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Damping rates of hot giant dipole resonances
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The damping rate of hot giant dipole resonan¢@®RS9 is investigated. Besides Landau damping we
consider collisions and density fluctuations as contributions to the damping of GDRs. Within the nonequilib-
rium Green'’s function method we derive a non-Markovian kinetic equation. The linearization of the latter one
leads to complex dispersion relations. The complex solution provides the centroid energy and the damping
width of giant resonances. The experimental damping widths are the full width half maximum and can be
reproduced by the full width of the structure function. Within simple finite size scaling we give a relation
between the minimal interaction strength which is required for a collective oscillation and the cluster size. We
investigate the damping of giant dipole resonances within a Skyrme type of interaction. Different collision
integrals are compared with each other in order to incorporate correlations. The inclusion of a conserving
relaxation time approximation allows us to find tfié dependence of the damping rate with a temperature
known from Fermi-liquid theory. However, memory effects turn out to be essential for a proper treatment of
the damping of collective modes. We derive a Landau-like formula for the one-particle relaxation time similar
to the damping of zero sounfi50556-28188)00809-1

PACS numbgs): 21.60.Ev, 21.30.Fe, 24.30.Cz, 24.60.Ky

I. INTRODUCTION We follow another line. We will start from different ki-
netic equations and derive dispersion relations for the collec-
Giant resonances are high frequency collective excitatiofive modes by linearization of the corresponding kinetic

modes of a nucleus. They can be identified as the collectivequation. Instead of collective averaging, we solve these dis-

motion in the nuclear volume and are found as a property opersion relations and obtain directly the influence of correla-

all nuclei. In particular in recent years the experimental andions on the damping rate. We present in the paper different

theoretical interest has been focused on understanding t#§@ntributions to the damping of giant dipole resonances in a

width of such giant resonanc¢$—10. Although new ex- Systematic way.

perimental data are available at high excitation energy Let us shortly outline our theoretical approach to collec-

[11,17 the theoretical description of the temperature depentive resonances. The collective density oscillations are deter-

dence of the damping rate is still a matter of discussion. Mined via the time dependence of the one-particle distribu-

The theoretical treatment of giant resonances can b#on function f(R,p,T) where the density reads(R,T)

roughly characterized by two approaches. The first one cor=J[d®p/(27)°] f(R,p,T). The one-particle distribution

siders the finite nucleus and solves the random phase agbeys the kinetic equation

proximation (RPA) equation by diagonalization of the

Hamiltonian[13,14]. In this approach the damping width can . p?

be extracted as an envelope of discrete excitation lines, f(RP,T) =15 -+U(RT)+URT),H(Rp,T)

sometimes called Landau fragmentation. However the intro-

duction of temperature remains difficult. The second class of =1 [f(R,p,T)], D

approaches relies on the high density of states and conse-

quently uses a continuous model, mostly the Fermi-liquidynherey is the mean-field potential arid corresponds to the

theory[3,7-9,15-1F Within this treatment, dispersion rela- cqiisional term. The Poisson brackets are abbreviated as

tions are derived whose solutions provide the energy and th{ea b} =drad,b— d,adb. To get the linear response of the

width of collective excitation$8,9,17,1Q. __ system to an external field . We linearize Eq(1) around a
The microscopic theory is mainly based on Vlasov k'”et'cquasiequilibriumf(R p,T)=f%p)+ 5f(R,p,T) and get af-

equationg18—20. The influence of correlations by particle- 1o Fourier transformatiof— o and R—>(’q ’

particle collisions is investigated using numerical solutions

of Boltzmann-Uehling-Uhlenbeck(BUU)-type equations
[21,22. To get more physical insight into these simulation
results, collective models based on scaling theory are devel-
oped[23]. It turns out that the non-Markovian kinetic equa-
tion is necessary to get realistic values for giant monopole + U Qdpfo(p)=1c[5f(d,p,®)]. 2
resonancef2]. These collective models calculate the damp-

ing rate by an average procedure of the collision integralntegrating overp the solution provides the polarization
[24]. functionI1(q, )

iwdf(q,p,w)—i %5f(q,p,w)+i{u’[n]&n(q,w)
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H( ):M (3) _+BV f ( RT)
G- Uexl(qyw) dT ~m R|TWiP,,
with 8n(q, ) = [[d*p/(2)3] 5F(q,p.®). In the RPA ap- f AP’ s oo ( r )
proximation which corresponds to the neglect of collisions ) (2m)3 © fw(P’,RT)| Zu| R+ 2 T
we obtain
r
Moo gy = — 1L0) @ 2 i ©
!w =~
A TRVATLTN)
0

with the standard form of polarization functidih® (16) and |C:f d7] [G>( p,.R,T— Z,T) ,2<< p,R,T— I,— 7)]
Vo=4d,U[n]. The polarization function contains information e 2 2

about the collective excitation properties of nuclear matter. - -
According to the denominator of E¢4) the relation to the —(G<( p,R,T— _,T> ,§>( p,R,T— _,_TH
dielectric function(DF) is given by 2 2

NC)

,0)=1—Vo(no)[1%(q, ). 5 _ L
€(q.0) o(No)117(G, ) © where the Wigner distribution functiofyy is connected to

the correlation functiorfi(p,R,T)=G~(p,R,T,7=0). Fur-
ther{,} is the anticommutator of integrals over Wigner co-
ordinates.

Neglecting the collision integrdl. on the right-hand side
of Eqg. (8) one obtains the collisionless quantum Vlasov
equation[26]. This leads to the Lindhard polarization func-
tion (16).

Im 1 __ Im e(q,w) ©6) Next, we will consider binary collisions and will use for

e(q,w) [Re &(q,»)]2+[Im €(q,0)]?’ the self-energy in Eq9) the Born approximation

For different collision integrals we will get different polar-
ization functions. The complex zerag,= ) —iy of Eqg. (5)
determine the energ2 and widthy of the collective exci-
tation. From the DF one has the spectral functistmucture
function) via

which is important because its structure reflects the collec-

tive excitations. Sum rules, e.g25 - ) d®p’dp d¥p’ ,—
423) Sc(pt-t )=f—9W(pp .pp’)
(2m)
1 (= 1 neo? o
7T_Vof0 do @M e~ 2m 0 X (2m)%3(p+p’ —p—p')G=(p' t' 1)
XG=(p,t—t")G=(p’ t—t’), (10)

are an exact property of the spectral function.
The paper is organized as follows. In Sec. Il we start with

a generalized quantum kinetic equation which we rederived,harew is the collision probability. We close Eg) apply-
in Appendix A using the Martin-Schwinger hierarchy for the ing the generalized Kadanoff-Baym ansf2]
real-time Green'’s function. To include memory effects into

the kinetic equation we use the generalized Kadanoff-Baym

Ansatz and obtain a non-Markovian kinetic equation. In Sec. i T2

Il we linearize these kinetic equations to get the DF for G<(p,R,T,7)=exp— %f dte(p,R,t)
infinite hot nuclear matter in four different approximations: T-al2

(Sec. Il A) collisionless Vlasov equatioriSec. Il B) con-

serving relaxation time approximatidiMermin approxima- X fyy
tion), (Sec. Il © dynamical relaxation time approximation

(reflecting memory effecjs and (Sec. 1ll D) the effect of

density fluctuations on the potential. For these approxima- . ) ] ) )
tions we compare the damping rates and centroid energies ¥fich gives a connection between the correlation functions
giant dipole resonanceg&DRS which are the complex so- G~ and the Wigner distribution. The quasiparticle energy
lution of the dispersion relation. In Sec. Ill E we discuss €(P.R.T) in the quasiparticle picture is given by the solution

these results together with the full width at half maximum ©f the dispersion relation

(FWHM) of the structure function and with experimental

data.

p,R,T— g) (11

2
e=;—m+U(R,T)+ReE(p,e,R,T). (12)
II. KINETIC EQUATION APPROACH

Let us start from the kinetic equation in general form
(A14) from Appendix A: The resulting non-Markovian collision integral now reads
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= [ d°pad’p
Im(pl,T)=fO de#W(plvapspO

X[UNT-7T)+U (T-7,T)]
X{fafa(1=F1)(1—F3) —F1fa(1—F3)(1—-TFy)},
(13

wheref;=f(p;,R, T—7)(i=1,2,3,4),p4,=p;+pP,—P3, and
the full time-dependent propagator is

T—7
ui(T—T,T)=exp[iif dt/Aet’)|. (14
T

Ae are the time-dependent quasiparticle energiegt’)
=e1(t')+ ex(t') — e3(t’) — e4(t’). If memory effects are ne-

glected, Eq(13) becomes the usual Boltzmann or BUU col-

lision integrall g

d®p,d®
BIJ%W(plpz,p3p4)5[e(p1)+e(pg)—e(pg)
—e(pPa) [ fafa(1-1)(1— 1) —f1F(1-F3)(1—1y)].
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V' =to(1+XP,) 8(r1— 1) +t38(r1— 1) 8(r,—ra),
(17)

one obtains a mean-field potential for the neutrdns
(32,31

Un(RT)=tq 1+§ [Ny(RT)+ny(RT)]
1 ts )
= X0t 5| Ma(RT) [+ {[Na(RT)+ny(RT)]
—n2(R,M)} (18)

andU, is given by an interchange of, andn,. From Egs.
(2) and(3) we can read off the effective particle-hole poten-
tial V for isovector modes

Up—Up=2V,[ 8n,— 8n,],

t3

to
8

5 (19

1
+ —
X0 2

Vo(ng)=— (Np+np).

The parametet,, t;, andx, were fitted to reproduce the
binding energy E/A=—16 MeV) at the saturation density
(no=0.17 fm 3) of nuclear matter. For the GDR the wave

(15  vectorq is estimated according to the formuid2,33
The Boltzmann collision integral is modified in EQL3) 7 2
by a broadening of thé distribution function of the energy 9=5R: (20

conservation and an additional retardation in the center-of-

mass times of the distribution functioris=f(p; ,R, T— 7). In this model neutrons and protons oscillate out of phase

The first effect is connected with phase decay or spectrdhside a sphere of the radil& (=nuclear radius Focusing

properties and responsible for global energy conservatiopur interest on the nucleus®®Pb (**°Sn) we useq

[28,29. The second effect gives rise to genuine memory ef~0.23 fm! (q~0.277 fm ') with R=6.7 fm (R=5.6

fects. The formation of correlations at such short time scalefm).

are discussed in Ref29]. The dispersion of collective excitation is now computed
from the zeros of the complex dielectric function, E§),

lll. COLLECTIVE EXCITATION

Ree(Q—ivy,q)+Im e(Q—ivy,g)=0,
AND DIELECTRIC FUNCTION ( Y CI) ( Y q)

(21

We now linearize the different derived kinetic equationswheriy gives the Landalu (':iampfln%oféf;eAcglllectlv_e excrlta-

and analyze their consequences to the damping of GDRUO”'. n approm_mate S0 utlpn 0 t IS ISpersion rela-
Tion is possible if the damping lenis small[34]. Then one

The standard RPA is first repeated in order to explain our ; ; . o
can linearize the collective excitation spectrum

analysis.
Ree(q,Q)+(w—Q+iy)dgRe e(q,Q)+i Im €(q,Q2)=0
A. Vlasov equation-collisionless Landau damping (22)
The linearization of the quantum Vlasov equati®  which leads to
yields the RPA of the dielectric function which has the form
of Eq. (5), butII, is the (compleX Lindhard polarization Im €(q,Q) 23

function [30] v dqRe e(q,Q)

d3k f(k)—f(k+q)

(27)° BEx— Exaqt (Q—iy)+in’
(16)

and(} the solution of Ree(q,Q)=0. This is, however, only
justified for small values of the damping The correct pro-
cedure is to carry out the analytical continuation of the DF
into the lower energy plane. Performing the integration one
where E,=k?/2m and 7 is an infinitesimal small number. can exBress*the DFf)_With (16) by tEe dimen_sionless vari-
Spin degeneracy has been accounted fbrand y denote, ablesx=g/y2mT, z* =Q/2T, and{= — /2T in the form

respectively, the real part and the negative of the imaginary
part of the frequency 4= —ivy). By consideration of a
simplified Skyrme forcg31]

Ho(Q,%Q)=2fC

VoC
* = _——
E(XIZ ig) 1 2X c

F(2)

_ 24
z—7*+ié 29
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=
% 14
o
-
S a3
12 '
o] 0.2 0.4 0.6 0.8 1 0.233 0.235 0.237
Y in [MeV] g in [fm]
— 21 FIG. 1. Zeros of the analytic
% continuation of the complex DF
) (Lindhard for different wave vec-
g =20 tors atT=0. LHS: collective exci-
o tations (GDR) in nuclear matter
correspond to the crossing of the
19 lines Ree=0 and Ime=0
@=0.338 £m° (mar.ked by thick dofs RHS: pair
18 ' continuum Ime#0 and undamped
) 0.2 0.4 0.6 0.8 1 5 338 0.32 0.342 (marked region Ime=0,y=0
} with w.=q/2m(q=2pg).
Y in [MeV] g in [fm ]] ®==0 ( Pe)
:
!
26 e
% 25 Ime=0
2
5 24 Re g= 0
o]
23
22 q=0.4 fm" ’ :
9] 0.2 c.4 0.6 0.8 1 O:,4 0.402 0.404
Y in [MeV] q in [fm ]
where The explicit expressions of the real and imaginary parts of
the analytical continuation of the DF are given in Appendix
1+s exp—(z—x/2)? B. For complex values af there are also poles of the func-
F(z)=In (25

c=2Tm/ =2, ands=e*'T denotes the fugacity. Following
Landau’s contour integratiof85] the result of the analytic
continuation of the DR24) with the polezy=z* —i¢ is

€°(X,z*

1+se +x/2)%’
s exp—(z+x/2) They are located at

tion F(2) in Eq. (25 which require separate investigation.

X U
Z,==* E * ?, (27

&) where ¥, are the discrete fermionic Matsubara frequencies
( o F(2) Yy=pu—i(2n+1)7T; n=0,x1,=2,... . (28
gof dz +iwF(Z*) £=0, _ _
- z—Z* If these poles do not agree with the polgsof the denomi-
Vv M F nator of Eq.(24) there is no contribution to the integration
LC< f dzi_f_izﬂ.F(z*_ig) £>0, due to the fact that residue ¢F(2z)/(z—2zy);z,]=0. The
2X - Z—Z"+i¢ remaining case,=z, is found to be singular and will be
. F(2) discussed elsewhere.
j dz £<0. Figure 1 shows the zeros of the real and the imaginary
(| /= z-Z"+i¢ part of the DF equatiori26) in the complex plane at zero

(26)  temperature[left-hand side (LSH)]. The right-hand side
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Roe T =0 MeV
4t me q=.23fm" |
Imeg”

10
energy © [MeV]

FIG. 2. Real partsolid line), imaginary partdashed ling and
spectral function(dotted ling of the Lindhard DF for the wave
vectorq=0.23 fm ! at T=0 corresponding to Fig. {top).

(RHS) represents their position in the pair excitation spec-
trum which is bounded by the lines.=qg/2m(q=2pg).
For increasing wave vectogwe have found the following
three special cases.

Top (q=0.23 fm 1). There are two collective excita-

tions which correspond to the crossing points of the zeros of

Re(e®) and Im(e®). Their resolution in the pair continuum
(RHY yields an undamped collective excitatian, which
lies outside the pair continuurimarked region, Im¢)=0,
y=0). The collective excitatiom, lies inside the pair con-
tinuum and is therefore dampghin(e) #0, y# 0]. From the
DF one can now calculate the spectral functiéh In Fig. 2
one recognizes a-shaped peak at the frequency of the un-
damped excitatiomg, and a broader peak corresponding to
the damped collective excitatiang, .

Middle (q=0.338 fm1). There arises only one critical
collective excitationw;; for a critical wave vectog,;;. The
collective excitationw.;; lies inside the pair continuum
(wgit=w,) and is damped.

Bottom(q=0.4 fm ). Since there is no crossing of the
zeros of the real part and the imaginary part of the DF, nc
collective excitation can occur.

In Fig. 3 we summarize the above results considering thi
entire dispersion of the collective excitationTat 0. We see
that nuclear matter at zero temperature has a region whe
two collective modes are excit¢&ig. 3(a)]. The modeQ),
goes outside the pair continuum and is undamped, where:
the mode(),, propagates inside as a damped one.

Beyond the coincidence of both modes into the critical
point Q .i(deri) =~ @+ (qgit) there are no further collective
excitations. The related damping rates are shown in Fig. .
(b). We observe that above a critical wave vector we canna
find collective excitations which represents a pure quantun
effect. This critical wave vectoq; is determined by the
used interactio’V/y. Now we can link the minimal interac-

tion required for collective oscillation with the mass number;g5 v

by Eg. (20). The relation between minimal interacti(m)CriI
and mass numbeX,;; (wave vectorg.,) is plotted in Fig. 4.

Log( /q [MeV fm])

yin MeV

OC{II

critical potential V,

4.14

4.10

4.06
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(B) T T T T
-
-
// N
04} e \
e AN
/ . —— @ | N
/" ny=0.17 fm o Yoold) \
y \
\
0.2 e .
/7
7/ \\
// \
/ {
/7
0.0 F
0.00 0.10 0.20 0.30

. -1
wave vector qin fm

FIG. 3. (a) Dispersion of the collective excitations At=0 of

Vo (Acit) =

crit

As a result we find the following fit:

at+

Acrit

MeV fm?,

ig. 1 and their position in the pair continuum. The mddig(q)

dotted ling is damped andly;(q) (dashed lingis undamped. The
inset shows an enlarged view of the pair continuum where the
marked region corresponds to the undamped region=0). (b)
Corresponding damping rates.

(29

210.0

200.0

190.0

180.0

temperature T=0 MeV
density n;=0.17 fm"

170.0

160.0 +=

50.0

.0 150.0

mass number A_,

FIG. 4. According to Fig. middle) calculated critical poten-

O for critical wave vectorsy.;; which are connected with

the mass numbek via Eg.(20). The marked area corresponds to a
region where no collective excitations exist.
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16f! 200 | /f;j,l/,
! T=0 MeV @ e
15t s =
(0] P
2 100+ A T=0.5 MeV
14 S — a A —— T=2.0MeV
- —-—-- T=6.0 MeV
131 0.0 -
12 12 (B) e
> o
11 i 0.8 ) e
16 | > -
|
> 15 3
g 0.00 0.10 (?1.20 0.30
o 14 N e wave vector q [fm’]
g} FIG. 6. Collective excitations aT=2 MeV (solid line) and
13 T=6 MeV (dot-dashed lineof Fig. 5.(a) Dispersion of the collec-
tive excitations,(b) damping rates.
12
to the zero temperature result. They correspond to the com-
11 plex poles of Eq(27) and can be identified as single particle
' excitations. Taking the entire dispersion relation for different
16 \ T=6 MeV / temperaturegFig. 6) we observe higher damping rates of the
\ / collective excitations as the temperature increases. This ef-
15 / fect of temperature is also visible in the calculated spectral
Y, function (6) of Fig. 7.
14 - Growing temperatures lead to a broadening of the peak
and reaching a temperature of 6 M&sblid line Fig. 7 only
13 small collective effects remain observable. The correspond-
ing centroid energy is increasing with higher temperatures.
12 The further inclusion of correlations will lead to a decreasing
of the centroid energy for higher temperatures, which has
11 5 5 4 been demonstrated in Refd.7,31].
. In Fig. 8 we see now for the two nucléf°Sn and**%b
Yin Mev (dotted lines the calculatedLanday damping rates of GDR

FIG. 5. Collective excitationgthick dot9 corresponding to the
zeros of the analytic continuation of the complex indhard at
different temperatures compared with fhie O result[top of Fig. 1

(top)].

over the nuclear temperature. These damping rates are com-
pared and discussed with other approximation in the next
sections.

wherea=151.9 ancb=2997.4. The marked area Fig. 4 des-

ignates a region where no collective excitations exist. One
sees that a certain interaction strength is necessary in order t
have collective oscillations. The physical meaning is that for
light nuclei with given interaction strength the sound veloc-

ity couples to the single particle motion more strongly. This

fact is reflected in the critical wave vector, where the collec-
tive mode enters the pair continuuisee Fig. 3.

Since this model relies on the simple scaling I&0), Eq.

(29) can only be a qualitative estimation. For finite nuclei we
expect different parameteesandb.

Considering now nuclear matter for finite temperature we
present in Fig. 5 the zeros of the real and imaginary part of
the DF compared with th€= 0 result. We find with growing
temperatures a continuous deformation of the lineseRe(
=0 and Im(®)=0. The crossing pointéblack markedl cor-

100 +
V,~220 MeV fm®
-1
75 + q=023 fm T= 2 Mev
——— T=4MeV
= —— T=6 MeV
3
2 50t
E

0.0

13.0 14.0

15.0 16.0

energy © [MeV]

FIG. 7. Imaginary part of the inverse Lindhard OBpectral
respond again to collective excitations and are alwaysunction) for different temperatures and the wave vectgr
damped. We have additional zendight marked in contrast =0.23 fri L. (This figure corresponds to the results of H&fl].)
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Furthermore we will use a thermal averaged quantity. This
procedure is introduced in Appendix C and we get from Eq.
4.0 (32
> 1 1 [ d3,d3p,d3p
[¢) 1 2 3
= —_—=— ——W , S(Ae
= T Mo (2m° (P1P2,P3Pa) S(A€)
b
2 X[fof(1—F (1], (34)
=X [p— collisionless P ) )
£ ——-. coll."® //,./‘ with np=mpeT/(27?). For temperatures which are small
E coll. é/ compared to the Fermi energy we follow the well known
© ——— (coll.+fluc.)®@+Coul. | _.#* methods of the Fermi liquid theof36,37] and get from Eq.
,;4'/— (34)
‘ 1 _2nm'p | W(0.¢)\
Ry 10 20 3.0 = N lg, (39

. : cos 6/2
temperature T in [MeV] \ 0

FIG. 8. Theoretical damping rates of GDR f5%Sn (grey) and ~ Where
208pp (black as a function of the nuclear temperatdteThey are
the complex solution of the dispersion relation for different ap- 1 ™ ) 2m 2m W(0,d)
proximations: collisionlesé.indhard DF (dotted ling, Mermin DF ()= (2m?Jo dé sin ¢ . do . d¢, 0s02"

(Boltzmann (dot-dashed ling Mermin DF (memory (solid line),
and Mermin DFdensity fluctuatior- Coulomb interaction(dashed
line).

(36)

The calculation of the Fermi integrb@ is performed in Ap-

B. BUU equation-relaxation time approximation pendix D with the result

In order to consider collisions as an additional damping ; 5
effect of GDR we start first from Ed1) with the Markovian lg=—3"T" (37)
Boltzmann (BUU) collision integral (15) lg. Within the
standard treatmer|t35] we linearize the collision integral

i = M Using the collision probability in Born approximation we
around a homogeneous equilibrium distributih

introduce the spin-isospin averaged cross sedaiefd()

2do
aq ¢

41

m

5fi(pyRaT):fi(p,R,T)—f?(EP)E(Di(p,R,T)%f?,
(30)

W(0, ) =27 (39)

with the spin-isospin degenerag/~4. Assuming a mean

wheref; should be first the global Fermi distribution. Later cross sectiomlo/dQ ~ o/4m we get finally

on we will use a local equilibrium distribution in order to
ensure conservation laws. The linearized collision integral 1

8
reads —==T%m o, (39
B 3

whereo is the nuclear cross sectidfor numerical calcula-
tion we usec=40 mb as a spin-isospin averaged cross sec-
tion of o, 0pp, andoy, [38)).

Based on this result one can use the relaxation time ap-
proximation to include collision effects into the DF. This

1 d3p,d3p
f — 22 W(p1p2,psPa)AD S(Ae)

5TT) T(2m)®

X[ 9(1-f9H(1—19)], (3D

whereAe=e;+e;—€e3— €4 aNdAP=P +P,—D,—D,.
Neglecting the backscattering tersbs — ®;— o, we obtain
the relaxation time approximation

-0 of

7(py)  7(py)’

lg= (32
with

FO(1-fH(1-19
1—£9

1 d°p,d°ps
= W(12 S(A
78(P1) f (2m)® (12,39 &(4e)

(33

leads to a pure replacemenat— w+i/7 in the collisionless
Lindhard DF(16) and is known to violate the sum ru(@).
Therefore we apply an extended approach using a conserving
relaxation time approximation following Mermif89]. The
local equilibrium distributionf® is characterized by

1

0_
f expBlep—pu—ou(RH]+1"

(40)

where the local chemical potentiaiw is determined by
the density conservation resulting indu(q,w)

=6n(q,w)/11°(q,0). The linearized kinetic equatiof®)

then reads
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zero temperature. Now we shall employ a better approxima-

spectral function . . . .
p‘ tion of collisions in the next section.

-
Ly
Ly
. ! : T= 2 MeV C. Non-Markovian equation-dynamical relaxation time
———- Lindhard DF ] | g=0.23fm’ Next we investigate the kinetic equation with the collision
20 | Mermin DF(,) ! 1 integral (13) taking into account memory effects. The linear-
N —-=-- Memin DF(t,) | ization of the collision term,, (13) can be performed in the
‘-3‘5 ! ! same way as above with an additional linearization with re-
‘g ,,' ! spect toU=. ExpandingU~ in Eq. (13) gives
£ I ) -
T y /4\\': SUS(T-7T)=Ug(7) 1iijT dt’ Ade|, (43
0 7 N
P AN where
e 1 ey
o AN
. . AY - — " _ 2
0.0 5.0 10.0 15.0 20.0 25.0 A de= AE(t ) A(p /2m)
energy o [MeV] and
FIG. 9. Spectral functiof6) with the Lindhard DHdashed ling N . 5
compared with the Mermin DF for different relaxation times: Bolt- Ug (1) =exp{=i[A(p/2m)7]}.
zmann relaxation timeg (solid ling), dynamical(memory depen-
dent relaxation timer, (dot-dashed ling The linearization of the collisional terifi3) now reads
q-p o d3p-d3
(w—F of(p,q,w) Im(pl,T)=f deMW(lz,?)lD
0 (2m)®
—r§0/n_ _£0
=[f"(p—a/2) - (p+a/2)] 6V(q,0) X[U$(7)+Uq (1) (8F1— 8F )+ U™ (T—7,T)
1 9f%(p) on(q,w) - 0
——| of(p,qw)+——— ——— 41 —6U (T—7T) F7], (44)
TB( (P.0.) dep, 11p(9,0) 4D
where

and the resultingMermin) DF is

FO=[ff3(1—f(A—-FY—-FIUL-FHP(L-TII.
eM(q,w) (45

(1+ilwrg)[e(q,w+il/75)—1]

=1+ 15 (Tora) [ €(@.0F 15— 1.0~ 1]} The calculation ofsF; with the help of Eq(30) results in
(42) SFi=13f3(1-f)H(1-1Y
Here € is the collisionless Lindhard DFfto calculate the [£9D;+f 9D, — (1-F9 Dy~ (1-FJ)D,]
zeros ofeM one has to use the analytical continuation of X T

Lindhard DF equatiori26)] and 75 the relaxation timeg39).
Further conservation laws can be incorpordi4d.

In Fig. 9 we compare the spectral functions computed i i , ,
with the Lindhard DF(dashed ling and Mermin DF(solid ~ @nd dF; is obtained from Eq.(46) by interchanging
line), respectively. We observe an additional broadening bef < (1—f). According to Eq(2) we perform a Fourier trans-
yond Landau damping in the width of the Mermin DF due toformationT— w of the linearized collision integra#4) with
collision damping in this approximation. In comparison with the result
Fig. 7 we see further that the centroid energy of Mermin
result (solid line) is shifted to lower values with increasing 1 [ d®p,d3p;
temperature, while the centroid energy of the Lindhard result m(P1,©)= Ef T2me W(12,34
(dashed lingis shifted to higher values. The result for the (27)

(46)

damping ratesy of the GDR of 12%Sn and?°%b is shown in D_(w)

Fig. 8 (dot-dashed lingswhich are determined by the zeros X|Di(w) (6F1—F,)+ o Ade|,

of the Mermin DF €M(Q,y)=0. The calculated damping

rates in this approximation present an improvement com- (47)

pared to the collisionless resultdotted line$. We observe
the typicalT? behavior of the damping known from experi- whereD . (w)= 8(w+A€)* 5(w—Ae€). For e in Eq. (47)
mental data(Fig. 11) but we do not get any contribution at we obtain from the dispersion relati¢h2)
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5 BT 1 we have only momentum-independent mean fields, the lin-
€Pi R, 1= _ earization of the mean field propagator does not reduce this
1=[oReX(pi,RT)/70]lo-. to the standard Landau result as claimed in the errata of Ref.
[38], instead the factor of 3 counts hdsee comment after
X|U'(ng)on(R,T) Eq. (48)].
One may argue that this factor 3 comes from the thermal
averaging we employed here. We can repeat all calculations
T mhl ks 9%(pi,RT) St(p.R,T) (48) without thermal averagingsee Appendix D with the mo-
o of(p,RT) ’ mentum in the relaxation time at the Fermi level. The result-

(53

ing dynamical relaxation time then reads

wheresn(R,T) =256 (p,R,T). In the following we neglect
self-energy effectsY=0) and restrict our consideration to 1 3 1 o \?
guasiparticle energies in _ mean-field approximation 7 (@) 2 TB + = L
Se(p; R, T)=U’'(ng) 6n(R,T) with U’ =V, from Eq. (19). m
Therefore we see that 5e=0. This would be not the case . .
for momentum-dependent potentials. Compared with Eq(52) one sees that no factor 3 appears in

One can now introduce a thermal averaged relaxatiofont of the frequency, however, a factor 3/4 appears in front
time 7., analogous to Eq(34) of the relaxation time I . Therefore we obtain fof =0

m the same frequency dependence in both cases. In other words

1 1 [ d3p,d%p,d3ps the zero sound damping is not affected by averaging. The
= —f S W(12,39 temperature dependence is slightly flatter without thermal
(@) 2np (2m averaging.

In the Mermin approximatior™ of Eq. (42) we have to
replace the static relaxation timg with the dynamical one

- . e . 7m(w). Then we can again compute the damping ratésr
wheref=(1-f) andny is specified in Appendix C. Com- o Ghg of1205n and2ph by searching for the zeros of the
paring the Markovian result Eq34) with Eq. (49) we ob- Mermin DF €¥(Q,)=0. The results are shown in Fig. 8

serve a replacement of the energy conserving fadl@) (gqjiq Jineg. We observe a2 dependence of the damping

}N'th. d(w+Ae) and5(w—Ae). lTQede_nerEWw of the col- \ynich is due to the low-temperature expansion of the relax-
ectlv\?vexutatlons are r;]OW |fr;c uded in the Ienergfyr(]:onsirv ation time 7,,, but the temperature increase is too flat com-
fion. We can interpret this efiect as a coupling of the collec pared with the Boltzmann resytiot-dashed ling The inclu-

tive modes to the binary collisions. The collective boson is

bsorbed itted when tw ticl lid sion of memory effects now induces a finite width at low
apsorbed or emitted when Wo particles are coll 8. temperatures. This reflects the fact that memory accounts for
Restricting the relaxation time,, again to temperatures

which are small compared to the Fermi energy we follow Eq zero sound damping. Next we investigate the influence of
‘density oscillations on the potential itself.
(34) and get from Eq(49) y P

X{D;(w) FIFNFREI-F2106 D}, (49

1 27m pf/W (6,0) > ) D. Contribution of density fluctuations
m

50
(@)  Np | COSO/2 0 As shown in Ref[6] the contribution of density fluctua-

o . ) . ) tions can have a remarkable effect on the damping rate. The
where the Fermi integrdl,, is done in Appendix D with the  gerivation of the kinetic equation including the density oscil-
result lations leads to Lenard-Balescu-type collision integifélks
which have the same structure as E®) but with a dynami-

2 1/ w)?2 )
f =TI 242 = cal potential
I(w)=T 37 +2 T) (51
. . . ) V2(q)
The analytical expression far, finally reads VA=, (54)
le(d,e1— 51)'
1 1] 3[ w)?
(@) 78 AT (52 replacing the static one. Here the DF renormalizes the poten-

tial. Then we can proceed as described above and linearize
whereryg is the relaxation timé&39) which corresponds to the the collision integral, etc. This would lead to a rather in-
Markovian limit. The expressiofb2) for the relaxation time volved integration. We simplify the treatment by assuming
Tm contains an additionaldynamica) contribution (~ w?). that the transfered momentum during a single collision is
It guarantees that also at zero temperatures the collectivamall. Since for smalyf we have for the Lindhard DF
mode can be considered as a self-propagating one which has

a finite damping. We obtain a relaxation rate which is the 292
Landau damping rate of zero souf8b] except the factor of lime(q,w)=1- — o(g* (55)
3 in front of the frequencies. q—0 w

The form(52) is similar to the result Ayik derived in Ref.
[38] for the collective damping rate. In contrast to this resultwith the free sound velocitg?=Von/m, we get from Eq.
we have here the single-particle relaxation time. As long a42)
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292 so that the resulting dispersion relation will be a matrix equa-

(i) (56)  tion [42]. As above, the damping ratesare again the com-
plex solutions of this dispersion relation and plotted in Fig. 8
(dashed lines For small temperatures we find an increasing
of the damping rates compared with the rates of the memory-
dependent collision approximatiofb2) (solid lineg. This
comes from the fact that we have density fluctuations at zero
?émperature caused by the Coulomb interaction. For tem-
mentumq. Further we observe that(q,w)|=|e(q, ~ w)| peratures larger than 3 MeV the binary collisions dominate

such that we have a common factor in E49) in front of : L :
: and the behavior follows the memory collision approxima-
D, of 1/ e(q—0,w)|%. The further procedure is as above .; y PP

described. We expand for low temperatures and observe that
for the angular averaging holds

92 |\ /2pesin(6/2)sin($/2)
cos6/2] cos 6/2 '

lim eM(q,w)=1—
q—0

Inspecting Eq.(49) we see that the frequency argument of
Eq. (54) has to be taken at;—e;=q[(2p,+q)/2m]F w
~ ¥ w if we fix the final state of scattering as the state which

E. Comparison with the experiment

It is interesting to point out an advantage of the Mermin
polarization function. Therefore we compute the power spec-
trum of the mode, i.e., the energy rate per time which is
Using Eq.(56) the resulting prefactor which renormalizes expended on the motion of the collective mode. This power
Eq. (49) reads spectrum is connected to the structure fac®fq,w)
= 3¢[(f|Vo|0)|28(hw—E¢+Eq) by

(57)

e [Cax | apexe]
= X |€e PeX, @ 2
Ta(0)  To(w)Jo P(q,w)z%S(q,w)hw (62)
! fld ! (59
= X which is just Fermi's golden rule. The structure factor itself
_ 2,4
mm(@)Jo " 1-2 Rez)+ 7| is given by the dielectric functio®=V,/7 Im € 1. Using
with Eq. (56) we arrive at an expression for the power spectrum of
4c2p2 B o(w+ilT)
I (59) P(q,w)=2Vo0 Im v
w(o+il7) o(w+ilT)—Vongs/m
2
and the complex frequenay=Q —iy. With tabulated inte- = 2Vowi—s (:2/7 , 63)
grals[41] we get from Eq(58) finally the analytical expres- (0= wp) +(w/7)

sion
with @3=Vong®m. The second line is derived with the
1 1 k . 12k assumption that is real, which is not true for dynamical
= . sin a arctan cos« i i i i
ns(Q,y)  Tm(Q,y) 2sin 2| relaxgtlon tlmes(memory effects We regienve by' this
way just the classical Lorentz formula which describes the
2 1—k? 60 energy rate expended on the motion of a damped harmonic
Tk Fcosajarctan g [+ 511 60 osciliator driven by the external forcex+x/ -+ w3x

=2V0w§ Ccos (wot) averaged over time.
wherea = tarccos(Rez/|z|?) andk=1/\/|z|. For our chosen Naturally, Eq.(63) leads to a Breit Wigner form near the
situation and potential the prefact@0) increases the damp- resonance energy, with the full width of half maximum
ing rates only by 0.2 MeV. However, we see that the renor{FWHM) of "= 1/7:
malization of the potential by density fluctuations which are
in turn determined by the linearization of the kinetic equation r/2
can lead in principal to a remarkable change in the dispersion P(q,w) :Vowg 2 2
relation if we come close to the instability linfg]. Our (0= wo)"+(I'/2)
model potential(19) has no instability in the parameter

(64)

caused by interactions or correlations, however, these densip,WHM is just twice the damping raté=

. ) T - =2y. This has been
fluctuations renormalize the potential, i.e., their cause. So Weacently emphasizel@]. It has to be stressed that the experi-

have a complicated feedback of correlations to the fluctuaz, o ial data are accessible by FWHM. To extract the FWHM
t|0r|1$ fli”q S0 f?rtg' omb. effectal . from the structure functiof6) we used the Mermin approxi-
nclusion of Loulomb €ElectVe expect a more pro- - 44, M (42) with the dynamicalmemory-dependent re-
nounced effect if long-range interactions mediate COHeCt'VEiaxation timer,, of Eq. (52)
m . .

oscillations. The Coulomb interaction leads to an additional In Fig. 10 we have plotted the temperature dependence of

contribution for the proton mean field ) FWHM (gray-dashed lineof the structure functioitsee Fig.
L2 9) and the corresponding centroid enefgypr (gray-solid
chLenp(q), 61 line) of the GDR mode in***Pb together with real pat

q? (dark-solid ling and imaginary party (dark-dashed lineof



PRC 58 DAMPING RATES OF HOT GIANT DIPOLE RESONANCES 1483

15.0 100 -
Z sof
=
<
10.0 | S eot
©
[=]
£
S 40 F
5 FWHM
* *°pp, exp.
50 _ 201 « "*5n, exp.
- e FWHM
____—”’ === Y 0.0 1 L L I
o 2y 0.0 1.0 20 3.0
temperature T in [MeV]
90,5 20 20 6.0 8.0 FIG. 11. Experimental damping rates of GDR f&°Sn and
20%ph (2%n from[11] and 2°%Pb from [12]) compared with the
temperature T [MeV]

FWHM of the structure function as a function of the nuclear tem-

FIG. 10. Temperature dependence of the centroid enEggy, peraturer.

and of FWHM for GDR mode irf%Pb (gray lines compared with

the solution of the complex dispersion relati(?l), Rew=Q and  values. The improvement by inclusion of Coulomb effects
Im o=y (dark lineg, using the memory dependent relaxation time and density fluctuations is small.

(52) in the Mermin DF(42).

the complex solution of the dispersion relation, respectively. IV. SUMMARY
We find an approximate relation FWH¥R2 y (gray-dashed

and thin dark-dashed lingsvhich holds in the temperature
limit, where FWHM<Egpr, as has been discussed in Ref.

[8].

We have presented a systematic microscopic description
of collective excitations in hot nuclear matter by a kinetic
approach and computed damping rates of giant dipole reso-
: . nances(GDRs. We have rederived a generalized quantum

We emphasize that the centroid eneBgyhg Of the struc- — iatic equation employing the real-time Green functions
ture function agrees with the real pait of the complex ocpnique. Within Hartree approximation one derives the
solution of dispersion relation up to higher temperaturesqjisionless Viasov equation which in the linearized limit
(thick-dark and thick-gray lings The small deviation from o545 to the known Lindhard DF in the RPA. Applying the

the exact Breit Wigner forni64) is caused by the memory ,mpjey integration method proposed by Landau we calcu-
effects resulting in a frequency-dependent dynamical relax-

ation time 7, which is now complex.
The FWHM is the observable which allows us to compare temperature T= 0 MeV
with the experimental data. In Fig. 11 we have plotted the ~ 20 [ ’

‘
—— coll.fw’

FWHM of the GDR modes in?%Sn (gray line and 2°%b 100 C (coll. + fluc) '1®
(dark ling as a function of temperature compared with ex- ' ~ coll. + coul.

perimental data. They coincide within theoretical limits if we 3
consider that the experimental values are fits of a BreitZ
Wigner form itself. 3
In Fig. 12 we compare different approximations calcu-
lated in this paper with experimental data versus mass num- 130 : (A)
ber for T=0. In Fig. 12a) we have plotted the centroid en- s | 9
ergy Q) =Egpr. We observe that the successive inclusion of 00 | N
collisions with the memory-dependent relaxation timg
(52) (thin solid line, density fluctuations with the relaxation
time 7, g (60) (dashed ling as well as the inclusion of the
Coulomb interactioridotted and dot-dashed lineeproduces
the experimental valudgliamonds increasingly for the mass 50
numbers 88A<210. The inclusion of only Coulomb ef-
fects(dotted ling slightly overestimates the data. This over-

17.0 —-—- (coll. + fluc.)™® + coul. |

15.0

RER

E

estimate is compensated if we add the density fluctuations '50.0 100.0 A 1500 200.0
(dot-dashed ling The corresponding FWHMs, which are
shown to be roughly twice the imaginary past®f the com- FIG. 12. The experimental centroid enerfypr (8) and the

plex dispersion relations are plotted in Fig.(B2 The inclu-  experimental data of the damping widths(B) for GDR [43] vs
sion of collisions brings the curve towards the experimentamass number together with different approximations.
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lated the damping widtkLandau dampingof GDRs in dif- . v?2
ferent nuclei at finite temperatures. H :f dsfl‘ﬂﬁ‘l’l
The experimental data are calculated via the FWHM.
Landau damping rates underestimate the experimental data

of 12%5n and?°®%Pb. Considering collisions in first Born ap-
proximation the(Markovian kinetic equation is of Boltz-
mann or BUU type. Using a relaxation time approximationwhere the different numbers, i.e.={r,t,s, . ..), denote the
we have incorporated the collision effects into the DF whichone-particle variablegspace, time, spin . .). Theannihila-
leads to the Mermin DF. The calculated damping rates of th&ion and creation operators for Fermions obey the commuta-
GDR show a typicall? behavior but do not reproduce the tor relations
experimental values yet. Only memory effects which are in-
cluded in the collision term of the kinetic equation via retar- [V, V,],=0, [V, P]], =&, (A2)
dation of the distribution function improve the theoretical
damping rates. This non-Markovian relaxation time approxi-The correlation functions are defined by different products of
mation leads to a dynamical relaxation time which differscreation and annihilation operators in the Heisenberg picture
from the Landau result of the damping of zero sound. Within
the low-temperature limit the theoretical damping rates of G™(1,2=(¥, ¥}, G=(1,2=(¥]¥,). (A3)
the GDR in 12°Sn and?°®Pb are improved but the tempera-
ture increase is flatter than the experimental findings. AHere (---) denotes the average value with the unknown
renormalization of the potential by density fluctuations in-quantum-statistical density operatpr The causal Green
crease the damping rates by7%. These density fluctua- function is given with the Heaviside step functién by
tions together with Coulomb effects reproduce the centroid
energy for the mass numbers88<210. If we neglect the G(1,2=0(t;-1,)G7(1,2—0O(t,—t;)G~(1,2.
Coulomb interaction we underestimate the centroid energy (A4)
for heavier elements.

We consider the solution of complex dispersion relationdt is furthermore useful to introduce the retarded and ad-
as the physical mode of collective excitation in the systemvanced Green functions according to
In contrast, the experimentally observed collective excita-

1 a5 43 @it
+§ d¥r d7r W WoVin(r—rp) ¥ Wy, (Al

tions are extracted from FWHM. The calculation of the GR(1,2=-i10(1;-1,)[G7(1,2+G~(1,2],
width (FWHM) of the GDR modes, which is proportional to A _
imaginary part of the inverse DF, leads to results which are GN(1,2=i0(t,—t)[G7(1,2+G™(1,2]. (A5)

comparable with the experiment. Memory effects change the

shape of these structure functions compared to the usublsing now the equation of motion of the creation and anni-
Breit Wigner form. Since experimental data are fitted withhilation operators we can derive kinetic equations. Applying
the latter one, we cannot expect to reproduce the experimef2€ equation of motion for the field operators in the Heisen-
tal data completely. Especially the temperature dependend¥®'d picture one gets an equation of motion for the causal
of v as solution of the dispersion relation shows too small arf>r€€n function$26]

increase with temperature. This may be a hint that shape 5

fluctuations become importait4]. In Ref.[45] it was stated (ii+ &) Gy(1,1)=8(1-1")

that y increases linearly with temperature, caused by the | dt; 2m ne

coupling of surface modes. The incorporation of shape fluc-

tuations will be considered in a forthcoming paper. +f d2V(1-2)G,(12,127).

(AB)
ACKNOWLEDGMENTS
. . ) . , In this so-called Martin-Schwinger hierarcg26] the one-
Fruitful discussions with M. DiToro and V. Baran are naicle Green's function couples to the two-particle one, the
gratefully acknowledged. This work was supported by they, s particle Green’s function couples to the three-particle
DFG (Germany under contract No. Ro 905/13-1. one, etc. A formally closed equation for the one-particle
equation can be reached with the introduction of the self-

energy
APPENDIX A: GENERALIZED KINETIC EQUATION

Wg shortly sketch the.derlvanon of the g_eneral kinetic fdl 2(1’1)G1(1’1,):f d2V(1-2)G,(12,1'2"),
equation(9). We use the dialect of the generalized Kadanoff ¢

and Baym formalism developed by Langreth and Wilkins (A7)
[46] for the nonequilibrium(real-time Green'’s functions in-

troduced by Kadanoff and Bayf26]. Considering a system where the integration contour turns out to be chosen as
of Fermions which interact via the potentMlwe start with  Keldysh contour in order to meet the requirement of weak-
the Hamiltonian ening of initial correlations
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lim G,(12,12") (erd d,Q2), v=0,
(h=t=ty=tp) === Re exd 0,2 —17)
’ / / ! Re Ec(q!QIY): H
=G(1,1)G6(2,2)+G(1,2)G(2,1), (A8) —21m €,(q,Q—iy), ¥>0,
which means that asymptotically the higher order correla- [ Re &rd 0.02=17), <0, (B1)
tions should be factorized for infinite past. One gets from
Egs.(A6) and (A7) the Dyson equation (em(9.0Q) y=0,
g Vi Im erd q,Q—i7)
—+ = 1,1)=46(1-1' °q,Q,y)= .
(' ot, T om) Cu(LI)=6(1-17) M@Y=\ | o Reen(@,Q-iy), >0,
_ _ _ _ L Im erdq,Q2—ivy), v<0,
+fd1 [2(1,1)Gy(1,1) -3 <(1,1)G5(1,1)]. (B2)

(A9) where we redefined® in terms of the retarded Lindhard DF

€(q,w) = €reti €y (16). For nonzero temperature we find
Writing Eqg. (A9) in the more compact operator notation

gives Vom (=
. ere=1+ Tf dk K fe(k) [b(y-)—¢(y-)]
Gy 1G,=1+3Gy, (A10) m°qJo
(B3)
whereG, ! is the inverse of the Hartree-Fock Green function
VTP 1+exp3(“‘(5?)2’2m)‘
0 V% €m— — In (i—(B®)272m) (B4)
Go (L1)=| i 5+ 5t | (1= 1) =211, T | 1+ expfe BD2m)

(ALD)  \ith y.=B%/k, B =wm/q+q/2, and ¢(y)=In|(1—y)/(1
We now apply the Langreth-Wilkins rul¢46] to the Dyson +y)l- o . )
equation(A10), which describe the way to get the correlation ~ Considering now complex frequenay=(—ivy we find
functions(A4) and retarded function@5) from causal ones. O €r(d,{2,7) =Re €retIM €ge
We get the equation of motion
R 1 Vom
(Go'-3R)G==3%G". (A12) SR g

dek k f=(K)
0

tion readq47]

Subtracting the adjoined equation the general kinetic equa- [ (kz—(B‘j)z—Kz)2+(2kK)z
X (BS)

[(k+(B$)?= 2]
—i(Gy'G==G~GyH=i(GRx=-3~G")
—i(SRG=-G=3H), —In (kz_(B(‘))Z_KZ)zHZkK)Z] (B6)
(A13) [(k+B)?—«?]?

which was derived first by Kadanoff and Bay@6]. For the and
time diagonal casé¢;=t;,=t and using Eq.(A5) in Eq.

(A13) we finally get Im e =V0—m xdk k fr(k){ arctan 2K
—— . " atqlo T [k2—(B)?- 7]
—i[Gg (rqt,ryt),G=(rat,rost)] (B7)
[t J— J—
= | d° f dti[G™(rit,1)2=(1,ry.t 2kk
| o[ durerans @y arcton— X 2]7 .
_ _ [k*=(BZ)"—«"]
+35(rt,1)G7(L,r ) = G=(r t, 1)S7(1,r 1)
_ _ where k= ym/q.
—37(rqt,1)G=(1,r,1)], (A14) The expressions of Re,, and Ime, are
which are the kinetic equatior(8) and (9), respectively. VomT 054.05
Re €m= 2 I 2 (Bg)
7q o
APPENDIX B: EXPRESSION
OF THE DIELECTRIC FUNCTION and
In this appendix we give the explicit expressions of the vemT
real and imaginary parts of the analytical continuation of the Im €= 0 arctarEE (B10)
complex dielectric functiore®(q,(,y) in Eq. (26) q c
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with where f0=(e*+1)71, f2=1-12, and Ax=x;+X,—X3
—X4. The integral(D1) can be done exactly using the stan-

_ Q 2
o=1+2a_cogBi«)+a", dard identity over Fermi functiohg36] and we find

o.=1+a,cogB%«,)+a_cogBL«,) 2

|f=T—3Jw dx, £OT0 (X0 = 2273, (D2)
+a,a_coq—k4Q), B2 ) Tt xax 1 3 :
os=a,sin(Bk;)—a_sin( B$K1)+a+a,sin(—,<1?gll) We perform the Fermi integral in E450) as above
. . : () +1n(—Q)
The coefficienta.. is defined by IIn(Q): m 2m (D3)
[—(B2)*+k%]xy
a. =expp/T)exp 2k (B2 4nd have fol
wherex,;=7y/Tq. At zero temperature we used for the ana- N
lytical continuation of the distribution functiof#8] Im(£Q)=T f_)\dxl dx; dxz dx4 S(Ax=Q)
fe(k)=60(kg— |k B13
r(K)=0(ke—[K|) (B13) X[fgl?gl(?ng 0 24+f22?23?24)]’ (D4)
with

) whereQ) = w/T. Writing Eq. (D4) in the form
fe(k)=lim F,(k),

A—0
E0) =T3f dx, dx, dxg dx, S(Ax+Q
i k_l Kt ke K—ke e m(£ Q) X dxo dxg 4 O( )
Al )—;arcta A —arcta A . (B19

AR+ TR (e )]
The calculation of Reg, (B5) and Im e (B7) for complex

frequencies will be done analogously. The imaginary part of
€m in EQ. (B4) vanishes ifA goes to zero and can therefore

be dropped.

(D9)

one gets forQ0—0 the result(D2). Applying the standard
identity [36] in Eq. (D9) we have

APPENDIX C: THE THERMAL AVERAGING

T3 (=
_ 0, §02 7O _
We define the thermal averaging by denoting that a func- Im(= Q)= 2 f,hdxl [f X1+f><1 (e 1]

tion A(e) should take its value to the Fermi level for=0
X?glta[WZ‘F(XliQ)ZJ

A(ff):f de 6(e—€5)A(e) T3(2 .. Qz
=73 Z 724

3 5 (D6)

1
”TJ de fO%(1—f9A(e)
so that the final result forrfn in Eq. (D3) reads

1 d3p
2
I (w)=T% P
m(®@ 3 2\ T

- (zw)sfo(l—fo)A(e) (Cy

1—|—3
4

_f
_|B

©|° D7
) |- ©®7
with the density of statep,=mpT/(272) for low tempera-
tures. Without thermal averagingCalculating the Fermi integral
in Eq. (50) without the thermal averaginghppendix O we
start from Eq.(D4) and get

APPENDIX D: CALCULATION

~ _ 2 %
OF COLLISION INTEGRAL Im(=)=T f_AdXZ dxs dxg S(AX+)

Performing the collision integral for Fermi functions in
Eq. (35) with the dimensionless variables=(e—w)/T and
A=ul/T we get

AT PRS PSS (D8)

X2X X

Rewriting Eq.(D8) in the form
|fB=T3f dxg dxp dxg dxg S(AX)FQ F5 F0 7 -
=\

Xo ' X3 Xy4?

(D1) IHere,A = u/T>0.
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T(zQ)= Tzf dx, dxg dx, S(AX=Q)f?

X (e7aF ey 1), (D9)

we apply the standard identif6] and find forl,,
T2
Q) =510 a7+ (= Q)% (e 7+ 1),

(D10)

(Xl!

DAMPING RATES OF HOT GIANT DIPOLE RESONANCES

1487
Sincee;~u we havex;—0 and get forl |, (D3)
-|-2 2 ® 2
(w)— ﬁ) . (Dll)
The resulting relaxation time,, reads finally
1 31 o )2 D12
}m(w) 4 7g 7wT) |’
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