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Phase transition in the pairing-plus-quadrupole model
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We consider the pairing-plus-quadrupole model Hamiltonian within the framework of a many-fermion shell
model. The Hamiltonian exhibits a transition from a superconducting to a rotational phase with variation of a
parameter. The model has analytical solutions in its two limits due to the presence of dynamical symmetries.
However, the symmetries are basically incompatible with one another which means that no simple solution
exists in intermediate situations. Exactumerical solutions are nevertheless possible on a computer and
enable one to study the behavior of competing but incompatible symmetries and the phase transitions that
result in a semirealistic situation. This mixed-symmetry dynamics generates a rich structure which gives new
insight for the study of phase transitioi§0556-28188)03309-3

PACS numbgs): 21.60.Fw, 03.65.Fd, 05.70.Fh, 21.60.Ev

[. INTRODUCTION ber. The computational difficulties are reduced in an3U
shell model basis, as compared to traditional calculations in a
The problem of understanding superconducting pair corjj-coupled basis, when the interactions are sums of compo-
relations in rotational nuclei has been a longstanding chalrents of a relatively small number of &) tensors. When
lenge for many yearisl]. The pairing-plus-quadrupole model the Hamiltonian possesses an (SJUdynamical symmetry,
(PQM), introduced by Bohr, Mottelson, and Belya¢®2], the advantages of an $8) basis are obvious. In fact, there
provides a useful schematic Hamiltonian for investigation ofare even greater advantages to expressing shell model wave
the phenomenon. However, exact shell model calculationfunctions in an S(B) basis when a rotational spectrum
for the PQM Hamiltonian are only possible for highly trun- emerges from the calculations but @Jis not a good dy-
cated model spaces. namical symmetry. One then gains physical insight into the
The conventional treatment of the PQM is within the nature of the mixing of S(B) irreps and the true meaning of
framework of the deformed Hartree-Fock-Bogolyubov adiabaticity of collective motioni group theoretical terms
(HFB) approximation or, more simply, the Nilsson model- [9].
BCS approximatiori3,4]. Such quasiparticle generalizations ~We present here a model many-fermion system that ex-
of mean-field theory yield many solutions. Some solutionshibits both superconducting and rotational phases. The
may correspond to deformed states without pair correlationgnodel is sufficiently sophisticated to exhibit complex and
others may be spherical or less deformed and exhibit strongompeting collective dynamics. It is also simple enough to
pair correlations. For different parameters in the Hamil-be amenable to exact numerical solution. The model consists
tonian, different solutions emerge. Furthermore, with varia-of a system of fermions with intrinsic spin—3 (wherex is
tion of the parameters, phase transitions can occur in than integey and orbital angular momentuis 1. The fermi-
solution that lies lowest in energy. This raises a question aens interact through a mixture of pairing and @SV
to whether such phase transitions are real or artifacts of thguadrupole-quadrupole interactions.
HFB approximation. When improvements are made to the The characteristics of the model are dictated by the fact
HFB approximation by restoring the broken rotational andthat the PQM problem can only be solved by algebraic meth-
particle number symmetries by angular momentum and pamds within the D shell. However, since the number of spin-
ticle number projections, respectively, it appears that thé nucleons that can be accommodated within tpeshell is
phase transitions are smoothed ¢&f. Remnants of them too small to be of interest, we artificially increase the value
may survive and even become quite sharp in large systemsf the intrinsic spin to allow a large number of fermions to
But without the ability to carry out exact calculations, it is occupy the shell without violating the Pauli principle. We

hard to know if the results are to be taken seriously. thereby obtain an exactly solvable model with nontrivial and
An important step in understanding the nature of pair corcoexisting rotational and superconducting phases.
relations in rotational nuclei was made by Baétial. These Note that in a preliminary introduction of our modél0],

authors carried out truncated-free shell model calculationsve restricted the spin of the fermions $obut invoked an

for any number of nucleons of a single type in th&l2 shell  extraflavor degree of freedom. However, the result is pre-
and for a few nucleons in thes2d1g shell in an SWY3) basis  cisely the same because neither the spin nor the flavor de-
[6—8]. Such calculations are informative and applications togrees of freedom participate in the dynamics.

some rare-earth nuclei have been reported within the frame- The intrinsic spin can be interpreted as a pseudospin as,
work of the pseudo-S(@) version of the technology8].  for example, in Ginocchio’'s modg¢lL1]. Indeed, our model
However, our interest is in larger doubly open-shell rare-can be interpreted as a special case of the fermion dynamical
earth nuclei and realistic calculations for such nuclei are imsymmetry mode[12]. Furthermore, it contracts to the inter-
possible. The main obstacle is that the dimensions of thacting boson moddl13] as k— .

Hilbert space increase exponentially with the particle num- The model is admittedly contrived. However, we stress
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that our purpose is not to explain the properties of any par- To simplify the problem, we restrict the Hamiltonian to a
ticular nucleus. It is rather to provide a solvable model tosingle spherical harmonic oscillator shell for which the
investigate the properties of phase transitions as a prelude {mper of single particle orbitals ia= 3 (v+1)(v+2).

the construction of more realistic models. We recall that therpo microscopic rotor model, then, reduces to the Elliott
much simpler Lipkin mode[14] was of considerable value ,,4el for which a suitable Hamiltonian [48]

for such investigations and that it was used to test a number

of many-body theories that were subsequently applied with H,=—x0-Q, (4)
some confidence to realistic situations.

where Q is the su(3) quadrupole tensor. This Hamiltonian
Il. HAMILTONIAN AND MODEL SPACE has spectrum given by

We consider a model with Hamiltonian EO\pd) = —6xCp(h ) +3xd(I+1), ®)
H=aH;+(1—a)H,, (1)
where (A w) is an su(3) highest weight] is the angular

whereH, andH, are, respectively, Hamiltonians for rota- momentum, and
tional motion and superconductivity, is a parameter in the
range O< a<1. With variation ofe, the system undergoes a Co(Ap)= 2 (N?+ p?+Au+3N+3u) (6)
transition from one phase to the other.

A microscopic model for the rotational states of an

. L N is the value of the su(3) Casimir invariant.
A-particle nucleus is given by a Hamiltonian of the form

A simplification of Hgc is achieved by setting all the

1A A single-particle energies equal and giving the pair-coupling
Hope — 24 “me?S r24v ’ 2 constants a single vallu@;jj.,zG, so that, to within an over-
RM 2m; P 2 ; V(@ @ all constant, the HamiltoniaH ¢ reduces to

whereV(Q) is a (low orde) rotationally invariant polyno- H,=—GS,S_, 7
mial in the quadrupole moments of the nucldd$®]. The

building blocks of such a Hamiltoniar®@?, =r2, and the  where

components ofQ) are elements of thénoncompagt sym-

plectic algebra sp(B). Consequently, matrix elements of _

Hgy can be computed in a partially ordered basis by alge- Si= > (—'"malal

braic methods and#figy, is diagonalizable on a computéo Jm=0
within round-off errors.

Models of superconductivity16] are given by Hamilto- _1 ala —a af 8
nians with single-particle energies and pairing interactions of S ij2>o (@jmjm ~ 2y, -} ). ®
the form

S.=> (-1)*Ma . a..
T :
HSC:E sjaijajm—E ij/a}majaaj,m/aj/m,, (3) jm>0 JommeEm

where{a/,,aj,} are creation and annihation operators for his Hamiltonian, proposed by Kermaat al. [16], has ana-
— lytical solutions becaus&. are the raising and lowering

fermions of angular momentujnand itsz componentn; jm ; _
. ) operators of a single su(2) algebra with, ,S_1=2S; and
label the time-reverse of the state labeled jby. Such a [Sy,S.]==S. . It has a spectrum given by

Hamiltonian has a spectrum generating alggl®@A) com-
prising a direct sum of su(2jquasispin algebras. Conse-
quently, it can be diagonalized numericdlly7] (if the num-
ber of single particle states is not too large
The actions of the sp(B) and quasispin Lie algebras are

incompatibleaccording to the following definitiogiven in
[10]): the actions of two groupéor algebragsare said to be
incompatible on a Hilbert spadé if they do not commute

E(N,s)=—G(s+mg)(s—mg+1), (9)

wheres is a quasispin quantum number amg is an eigen-
value ofS,. In terms of seniority and nucleon numbe\, s

is given bys=3(n—v), and mg is given by mg=—3(n
—N). Thus, we obtain the familiar expression for the energy

with one another and if the spat¢kcarries reducible repre- levels

sentations of both group&lgebrag but has no proper sub-

space that is invariant under both grou@égebras As a E(N,v)=—7G(N-v)(2n—v—N+2). (10
result of the incompatibility of the sp(B8) and quasispin

algebras and the fact that the unitary irreps of spf&re of With these simplifications, the dynamical symmetries of

infinite dimension, it is not possible to diagonalize a linearH,; andH, can be combined. The smallest Lie algebra that
combination ofHgy, andHgc without an unjustified trunca- contains both the su(2) and su(3) algebras, as realized
tion of the space. It is then an interesting challenge to findabove, is the compact symplectic algebrangp(The Lie
approximate methods for determining the spectra of suclalgebra spf) (more correctly its complex extensipns
combinations. spanned by operators
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sp(3)Du(3)Dsu3)Dsa3)Dsq2), (16)
Aij:% (_1)s+mai1‘ma;r1_m,
is given by a set of states{[nKIJM)}, where n
1 ) ) ={n;,n,,ng}, a triple of integers withn;=n,=n;, is a
Cij:§% (Qim@jm— Ajm@jm) (1) u(3) highest weight andM are the usual so(3)so(2)
angular momentum quantum numbeks; (associated with
the projection of] onto the intrinsicz axis) indexes multi-
Bijzz (_1)S+maimaj'7m, plicities of J in the su(3) irrep with highest weight
m (N, m)=(n1—ny,n—ng) [18].

wherei andj run over the range,1.. n, sis the intrinsic
spin (s=«—3) andm is summed over the spin values. The ll. MATRIX ELEMENTS

operators{A;; ,C;; ,Bj;} satisfy the commutation relations By construction, the Hamiltoniakl; is diagonal in the
_ sp(3)Du(3)Dsu(3)Dso(3) basis. Thus, we focus on the
[Cij Al = SjiAir+ G A computation of matrix elements &f,, noting thatH, is a
quadratic function of elements of the sp(3) algebra.

The sp(3) operatordA;; ,B;; ,Cj;} are components of
u(3) tensors. Thus, in the(8)-coupled basis, their matrix
elements are expressible, by means of the Wigner-Eckart
theorem, as products of(8)-reduced matrix elements and
su(3) Clebsch-Gordan coefficients. First, observe that the
raising operatorg¢A;;} transform as a basis for a u(3) irrep

[Cij,Cil=8jCii— 8, Cix. (13)  of highest weight{2,0,0;. Moreover the spherical tensor
combinationsAg and{A,.,}, defined such that
For n=3, spf) contains Elliott's su(3) and Kerman’s

[Cij ,Bw]l=—iBji— 8Bk, (12)

[Bij ,A]= 0jkCii + ;1 Ci + 6ikCj + 6 Cy; -

jo

The subset of operatof€;;} span the uf) Csp(n) subalge-
bra and satisfy the commutation relations

su(2) quasispin algebra, with 1
Ao:_z Aii
1 1 1 67
S+:§2i Aii s So=52i Ci, S-=- EEi Bii ,
14 1
(19 A= \/TZ(ZAH_ Az~ Ag), (17)
as subalgebras. Thus, sf(is a SGA for the Hamiltonian of

Eq. (2). , :

Note that the actions of the subalgebras su(3) and Su(zt)vansform likeJ=0 andJ=2 states, respectively. Thus, the
of sp(n) are still incompatible on the Hilbert space for an matrix elements of, = \/ng, for example, are directly in-
sp(n) irrep. And, as a consequence, the problem remainferred from the fact that
intractable unless is small. Thus, we consider here the
smallest spf) Lie algebra that contains both su(3) and(n’'K’J’'M’|Ay/nKIM)
su(2),i.e., sg3). , S i)

With nucleons of spirk, we now face a problem because, = (" [AIM((A)KIM, (200[(\"w")K'I'M"),  (18)
the above realization of §B), with k=1, has only irreps i
that are too small to be of interest; the largest su(3) irrepvhere (Aw)KIM, (20)0/(A" ")K"I'M’) is an su(3) CG
contained in such an sp(3) irrep is of highest weight), as ~ coefficient and\ =n,—n, u=n,—n;. Matrix elements of

one knows from putting nucleons of one type into the 1 S_=-— \/gBo are similarly inferred by means of the identity

shell. We therefore letk take much larger values, and

thereby generate the large su(3) subirreps of the type ex- dim(\ )

pected in heavy deformed nuclgi9]. (n"||B[Iny=— / —————(n||A|n"), (19
Matrix elements of the sp() Lie algebra in irreps with dim(\" ")

lowest and/or highest weights are given by vector coherent

state(VCS) theory[20]. Explicit expressions are given in the where dimg )= 3 (\+u+2)(A\+1)(u+1) is the dimen-
following section for the irreps of sp(3) with highest weight sjon of the SU3) irrep of highest weight X ).

(x,x,x) and lowest weight € «,— x,— ), which are the U(3)-reduced matrix elements of th& operators can be

relevant irreps for present purposes. These are the sp(3) ifound, for example, in Ref21] where it is shown, by means
reps generated by repeated application of the fermion paigf vCS theory, that

creation operatorgA;;} to a fermion vacuum statf), a
state which satisfies the equation ({n1t2,n2,n3}Al{n1,nz,n3})

Bij|0)=0, C;;|0)=—5;«|0). (15) _[(ng+4)(ng—ny+2)(ny—ng+3)(2k—ny) | 2
B 2(ny—ny+3)(N;—ng+4) ’

An orthonormal basis for an sp(3) irrep of highest weight
(k,k,k), which reduces the subalgebra chain (20
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{{ny,na+ 2,03} Al{ny,n5,n3}) . Irreps of the rigid-rotor aIgebrg rot(3) are Iabgled by in-
12 trinsic quadrupole moments which are conventionally ex-
[ (N2+3)(ny—Nn3)(N;—N3+2)(2k+1-ny) pressed in terms g8 and y deformation parameters by
2(ni—ny,—1)(n,—n3+3) ’
@D Q. =KB| 8,00087+ ~=(8,0+ 5, _s)siny|,
JE )

({n1,nz,n3+2}|All{n1,nz,n3})
(n3+2)(n2—n3)(n1—n3+1)(2K+2—n3))1/2 p=0, 0<y<60°, (27)
2(ny—ng)(n,—nz—1) ’

where k is a normalization constant. Thus, the irreps of

(22 rot(3) correspond to a continuous set of points in a 60°
_ _ segment of a space which can be identified with the su(3)
with nq, n,, andn; running over the ranges weight space.

The correspondence betwees, ¢) and (\,x) was given
by considering the contraction linfi24] and, more precisely,
by comparing su(3) and rot(3) matrix eleme[®$,26,7. It
is given by

n1=0,2, P ,2K, n2=O,2, B nl!

(23)
n3:O,2, P nz.

The matrix elements of,=—GS,S_ can now be evalu-
ated from the matrix elements &, and S_ by summing
over intermediate states. They are evaluated more efficiently,
by expressings, S_ as a sum of irreducible SB) tensors, kBsiny=3(u+1). (28

kBcosy=2\A+u+3,

3 1 5 - Thus, the essential difference between the su(3) and
S:S-=—75 ?[AX B]%0— T[AX BIY?|. (29  rot(3) algebras is that the highest weights of su(3) take dis-
6 6 crete values whereas the corresponding rot(B) yj values
are continuous. However, for states of angular momentum
J<<\ + u, the distinction becomes less and less important as
N+ u—. Thus, the close correspondence between the two
AoBo= 2, ((2000;(02)0||(»»)0)[AXBIy™. (25  algbraic models makes it possible to interpret the wave func-
v=02 tions in a mixed-su(3) shell-model calculation in termsBof
and vy vibrational fluctuations.

using the fact that

The tensof AXB](°® is an SU3) invariant and has only
diagonal matrix elements in an $8) basis. The matrix ele-
ments off AX B]?? are given by the general expression V. RESULTS AND DISCUSSIONS

The energy spectra can be obtained by diagonalizing the
(n"[[AXB]™|InY,= >, U\ 1')(20)(A ) (02); (N ") matrix of the Hamiltonian of Eq(1). In this paper, we re-
n” strict consideration to the yrast states which exhibit the ef-
/ N/ fects we wish to explore. To examine the competition be-
X n’||AlIn"){n”||B|n), 26 . S
(v2) 0’ [ Aln")n"B]Im) 26 tween the S(P) and SU3) dynamical symmetries in these
whereU(— — — —;——) is an su(3) Racah coefficient with States, we compare the expectation valyégC,|J) and
7 denoting the outer multiplicity label of the $8)-coupling ~ (J|S+S-|J) for the lowest yrast states. The former is a mea-
(\p) X (vv)—(N'un'),. The su(3) Clebsch-Gordan and Sure of the SUB) content of the states and the latter indicates

Racah coefficients are readily computed using the Draayefhe magnitude of the pair correlations. _
Akiyama SU3) packagg22]. In the previous papdrl0], we setN=2« and considered

a range ofx values. We found that, with the coupling con-
stants assigned the valu@s=0.05 andy= 0.005(in units of
energy, remarkably sharp phase transitions occur at a criti-
It is well known that the Elliott SB) model gives spectra cal value ofa= ay~0.57. In this paper, we fix at xk=20
that approach those of the rigid rotor model for large-but consider a range ™ values. Some results are shown in
dimensional irreps. This result is explained by the fact thaFig. 1 for N=32, 40, and 48. The&N=2« results (corre-
the su(3) algebra contracts to a dynamical algéB@l for  sponding to &-filled shell are seen to be special in that they
the rigid rotor, known as r¢8), for large values of the su(3) exhibit a much sharper phase transition than obtained for
Casimir operatof24]. Thus, there is a natural correspon- neighboring values oiN.
dence between the irreps of su(3) and those of the rigid Still more remarkable is the rapidity with which the en-
rotor. ergy levels, for allN values, approach thi{J+ 1) energies
An irrep of su(3) is labeled by a highest weight, i.e., aof a rotor oncea exceeds the critical valuey~0.57. A
pair of non-negative integersy ), corresponding to a point good indication of this is the fact that the expectation values
in the positive Weyl chamber of weight space. Thus, theof both(J|C,|J) and(J|S, S_|J) take almost-independent
inequivalent su(3) irreps form a lattice in a 60° segment ofvalues. Note that, since the Hamiltonian differs from a linear
weight space. combination ofC, andS, S_ by 3ayJ?, J-independent val-

IV. THE SU(3) MODEL AS A ROTOR MODEL
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FIG. 1. The upper plots show the excitation energies for different valubkasfd «=20. (The dashed lines are for the first ordertbf
and the dotted lines are for that ldf,.) The lower plots show the expectatio{fs, S_) (solid lineg and(C,) (dashed linesas functions of
«a for the correspondingN values.

ues of(J|C,|J) and(J|S,S_|J) imply energy level differ- manages to survive. In physical terms, the corresponding

ences given by @yJ(J+1). states are appropriately described as thosesop@&rconduct-
For N=40, (J|C,|J) and(J|S,S_|J) rapidly approach ing rotor.
their commona =1 values with increasing > « indicating To exhibit the nature of superconducting rotor states, we

that, beyond the critical point, thi=40 states belong to show in Figs. 2 and 3 the amplitude coefficients of their
essentially unmixed S@) irreps. In contrast, the corre- wave functions in an S(3) {(\ x)KJ} basis forN=40 and
sponding quantities foN=32 and 48 become close to one N=48 and a range ofx values in the vicinity ofag. The
another, but approach their=1 values much less rapidly. coefficients are shown as histograms Jet0, .. . ,8. It can
The large slope of th€J|S,S_|J) curves forN=48, for  be seen from Fig. 2 that, fdi=2«=40, there is a large
example, is a clear indication that, although the spectra havaixing of SU(3) irreps for small values of which decreases
a rotationalJ(J+ 1) character, they correspond, in fact, to rapidly asa passes through the critical region to a much less
highly mixed SU3) states. mixed situation. In contrast, the transition fdr=48 occurs
Thus, the results show that, for soiNevalues, the model much less rapidly.
exhibits very strong pairing correlations for a range of cou- Particularly interesting is the nature of the mixing of
pling constants. Nevertheless, in spite of the resulting larg&U(3) irreps in the superconducting rotor regions. It can be
mixing of SU3) representations, the rotational structure, thatseen clearly that, while the amplitude coefficients for states
is normally associated with an unmixed &Y situation, within the transition region have nonzero values for many
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FIG. 2. Histograms of the S@3) amplitudes for the yrast statesf=40. The upper two plots correspond to superconducting phases and
the lower two plots to rigid rotors. Only the 30 largest contributions from a total of 127 irreps are shown on each plot. In the upper two plots,
the K values are given right above the histograms. In the lower two plots onliK th@ amplitudes are nonzero.

SU(3) irreps, their values are essentially independent of thdinear combinations with coefficients determined by the pair-

angular momentum. Moreover, the amplitudes are noning correlations. In group theoretical terms, thig ) states

negligible only for theK=0 components of each $8) ir-

span aradiabatic representationf su(3) (or more precisely

rep, as shown in Fig. 3. Thus, the eigenstates of the system bn embedded representatiprwhich is defined to be the

these regions have expansions

|¢KJM>: 2 |¢(>\M)KJM>C()\M)KJ~E |¢()\M)KJM>C()\,M)K1
(Ap) (Ap) (29)

with (essentially J independent expansion coefficients. This

means that the concept of a comntdr-0 intrinsic state for

weighted average of a number wéie su(3) irrepg9]. The
characteristic of an embedded &Yirrep is that the expan-
sion coefficientdC, ,yks} are independent af; they could,
in principle, depend orK but, in fact, it turns out thak
=0 is a rather good quantum number for the yrast states
shown.

Adiabatic (embeddefirepresentations occur naturally for
Lie algebras whose matrix elements depend at most linearly

each state of the yrast band is remarkably well defined foon the parameters of their irreps. For @Uthe matrix ele-
a>ag. The intrinsic states for the superconducting rotors arenents have an approximate linear dependencéa @md

not the highest weight states of a single(SUrrep; they are

for large values of the parameters. Thus, for large dimen-
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FIG. 3. Histograms of the S(3) amplitudes for the yrast statesf=48. The upper two plots correspond to superconducting phases and
the lower two plots to rotors. Notice that=0.60 corresponds to a superconducting rotor. Only the 30 largest contributions from a total of
177 irreps are shown on each plot. In the upper two plotsKtialues are given right above the histograms. In the lower two plots only the
K =0 amplitudes are nonzero.

sional representations of $8), one can have approximate of shapes while the rotors have much more well-defined in-
adiabatic representations. Since the matrix elements dfinsic shapes; the superconducting rotors have relatively
physical operators in such adiabatic representations are theell-defined shapes but witl and y-vibrational fluctua-
averages of those in true representations, the system is sdidns.
to havequasidynamical symmetriffhus, whereas fotr=1 A useful (but arbitrary characterization of the transition
we have SUB) as a genuine dynamical symmetry, for from a superconductor to a rigid rotor is given by defining a
smaller values ofa=ay, we havequasi-SU(3)dynamical  state to be superconducting(i6,S_),/(S;S_),>0.5 and
symmetry, as shown in Fig. 3. to be a rigid rotor state ifC,),/(C,)y>0.97. States for

It is especially instructive to see the amplitudes plotted orwhich (S, S_),/{S;S_)<0.5 and(C,),/{C,)¢<0.97 are
a weight diagram which, as observed above, has a direthen said to be superconducting rotors. The « phase dia-
interpretation in terms of @-y deformation plot. The plots gram defined according to these criteria is shown in Fig. 5
are given in Fig. 4 for the coefficients given as histograms irfor «=20. This figure exhibits the narrowness of the phase
Figs. 2 and 3. By plotting the coefficients in this way, onetransition between the superconducting and rigid rotor ex-
sees that the superconducting states have a broad distributitlemes wherN=2x, corresponding to §-filled shell. The
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N=40, k=20 N=48, x=20
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FIG. 4. Weight space representations of th$ldmplitudes shown as histograms in Figs. 2 and 3. The contribution of ea@ i&dp
is plotted as a circle of radius proportional to the amplitude at the point in the lattice corresponding to the highest weight of the irrep. The
amplitudes for states of angular momentdmO0, 2, 4, 6, and 8 are shown as concentric circles. The amplitudes=f@.20 are not shown
as they are similar to those far=0.40; (a) and(d) correspond to superconducting phagesio a superconducting rotor; arib), (c), and
(f) to rigid rotors. The scale of the coefficients fi@, (c), and(f) is a factor 2.5 smaller than the rest.

sharpness of the phase transitiorNat 2« can be attributed in Fig. 6 belong to the model with different parameter
to the Pauli exclusion principle as a result of which a maxi-strengths. The uppeflower) lines are for «a=0.64, G
mum prolate deformation can be achieved when particles fil=72.4 keV, andy=7.24 keV (@=0.65 G=73.3 keV,
one third of the shell. and y=7.33 keV), respectively. The figure shows a close
Although we make no attempt to fit experimental datasimilarity between the energy levels of the model and those
with the model, it is, nevertheless, of interest to observe thef isotopes in theA=158—- 184 range; the similarity breaks
remarkable similarity between the experimental energy levdown outside of the 158184 range as exhibited by the en-
els of the Hf-isotopes4=72) [27], shown in Fig. 6, and ergies, indicated by arrows, of the=2 (squar¢ andJ=8
those of the model. In the spirit of simplicity, the model (triangle states of theA=154 isotope. Note that reliable
results shown in the figure are for the same=20 and excitation energies foA=156 are not presently available.
x/G=0.1 ratio as used previously; thus, the phase diagram
in Fig. 5 remains applicable without scale adjustment. We
simply adjusted the overall strength of the interaction to fit
the energy of the first excited "2states of 1"*Hf. The A A study of superconducting effects in real rotational nu-
=176 isotope was chosen for the adjustment because it hatei might consider a pairing plus quadrupole Hamiltonian
the lowest first excited 2 energy level among the Hf iso- for spin 1/2 neutrons and protons within an irreducibler§p(
topes. We also identified this isotope with théilled shell  subspace of a nuclear valence shell. However, such model
of the model, ignoring the fact thggHf is at the midshell  calculations are difficult to carry out in all but the smallest
for neutrons in the conventional shell model. The solid linesshells. They are easy for=3, corresponding to nucleons in

VI. CONCLUDING REMARKS
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FIG. 5. Phase diagram for the @p model parametrized by
and N. The shaded area shows a smooth transition from a super-
conducting to a rotational phase; the transition region is regarded as
being in a superconducting rotor phase.

500.0

0.0 0
a 1p shell, but already challenging for=6 as required for 152 156 160 164 168 172 176 180 “184
the 2s1d shell. At this time, they are essentially impossible A
for more than a few particles whan>3. However, if they
could be done, we believe the results would parallel those FIG. 6. Comparison between the (8pmodel and experimental
obtained in our simple $B) model. Thus, it would be emi- energy levels for the Hf isotope& & 72). Different experimental
nently worthwhile to check the validity of this belief, if only Ppoints are connected with dashed guiding lines. The two families of
in a few special cases. For, if indeed one were to find adiasolid lines are from the model with different parameter strengths
batic rotors with strong pairing correlations of the type found(see text
in our simple model, then, in carrying out calculations for a
real nucleus, for which rotational states are observed experapproximates an inertial frame. This is clearly what is hap-
mentally, one would be justified in restricting the calcula-pening in the so-calleduperconducting rotostates of our
tions in an SW3) basis to just thd=0 states and in making model.
the assumption that the other states of the yrast band have the At an abstract algebraic level, the concept of embedded
samelJ-independent coefficients. (i.e., adiabatig rotor [or SU(3)-rotor] representations seems
We believe that this is, in fact, what one would find. In- strange. However, our model calculations show that they
deed, before our model calculations were done, such a resytovide an interesting example of how the physics of a situ-
was predictedcf. Carvalhoet al.[24] and Rowe, Rochford, ation can usefully guide the mathematical analysis. For
and Repkd9]) to explain the persistence of observed rota-while, from algebraic and computational points of view, the
tional bands in situations where spin-orbit and pairing correproblem of combining two incompatible dynamical symme-
lations are expected to be large. Recall that the criterion fotries, in all but the smallest model spaces, is a formidable
the occurrence of rigidlike rotational bands has long beenask, the physics of the situation gives hope for very good,
understood to be the adiabaticity of the rotational motionseven if approximate, solutions.
The intrinsic states of a microscopic rotor have many degrees It is also useful to consider the mixing of $8) and rotor
of freedom and modes of excitation. Thus, the criterion forirreps from another point of view. Recall that any interaction
the appearance of rigidlike rotational bands is only that thehat commutes with a group of transformations can only mix
coupling between the rotational and intrinsic degrees of freeequivalent representation of that group. Thus, if the infini-
dom is small. And this coupling is small if the rotational tesimal generators of the dynamical group of a rotor consist
angular velocity is small. of angular momentum operators and quadrupole moments,
One knows that nuclear Hamiltonians are invariant undethen any interaction that is rotationally invariant and com-
both translations and rotations. However, while acceptablenutes with the quadrupole moments is invariant under the
Hamiltonians should also be invariant under Galilean transdynamical group of the rotor. This implies that while short-
formations (center-of-mass momentum bogstthere is no  range(momentum-independéninteractions can change the
rotational analog of Galilean invariance. This is because #ntrinsic states of a rotor dramatically, they can only do so by
rotating frame of reference is not an inertial frame; there arenixing states of equivalent representations. This is an impor-
centrifugal and Coriolis forces. Nevertheless, if the rotationatant result and it is worthwhile to be clear as to its meaning.
motions are sufficiently slowadiabati¢, a rotating frame It means that a short-range interaction should not change
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TABLE I. The amplitude probability coefficients ¢#0,0 subirrep for the lowest eigenstatés,; with
J=0, 2, 4, 6, and 8 inc=20N=40 configuration. The corresponding probability coefficien®,,|?, are
written underneath. Atr=0.57 a phase transition occurs from superconducting states to rotational ones. The
largest components from othérot necessarily the samsubirreps are put in parentheses.

a\J 0 2 4 6 8
0.00 0 0 0 0 0
0 0 0 0 0
0.51 0.0010.299 0.003-0.278 0.0110.289 0.0360.309) 0.097-0.345
0.00Q0.087 0.00Q0.077 0.0000.089 0.0000.09)) 0.0090.119
0.53 0.008-0.285 0.0140.273 0.0570.289 0.165—-0.325 0.3460.417
0.00Q0.087) 0.0000.079 0.0030.0849 0.0270.106 0.1190.179
0.55 0.028-0.263 0.175-0.259 0.4350.425 0.6040.502 0.7020.516
0.0010.069 0.0310.067 0.1890.180 0.3650.252 0.4930.266
0.57 0.7590.486 0.7750.486 0.7970.48)) 0.8210.470 0.8440.455
0.5750.236 0.6010.236 0.6350.23)) 0.6740.22]) 0.7130.207
0.59 0.8770.420 0.8800.417 0.8850.411]) 0.8930.402 0.9030.389
0.7590.17% 0.7740.179 0.7840.169 0.7980.167) 0.8150.15))
1.00 1 1 1 1 1
1 1 1 1 1

intrinsic quadrupole moments arie? transition rates of a for example, a situation where the ground state band is
rotor band. However, without a dynamical theory of whathighly superconducting with relatively small moments of in-
properties of the flows determine the moments of inertia oertia whereas an excited band has smaller pair correlations
without making some specifi¢e.g., cranking model as- and larger moments of inertia. At some angular momentum,
sumptions, it is not possible to say what effects the mixingthe yrast band will flip from the lower to the excited band.
might have on moments of inertia. It should also be underAnd, at the crossing angular momentum, one expects large
stood that the ordering of rotational bands in a situationmixing of the two bands, especially if they have similar
where many representations occur may be rearranged asgaadrupole moments and belong to similar irreps of the rotor
result of pairing correlations so that, with the inclusion of algebra.
pairing, the representation which best describes the ground One also knows that the Coriolis force acts on a rotating
state band may very well be different. superconductor in much the same way as a magnetic field
We recognize that the schematic pairing force used withiracts on a superconductor in condensed matter. Thus, just as a
an Spq) irrep is not SU3) invariant. However, to the extent magnetic field suppresses superconductivity, one expects
that the SWU3) model approximates a rotor and the schematigpair correlations to be suppressed due to the Coriolis force
force approximates a short-range interaction, we should eXseyond some angular momentum value. This effect was
pect the latter, if not an S@3) scalar, to be a low-rank SB) noted by Mottelson and Valatif28] who suggested that a
tensor. It is known that matrix elements of the SUquad-  similar collapse of the superconducting pair correlations
rupole moments vary smoothly with and . Thus, we de- might be found in rotational nuclei. In fact, it appears that the
scribe two SW3) irreps as being similar if their highest breaking up of pairs occurs sequentially rather than in a
weights . u) have similar values. We then conclude that,single step. One can see such an effect in Table I, which
while a schematic force may mix inequivalent @Virreps, shows the coefficients of the wave functions in an(3U
it will only directly couple irreps which are similar. Observe expansion. One sees that, for valuesacf g, the compo-
that the spin-orbit force is a (1,1) $8) tensor so that, al- nent of a single S(B) irrep is more dominant whehis large
though we have not considered a spin-orbit interaction in thishan when it is small. We anticipate that, for a very large
paper, we may expect that it too will have similar conse-value ofx and a correspondingly large valuef we would
guencegcf., results of Rochford and Row®] on spin-orbit see a sudden breakdown of the superconductivity at some
mixing). critical value of the angular momentum and an effect in
In spite of the above observations, it should be understoodloser parallel with the Meissner effect. Indeed, it will be
that even though a short-range interaction may commutgery interesting to explore the results of our model in the
with the dynamical group of a rotor, it may still result in large x andN limits.
nonadiabatic effects. Consider a situation in which the en- We have stressed that an important reason for construct-
ergy levels of two equivalent irreps cross. One can imagineing a solvable model is to be able to test the validity of
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many-body approximates in an exactly solvable situation. Irexpressed in the equations of motion formalisa], is very
this context, we note that the conventional many-body desimilar to that of a quasidynamical symmetry. The philoso-
scription of pair correlations and rotations is within the phy of the equations-of-motion formalism is that while
framework of the deformed Hartree-Fock-Bogolyubov ap-eigenstates of the Hamiltonian may be complicated, the re-
proximation. But, because of the lack of rotational invarianceationships between states, particularly if one is regarded as a
and the violation of number conservation of this approxima-co|lective excitation of the other, may be relatively simple.
tion, one cannot be sure which HFB results are valid andrpys, while it may be quite unreasonable to describe energy
which are generated by the variational constraints of the aPsigenstates as independent-particle states, it may be appro-
proximation. Thus, it will be of considerable interest to see ifpriate to approximate excitation operators as one-body op-
the onset of deformation with increasing and the subse- grators. In a similar way, we find, for a superconducting
quent suppression of superconductivity at still higher valuesgtor, that it is a poor approximation to assuftiee valence
of a are described well in the HFB approximation. If the ghg|| components dfits states to be unmixed $8) states.
HFB approximation is successful in the context of the modelyowever, it is a much better approximation to assume that
it is, of course, no guarantee that it will be reliable in moretne relationships between the states are described g) SU
general situations. However, if it does not work well for the operators. Indeed, this is the meaning of a quasidynamical
model, it cannot be trusted elsewhere. symmetry. Thus, the use of a quasidynamical symmetry is
Also of interest is the so-called random-phase-akin to a field theoretic approach to spectroscopy, in which
approximation and quasiparticle RPA. It can be seen that thgne focuses on the operators and algebraic equations of mo-
way in which the excitation energies of the ﬁrSJt 2tate in tion in preference to the wave functions.
our model drops precipitously with increasiagust prior to Clearly the model we have constructed has a rich struc-
the phase transition is reminiscent of RRAIndom phase tyre and opens up possibilities for the investigation of many

approximation results for quadrupole vibrational excitation jnteresting phenomena and many-body approximations.
energies. As shown by Thoulgs29], the collapse of an RPA

vibrational energy to zero indicates an instability of the

Hartree-Fock(or HFB) ground state against quadrupole vi-

brational fluctuations and the expectation of a phase transi-

tion to a deformed state. The present model is clearly ame- This investigation was supported by the Natural Sciences

nable to analyses in this way. and Engineering Research Council of Canada. The authors
In conclusion, we note that the philosophy of the RPA, aghank J. Repka and J. L. Wood for fruitful discussions.
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