ,0]]po=1. Substituting
vibrations around a stable equilibrium in the linear-responsehe expansiorf17) into Eq.(13) and projecting byO, vyields
approximation, and present an explicit derivation of the ex-
pression for the collisional damping widths of the collective dz, 1

modes in both quantal and semiclassical frameworks. EH“’AZA: - zl\z)\ (20

for the amplitudes of the normal modes. These amplitudes

. ] ) o execute a damped harmonic motion with a damping coeffi-
To describe small-amplitude collective vibrations aroundgient given by

a finite-temperature equilibrium stapg, we linearize Egs.
(1) and (2) for small deviationsSp=p—pg and 6C,,=C, F)\:tr[é}\ ,v]C;[ (21
—Cl,.,

A. Quantal treatment

P and it describes the spreading width of the RPA mode due to
i — 5p—[8h.po]—[hg.Sp]=tr.[v,5C 13 coupling with the two particle—two hole states, which is usu-
"o P [9N:pol=Lho.op]=tralv, 6C1,] (13 ally referred to as the collisional damping. In this expression,
CI denotes the positive frequency part of the correlations
and and it is determined by
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hw,Cl—[h!,C%]-[hy,CI1=F], (220  phase-space densisf (r,p) associated with small-amplitude
vibrations. The equation of motion of the small-amplitude
whereF| represents the positive frequency pardf,,. In  vibrations in the semiclassical limit is obtained by linearizing
the representation diagonalizing, the correlation can be the transport equatio(¥),
expressed as

J J

(nmiCkl) = (nmi[h!,Co1+F]kl) E5f(r,p)+v-Véf(r,p)—v'Véh%ff):5K(r,p),
A howy,— €,— €nt+ €+ €—in 27
(nm|[O] ,F%,]+F]|kl) where 8K (r,p) denotes the linearized collision term,
C hoy—e—entecte—in 23 d
i _
— —i[(k-r)n
According to expressiori16), the matrix elements of the 5K(r,p)——gf (th):;e edp,

equilibrium  correlation is given by (nm|C3,kl)

=(nm|FY, kI)/(ex+ €, — en—em—in), in which only the

principal value part is nonvanishing. The second line of the X\ P E'pZ

above expression is obtained by replacing the energy factors

in the intermediate states accordingdt v, —€,— en+ € v=p/m, and the equilibrium staté(€) is taken to be homo-

+¢€) and using the definition of the RPA amplitudes. Fur-geneous for simplicity. In a manner similar to quantal treat-

thermore following the observation ment, the phase-space density can be expanded in terms of
normal modes as

[U y §C12—|

k
p— E!pZ ’ (28)

[OF Fll=—F]+(1-p))(1-p)[O] ,vlplprs

J
—_— _ _a . * i * . R
— %008 u](1—p%)(1-pY), (24) St(r,p)=2, [—ihz,(t)v-VOr +ifz'v VO,If,

29
the correlation can be expressed as @9

where OF and O, are the Wigner transform of the RPA
amplitudesO] and O, . In the perturbation approach, these

[PrPmPKPI— PkPI PPl 5 amplitudes are given by

(nm/C][kl)

— AT
(nm[O ’v]|k|>Aﬁw)\—en—em+ et e—in’

1
_ O3 (r, =(.—)oh r 30
wherep, denotes the Fermi-Dirac occupation factpg=1 A (TP) ho—ihvv) ™ : (30
—pn and (nm|[O] ,u]|kl), represents the antisymmetric
matrix elements. As a result, the damping width of the RP
states is given by16]

and its complex conjugate. In a similar manner, we can ex-

%and the correlation function in terms of the normal modes
asoCq,(t)= E[zh(t)CIJr zy (t)C,]. By inserting this expan-

- R sion into Eq.(28), we obtain an expression of the collision

F)\:EE [(nm|[Oy ,v]|kIYal28(F w\— €n— €mT €+ €)) term in terms of the RPA amplitudes,

— — 1
X[ pkP1PnPm™ PrPmPKPI]- (26) 5K(r,p)=§2 f dp,dpsdp,W(12;34[2,A0% +zF AO, ]
A

The same expression for the damping width has been derived

in Ref.[30] by employing a different approach. It also can be X[o(hwy—Ae)—5(hwy+Ae€)]
obtained in using the Green’s-function metj&d], or more T Tofaf o f T (31)
intuitive approachef7]. It should be mentioned that expres- [fafafafa=Tafofala],

sion (26) was written down by Landau, and it has become a _ _
classical result of Fermi-liquid theory. However in the where, ~ Ae=e5t €4 6.1:622’/ Aod%_oﬁ(f)JrO”(‘l)
nuclear physics literature several expressions of(Zg.ex- (1) ~0x(2) with €(j)=pj/2m and O,(j) =O,(r.p),

ist which are at variance with Landau's res{&2]. The andW(12;34) is the transition rate given by Eqdl) or
subtlety hinges on expressigh9) for O! . Indeed, contrary (12). Substituting the normal mode decomposition of the
to the ordinary RPA amplitudes, which at zero temperatur hase-space density into E@.7) and carrying out a projec

ion with O, , we find the expression
have onlyph or hp components, no phase-space factors ap-

pear in Eq.(19), thus allowing nonzero values ¢h|©I|m> 1 1
also forpp andhh configurationd see also expressid30), r=- —f drdp,dp,dpsdpsAO, |?W(12;34
below]. 2 (27h)®

B. Semiclassical treatment XLo(hwy—Ae)= d(hwy+Ae)Jf1faf4, (32

It is possible to describe the collective vibrations in semi-for the collisional width, where the normal modes in the
classical approximation. In this case, one considers theemiclassical approximation are normalized according to



1598 S. AYIK, O. YILMAZ, A. GOKALP, AND P. SCHUCK PRC 58

(9
5 drdpO,v-VO; ——f=1. (33

f ; where the collisional width is given by

(2mh)°

| o | ro=——— [ ardpydp.apadp,
We note that this result for the collisional width can directly (2mh)

be obtained by evaluating the quantal expres$&@) in the ]
Thomas-Fermi approximatior83]. We also note that in or- XLAXD*+(AXD*IW(12;34
der to obtain expression@6) and (32 for the collisional S(hwy,—Ae)— S(hw,+Ae)]—
width in quantal or semiclassical forms, the non-Markovian X a7

collision term should be linearized in a consistent manner by e

including the contributions arising from the mean-field
propagator and the phase-space factors. The result is, then
consistent with Landau’s expression for damping of zero

sound modes, and also is in accordance with the quantal J
fluctuation-dissipation relatiof20,21. If the term involving

the mean-field fluctuationghe second term in the left-hand

side of Eq.(14)] is ignored, one obtains a wrong expression _f
for the collisional damping which gives a value that is factor B
of 3 larger than its correct value in the nuclear maftes].

It is more convenient to express the semiclassical RPAThis expression, which is equivalent to the one given by Eq.
modes in terms of real functior®, (r,p) and P,(r,p) de-  (32), provides a useful formula to calculate collisional damp-
fined as ing in terms of distortion factors of the momentum distribu-

tion associated with the collective modes. The distortion fac-

ffofsf, (39

W|th the distortion factors normalized according to

0
drdp(x? 2(——1‘
(2mh)? rdp(xy) Je

J
dr p(x )(_Ef =1 (40

(27h)3

1 . tors may be determined from the RPA treatment, or can be
Q\(r,p)= m[ox(r'pHO%(r’p)] (34 directly parametrized on physical grounds. In practice, only
» one of the factorsyy or x¥ which is associated with a dis-
and tortion of the momentum distribution, contributes the colli-
sional damping.
. [on Spin-isospin effects in collective vibration can be easily
(r,p)=iy/ 7[0 (r,p) = Ox(r,p)] (85 incorporated in the semiclassical RPA treatment by consid-

ering proton and neutron degrees of freedom separately. The
As a result, the normal mode expansi@9) becomes small deviations of the phase-space densiti#g(r,p),
o6f,(r,p) of protons and neutrons are determined by two
coupled equations analogous to E2j7). The collision terms
8F(r,p)=21 [ (Dx(r.p) +pA(DxR(r.p)]| — Fet | in these equations involve binary collisions between proton-
(36)  proton, neutron-neutron, and proton-neutron, and a summa-
tion over the spins of the colliding particles. Observing that
where x{=—#%v-VP, and x}=—%v-VQ, represent the in isoscalar/isovector modes protons and neutrons vibrate in-
distortion factors of the phase-space density associateshase/out-of phaseif,(r,p)= f,(r,p), we can deduce
with the real variables g,=(1/y2w,)[Z} +2z,] and equations of motion for describing isoscalar/isovector vibra-
pr=ivo,/2[Z} —z,], respectively. In the collision term tions by adding and subtracting the corresponding equations
(31), the factorz, AO} + zf AO, is replaced by for protons and neutrons. Carrying out the semiclassical RPA
treatment presented above, we obtBin=[drI",(r) with
*
zAAOerz;‘AokziZ—}‘(V-V)Aoj\‘—iz—)‘(v-V)AOA 1
) “x Fi(l’) = N_)\f dpldpzdpsdp4[wpp+wnn+ 2an]

1
=—T[al(r.p)+pxR(r.pl, (3 Ax\®
ﬁwx[qm( P)+Paxi(r,p)] 7) T) Zf,f,f5f, (42)

where the first line follows from an identity satisfied
by the semiclassical RPA amplitude®* (r,p)=[h,(r)  and
+ifiv-VOX (r)]/fiw, . In order to deduce the equations for 1 Ay |2
the real variableg), (t) and p,(t), we substitute expansion FU:_J do.do.dp-d [ W+ W ( X)\)
(36) into Eq. (27) and project the resultant equation By AT, | OP1AP2CPsCPs (Wop+Wan)| =5
and P,, or equivalently byy{ and x¥. This gives two

2
! . A —
coupled equations fog, (t) and p,(t), which can be com- +2W, ( XA) 75 Fof 42
bined to yield an equation in the form of a damped harmonic 2 1727374 (42)
oscillator,

for the collisional widths of isoscalar and isovector modes,
) ﬂ 2 Ty respectively. HereN, = fdrdp(x,)?[ — (d/d€)f] is a nor-
(N Zh q

It S B8 malization, Axy=xr(1)+xn(2)—xa(3)-xa(4),  Bxa
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=0 (D)= (2)— xn(3)+ 0 (4), and Z=[d(fiwy,—A¢€) cal point of view replacing th& matrix by one of the more

—8(hw,+A€)]/hw, . In these expressions, transition ratesrecent Skyrme forces. In doing so, we, however, should be
associated with proton-proton, neutron-neutron, and protonecareful, since in the vicinity of nuclear surface Skyrme-type
neutron collisions are given by EL2) with the correspond- forces usually do not match at all the free nucleon-nucleon

ing cross sections Cross sections.
(d_”) :(d_") IV. DAMPING OF GD AND GQ EXCITATIONS
dQ dQ
PP nn We apply formulas(41) and (42) to calculate the colli-
- sional widths of the giant quadruple and dipole modes by
T 42 (25+1) parametrizing the distortion factors of the momentum distri-
(27771) bution in terms of Legendre functions ag=p®P,(cos6)
D~ p b 2 and yp=pP,(cosé). In our calculations, we employ an ef-
% < 12 2.5 T=1v|= - > (43  fective Skyrme force, which is parametrized as
A
and 0=to(1+XoP,)8(r1—r5)

tl 024112

dQ on (2mh)3 4% BST ) ot
2 +t2k’-5(r1—r2)k+gp“5(r1—r2), (45)
, (49

X S, Tlv

<p1 P2

>A where k=(p;—p,)/2% represents the relative momentum

where(p;—p,/2;S,T|v|ps—pa/2;S,T) 4 represents the fully operator withk acting to the right ané’ acting to the left. In
antisymmetric two-body matrix element of the residual inter-the case of the quadrupole mode the collisional width is de-
action between states with total spin and isospiand T.  termined by the spin-isospin averaged nucleon-nucleon cross
The residual interactions should be understood as an effec- section, fo/dQ)o=[(do/dQ),p+ (da/dQ),,+2(da/

tive density-dependent force. It can indeed be shown that d(2),,1/4. In the case of the dipole mode the only contribu-
reasonable approximation far is the so-calledG matrix  tion comes from the spin-averaged proton-neutron cross sec-
[29]. MicroscopicG matrices are not very practical for ex- tion, (do/dQ),,. In terms of the effective Skyrme force
plicit use, and thus we adopt below a more phenomenologithese cross sections are given by

d(T T m*2 3 1 tl k2 k’2 t3 o
27 | 2/ (1= X))+ S (KK D) +=p

2 S kk/23 1 tlkZ k12 t‘?’az
+ 5 [kK T+ 71 to(1+X0) + S (K*+K™) +2p

d_Q o_(zﬂﬁ)g 44
(46)
and
do T  m*3(1 ty t; ]2 3 t, NE
do + 5 (K2 +k'?) + 2 p® KPP+ o2 12y, 8 a
(dﬂ)pn (27h)3 4ﬁ[ [0(1 Xo) + 2(k +k )tgP +2[tok-K'] +2t0(1+x0)+2(k +k )+ 5P j
(47)

wherek=(p,—p,)/2h andk’'=(ps—p.)/2#h are the relative mentum integrals in expression4l) and (42) arise in the

momenta before and after the binary collision, antl de-  vicinity of the Fermi surface. We can approximately perform

notes the effective mass these integrals by employing the standard coordinate trans-
formation|[34],

1 1 2m 1
m* (1) “m 1+ 72 16(3t1+5t2)p(r) (48) J dp,1dp,dpsdpsd(pP1+P2—P3—Pa) - - -
In the bulk of the nucleus the Pauli blocking is very ef- %f o m** d91d9d¢ U
fective, and hence, the overwhelming contributions to mo- F 0/2
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Furthermore, for temperatures small compared to the Fermi

h 2
energy,T<er, the energy integrals can be calculated ana- I3~ Ne ?ppﬁ(m*hw)wl o(r) (55
lytically using the formuld 34,35, Q
and
J d61d62d€3d645(ﬁwiAE)f1f2f3f4 5
FSD””(r)~——PpF(m hw)Y5(r). (56)

_ho (hw)?+(27T)?
6 l-exp—fhwlT)"

50
0 We define an effective Pauli blocking factor as the ratio of

the damping width with and without the Pauli blocking fac-
tors in expression&1) and(42), F, =T, (r)/I'"°"r), for
A=Q or D, and parametrize it in the following form:

Then, the bulk contribution to the collisional widths of the
guadrupole and dipole modes can be expressed as

€r(r)
F(0)

whereeg(0) is the Fermi energy at the bulk corresponding to
the central density,, F,(0) is the effective factor at the
bulk and 8=% w,/2e:(0). As afunction ofr, the effective
blocking factor remains essentially constant and equals its
bulk value until the density reaches about 1/2 of the central
density, and then it smoothly goes to one at the surface of the
nucleus. This form provides a good approximation for the
exact calculations of the effective Pauli blocking gi-21h
excitations in connection with the collisional damping of
single-patrticle states as reported in R&6]. Therefore we
expect, it provides a reasonable approximation fpr2h
excitations, and calculate the collisional widths in an ap-
proximate manner by smoothly joining the bulk contribution
with the surface contribution in accordance with the approxi-

(DI(fhw)?+(27T)?]
(51)

h 4 % 2 2
“Ng 5 ™ PPRl Fa(r)= 1+( )[FA<0>—1J, (57)

and

27

b“'k(m———m*ZpID(r)[(ﬁw>2+<2wT>2] (52
Here, p denotes the particle density, p=[4/
(27rh)3](47r/3)pF, the normallzatlons areNg=(4m/
5)fdrm*p2, Np=(4w/3)fdrm*p?, and the quantities

lg, Ip are given by

.0 ,.-[do
IQ:J 5|n§d0d¢[1+ Pz(cosa)—ZPz(cos¢93)](d—Q)o

(53 mate blocking factof57),

and . (eF(r))B+O'5

I f dode[1—Py( 0)](d0) (549 FQ_Idr[FQ " A

= sm— cos
i ' do surf GF(r)
Do

In these expressions, the angular integrals can be performed “F
analytically by noting that in the vicinity of Fermi surface
the momentum-dependent terms in the cross sections can be EJ drlo(r) (58)
expressed in terms of the standard variableskak’ =
—kZsirfgl2cos¢ and k?=k’'2=kZsir6l2, and cog and
=(cosb/2)?>— (sinb/2)?cos¢. As already mentioned earlier,
the cross sections based on Skyrme forces have a strongly er(r)|AHL5
erroneous behavior at very low densities. For this reason, we FD=J [Fb”'k( )( 0 )
cannot use expressioftsl) and(52) far out in the surface. It F(0)
is therefore absolutely necessary to develop effective forces (1)
which have the correct free cross-section limit. For the time surf( )[ (6 (0)) H
being, we develop an interpolation scheme. In the vicinity of F
nuclear surfacey(r) < pg, the Pauli blocking is not effective.
In this case, it is convenient to transform the integration vari- = f dr'p(r). (59

ables in Egs(41) and (42) into the total moment®P=p,

+p,, P'=ps+p, and relative momentg=(p,;—p,)/2, q’ We determine the nuclear density in the Thomas-Fermi
=(p3—p4)/2 before and after the collision. Due to the en- approximation using a Wood-Saxon potential with a depth
ergy conservation, the magnitude of the relative momentunv,= —44 MeV, thicknessa=0.67 fm, and sharp radiug,
after the collision is restricted according tay’ =1.27AY3 fm. We perform the calculations with a Skyrme
=Jo?Tm*hw. In the tail region forer, T<#iw, expres- force with the SkM parametersy=1/6, xo=0.09, to=

sions(41) and (42) may be estimated by omitting the Pauli
blocking factors and neglecting tliedependent terms. This
gives

—2645 MeV fn?, t;=410 MeV fn?P, t,=—135 Merm5
andtz=15.595 MeV fn{’?. For the mass dependence of the
resonance energies for spherical medium mass and heavy
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FIG. 1. The relative contribution to the collisional damping ~ FIG. 3. The collisional damping width of GDR as a function of
width of GDR as a function of for A=120 at zero temperature. Mass numbeA at zero temperature. Solid, dashed, and dotted lines

Solid, dashed, and dotted lines are calculations with a constant crog6€ calculations with a constant cross sectigg=40 mb, with the
sectiono n= 40 mb' with the SkM force with the effective mass, SkM force with the effective mass, with the SkM force with the

and with the SkM force with the bare mass, respectively. bare mass, respectively, and the points show the data.

nuclei we use the formulagiw=64A"Y2 MeV for giant  set equal to zero in E¢45). Figures 3 and 4 show the atomic
quadrupole resonancé€GQR) and #w=80A"13 MeV for mass dependence of the GDR and GQR widths and compari-
GDR. Figures 1 and 2 illustrate the relative contribution ofson with data, respectively. The SkM force with the effective
the damping widths of GDR and GQR for a nucleus withmass underestimates the average trend of GDR for medium
A=120 as a function of. In these figures and also in the weight and heavy nuclei by about a factor of 2. The calcu-
other figures, the dashed and dotted lines show the result ddtions with the bare mass give a better description of the
the calculations with the effective mass* and the bare average trend. In the GQR case, the discrepancy between the
massm, respectively. The sharp rise bf{(r) in the vicinity  calculations and the average trend of data is larger than in the
of the surface is largely due to the effective mass, which i<DR case. In Figs. 5 and 6, the measured GDR widths in
small in the bulk and approaches its bare value at the surfacé?’sn and?°®Pb nuclei are plotted as a function of tempera-
and to a lesser extent due to the increase of the Skyrme croisre, and compared with the calculations performed with the
section at low densities. For comparison, the results for coneffective mass and the bare mass shown by dashed and dot-
stant cross sections af,=30 mb ando,,=40 mb are ted lines, respectively. The calculations with the effective
shown in the same figures by solid lines. These constannass provide a reasonable description of the temperature de-
cross sections correspond to a zero range force with pendence of the data, but the magnitude of damping is un-
strengtht,=—300 MeV fnt and all other parameters are derestimated in both cases. The calculation with the bare

1.6 r 7
—~ — r 3
AR A=120 - GQR oy
< GQR sF = 0=30 mb
> Lo m e e e o e e L
© 1.2 r .
= C Y %\ 5: .
7 i =
- L N’ 4_
= L r
,:0.8 ; L‘O . hd
g -
Lo FT T 7
0.4
Fo— W
[ s M
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FIG. 2. The relative contribution to the collisional damping FIG. 4. The collisional damping width of GQR as a function of
width of GQR as a function of for A=120 at zero temperature. mass numbeA at zero temperature. Solid, dashed, and dotted lines
Solid, dashed, and dotted lines are calculations with a constant crosse calculations with a constant cross sectigp=30 mb, with the
sectiono,,=30 mb, with the SkM force with the effective mass, SkM force with the effective mass, with the SkM force with the
and with the SkM force with the bare mass, respectively. bare mass, respectively, and the points show the data.
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"M r appropriate if two-body collisions can be considered instan-
10 E 1205, Ig taneous. As a result, the standard model provides a classical
E description of transport properties of collective motion that is
9 F ——M :{g ) valid at the low-frequency—high-temperature limit. When the
;‘ 8 _ """" M - / system possesses fast collective modes, the standard descrip-
[} £ // tion breaks down and it is necessary to incorporate a memory
3 7L ’ effect associated with the finite duration of binary collisions.
. ! // This yields a non-Markovian extension of the transport de-
S ’ scription in which the basic transition rate is modified by
s+ L7 involving a direct coupling between collective modes and
c s two-body collisions. The extended model leads to a descrip-
4 £ 7 tion of the transport properties of collective modes that is in
e e accordance with the quantal fluctuation-dissipation relation.
3¢ -7 In this work, we present a detailed derivation of the colli-
2 B - GDR sional widths of isoscalar and isovector collective nuclear
E vibrations in both quantal and semiclassical frameworks by
1 b b b e considering the linearized limits of the extended TDHF and
0 1 2 3 4 the BUU model with non-Markovian collision term. The

T* (MeV) standard treatment with a Markovian collision term leads to
vanishing collisional widths at zero temperature, whereas in
FIG. 5. The collisional damping width of GDR i**Sn as a  the non-Markovian treatment the collisional widths are finite
function of temperature. Dashed, dotted lines, and points are calciand consistent with Landau’s expression for damping of zero
lations with the SkM force with the effective mass, with the SkM sound in Fermi liquids. The numerical result of the colli-
force with the bare mass, and data taken fi@j respectively. sional damping is rather sensitive to the in-medium nucleon-
nucleon cross sections around Fermi energy, for which accu-
mass gives larger damping, but the damping widths appear t&te information is not available. In the present

grow faster than data as a function of temperature. investigations, by employing an effective Skyrme force with
SkM parameters, we carry out calculations of the damping
V. CONCLUSIONS widths of giant quadrupole and giant dipole excitations in a

_ semiclassical framework, and compare the results with the
In the standard nuclear transport modétsean-field GDR measurements if?%Sn and?°®Pb nuclei at finite tem-
transport models and their stochastic extensions in the semperatures. In particular for GDR, the magnitude of the colli-
classical or quantal forithe binary collisions are treated in sjonal damping with the bare nucleon mass is a sizable frac-
a Markovian approximation by assuming the duration timetion of the observed damping widths at zero temperature,
of a collision is much shorter than the mean-field fluctuationshowever the effective mass further reduces the magnitude of
and the mean-free-time between collisions, which would b&lamping in both cases. Aside from the magnitude, calcula-
tions are qualitatively in agreement with the broadening of

1" r GDR widths as a function of temperature in bdSn and
E 208 GDR 208 nuclei
10 f ~ Pb uelel. - : o
. One of the main aims of the present investigation was to
9 F ——M assess how much of the the total width of giant resonance
o E T M I excitations is exhausted by decay into the incohergnth
% 8 ¢ , states. The calculations have been performed within the
= St I / Thomas-Fermi approximation, which is known from inde-
~ E I // pendent studies to be very reliable for description of the
& 6L I ’ 2p-2h level densities[23]. However, our results remain
E I // semiquantitative, since in the Thomas-Fermi framework we
SE g ’ need the in-medium cross sections locally down to very low
4 *é ’ e densities, i.e., we need cross sections which interpolate cor-
£ . ’ rectly between the free space and the medium. At the mo-
I e ment such cross sections are not availdbleleast not ana-
2 /// lytically), and thus we were forced to invent our own
2F _ - interpolation scheme, which, although reasonable, is subject
p B to some uncertainties. We found that a sizable fractioR 'of
0 1 2 3 4 is accounted for by the incoherent decay. This is the case, for
T* (MeV) instance, for the GDR and also to a lesser extent for the

GQR. In addition, we found for the GDR that the percentage
FIG. 6. The collisional damping width of GDR if®b as a  Of the incoherent decay, depending somewhat on the nucleon
function of temperature. Dashed, dotted lines, and points are calc@ffective mass, strongly increases with temperature. This
lations with the SkM force with the effective mass, with the SkM finding is not very surprising, since at temperatdre 3
force with the bare mass, and data taken f{@}h respectively. MeV shell effects are absent and the collectivity of the vi-
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