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Phase transition in the pairing-plus-quadrupole model

C. Bahri, D. J. Rowe, and W. Wijesundera
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

~Received 11 May 1998!

We consider the pairing-plus-quadrupole model Hamiltonian within the framework of a many-fermion shell
model. The Hamiltonian exhibits a transition from a superconducting to a rotational phase with variation of a
parameter. The model has analytical solutions in its two limits due to the presence of dynamical symmetries.
However, the symmetries are basically incompatible with one another which means that no simple solution
exists in intermediate situations. Exact~numerical! solutions are nevertheless possible on a computer and
enable one to study the behavior of competing but incompatible symmetries and the phase transitions that
result in a semirealistic situation. This mixed-symmetry dynamics generates a rich structure which gives new
insight for the study of phase transitions.@S0556-2813~98!03309-3#

PACS number~s!: 21.60.Fw, 03.65.Fd, 05.70.Fh, 21.60.Ev
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I. INTRODUCTION

The problem of understanding superconducting pair c
relations in rotational nuclei has been a longstanding c
lenge for many years@1#. The pairing-plus-quadrupole mode
~PQM!, introduced by Bohr, Mottelson, and Belyaev@2#,
provides a useful schematic Hamiltonian for investigation
the phenomenon. However, exact shell model calculati
for the PQM Hamiltonian are only possible for highly tru
cated model spaces.

The conventional treatment of the PQM is within th
framework of the deformed Hartree-Fock-Bogolyub
~HFB! approximation or, more simply, the Nilsson mode
BCS approximation@3,4#. Such quasiparticle generalization
of mean-field theory yield many solutions. Some solutio
may correspond to deformed states without pair correlatio
others may be spherical or less deformed and exhibit str
pair correlations. For different parameters in the Ham
tonian, different solutions emerge. Furthermore, with var
tion of the parameters, phase transitions can occur in
solution that lies lowest in energy. This raises a question
to whether such phase transitions are real or artifacts of
HFB approximation. When improvements are made to
HFB approximation by restoring the broken rotational a
particle number symmetries by angular momentum and
ticle number projections, respectively, it appears that
phase transitions are smoothed out@5#. Remnants of them
may survive and even become quite sharp in large syste
But without the ability to carry out exact calculations, it
hard to know if the results are to be taken seriously.

An important step in understanding the nature of pair c
relations in rotational nuclei was made by Bahriet al. These
authors carried out truncated-free shell model calculati
for any number of nucleons of a single type in the 2p1 f shell
and for a few nucleons in the 3s2d1g shell in an SU~3! basis
@6–8#. Such calculations are informative and applications
some rare-earth nuclei have been reported within the fra
work of the pseudo-SU~3! version of the technology@8#.
However, our interest is in larger doubly open-shell ra
earth nuclei and realistic calculations for such nuclei are
possible. The main obstacle is that the dimensions of
Hilbert space increase exponentially with the particle nu
PRC 580556-2813/98/58~3!/1539~12!/$15.00
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ber. The computational difficulties are reduced in an SU~3!
shell model basis, as compared to traditional calculations
j j -coupled basis, when the interactions are sums of com
nents of a relatively small number of SU~3! tensors. When
the Hamiltonian possesses an SU~3! dynamical symmetry,
the advantages of an SU~3! basis are obvious. In fact, ther
are even greater advantages to expressing shell model w
functions in an SU~3! basis when a rotational spectru
emerges from the calculations but SU~3! is not a good dy-
namical symmetry. One then gains physical insight into
nature of the mixing of SU~3! irreps and the true meaning o
adiabaticity of collective motionsin group theoretical terms
@9#.

We present here a model many-fermion system that
hibits both superconducting and rotational phases. T
model is sufficiently sophisticated to exhibit complex a
competing collective dynamics. It is also simple enough
be amenable to exact numerical solution. The model cons
of a system of fermions with intrinsic spink2 1

2 ~wherek is
an integer! and orbital angular momentuml 51. The fermi-
ons interact through a mixture of pairing and SU~3!
quadrupole-quadrupole interactions.

The characteristics of the model are dictated by the f
that the PQM problem can only be solved by algebraic me
ods within the 1p shell. However, since the number of spi
1
2 nucleons that can be accommodated within the 1p shell is
too small to be of interest, we artificially increase the val
of the intrinsic spin to allow a large number of fermions
occupy the shell without violating the Pauli principle. W
thereby obtain an exactly solvable model with nontrivial a
coexisting rotational and superconducting phases.

Note that in a preliminary introduction of our model@10#,
we restricted the spin of the fermions to1

2 but invoked an
extra flavor degree of freedom. However, the result is pr
cisely the same because neither the spin nor the flavor
grees of freedom participate in the dynamics.

The intrinsic spin can be interpreted as a pseudospin
for example, in Ginocchio’s model@11#. Indeed, our model
can be interpreted as a special case of the fermion dynam
symmetry model@12#. Furthermore, it contracts to the inte
acting boson model@13# ask→`.

The model is admittedly contrived. However, we stre
1539 © 1998 The American Physical Society
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that our purpose is not to explain the properties of any p
ticular nucleus. It is rather to provide a solvable model
investigate the properties of phase transitions as a prelud
the construction of more realistic models. We recall that
much simpler Lipkin model@14# was of considerable valu
for such investigations and that it was used to test a num
of many-body theories that were subsequently applied w
some confidence to realistic situations.

II. HAMILTONIAN AND MODEL SPACE

We consider a model with Hamiltonian

H5aH11~12a!H2 , ~1!

whereH1 and H2 are, respectively, Hamiltonians for rota
tional motion and superconductivity;a is a parameter in the
range 0<a<1. With variation ofa, the system undergoes
transition from one phase to the other.

A microscopic model for the rotational states of
A-particle nucleus is given by a Hamiltonian of the form

HRM5
1

2m(
n

A

pn
21

1

2
mv2(

n

A

r n
21V~Q!, ~2!

whereV(Q) is a ~low order! rotationally invariant polyno-
mial in the quadrupole moments of the nucleus@15#. The
building blocks of such a Hamiltonian ((pn

2 , (r n
2 , and the

components ofQ) are elements of the~noncompact! sym-
plectic algebra sp(3,R). Consequently, matrix elements o
HRM can be computed in a partially ordered basis by al
braic methods andHRM is diagonalizable on a computer~to
within round-off errors!.

Models of superconductivity@16# are given by Hamilto-
nians with single-particle energies and pairing interactions
the form

HSC5( « jajm
† ajm2( Gj j 8ajm

† ajm̄
†

aj 8m̄8aj 8m8 , ~3!

where $ajm
† ,ajm% are creation and annihation operators

fermions of angular momentumj and itsz componentm; jm̄
label the time-reverse of the state labeled byjm. Such a
Hamiltonian has a spectrum generating algebra~SGA! com-
prising a direct sum of su(2)~quasispin! algebras. Conse
quently, it can be diagonalized numerically@17# ~if the num-
ber of single particle states is not too large!.

The actions of the sp(3,R) and quasispin Lie algebras a
incompatibleaccording to the following definition~given in
@10#!: the actions of two groups~or algebras! are said to be
incompatible on a Hilbert spaceH if they do not commute
with one another and if the spaceH carries reducible repre
sentations of both groups~algebras! but has no proper sub
space that is invariant under both groups~algebras!. As a
result of the incompatibility of the sp(3,R) and quasispin
algebras and the fact that the unitary irreps of sp(3,R) are of
infinite dimension, it is not possible to diagonalize a line
combination ofHRM andHSC without an unjustified trunca
tion of the space. It is then an interesting challenge to fi
approximate methods for determining the spectra of s
combinations.
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To simplify the problem, we restrict the Hamiltonian to
single spherical harmonic oscillator shelln for which the

number of single particle orbitals isn5 1
2 (n11)(n12).

The microscopic rotor model, then, reduces to the Elli
model for which a suitable Hamiltonian is@18#

H152xQ•Q, ~4!

whereQ is the su(3) quadrupole tensor. This Hamiltoni
has spectrum given by

E~lmJ!526xC2~lm!13xJ~J11!, ~5!

where (lm) is an su(3) highest weight,J is the angular
momentum, and

C2~lm!5 2
3 ~l21m21lm13l13m! ~6!

is the value of the su(3) Casimir invariant.
A simplification of HSC is achieved by setting all the

single-particle energies equal and giving the pair-coupl
constants a single value,Gj j 85G, so that, to within an over-
all constant, the HamiltonianHSC reduces to

H252GS1S2 , ~7!

where

S15 (
jm.0

~21! j 1majm
† aj ,2m

† ,

S05 1
2 (

jm.0
~ajm

† ajm2aj ,2maj ,2m
† !, ~8!

S25 (
jm.0

~21! j 1maj ,2majm .

This Hamiltonian, proposed by Kermanet al. @16#, has ana-
lytical solutions becauseS6 are the raising and lowering
operators of a single su(2) algebra with@S1 ,S2#52S0 and
@S0 ,S6#56S6 . It has a spectrum given by

E~N,s!52G~s1ms!~s2ms11!, ~9!

wheres is a quasispin quantum number andms is an eigen-
value ofS0. In terms of seniorityv and nucleon numberN, s
is given by s5 1

2 (n2v), and ms is given by ms52 1
2 (n

2N). Thus, we obtain the familiar expression for the ener
levels

E~N,v !52 1
4 G~N2v !~2n2v2N12!. ~10!

With these simplifications, the dynamical symmetries
H1 andH2 can be combined. The smallest Lie algebra th
contains both the su(2) and su(3) algebras, as real
above, is the compact symplectic algebra sp(n). The Lie
algebra sp(n) ~more correctly its complex extension! is
spanned by operators
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Ai j 5(
m

~21!s1maim
† aj ,2m

† ,

Ci j 5
1

2(m ~aim
† ajm2ajmaim

† !, ~11!

Bi j 5(
m

~21!s1maimaj ,2m ,

wherei and j run over the range 1, . . . ,n, s is the intrinsic
spin (s5k2 1

2 ) andm is summed over the spin values. Th
operators$Ai j ,Ci j ,Bi j % satisfy the commutation relations

@Ci j ,Akl#5d jkAil 1d j l Aik ,

@Ci j ,Bkl#52d ikBjl 2d i l Bjk , ~12!

@Bi j ,Akl#5d jkCli 1d j l Cki1d ikCl j 1d i l Ck j .

The subset of operators$Ci j % span the u(n),sp(n) subalge-
bra and satisfy the commutation relations

@Ci j ,Ckl#5d jkCil 2d j l Cik . ~13!

For n>3, sp(n) contains Elliott’s su(3) and Kerman’
su(2) quasispin algebra, with

S15
1

2(i
Aii , S05

1

2(i
Cii , S252

1

2(i
Bii ,

~14!

as subalgebras. Thus, sp(n) is a SGA for the Hamiltonian of
Eq. ~1!.

Note that the actions of the subalgebras su(3) and su
of sp(n) are still incompatible on the Hilbert space for a
sp(n) irrep. And, as a consequence, the problem rema
intractable unlessn is small. Thus, we consider here th
smallest sp(n) Lie algebra that contains both su(3) an
su(2),i.e., sp(3).

With nucleons of spin1
2 , we now face a problem becaus

the above realization of sp(3), with k51, has only irreps
that are too small to be of interest; the largest su(3) ir
contained in such an sp(3) irrep is of highest weight~2,0!, as
one knows from putting nucleons of one type into thep
shell. We therefore letk take much larger values, an
thereby generate the large su(3) subirreps of the type
pected in heavy deformed nuclei@19#.

Matrix elements of the sp(n) Lie algebra in irreps with
lowest and/or highest weights are given by vector cohe
state~VCS! theory@20#. Explicit expressions are given in th
following section for the irreps of sp(3) with highest weig
(k,k,k) and lowest weight (2k,2k,2k), which are the
relevant irreps for present purposes. These are the sp(3
reps generated by repeated application of the fermion
creation operators$Ai j % to a fermion vacuum stateu0&, a
state which satisfies the equation

Bi j u0&50, Ci j u0&52d i j ku0&. ~15!

An orthonormal basis for an sp(3) irrep of highest weig
(k,k,k), which reduces the subalgebra chain
2)

s

p

x-
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sp~3!.u~3!.su~3!.so~3!.so~2!, ~16!

is given by a set of states$unKJM&%, where n
[$n1 ,n2 ,n3%, a triple of integers withn1>n2>n3, is a
u(3) highest weight andJM are the usual so(3).so(2)
angular momentum quantum numbers;K ~associated with
the projection ofJ onto the intrinsicz axis! indexes multi-
plicities of J in the su(3) irrep with highest weigh
(l,m)5(n12n2 ,n22n3) @18#.

III. MATRIX ELEMENTS

By construction, the HamiltonianH1 is diagonal in the
sp(3).u(3).su(3).so(3) basis. Thus, we focus on th
computation of matrix elements ofH2, noting thatH2 is a
quadratic function of elements of the sp(3) algebra.

The sp(3) operators$Ai j ,Bi j ,Ci j % are components o
u~3! tensors. Thus, in the u~3!-coupled basis, their matrix
elements are expressible, by means of the Wigner-Ec
theorem, as products of u(3)-reduced matrix elements an
su(3) Clebsch-Gordan coefficients. First, observe that
raising operators$Ai j % transform as a basis for a u(3) irre
of highest weight$2,0,0%. Moreover the spherical tenso
combinationsA0 and$A2m%, defined such that

A05
1

A6
(

i
Aii ,

A205
1

A12
~2A112A222A33!, ~17!

transform likeJ50 andJ52 states, respectively. Thus, th

matrix elements ofS15A3
2 A0, for example, are directly in-

ferred from the fact that

^n8K8J8M 8uA0unKJM&

5^n8iAin&„~lm!KJM,~20!0u~l8m8!K8J8M 8…, ~18!

where „(lm)KJM,(20)0u(l8m8)K8J8M 8… is an su(3) CG
coefficient andl5n12n2, m5n22n3. Matrix elements of

S252A 3
2 B0 are similarly inferred by means of the identit

^n9iBin&52A dim~lm!

dim~l9m9!
^niAin9&, ~19!

where dim(lm)5 1
2 (l1m12)(l11)(m11) is the dimen-

sion of the SU~3! irrep of highest weight (lm).
U~3!-reduced matrix elements of theA operators can be

found, for example, in Ref.@21# where it is shown, by mean
of VCS theory, that

^$n112,n2 ,n3%iAi$n1 ,n2 ,n3%&

5S ~n114!~n12n212!~n12n313!~2k2n1!

2~n12n213!~n12n314! D 1/2

,

~20!
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^$n1 ,n212,n3%iAi$n1 ,n2 ,n3%&

5S ~n213!~n12n2!~n22n312!~2k112n2!

2~n12n221!~n22n313! D 1/2

,

~21!

^$n1 ,n2 ,n312%iAi$n1 ,n2 ,n3%&

5S ~n312!~n22n3!~n12n311!~2k122n3!

2~n12n3!~n22n321! D 1/2

,

~22!

with n1, n2, andn3 running over the ranges

n150,2, . . . ,2k, n250,2, . . . ,n1,
~23!

n350,2, . . . ,n2 .

The matrix elements ofH252GS1S2 can now be evalu-
ated from the matrix elements ofS1 and S2 by summing
over intermediate states. They are evaluated more efficie
by expressingS1S2 as a sum of irreducible SU~3! tensors,

S1S252
3

2F 1

A6
@A3B#~00!2

5

A6
@A3B#0

~22!G , ~24!

using the fact that

A0B05 (
n50,2

„~20!0;~02!0uu~nn!0…@A3B#0
~nn! . ~25!

The tensor@A3B# (00) is an SU~3! invariant and has only
diagonal matrix elements in an SU~3! basis. The matrix ele-
ments of@A3B# (22) are given by the general expression

^n8i@A3B#~nn!in&t5(
n9

U„~l8m8!~20!~lm!~02!;~l9m9!

3~nn!t…^n8iAin9&^n9iBin&, ~26!

whereU(2222;22) is an su(3) Racah coefficient wit
t denoting the outer multiplicity label of the SU~3!-coupling
(lm)3(nn)→(l8m8)t . The su(3) Clebsch-Gordan an
Racah coefficients are readily computed using the Draa
Akiyama SU~3! package@22#.

IV. THE SU „3… MODEL AS A ROTOR MODEL

It is well known that the Elliott SU~3! model gives spectra
that approach those of the rigid rotor model for larg
dimensional irreps. This result is explained by the fact t
the su(3) algebra contracts to a dynamical algebra@23# for
the rigid rotor, known as rot(3), for large values of the su(3
Casimir operator@24#. Thus, there is a natural correspo
dence between the irreps of su(3) and those of the r
rotor.

An irrep of su(3) is labeled by a highest weight, i.e.,
pair of non-negative integers, (lm), corresponding to a poin
in the positive Weyl chamber of weight space. Thus,
inequivalent su(3) irreps form a lattice in a 60° segment
weight space.
ly,

r-

-
t

id

e
f

Irreps of the rigid-rotor algebra rot(3) are labeled by i
trinsic quadrupole moments which are conventionally e
pressed in terms ofb andg deformation parameters by

Q̄n5kbFdn0cosg1
1

A2
~dn21dn,22!singG ,

b>0, 0<g,60°, ~27!

where k is a normalization constant. Thus, the irreps
rot(3) correspond to a continuous set of points in a 6
segment of a space which can be identified with the su
weight space.

The correspondence between (b,g) and (l,m) was given
by considering the contraction limit@24# and, more precisely
by comparing su(3) and rot(3) matrix elements@25,26,7#. It
is given by

kb cosg52l1m13,

kb sing5A3~m11!. ~28!

Thus, the essential difference between the su(3)
rot(3) algebras is that the highest weights of su(3) take
crete values whereas the corresponding rot(3) (b,g) values
are continuous. However, for states of angular momen
J!l1m, the distinction becomes less and less importan
l1m→`. Thus, the close correspondence between the
algbraic models makes it possible to interpret the wave fu
tions in a mixed-su(3) shell-model calculation in terms ofb
andg vibrational fluctuations.

V. RESULTS AND DISCUSSIONS

The energy spectra can be obtained by diagonalizing
matrix of the Hamiltonian of Eq.~1!. In this paper, we re-
strict consideration to the yrast states which exhibit the
fects we wish to explore. To examine the competition b
tween the SU~2! and SU~3! dynamical symmetries in thes
states, we compare the expectation values^JuC2uJ& and
^JuS1S2uJ& for the lowest yrast states. The former is a me
sure of the SU~3! content of the states and the latter indica
the magnitude of the pair correlations.

In the previous paper@10#, we setN52k and considered
a range ofk values. We found that, with the coupling con
stants assigned the valuesG50.05 andx50.005~in units of
energy!, remarkably sharp phase transitions occur at a c
cal value ofa5a0'0.57. In this paper, we fixk at k520
but consider a range ofN values. Some results are shown
Fig. 1 for N532, 40, and 48. TheN52k results ~corre-
sponding to a1

3 -filled shell! are seen to be special in that the
exhibit a much sharper phase transition than obtained
neighboring values ofN.

Still more remarkable is the rapidity with which the e
ergy levels, for allN values, approach theJ(J11) energies
of a rotor oncea exceeds the critical valuea0'0.57. A
good indication of this is the fact that the expectation valu
of both^JuC2uJ& and^JuS1S2uJ& take almostJ-independent
values. Note that, since the Hamiltonian differs from a line
combination ofC2 andS1S2 by 3axJ2, J-independent val-
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FIG. 1. The upper plots show the excitation energies for different values ofN andk520. ~The dashed lines are for the first order ofH1

and the dotted lines are for that ofH2.! The lower plots show the expectations^S1S2& ~solid lines! and^C2& ~dashed lines! as functions of
a for the correspondingN values.
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ues of^JuC2uJ& and ^JuS1S2uJ& imply energy level differ-
ences given by 3axJ(J11).

For N540, ^JuC2uJ& and ^JuS1S2uJ& rapidly approach
their commona51 values with increasinga.a0 indicating
that, beyond the critical point, theN540 states belong to
essentially unmixed SU~3! irreps. In contrast, the corre
sponding quantities forN532 and 48 become close to on
another, but approach theira51 values much less rapidly
The large slope of thêJuS1S2uJ& curves forN548, for
example, is a clear indication that, although the spectra h
a rotationalJ(J11) character, they correspond, in fact,
highly mixed SU~3! states.

Thus, the results show that, for someN values, the mode
exhibits very strong pairing correlations for a range of co
pling constants. Nevertheless, in spite of the resulting la
mixing of SU~3! representations, the rotational structure, t
is normally associated with an unmixed SU~3! situation,
ve

-
e
t

manages to survive. In physical terms, the correspond
states are appropriately described as those of asuperconduct-
ing rotor.

To exhibit the nature of superconducting rotor states,
show in Figs. 2 and 3 the amplitude coefficients of th
wave functions in an SU~3! $(lm)KJ% basis forN540 and
N548 and a range ofa values in the vicinity ofa0. The
coefficients are shown as histograms forJ50, . . . ,8. It can
be seen from Fig. 2 that, forN52k540, there is a large
mixing of SU~3! irreps for small values ofa which decreases
rapidly asa passes through the critical region to a much le
mixed situation. In contrast, the transition forN548 occurs
much less rapidly.

Particularly interesting is the nature of the mixing
SU~3! irreps in the superconducting rotor regions. It can
seen clearly that, while the amplitude coefficients for sta
within the transition region have nonzero values for ma
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FIG. 2. Histograms of the SU~3! amplitudes for the yrast states ofN540. The upper two plots correspond to superconducting phases
the lower two plots to rigid rotors. Only the 30 largest contributions from a total of 127 irreps are shown on each plot. In the upper tw
the K values are given right above the histograms. In the lower two plots only theK50 amplitudes are nonzero.
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SU~3! irreps, their values are essentially independent of
angular momentum. Moreover, the amplitudes are n
negligible only for theK50 components of each SU~3! ir-
rep, as shown in Fig. 3. Thus, the eigenstates of the syste
these regions have expansions

ucKJM&5 (
~lm!

uf~lm!KJM&C~lm!KJ' (
~lm!

uf~lm!KJM&C~lm!K ,

~29!

with ~essentially! J independent expansion coefficients. Th
means that the concept of a commonK50 intrinsic state for
each state of the yrast band is remarkably well defined
a.a0. The intrinsic states for the superconducting rotors
not the highest weight states of a single SU~3! irrep; they are
e
-

in

r
e

linear combinations with coefficients determined by the pa
ing correlations. In group theoretical terms, theucKJM& states
span anadiabatic representationof su(3) ~or more precisely
an embedded representation! which is defined to be the
weighted average of a number oftrue su(3) irreps@9#. The
characteristic of an embedded SU~3! irrep is that the expan-
sion coefficients$C(lm)KJ% are independent ofJ; they could,
in principle, depend onK but, in fact, it turns out thatK
50 is a rather good quantum number for the yrast sta
shown.

Adiabatic ~embedded! representations occur naturally fo
Lie algebras whose matrix elements depend at most line
on the parameters of their irreps. For SU~3! the matrix ele-
ments have an approximate linear dependence onl and m
for large values of the parameters. Thus, for large dim
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FIG. 3. Histograms of the SU~3! amplitudes for the yrast states ofN548. The upper two plots correspond to superconducting phases
the lower two plots to rotors. Notice thata50.60 corresponds to a superconducting rotor. Only the 30 largest contributions from a to
177 irreps are shown on each plot. In the upper two plots, theK values are given right above the histograms. In the lower two plots only
K50 amplitudes are nonzero.
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ex-
sional representations of SU~3!, one can have approximat
adiabatic representations. Since the matrix elements
physical operators in such adiabatic representations are
averages of those in true representations, the system is
to havequasidynamical symmetry. Thus, whereas fora51
we have SU~3! as a genuine dynamical symmetry, f
smaller values ofa>a0, we havequasi-SU(3)dynamical
symmetry, as shown in Fig. 3.

It is especially instructive to see the amplitudes plotted
a weight diagram which, as observed above, has a d
interpretation in terms of ab-g deformation plot. The plots
are given in Fig. 4 for the coefficients given as histograms
Figs. 2 and 3. By plotting the coefficients in this way, o
sees that the superconducting states have a broad distrib
of
he
aid

n
ct

n

ion

of shapes while the rotors have much more well-defined
trinsic shapes; the superconducting rotors have relativ
well-defined shapes but withb and g-vibrational fluctua-
tions.

A useful ~but arbitrary! characterization of the transitio
from a superconductor to a rigid rotor is given by defining
state to be superconducting if^S1S2&a /^S1S2&0.0.5 and
to be a rigid rotor state if̂ C2&a /^C2&0.0.97. States for
which ^S1S2&a /^S1S2&0,0.5 and^C2&a /^C2&0,0.97 are
then said to be superconducting rotors. TheN2a phase dia-
gram defined according to these criteria is shown in Fig
for k520. This figure exhibits the narrowness of the pha
transition between the superconducting and rigid rotor
tremes whenN52k, corresponding to a13 -filled shell. The
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FIG. 4. Weight space representations of the SU~3! amplitudes shown as histograms in Figs. 2 and 3. The contribution of each SU~3! irrep
is plotted as a circle of radius proportional to the amplitude at the point in the lattice corresponding to the highest weight of the ir
amplitudes for states of angular momentumJ50, 2, 4, 6, and 8 are shown as concentric circles. The amplitudes fora50.20 are not shown
as they are similar to those fora50.40; ~a! and~d! correspond to superconducting phases;~e! to a superconducting rotor; and~b!, ~c!, and
~f! to rigid rotors. The scale of the coefficients for~b!, ~c!, and~f! is a factor 2.5 smaller than the rest.
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sharpness of the phase transition atN52k can be attributed
to the Pauli exclusion principle as a result of which a ma
mum prolate deformation can be achieved when particles
one third of the shell.

Although we make no attempt to fit experimental da
with the model, it is, nevertheless, of interest to observe
remarkable similarity between the experimental energy l
els of the Hf-isotopes (Z572) @27#, shown in Fig. 6, and
those of the model. In the spirit of simplicity, the mod
results shown in the figure are for the samek520 and
x/G50.1 ratio as used previously; thus, the phase diag
in Fig. 5 remains applicable without scale adjustment.
simply adjusted the overall strength of the interaction to
the energy of the first excited 21 states of 176Hf. The A
5176 isotope was chosen for the adjustment because it
the lowest first excited 21 energy level among the Hf iso
topes. We also identified this isotope with the1

3 -filled shell
of the model, ignoring the fact that72

176Hf is at the midshell
for neutrons in the conventional shell model. The solid lin
-
ll

e
-

m
e
t

as

s

in Fig. 6 belong to the model with different paramet
strengths. The upper~lower! lines are for a50.64, G
572.4 keV, andx57.24 keV (a50.65, G573.3 keV,
and x57.33 keV), respectively. The figure shows a clo
similarity between the energy levels of the model and th
of isotopes in theA51582184 range; the similarity break
down outside of the 1582184 range as exhibited by the en
ergies, indicated by arrows, of theJ52 ~square! and J58
~triangle! states of theA5154 isotope. Note that reliable
excitation energies forA5156 are not presently available.

VI. CONCLUDING REMARKS

A study of superconducting effects in real rotational n
clei might consider a pairing plus quadrupole Hamiltoni
for spin 1/2 neutrons and protons within an irreducible Sp(n)
subspace of a nuclear valence shell. However, such m
calculations are difficult to carry out in all but the smalle
shells. They are easy forn53, corresponding to nucleons i
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a 1p shell, but already challenging forn56 as required for
the 2s1d shell. At this time, they are essentially impossib
for more than a few particles whenn.3. However, if they
could be done, we believe the results would parallel th
obtained in our simple Sp~3! model. Thus, it would be emi
nently worthwhile to check the validity of this belief, if onl
in a few special cases. For, if indeed one were to find a
batic rotors with strong pairing correlations of the type fou
in our simple model, then, in carrying out calculations fo
real nucleus, for which rotational states are observed exp
mentally, one would be justified in restricting the calcu
tions in an SU~3! basis to just theJ50 states and in making
the assumption that the other states of the yrast band hav
sameJ-independent coefficients.

We believe that this is, in fact, what one would find. I
deed, before our model calculations were done, such a re
was predicted~cf. Carvalhoet al. @24# and Rowe, Rochford
and Repka@9#! to explain the persistence of observed ro
tional bands in situations where spin-orbit and pairing cor
lations are expected to be large. Recall that the criterion
the occurrence of rigidlike rotational bands has long be
understood to be the adiabaticity of the rotational motio
The intrinsic states of a microscopic rotor have many degr
of freedom and modes of excitation. Thus, the criterion
the appearance of rigidlike rotational bands is only that
coupling between the rotational and intrinsic degrees of fr
dom is small. And this coupling is small if the rotation
angular velocity is small.

One knows that nuclear Hamiltonians are invariant un
both translations and rotations. However, while accepta
Hamiltonians should also be invariant under Galilean tra
formations ~center-of-mass momentum boosts!, there is no
rotational analog of Galilean invariance. This is becaus
rotating frame of reference is not an inertial frame; there
centrifugal and Coriolis forces. Nevertheless, if the rotatio
motions are sufficiently slow~adiabatic!, a rotating frame

FIG. 5. Phase diagram for the Sp~3! model parametrized bya
and N. The shaded area shows a smooth transition from a su
conducting to a rotational phase; the transition region is regarde
being in a superconducting rotor phase.
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approximates an inertial frame. This is clearly what is ha
pening in the so-calledsuperconducting rotorstates of our
model.

At an abstract algebraic level, the concept of embed
~i.e., adiabatic! rotor @or SU~3!-rotor# representations seem
strange. However, our model calculations show that th
provide an interesting example of how the physics of a s
ation can usefully guide the mathematical analysis. F
while, from algebraic and computational points of view, t
problem of combining two incompatible dynamical symm
tries, in all but the smallest model spaces, is a formida
task, the physics of the situation gives hope for very go
even if approximate, solutions.

It is also useful to consider the mixing of SU~3! and rotor
irreps from another point of view. Recall that any interacti
that commutes with a group of transformations can only m
equivalent representation of that group. Thus, if the infi
tesimal generators of the dynamical group of a rotor con
of angular momentum operators and quadrupole mome
then any interaction that is rotationally invariant and co
mutes with the quadrupole moments is invariant under
dynamical group of the rotor. This implies that while sho
range~momentum-independent! interactions can change th
intrinsic states of a rotor dramatically, they can only do so
mixing states of equivalent representations. This is an imp
tant result and it is worthwhile to be clear as to its meani
It means that a short-range interaction should not cha

FIG. 6. Comparison between the Sp~3! model and experimenta
energy levels for the Hf isotopes (Z572). Different experimental
points are connected with dashed guiding lines. The two familie
solid lines are from the model with different parameter streng
~see text!.
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TABLE I. The amplitude probability coefficients of~40,0! subirrep for the lowest eigenstates,Cn1 with
J50, 2, 4, 6, and 8 ink520,N540 configuration. The corresponding probability coefficients,uCn1u2, are
written underneath. Ata50.57 a phase transition occurs from superconducting states to rotational one
largest components from other~not necessarily the same! subirreps are put in parentheses.

a\J 0 2 4 6 8

0.00 0 0 0 0 0
0 0 0 0 0

0.51 0.001~0.294! 0.003~20.278! 0.011~0.289! 0.036~0.301! 0.097~20.345!
0.000~0.087! 0.000~0.077! 0.000~0.084! 0.000~0.091! 0.009~0.119!

0.53 0.003~20.285! 0.014~0.273! 0.057~0.289! 0.165~20.325! 0.346~0.417!
0.000~0.081! 0.000~0.074! 0.003~0.084! 0.027~0.106! 0.119~0.174!

0.55 0.028~20.263! 0.175~20.259! 0.435~0.425! 0.604~0.502! 0.702~0.516!
0.001~0.069! 0.031~0.067! 0.189~0.180! 0.365~0.252! 0.493~0.266!

0.57 0.759~0.486! 0.775~0.486! 0.797~0.481! 0.821~0.470! 0.844~0.455!
0.575~0.236! 0.601~0.236! 0.635~0.231! 0.674~0.221! 0.713~0.207!

0.59 0.877~0.420! 0.880~0.417! 0.885~0.411! 0.893~0.402! 0.903~0.389!
0.759~0.177! 0.774~0.174! 0.784~0.169! 0.798~0.161! 0.815~0.151!

1.00 1 1 1 1 1
1 1 1 1 1
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intrinsic quadrupole moments andE2 transition rates of a
rotor band. However, without a dynamical theory of wh
properties of the flows determine the moments of inertia
without making some specific~e.g., cranking! model as-
sumptions, it is not possible to say what effects the mix
might have on moments of inertia. It should also be und
stood that the ordering of rotational bands in a situat
where many representations occur may be rearranged
result of pairing correlations so that, with the inclusion
pairing, the representation which best describes the gro
state band may very well be different.

We recognize that the schematic pairing force used wit
an Sp(n) irrep is not SU~3! invariant. However, to the exten
that the SU~3! model approximates a rotor and the schema
force approximates a short-range interaction, we should
pect the latter, if not an SU~3! scalar, to be a low-rank SU~3!
tensor. It is known that matrix elements of the SU~3! quad-
rupole moments vary smoothly withl andm. Thus, we de-
scribe two SU~3! irreps as being similar if their highes
weights (lm) have similar values. We then conclude th
while a schematic force may mix inequivalent SU~3! irreps,
it will only directly couple irreps which are similar. Observ
that the spin-orbit force is a (1,1) SU~3! tensor so that, al-
though we have not considered a spin-orbit interaction in
paper, we may expect that it too will have similar cons
quences~cf., results of Rochford and Rowe@9# on spin-orbit
mixing!.

In spite of the above observations, it should be underst
that even though a short-range interaction may comm
with the dynamical group of a rotor, it may still result i
nonadiabatic effects. Consider a situation in which the
ergy levels of two equivalent irreps cross. One can imag
t
r
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for example, a situation where the ground state band
highly superconducting with relatively small moments of i
ertia whereas an excited band has smaller pair correlat
and larger moments of inertia. At some angular momentu
the yrast band will flip from the lower to the excited ban
And, at the crossing angular momentum, one expects la
mixing of the two bands, especially if they have simil
quadrupole moments and belong to similar irreps of the ro
algebra.

One also knows that the Coriolis force acts on a rotat
superconductor in much the same way as a magnetic
acts on a superconductor in condensed matter. Thus, just
magnetic field suppresses superconductivity, one exp
pair correlations to be suppressed due to the Coriolis fo
beyond some angular momentum value. This effect w
noted by Mottelson and Valatin@28# who suggested that a
similar collapse of the superconducting pair correlatio
might be found in rotational nuclei. In fact, it appears that t
breaking up of pairs occurs sequentially rather than in
single step. One can see such an effect in Table I, wh
shows the coefficients of the wave functions in an SU~3!
expansion. One sees that, for values ofa.a0, the compo-
nent of a single SU~3! irrep is more dominant whenJ is large
than when it is small. We anticipate that, for a very lar
value ofk and a correspondingly large value ofN, we would
see a sudden breakdown of the superconductivity at s
critical value of the angular momentum and an effect
closer parallel with the Meissner effect. Indeed, it will b
very interesting to explore the results of our model in t
largek andN limits.

We have stressed that an important reason for constr
ing a solvable model is to be able to test the validity
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many-body approximates in an exactly solvable situation
this context, we note that the conventional many-body
scription of pair correlations and rotations is within th
framework of the deformed Hartree-Fock-Bogolyubov a
proximation. But, because of the lack of rotational invarian
and the violation of number conservation of this approxim
tion, one cannot be sure which HFB results are valid a
which are generated by the variational constraints of the
proximation. Thus, it will be of considerable interest to see
the onset of deformation with increasinga and the subse
quent suppression of superconductivity at still higher val
of a are described well in the HFB approximation. If th
HFB approximation is successful in the context of the mod
it is, of course, no guarantee that it will be reliable in mo
general situations. However, if it does not work well for t
model, it cannot be trusted elsewhere.

Also of interest is the so-called random-phas
approximation and quasiparticle RPA. It can be seen that
way in which the excitation energies of the first 21 state in
our model drops precipitously with increasinga just prior to
the phase transition is reminiscent of RPA~random phase
approximation! results for quadrupole vibrational excitatio
energies. As shown by Thouless@29#, the collapse of an RPA
vibrational energy to zero indicates an instability of t
Hartree-Fock~or HFB! ground state against quadrupole v
brational fluctuations and the expectation of a phase tra
tion to a deformed state. The present model is clearly a
nable to analyses in this way.

In conclusion, we note that the philosophy of the RPA,
k.
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expressed in the equations of motion formalism@30#, is very
similar to that of a quasidynamical symmetry. The philos
phy of the equations-of-motion formalism is that whi
eigenstates of the Hamiltonian may be complicated, the
lationships between states, particularly if one is regarded
collective excitation of the other, may be relatively simp
Thus, while it may be quite unreasonable to describe ene
eigenstates as independent-particle states, it may be ap
priate to approximate excitation operators as one-body
erators. In a similar way, we find, for a superconducti
rotor, that it is a poor approximation to assume~the valence
shell components of! its states to be unmixed SU~3! states.
However, it is a much better approximation to assume t
the relationships between the states are described by S~3!
operators. Indeed, this is the meaning of a quasidynam
symmetry. Thus, the use of a quasidynamical symmetry
akin to a field theoretic approach to spectroscopy, in wh
one focuses on the operators and algebraic equations of
tion in preference to the wave functions.

Clearly the model we have constructed has a rich str
ture and opens up possibilities for the investigation of ma
interesting phenomena and many-body approximations.
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