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Damping rates of hot giant dipole resonances
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The damping rate of hot giant dipole resonances~GDRs! is investigated. Besides Landau damping we
consider collisions and density fluctuations as contributions to the damping of GDRs. Within the nonequilib-
rium Green’s function method we derive a non-Markovian kinetic equation. The linearization of the latter one
leads to complex dispersion relations. The complex solution provides the centroid energy and the damping
width of giant resonances. The experimental damping widths are the full width half maximum and can be
reproduced by the full width of the structure function. Within simple finite size scaling we give a relation
between the minimal interaction strength which is required for a collective oscillation and the cluster size. We
investigate the damping of giant dipole resonances within a Skyrme type of interaction. Different collision
integrals are compared with each other in order to incorporate correlations. The inclusion of a conserving
relaxation time approximation allows us to find theT2 dependence of the damping rate with a temperature
known from Fermi-liquid theory. However, memory effects turn out to be essential for a proper treatment of
the damping of collective modes. We derive a Landau-like formula for the one-particle relaxation time similar
to the damping of zero sound.@S0556-2813~98!00809-7#

PACS number~s!: 21.60.Ev, 21.30.Fe, 24.30.Cz, 24.60.Ky
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I. INTRODUCTION

Giant resonances are high frequency collective excita
modes of a nucleus. They can be identified as the collec
motion in the nuclear volume and are found as a propert
all nuclei. In particular in recent years the experimental a
theoretical interest has been focused on understanding
width of such giant resonances@1–10#. Although new ex-
perimental data are available at high excitation ene
@11,12# the theoretical description of the temperature dep
dence of the damping rate is still a matter of discussion.

The theoretical treatment of giant resonances can
roughly characterized by two approaches. The first one c
siders the finite nucleus and solves the random phase
proximation ~RPA! equation by diagonalization of th
Hamiltonian@13,14#. In this approach the damping width ca
be extracted as an envelope of discrete excitation lin
sometimes called Landau fragmentation. However the in
duction of temperature remains difficult. The second clas
approaches relies on the high density of states and co
quently uses a continuous model, mostly the Fermi-liq
theory@3,7–9,15–17#. Within this treatment, dispersion rela
tions are derived whose solutions provide the energy and
width of collective excitations@8,9,17,10#.

The microscopic theory is mainly based on Vlasov kine
equations@18–20#. The influence of correlations by particle
particle collisions is investigated using numerical solutio
of Boltzmann-Uehling-Uhlenbeck~BUU!-type equations
@21,22#. To get more physical insight into these simulati
results, collective models based on scaling theory are de
oped@23#. It turns out that the non-Markovian kinetic equ
tion is necessary to get realistic values for giant monop
resonances@2#. These collective models calculate the dam
ing rate by an average procedure of the collision integ
@24#.
PRC 580556-2813/98/58~3!/1473~15!/$15.00
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We follow another line. We will start from different ki-
netic equations and derive dispersion relations for the col
tive modes by linearization of the corresponding kine
equation. Instead of collective averaging, we solve these
persion relations and obtain directly the influence of corre
tions on the damping rate. We present in the paper differ
contributions to the damping of giant dipole resonances i
systematic way.

Let us shortly outline our theoretical approach to colle
tive resonances. The collective density oscillations are de
mined via the time dependence of the one-particle distri
tion function f (R,p,T) where the density readsn(R,T)
5*@d3p/(2p)3# f (R,p,T). The one-particle distribution
obeys the kinetic equation

ḟ ~R,p,T!2H p2

2m
1U~R,T!1U ext~R,T!, f ~R,p,T!J

5I c@ f ~R,p,T!#, ~1!

whereU is the mean-field potential andI c corresponds to the
collisional term. The Poisson brackets are abbreviated
$a,b%5]Ra]pb2]pa]Rb. To get the linear response of th
system to an external fieldUext we linearize Eq.~1! around a
quasiequilibriumf (R,p,T)5 f 0(p)1d f (R,p,T) and get af-
ter Fourier transformationT→v andR→q

ivd f ~q,p,v!2 i
pq

m
d f ~q,p,v!1 i $U8@n#dn~q,v!

1Uext%q]pf 0~p!5I c@d f ~q,p,v!#. ~2!

Integrating overp the solution provides the polarizatio
function P(q,v)
1473 © 1998 The American Physical Society
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P~q,v!5
dn~q,v!

Uext~q,v!
~3!

with dn(q,v)5*@d3p/(2p)3# d f (q,p,v). In the RPA ap-
proximation which corresponds to the neglect of collisio
we obtain

PRPA~q,v!5
P0~q,v!

12V0P0~q,v!
~4!

with the standard form of polarization functionP0 ~16! and
V05]nU@n#. The polarization function contains informatio
about the collective excitation properties of nuclear mat
According to the denominator of Eq.~4! the relation to the
dielectric function~DF! is given by

e~q,v!512V0~n0!P0~q,v!. ~5!

For different collision integrals we will get different pola
ization functions. The complex zerosv05V2 ig of Eq. ~5!
determine the energyV and widthg of the collective exci-
tation. From the DF one has the spectral function~structure
function! via

Im
1

e~q,v!
52

Im e~q,v!

@Re e~q,v!#21@ Im e~q,v!#2
, ~6!

which is important because its structure reflects the col
tive excitations. Sum rules, e.g.,@25#

1

pV0
E

0

`

dv v Im
1

e~q,v!
5

n0q2

2m
~7!

are an exact property of the spectral function.
The paper is organized as follows. In Sec. II we start w

a generalized quantum kinetic equation which we rederi
in Appendix A using the Martin-Schwinger hierarchy for th
real-time Green’s function. To include memory effects in
the kinetic equation we use the generalized Kadanoff-Ba
Ansatz and obtain a non-Markovian kinetic equation. In S
III we linearize these kinetic equations to get the DF
infinite hot nuclear matter in four different approximation
~Sec. III A! collisionless Vlasov equation,~Sec. III B! con-
serving relaxation time approximation~Mermin approxima-
tion!, ~Sec. III C! dynamical relaxation time approximatio
~reflecting memory effects!, and ~Sec. III D! the effect of
density fluctuations on the potential. For these approxim
tions we compare the damping rates and centroid energie
giant dipole resonances~GDRs! which are the complex so
lution of the dispersion relation. In Sec. III E we discu
these results together with the full width at half maximu
~FWHM! of the structure function and with experiment
data.

II. KINETIC EQUATION APPROACH

Let us start from the kinetic equation in general for
~A14! from Appendix A:
s

r.

c-

h
d

m
.

r

-
of

F ]

]T
1

p

m
•¹RG f W~p,R,T!

1E dr
dp8

~2p!3
ei ~p82p!•r f W~p8,R,T!FSHS R1

r

2
,TD

2SHS R2
r

2
,TD G5I c , ~8!

I c5E
2`

0

dtF H G.S p,R,T2
t

2
,t D ,S,S p,R,T2

t

2
,2t D J

2H G,S p,R,T2
t

2
,t D ,S.S p,R,T2

t

2
,2t D J G , ~9!

where the Wigner distribution functionf W is connected to
the correlation functionf W(p,R,T)5G,(p,R,T,t50). Fur-
ther $,% is the anticommutator of integrals over Wigner c
ordinates.

Neglecting the collision integralI c on the right-hand side
of Eq. ~8! one obtains the collisionless quantum Vlas
equation@26#. This leads to the Lindhard polarization func
tion ~16!.

Next, we will consider binary collisions and will use fo
the self-energy in Eq.~9! the Born approximation

SC
:~p,t2t8!5E d3p8d3p̄ d3p̄8

~2p!9
W~pp8,p̄p̄8!

3~2p!3d~p1p82 p̄2 p̄8!G"~p8,t82t !

3G:~ p̄,t2t8!G:~ p̄8,t2t8!, ~10!

whereW is the collision probability. We close Eq.~8! apply-
ing the generalized Kadanoff-Baym ansatz@27#

G,~p,R,T,t!5exp2
i

\ET2t/2

T1t/2

dte~p,R,t !

3 f WS p,R,T2
utu
2 D ~11!

which gives a connection between the correlation functio
G: and the Wigner distribution. The quasiparticle ener
e(p,R,T) in the quasiparticle picture is given by the solutio
of the dispersion relation

e5
p2

2m
1U~R,T!1Re S~p,e,R,T!. ~12!

The resulting non-Markovian collision integral now rea
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I m~p1 ,T!5E
0

`

dtE d3p2d3p3

~2p!6
W~p1p2 ,p3p4!

3@U1~T2t,T!1U2~T2t,T!#

3$ f 3f 4~12 f 1!~12 f 2!2 f 1f 2~12 f 3!~12 f 4!%,

~13!

where f i5 f (pi ,R,T2t)( i 51,2,3,4),p45p11p22p3 , and
the full time-dependent propagatorU6 is

U6~T2t,T!5expF6 i E
T

T2t

dt8De~ t8!G . ~14!

De are the time-dependent quasiparticle energiesDe(t8)
5e1(t8)1e2(t8)2e3(t8)2e4(t8). If memory effects are ne
glected, Eq.~13! becomes the usual Boltzmann or BUU co
lision integralI B

I B5E d3p2d3p3

~2p!6
W~p1p2 ,p3p4!d@e~p1!1e~p2!2e~p3!

2e~p4!#@ f 3f 4~12 f 1!~12 f 2!2 f 1f 2~12 f 3!~12 f 4!#.

~15!

The Boltzmann collision integral is modified in Eq.~13!
by a broadening of thed distribution function of the energy
conservation and an additional retardation in the center
mass times of the distribution functionsf i5 f (pi ,R,T2t).
The first effect is connected with phase decay or spec
properties and responsible for global energy conserva
@28,29#. The second effect gives rise to genuine memory
fects. The formation of correlations at such short time sca
are discussed in Ref.@29#.

III. COLLECTIVE EXCITATION
AND DIELECTRIC FUNCTION

We now linearize the different derived kinetic equatio
and analyze their consequences to the damping of GD
The standard RPA is first repeated in order to explain
analysis.

A. Vlasov equation-collisionless Landau damping

The linearization of the quantum Vlasov equation~8!
yields the RPA of the dielectric function which has the for
of Eq. ~5!, but P0 is the ~complex! Lindhard polarization
function @30#

P0~V,g,q!52 E
c

d3k

~2p!3

f ~k!2 f ~k1q!

Ek2Ek1q1~V2 ig!1 ih
,

~16!

where Ek5k2/2m and h is an infinitesimal small number
Spin degeneracy has been accounted for.V and g denote,
respectively, the real part and the negative of the imagin
part of the frequency (v5V2 ig). By consideration of a
simplified Skyrme force@31#
f-

al
n

f-
s

s.
r

ry

y85t0~11x0P̂s!d~r 12r 2!1t3d~r 12r 2!d~r 22r 3!,
~17!

one obtains a mean-field potential for the neutronsUn
@32,31#

Un~R,T!5t0H S 11
x0

2 D @nn~R,T!1np~R,T!#

2S x01
1

2Dnn~R,T!J 1
t3

4
$@nn~R,T!1np~R,T!#2

2nn
2~R,T!% ~18!

andUp is given by an interchange ofnp andnn . From Eqs.
~2! and~3! we can read off the effective particle-hole pote
tial V0 for isovector modes

Un2Up52V0@dnn2dnp#,

V0~n0!52
t0

2 S x01
1

2D2
t3

8
~nn1np!. ~19!

The parametert0 , t3 , and x0 were fitted to reproduce the
binding energy (E/A5216 MeV! at the saturation density
(n050.17 fm23) of nuclear matter. For the GDR the wav
vectorq is estimated according to the formula@32,33#

q5
p

2 R
. ~20!

In this model neutrons and protons oscillate out of ph
inside a sphere of the radiusR ~5nuclear radius!. Focusing
our interest on the nucleus208Pb (120Sn) we use q
'0.23 fm21 (q'0.277 fm21) with R56.7 fm (R55.6
fm!.

The dispersion of collective excitation is now comput
from the zeros of the complex dielectric function, Eq.~5!,

Re e~V2 ig,q!1Im e~V2 ig,q!50, ~21!

whereg gives the Landau damping of the collective excit
tion. An approximate solution of this RPA dispersion rel
tion is possible if the damping Ime is small @34#. Then one
can linearize the collective excitation spectrum

Re e~q,V!1~v2V1 ig!]VRe e~q,V!1 i Im e~q,V!50
~22!

which leads to

g5
Im e~q,V!

]VRe e~q,V!
~23!

andV the solution of Ree(q,V)50. This is, however, only
justified for small values of the dampingg. The correct pro-
cedure is to carry out the analytical continuation of the D
into the lower energy plane. Performing the integration o
can express the DF~5! with ~16! by the dimensionless vari
ablesx5q/A2mT, z* 5V/2T, andj52g/2T in the form

e~x,z* ,j!512
V0c

2x E
C
dz

F~z!

z2z* 1 i j
, ~24!
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FIG. 1. Zeros of the analytic
continuation of the complex DF
~Lindhard! for different wave vec-
tors atT50. LHS: collective exci-
tations ~GDR! in nuclear matter
correspond to the crossing of th
lines Ree50 and Ime50
~marked by thick dots!. RHS: pair
continuum ImeÞ0 and undamped
~marked! region Ime50,g50
with v65q/2m(q62pF).
of
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ary
where

F~z!5 ln
11§ exp2~z2x/2!2

11§ exp2~z1x/2!2
, ~25!

c5A2Tm3/p2, and§5em/T denotes the fugacity. Following
Landau’s contour integration@35# the result of the analytic
continuation of the DF~24! with the polez05z* 2 i j is

ec~x,z* ,j!

512
V0c

2x 5
`E

2`

1`

dz
F~z!

z2z*
1 ipF~z* ! j50,

E
2`

1`

dz
F~z!

z2z* 1 i j
1 i2pF~z* 2 i j! j.0,

E
2`

1`

dz
F~z!

z2z* 1 i j
j,0.

~26!
The explicit expressions of the real and imaginary parts
the analytical continuation of the DF are given in Append
B. For complex values ofz there are also poles of the func
tion F(z) in Eq. ~25! which require separate investigatio
They are located at

zn56
x

2
6Aqn

T
, ~27!

whereqn are the discrete fermionic Matsubara frequenci

qn5m2 i ~2n11!pT; n50,61,62, . . . . ~28!

If these poles do not agree with the polesz0 of the denomi-
nator of Eq.~24! there is no contribution to the integratio
due to the fact that residue of@F(z)/(z2z0);zn#50. The
remaining casez05zn is found to be singular and will be
discussed elsewhere.

Figure 1 shows the zeros of the real and the imagin
part of the DF equation~26! in the complex plane at zero
temperature@left-hand side ~LSH!#. The right-hand side
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~RHS! represents their position in the pair excitation sp
trum which is bounded by the linesv65q/2m(q62pF).
For increasing wave vectorsq we have found the following
three special cases.

Top (q50.23 fm21). There are two collective excita
tions which correspond to the crossing points of the zero
Re(ec) and Im(ec). Their resolution in the pair continuum
~RHS! yields an undamped collective excitationv02 which
lies outside the pair continuum~marked region, Im(e)50,
g50). The collective excitationv01 lies inside the pair con-
tinuum and is therefore damped@ Im(e)Þ0, gÞ0]. From the
DF one can now calculate the spectral function~6!. In Fig. 2
one recognizes ad-shaped peak at the frequency of the u
damped excitationv02 and a broader peak corresponding
the damped collective excitationv01.

Middle (q50.338 fm21). There arises only one critica
collective excitationvcrit for a critical wave vectorqcrit . The
collective excitationvcrit lies inside the pair continuum
(vcrit'v1) and is damped.

Bottom(q50.4 fm21). Since there is no crossing of th
zeros of the real part and the imaginary part of the DF,
collective excitation can occur.

In Fig. 3 we summarize the above results considering
entire dispersion of the collective excitation atT50. We see
that nuclear matter at zero temperature has a region w
two collective modes are excited@Fig. 3~a!#. The modeV02
goes outside the pair continuum and is undamped, whe
the modeV01 propagates inside as a damped one.

Beyond the coincidence of both modes into the criti
point Vcrit(qcrit)'v1(qcrit) there are no further collective
excitations. The related damping rates are shown in Fig
~b!. We observe that above a critical wave vector we can
find collective excitations which represents a pure quan
effect. This critical wave vectorqcrit is determined by the
used interactionV0 . Now we can link the minimal interac
tion required for collective oscillation with the mass numb
by Eq. ~20!. The relation between minimal interactionV0crit

and mass numberAcrit ~wave vectorqcrit) is plotted in Fig. 4.

FIG. 2. Real part~solid line!, imaginary part~dashed line!, and
spectral function~dotted line! of the Lindhard DF for the wave
vectorq50.23 fm21 at T50 corresponding to Fig. 1~top!.
-

of

-

o

e

re

as

l

3
ot
m

r

As a result we find the following fit:

V0crit
~Acrit!5S a1

b

Acrit
D MeV fm3, ~29!

FIG. 3. ~a! Dispersion of the collective excitations atT50 of
Fig. 1 and their position in the pair continuum. The modeV02(q)
~dotted line! is damped andV01(q) ~dashed line! is undamped. The
inset shows an enlarged view of the pair continuum where th
marked region corresponds to the undamped region~Im50!. ~b!
Corresponding damping rates.

FIG. 4. According to Fig. 1~middle! calculated critical poten-
tials V0crit

for critical wave vectorsqcrit which are connected with
the mass numberA via Eq. ~20!. The marked area corresponds to a
region where no collective excitations exist.
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wherea5151.9 andb52997.4. The marked area Fig. 4 de
ignates a region where no collective excitations exist. O
sees that a certain interaction strength is necessary in ord
have collective oscillations. The physical meaning is that
light nuclei with given interaction strength the sound velo
ity couples to the single particle motion more strongly. Th
fact is reflected in the critical wave vector, where the colle
tive mode enters the pair continuum~see Fig. 3!.

Since this model relies on the simple scaling law~20!, Eq.
~29! can only be a qualitative estimation. For finite nuclei w
expect different parametersa andb.

Considering now nuclear matter for finite temperature
present in Fig. 5 the zeros of the real and imaginary par
the DF compared with theT50 result. We find with growing
temperatures a continuous deformation of the lines Re(ec)
50 and Im(ec)50. The crossing points~black marked! cor-
respond again to collective excitations and are alw
damped. We have additional zeros~light marked! in contrast

FIG. 5. Collective excitations~thick dots! corresponding to the
zeros of the analytic continuation of the complex DF~Lindhard! at
different temperatures compared with theT50 result@top of Fig. 1
~top!#.
e
r to
r
-

-

e
f

s

to the zero temperature result. They correspond to the co
plex poles of Eq.~27! and can be identified as single particl
excitations. Taking the entire dispersion relation for differe
temperatures~Fig. 6! we observe higher damping rates of th
collective excitations as the temperature increases. This
fect of temperature is also visible in the calculated spect
function ~6! of Fig. 7.

Growing temperatures lead to a broadening of the pe
and reaching a temperature of 6 MeV~solid line Fig. 7! only
small collective effects remain observable. The correspon
ing centroid energy is increasing with higher temperature
The further inclusion of correlations will lead to a decreasin
of the centroid energy for higher temperatures, which h
been demonstrated in Refs.@17,31#.

In Fig. 8 we see now for the two nuclei120Sn and208Pb
~dotted lines! the calculated~Landau! damping rates of GDR
over the nuclear temperature. These damping rates are c
pared and discussed with other approximation in the ne
sections.

FIG. 6. Collective excitations atT52 MeV ~solid line! and
T56 MeV ~dot-dashed line! of Fig. 5. ~a! Dispersion of the collec-
tive excitations,~b! damping rates.

FIG. 7. Imaginary part of the inverse Lindhard DF~spectral
function! for different temperatures and the wave vectorq
50.23 fm21. ~This figure corresponds to the results of Ref.@31#.!
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B. BUU equation-relaxation time approximation

In order to consider collisions as an additional damp
effect of GDR we start first from Eq.~1! with the Markovian
Boltzmann ~BUU! collision integral ~15! I B . Within the
standard treatment@35# we linearize the collision integra
around a homogeneous equilibrium distributionf 0

d f i~p,R,T!5 f i~p,R,T!2 f i
0~ep![F i~p,R,T!

]

]ep
f i

0 ,

~30!

where f i
0 should be first the global Fermi distribution. Lat

on we will use a local equilibrium distribution in order t
ensure conservation laws. The linearized collision integ
reads

I B5
1

TE d3p2d3p3

~2p!6
W~p1p2 ,p3p4!DF d~De!

3@ f 1
0f 2

0~12 f 3
0!~12 f 4

0!#, ~31!

where De5e11e22e32e4 and DF5F11F22F32F4 .
Neglecting the backscattering termsF22F32F4 we obtain
the relaxation time approximation

I B52
f 2 f 0

t~p1!
52

d f

t~p1!
, ~32!

with

1

tB~p1!
5E d3p2d3p3

~2p!6
W~12,34! d~De!

f 2
0~12 f 3

0!~12 f 4
0!

12 f 1
0

.

~33!

FIG. 8. Theoretical damping rates of GDR for120Sn ~grey! and
208Pb ~black! as a function of the nuclear temperatureT. They are
the complex solution of the dispersion relation for different a
proximations: collisionless~Lindhard! DF ~dotted line!, Mermin DF
~Boltzmann! ~dot-dashed line!, Mermin DF ~memory! ~solid line!,
and Mermin DF~density fluctuation1Coulomb interaction! ~dashed
line!.
g

l

Furthermore we will use a thermal averaged quantity. T
procedure is introduced in Appendix C and we get from E
~32!

1

tB
5

1

nD
E d3p1d3p2d3p3

~2p!9
W~p1p2 ,p3p4! d~De!

3@ f 1
0f 2

0~12 f 3
0!~12 f 4

0!#, ~34!

with nD5mpFT/(2p2). For temperatures which are sma
compared to the Fermi energy we follow the well know
methods of the Fermi liquid theory@36,37# and get from Eq.
~34!

1

tB
5

2pm4pf

nD
K W~u,f!

cosu/2 L I B
f , ~35!

where

^•••&5
1

~2p!9E0

p

du sin uE
0

2p

dfE
0

2p

df2

W~u,f!

cosu/2
.

~36!

The calculation of the Fermi integralI B
f is performed in Ap-

pendix D with the result

I B
f 5

2p2

3
T3. ~37!

Using the collision probability in Born approximation w
introduce the spin-isospin averaged cross sectionds/dV

W~u,f!52pU4p

m U2 ds

dV
g ~38!

with the spin-isospin degeneracyg54. Assuming a mean
cross sectionds/dV's/4p we get finally

1

tB
5

8

3
T2m s, ~39!

wheres is the nuclear cross section~for numerical calcula-
tion we uses540 mb as a spin-isospin averaged cross s
tion of snn , spp , andsnp @38#!.

Based on this result one can use the relaxation time
proximation to include collision effects into the DF. Th
leads to a pure replacementv→v1 i /t in the collisionless
Lindhard DF~16! and is known to violate the sum rule~7!.
Therefore we apply an extended approach using a conser
relaxation time approximation following Mermin@39#. The
local equilibrium distributionf 0 is characterized by

f 05
1

exp$b@ep2m2dm~R,t !#%11
, ~40!

where the local chemical potentialdm is determined by
the density conservation resulting in dm(q,v)
5dn(q,v)/P0(q,0). The linearized kinetic equation~2!
then reads

-
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S v2
q•p

m D d f ~p,q,w!

5@ f 0~p2q/2!2 f 0~p1q/2!# dV~q,v!

2
1

tB
S d f ~p,q,v!1

] f 0~p!

]ep

dn~q,v!

P0~q,0! D ~41!

and the resulting~Mermin! DF is

eM~q,v!

511
~11 i /vtB!@e~q,v1 i /tB!21#

11~ i /vtB!$@e~q,v1 i /tB!21#/@e~q,0!21#%
.

~42!

Here e is the collisionless Lindhard DF@to calculate the
zeros ofeM one has to use the analytical continuation
Lindhard DF equation~26!# andtB the relaxation time~39!.
Further conservation laws can be incorporated@40#.

In Fig. 9 we compare the spectral functions compu
with the Lindhard DF~dashed line! and Mermin DF~solid
line!, respectively. We observe an additional broadening
yond Landau damping in the width of the Mermin DF due
collision damping in this approximation. In comparison wi
Fig. 7 we see further that the centroid energy of Merm
result ~solid line! is shifted to lower values with increasin
temperature, while the centroid energy of the Lindhard re
~dashed line! is shifted to higher values. The result for th
damping ratesg of the GDR of 120Sn and208Pb is shown in
Fig. 8 ~dot-dashed lines! which are determined by the zero
of the Mermin DF eM(V,g)50. The calculated damping
rates in this approximation present an improvement co
pared to the collisionless results~dotted lines!. We observe
the typicalT2 behavior of the damping known from exper
mental data~Fig. 11! but we do not get any contribution a

FIG. 9. Spectral function~6! with the Lindhard DF~dashed line!
compared with the Mermin DF for different relaxation times: Bo
zmann relaxation timetB ~solid line!, dynamical~memory! depen-
dent relaxation timetm ~dot-dashed line!.
f

d

-

lt

-

zero temperature. Now we shall employ a better approxim
tion of collisions in the next section.

C. Non-Markovian equation-dynamical relaxation time

Next we investigate the kinetic equation with the collisio
integral~13! taking into account memory effects. The linea
ization of the collision termI m ~13! can be performed in the
same way as above with an additional linearization with
spect toU6. ExpandingU6 in Eq. ~13! gives

dU6~T2t,T!5U0
7~t!F16 i E

T

T2t

dt8 DdeG , ~43!

where

Dde5De~ t8!2D~p2/2m!

and

U0
6~t!5exp $6 i @D~p2/2m!t#%.

The linearization of the collisional term~13! now reads

I m~p1 ,T!5E
0

`

dtE d3p2d3p3

~2p!6
W~12,34!

3@U0
1~t!1U0

2~t!~dF12dF2!1dU1~T2t,T!

2dU2~T2t,T! F0#, ~44!

where

F05@ f 3
0f 4

0~12 f 1
0!~12 f 2

0!2 f 1
0f 2

0~12 f 3
0!~12 f 4

0!#.
~45!

The calculation ofdF1 with the help of Eq.~30! results in

dF15 f 3
0f 4

0~12 f 1
0!~12 f 2

0!

3
@ f 1

0F11 f 2
0F22~12 f 3

0!F32~12 f 4
0!F4#

T

~46!

and dF2 is obtained from Eq.~46! by interchanging
f↔(12 f ). According to Eq.~2! we perform a Fourier trans
formationT→v of the linearized collision integral~44! with
the result

I m~p1 ,v!5
1

2E d3p2d3p3

~2p!6
W~12,34!

3FD1~v! ~dF12dF2!1
D2~v!

v
DdeG ,

~47!

whereD6(v)5d(v1De)6d(v2De). For de in Eq. ~47!
we obtain from the dispersion relation~12!
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de~pi ,R,T5
1

12@] Re S~pi ,R,T!/]V#uV5e

3FU8~n0!dn~R,T!

1(
p̄

]S~pi ,R,T!

] f ~ p̄,R,T!
d f ~ p̄,R,T!G , ~48!

wheredn(R,T)5( p̄d f ( p̄,R,T). In the following we neglect
self-energy effects (S50) and restrict our consideration t
quasiparticle energies in mean-field approximat
de(pi ,R,T)5U8(n0)dn(R,T) with U85V0 from Eq. ~19!.
Therefore we see thatDde50. This would be not the cas
for momentum-dependent potentials.

One can now introduce a thermal averaged relaxa
time tm analogous to Eq.~34!

1

tm~v!
52

1

2nD
E d3p1d3p2d3p3

~2p!9
W~12,34!

3$D1~v! f 1
0 f̄ 1

0~ f̄ 2
0f 3

0f 4
02 f 2

0 f̄ 3
0 f̄ 4

0!%, ~49!

where f̄ 5(12 f ) andnD is specified in Appendix C. Com
paring the Markovian result Eq.~34! with Eq. ~49! we ob-
serve a replacement of the energy conserving factord(e)
with d(v1De) andd(v2De). The energy\v of the col-
lective excitations are now included in the energy conser
tion. We can interpret this effect as a coupling of the colle
tive modes to the binary collisions. The collective boson
absorbed or emitted when two particles are colliding@38#.
Restricting the relaxation timetm again to temperature
which are small compared to the Fermi energy we follow E
~34! and get from Eq.~49!

1

tm~v!
5

2pm4pf

nD
K W~u,f!

cosu/2 L I m
f ~v!, ~50!

where the Fermi integralI m
f is done in Appendix D with the

result

I m
f ~v!5T3F2

3
p21

1

2S v

T D 2G . ~51!

The analytical expression fortm finally reads

1

tm~v!
5

1

tB
F11

3

4S v

pTD 2G , ~52!

wheretB is the relaxation time~39! which corresponds to the
Markovian limit. The expression~52! for the relaxation time
tm contains an additional~dynamical! contribution (;v2).
It guarantees that also at zero temperatures the collec
mode can be considered as a self-propagating one which
a finite damping. We obtain a relaxation rate which is t
Landau damping rate of zero sound@35# except the factor of
3 in front of the frequencies.

The form~52! is similar to the result Ayik derived in Ref
@38# for the collective damping rate. In contrast to this res
we have here the single-particle relaxation time. As long
n

-
-
s

.

ve
as

e

t
s

we have only momentum-independent mean fields, the
earization of the mean field propagator does not reduce
to the standard Landau result as claimed in the errata of
@38#, instead the factor of 3 counts here@see comment afte
Eq. ~48!#.

One may argue that this factor 3 comes from the therm
averaging we employed here. We can repeat all calculat
without thermal averaging~see Appendix D! with the mo-
mentum in the relaxation time at the Fermi level. The resu
ing dynamical relaxation time then reads

1

t̃m~v!
5

3

4

1

tB
F11S v

pTD 2G . ~53!

Compared with Eq.~52! one sees that no factor 3 appears
front of the frequency, however, a factor 3/4 appears in fr
of the relaxation time 1/tB . Therefore we obtain forT50
the same frequency dependence in both cases. In other w
the zero sound damping is not affected by averaging. T
temperature dependence is slightly flatter without therm
averaging.

In the Mermin approximationeM of Eq. ~42! we have to
replace the static relaxation timetB with the dynamical one
tm(v). Then we can again compute the damping ratesg for
the GDR of120Sn and208Pb by searching for the zeros of th
Mermin DF eM(V,g)50. The results are shown in Fig.
~solid lines!. We observe aT2 dependence of the dampin
which is due to the low-temperature expansion of the rel
ation timetm , but the temperature increase is too flat co
pared with the Boltzmann result~dot-dashed line!. The inclu-
sion of memory effects now induces a finite width at lo
temperatures. This reflects the fact that memory accounts
zero sound damping. Next we investigate the influence
density oscillations on the potential itself.

D. Contribution of density fluctuations

As shown in Ref.@6# the contribution of density fluctua
tions can have a remarkable effect on the damping rate.
derivation of the kinetic equation including the density osc
lations leads to Lenard-Balescu-type collision integrals@6#
which have the same structure as Eq.~13! but with a dynami-
cal potential

V2~q!→
V2~q!

ue~q,e12e18!u2
, ~54!

replacing the static one. Here the DF renormalizes the po
tial. Then we can proceed as described above and linea
the collision integral, etc. This would lead to a rather i
volved integration. We simplify the treatment by assumi
that the transfered momentum during a single collision
small. Since for smallq we have for the Lindhard DF

lim
q→0

e~q,v!512
c2q2

v2
1O~q4! ~55!

with the free sound velocityc25V0n/m, we get from Eq.
~42!
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lim
q→0

eM~q,v!512
c2q2

v~v1 i /t!
. ~56!

Inspecting Eq.~49! we see that the frequency argument
Eq. ~54! has to be taken ate12e185q@(2p21q)/2m#7v
'7v if we fix the final state of scattering as the state wh
matters for kinetic processes and use vanishing transfer
mentumq. Further we observe thatue(q,v)u5ue(q,2v)u
such that we have a common factor in Eq.~49! in front of
D1 of 1/ue(q→0,v)u2. The further procedure is as abov
described. We expand for low temperatures and observe
for the angular averaging holds

K q2

cosu/2L 5 K 2pFsin~u/2!sin~f/2!

cosu/2 L . ~57!

Using Eq. ~56! the resulting prefactor which renormalize
Eq. ~49! reads

1

tLB~v!
5

1

tm~v!
E

0

1

dx ueM~2pFx,v!u22

5
1

tm~v!
E

0

1

dx
1

122 Rezx21uzu2x4
~58!

with

z5
4c2pf

2

v~v1 i /t!
~59!

and the complex frequencyv5V2 ig. With tabulated inte-
grals@41# we get from Eq.~58! finally the analytical expres
sion

1

tLB~V,g!
5

1

tm~V,g!

k

2 sin 2aH sin a arctanh~2k cosa

1k2!1cosaFarctanS 12k2

2k sin a D1
p

2 G J , ~60!

wherea5 1
2 arccos(Rez/uzu2) andk51/Auzu. For our chosen

situation and potential the prefactor~60! increases the damp
ing rates only by 0.2 MeV. However, we see that the ren
malization of the potential by density fluctuations which a
in turn determined by the linearization of the kinetic equat
can lead in principal to a remarkable change in the disper
relation if we come close to the instability line@6#. Our
model potential~19! has no instability in the paramete
range. The procedure here means that density fluctuation
caused by interactions or correlations, however, these de
fluctuations renormalize the potential, i.e., their cause. So
have a complicated feedback of correlations to the fluct
tions and so forth.

Inclusion of Coulomb effects.We expect a more pro
nounced effect if long-range interactions mediate collect
oscillations. The Coulomb interaction leads to an additio
contribution for the proton mean field~18!

VC5
4pe2

q2
np~q!, ~61!
f

o-

at

r-

n

are
ity
e
-

e
l

so that the resulting dispersion relation will be a matrix eq
tion @42#. As above, the damping ratesg are again the com-
plex solutions of this dispersion relation and plotted in Fig
~dashed lines!. For small temperatures we find an increasi
of the damping rates compared with the rates of the mem
dependent collision approximation~52! ~solid lines!. This
comes from the fact that we have density fluctuations at z
temperature caused by the Coulomb interaction. For te
peratures larger than 3 MeV the binary collisions domin
and the behavior follows the memory collision approxim
tion.

E. Comparison with the experiment

It is interesting to point out an advantage of the Merm
polarization function. Therefore we compute the power sp
trum of the mode, i.e., the energy rate per time which
expended on the motion of the collective mode. This pow
spectrum is connected to the structure factorS(q,v)
5( f u^ f uV0u0&u2d(\v2Ef1E0) by

P~q,v!5
2p

\
S~q,v!\v ~62!

which is just Fermi’s golden rule. The structure factor its
is given by the dielectric functionS5V0 /p Im e21. Using
Eq. ~56! we arrive at an expression for the power spectrum

P~q,v!52V0v Im
v~v1 i /t!

v~v1 i /t!2V0nq2/m

52V0v0
2 v2/t

~v22v0
2!21~v/t!2 ~63!

with v0
25V0nq2/m. The second line is derived with th

assumption thatt is real, which is not true for dynamica
relaxation times~memory effects!. We rederive by this
way just the classical Lorentz formula which describes
energy rate expended on the motion of a damped harm
oscillator driven by the external forceẍ1 ẋ/t1v0

2x
52V0v0

2 cos (v0t) averaged over time.
Naturally, Eq.~63! leads to a Breit Wigner form near th

resonance energyv0 with the full width of half maximum
~FWHM! of G51/t:

P~q,v!5V0v0
2 G/2

~v2v0!21~G/2!2
. ~64!

The damping rate in classical approximation~56! ~long
wavelength! is given asg51/(2t). We recognize that the
FWHM is just twice the damping rateG52g. This has been
recently emphasized@8#. It has to be stressed that the expe
mental data are accessible by FWHM. To extract the FWH
from the structure function~6! we used the Mermin approxi
mationeM ~42! with the dynamical~memory!-dependent re-
laxation timetm of Eq. ~52!.

In Fig. 10 we have plotted the temperature dependenc
FWHM ~gray-dashed line! of the structure function~see Fig.
9! and the corresponding centroid energyEGDR ~gray-solid
line! of the GDR mode in208Pb together with real partV
~dark-solid line! and imaginary partg ~dark-dashed line! of
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the complex solution of the dispersion relation, respective
We find an approximate relation FWHM'2g ~gray-dashed
and thin dark-dashed lines! which holds in the temperatur
limit, where FWHM,EGDR, as has been discussed in R
@8#.

We emphasize that the centroid energyEGDR of the struc-
ture function agrees with the real partV of the complex
solution of dispersion relation up to higher temperatu
~thick-dark and thick-gray lines!. The small deviation from
the exact Breit Wigner form~64! is caused by the memor
effects resulting in a frequency-dependent dynamical re
ation timetm which is now complex.

The FWHM is the observable which allows us to compa
with the experimental data. In Fig. 11 we have plotted
FWHM of the GDR modes in120Sn ~gray line! and 208Pb
~dark line! as a function of temperature compared with e
perimental data. They coincide within theoretical limits if w
consider that the experimental values are fits of a B
Wigner form itself.

In Fig. 12 we compare different approximations calc
lated in this paper with experimental data versus mass n
ber for T50. In Fig. 12~a! we have plotted the centroid en
ergy V5EGDR. We observe that the successive inclusion
collisions with the memory-dependent relaxation timetm
~52! ~thin solid line!, density fluctuations with the relaxatio
time tLB ~60! ~dashed line!, as well as the inclusion of the
Coulomb interaction~dotted and dot-dashed line! reproduces
the experimental values~diamonds! increasingly for the mass
numbers 80<A<210. The inclusion of only Coulomb ef
fects~dotted line! slightly overestimates the data. This ove
estimate is compensated if we add the density fluctuat
~dot-dashed line!. The corresponding FWHMs, which ar
shown to be roughly twice the imaginary partsg of the com-
plex dispersion relations are plotted in Fig. 12~b!. The inclu-
sion of collisions brings the curve towards the experimen

FIG. 10. Temperature dependence of the centroid energyEGDR

and of FWHM for GDR mode in208Pb ~gray lines! compared with
the solution of the complex dispersion relation~21!, Rev5V and
Im v5g ~dark lines!, using the memory dependent relaxation tim
~52! in the Mermin DF~42!.
.
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e
e
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values. The improvement by inclusion of Coulomb effec
and density fluctuations is small.

IV. SUMMARY

We have presented a systematic microscopic descrip
of collective excitations in hot nuclear matter by a kine
approach and computed damping rates of giant dipole re
nances~GDRs!. We have rederived a generalized quantu
kinetic equation employing the real-time Green functio
technique. Within Hartree approximation one derives
collisionless Vlasov equation which in the linearized lim
leads to the known Lindhard DF in the RPA. Applying th
complex integration method proposed by Landau we ca

FIG. 11. Experimental damping rates of GDR for120Sn and
208Pb (120Sn from @11# and 208Pb from @12#! compared with the
FWHM of the structure function as a function of the nuclear te
peratureT.

FIG. 12. The experimental centroid energyEGDR ~a! and the
experimental data of the damping widthsg ~B! for GDR @43# vs
mass number together with different approximations.
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1484 PRC 58U. FUHRMANN, K. MORAWETZ, AND R. WALKE
lated the damping width~Landau damping! of GDRs in dif-
ferent nuclei at finite temperatures.

The experimental data are calculated via the FWH
Landau damping rates underestimate the experimental
of 120Sn and208Pb. Considering collisions in first Born ap
proximation the~Markovian! kinetic equation is of Boltz-
mann or BUU type. Using a relaxation time approximati
we have incorporated the collision effects into the DF wh
leads to the Mermin DF. The calculated damping rates of
GDR show a typicalT2 behavior but do not reproduce th
experimental values yet. Only memory effects which are
cluded in the collision term of the kinetic equation via reta
dation of the distribution function improve the theoretic
damping rates. This non-Markovian relaxation time appro
mation leads to a dynamical relaxation time which diffe
from the Landau result of the damping of zero sound. Wit
the low-temperature limit the theoretical damping rates
the GDR in 120Sn and208Pb are improved but the temper
ture increase is flatter than the experimental findings.
renormalization of the potential by density fluctuations
crease the damping rates by'7%. These density fluctua
tions together with Coulomb effects reproduce the centr
energy for the mass numbers 80<A<210. If we neglect the
Coulomb interaction we underestimate the centroid ene
for heavier elements.

We consider the solution of complex dispersion relatio
as the physical mode of collective excitation in the syste
In contrast, the experimentally observed collective exc
tions are extracted from FWHM. The calculation of th
width ~FWHM! of the GDR modes, which is proportional t
imaginary part of the inverse DF, leads to results which
comparable with the experiment. Memory effects change
shape of these structure functions compared to the u
Breit Wigner form. Since experimental data are fitted w
the latter one, we cannot expect to reproduce the experim
tal data completely. Especially the temperature depende
of g as solution of the dispersion relation shows too small
increase with temperature. This may be a hint that sh
fluctuations become important@44#. In Ref.@45# it was stated
that g increases linearly with temperature, caused by
coupling of surface modes. The incorporation of shape fl
tuations will be considered in a forthcoming paper.
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APPENDIX A: GENERALIZED KINETIC EQUATION

We shortly sketch the derivation of the general kine
equation~9!. We use the dialect of the generalized Kadan
and Baym formalism developed by Langreth and Wilki
@46# for the nonequilibrium~real-time! Green’s functions in-
troduced by Kadanoff and Baym@26#. Considering a system
of Fermions which interact via the potentialV we start with
the Hamiltonian
.
ta

e

-
-
l
i-

n
f

A
-

d

y

s
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-

e
e
al

n-
ce
n
e

e
-

e

f

Ĥ5E d3r 1C1
† ¹2

2m
C1

1
1

2E d3r 1d3r 2C1
†C2

†V12~r 12r 2!C1C2, ~A1!

where the different numbers, i.e., 15(r ,t,s, . . . ), denote the
one-particle variables~space, time, spin, . . . ). Theannihila-
tion and creation operators for Fermions obey the comm
tor relations

@C1 ,C2#150, @C1 ,C2
†#15d12. ~A2!

The correlation functions are defined by different products
creation and annihilation operators in the Heisenberg pic

G.~1,2!5^C1C2
†&, G,~1,2!5^C2

†C1&. ~A3!

Here ^•••& denotes the average value with the unkno
quantum-statistical density operatorr. The causal Green
function is given with the Heaviside step functionQ by

G~1,2!5Q~ t12t2!G.~1,2!2Q~ t22t1!G,~1,2!.
~A4!

It is furthermore useful to introduce the retarded and
vanced Green functions according to

GR~1,2!52 iQ~ t12t2!@G.~1,2!1G,~1,2!#,

GA~1,2!5 iQ~ t22t1!@G.~1,2!1G,~1,2!#. ~A5!

Using now the equation of motion of the creation and an
hilation operators we can derive kinetic equations. Applyi
the equation of motion for the field operators in the Heise
berg picture one gets an equation of motion for the cau
Green functions@26#

S i
]

]t1
1

¹1
2

2mDG1~1,18!5d~1218!

1E d2 V~122!G2~12,1821!.

~A6!

In this so-called Martin-Schwinger hierarchy@26# the one-
particle Green’s function couples to the two-particle one,
two-particle Green’s function couples to the three-parti
one, etc. A formally closed equation for the one-partic
equation can be reached with the introduction of the s
energy

E
c
d1̄ S~1,1̄!G1~ 1̄,18!5E d2 V~122!G2~12,1821!,

~A7!

where the integration contourc turns out to be chosen a
Keldysh contour in order to meet the requirement of we
ening of initial correlations
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lim
~ t15t25t185t28!→2`

G2~12,1828!

5G~1,18!G~2,28!6G~1,28!G~2,18!, ~A8!

which means that asymptotically the higher order corre
tions should be factorized for infinite past. One gets fro
Eqs.~A6! and ~A7! the Dyson equation

S i
]

]t1
1

¹1
2

2mDG1~1,18!5d~1218!

1E d1̄ @S~1,1̄!G1~ 1̄,18!2S,~1,1̄!G1
.~ 1̄,18!#.

~A9!

Writing Eq. ~A9! in the more compact operator notatio
gives

G0
21G1511SG1 , ~A10!

whereG0
21 is the inverse of the Hartree-Fock Green functi

G0
21~1,18!5S i

]

]t1
1

¹1
2

2mD d~1218!2SHF~1,18!.

~A11!

We now apply the Langreth-Wilkins rules@46# to the Dyson
equation~A10!, which describe the way to get the correlatio
functions~A4! and retarded functions~A5! from causal ones
We get the equation of motion

~G0
212SR!G:5S:GA. ~A12!

Subtracting the adjoined equation the general kinetic eq
tion reads@47#

2 i ~G0
21G,2G,G0

21!5 i ~GRS,2S,GA!

2 i ~SRG,2G,SA!,

~A13!

which was derived first by Kadanoff and Baym@26#. For the
time diagonal caset15t185t and using Eq.~A5! in Eq.
~A13! we finally get

2 i @G0
21~r 1t,r 18t !,G

,~r 1t,r 18t !#

5E d3r̄ 1E
2`

t

d t̄1@G.~r 1t,1̄!S,~ 1̄,r 18t !

1S,~r 1t,1̄!G.~ 1̄,r 18t !2G,~r 1t,1̄!S.~ 1̄,r 18t !

2S.~r 1t,1̄!G,~ 1̄,r 18t !#, ~A14!

which are the kinetic equations~8! and ~9!, respectively.

APPENDIX B: EXPRESSION
OF THE DIELECTRIC FUNCTION

In this appendix we give the explicit expressions of t
real and imaginary parts of the analytical continuation of
complex dielectric functionec(q,V,g) in Eq. ~26!
-

a-

e

Re ec~q,V,g!55
eRe~q,V!, g50,

Re eRe~q,V2 ig!

22 Im e Im~q,V2 ig!, g.0,

Re eRe~q,V2 ig!, g,0,
~B1!

Im ec~q,V,g!55
e Im~q,V!, g50,

Im eRe~q,V2 ig!

12 Ree Im~q,V2 ig!, g.0,

Im eRe~q,V2 ig!, g,0,
~B2!

where we redefinedec in terms of the retarded Lindhard D
e(q,v)5eRe1 i e Im ~16!. For nonzero temperature we find

eRe511
V0m

p2q
E

0

`

dk k fF~k! @f~y1!2f~y2!# ,

~B3!

e Im52
V0Tm2

pq
ln U11expb~m2~B2

v
!2/2m!

11expb~m2~B1
v

!2/2m!U ~B4!

with y65B6
v /k, B6

v 5vm/q6q/2, and f(y)5 lnu(12y)/(1
1y)u.

Considering now complex frequencyv5V2 ig we find
for eRe(q,V,g)5Re eRe1Im eRe

Re eRe512
V0m

2p2q
E

0

`

dk k fF~k!

3H ln
~k22~B1

V !22k2!21~2kk!2

@~k1~B1
V !22k2#2

~B5!

2 ln
~k22~B2

V !22k2!21~2kk!2

@~k1B2
V !22k2#2 J ~B6!

and

Im eRe5
V0m

p2q
E

0

`

dk k fF~k!H arctan
2kk

@k22~B1
V !22k2#

~B7!

2arctan
2kk

@k22~B2
V !22k2#

J , ~B8!

wherek5gm/q.
The expressions of Ree Im and Ime Im are

Re e Im5
V0mT

2pq
lnUsc

21ss
2

s2 U ~B9!

and

Im e Im5
V0mT

pq
arctanS ss

sc
D ~B10!
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with

s5112a2cos~B1
Vk1!1a2

2 ,

sc511a1cos~B2
Vk1!1a2cos~B1

Vk1!

1a1a2cos~2k1q!,

ss5a1sin~B2
Vk1!2a2sin~B1

Vk1!1a1a2sin~2k1q!.
~B11!

The coefficienta6 is defined by

a65exp~m/T!exp H @2~B6
V !21k2#k1

2k J , ~B12!

wherek15g/Tq. At zero temperature we used for the an
lytical continuation of the distribution function@48#

f F~k!5u~kF2uku! ~B13!

with

f F~k!5 lim
D→0

FD~k!,

FD~k!5
1

pH arctanFk1kF

D G2arctanFk2kF

D G J . ~B14!

The calculation of ReeRe ~B5! and ImeRe ~B7! for complex
frequencies will be done analogously. The imaginary par
e Im in Eq. ~B4! vanishes ifD goes to zero and can therefo
be dropped.

APPENDIX C: THE THERMAL AVERAGING

We define the thermal averaging by denoting that a fu
tion A(e) should take its value to the Fermi level forT50

A~e f !5E de d~e2e f !A~e!

'
1

TE de f 0~12 f 0!A~e!

5
1

nD
E d3p

~2p!3
f 0~12 f 0!A~e! ~C1!

with the density of statenD5mpfT/(2p2) for low tempera-
tures.

APPENDIX D: CALCULATION
OF COLLISION INTEGRAL

Performing the collision integral for Fermi functions
Eq. ~35! with the dimensionless variablesx5(e2m)/T and
l5m/T we get

I B
f 5T3E

2l

`

dx1 dx2 dx3 dx4 d~Dx! f x1

0 f x2

0 f̄ x3

0 f̄ x4

0 ,

~D1!
-

f

-

where f x
05(ex11)21, f̄ x

0512 f x
0 , and Dx5x11x22x3

2x4 . The integral~D1! can be done exactly using the sta
dard identity over Fermi functions1 @36# and we find

I B
f 5

T3

2 E
2l

`

dx1 f x1

0 f̄ x1

0 ~p21x1
2!5

2p2

3
T3. ~D2!

We perform the Fermi integral in Eq.~50! as above

I m
f ~V!5

I m~V!1I m~2V!

2
~D3!

and have forI m

I m~6V!5T3E
2l

`

dx1 dx2 dx3 dx4 d~Dx6V!

3@ f x1

0 f̄ x1

0 ~ f̄ x2

0 f x3

0 f x4

0 1 f x2

0 f̄ x3

0 f̄ x4

0 !#, ~D4!

whereV5v/T. Writing Eq. ~D4! in the form

I m~6V!5T3E
2l

`

dx1 dx2 dx3 dx4 d~Dx6V!

3@ f x1

0 f x2

0 f̄ x3

0 f̄ x4

0 1 f x1

0 2f x2

0 f̄ x3

0 f̄ x4

0 ~e7V21!#,

~D5!

one gets forV→0 the result~D2!. Applying the standard
identity @36# in Eq. ~D9! we have

I m~6V!5
T3

2 E
2l

`

dx1 @ f x1

0 1 f x1

0 2~e7V21!#

3 f̄ x16V
0 @p21~x16V!2#

5T3S 2

3
p21

V

2
2D ~D6!

so that the final result forI m
f in Eq. ~D3! reads

I m
f ~v!5T3F2

3
p21

1

2S v

T D 2G5I B
f F11

3

4S v

pTD 2G . ~D7!

Without thermal averaging.Calculating the Fermi integra
in Eq. ~50! without the thermal averaging~Appendix C! we
start from Eq.~D4! and get

Ĩ m~6V!5T2E
2l

`

dx2 dx3 dx4 d~Dx6V!

3~ f̄ x2

0 f x3

0 f x4

0 1 f x2

0 f̄ x3

0 f̄ x4

0 !. ~D8!

Rewriting Eq.~D8! in the form

1Here,l5m/T@0.
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Ĩ m~6V!5T2E
2l

`

dx2 dx3 dx4 d~Dx6V! f x2

0 f̄ x3

0 f̄ x4

0

3~e2x17V11!, ~D9!

we apply the standard identity@36# and find for Ĩ m

Ĩ m~x1 ,6V!5
T2

2
f̄ x16V

0 @p21~x16V!2#~e2x17V11!.

~D10!
f

ys

r

.

Sincee f'm we havex1→0 and get forĨ M
f ~D3!

Ĩ m
f ~v!5

T2p2

2 F11S v

pTD 2G . ~D11!

The resulting relaxation timet̃m reads finally

1

t̃m~v!
5

3

4

1

tB
F11S v

pTD 2G . ~D12!
s

s

ys.

s.
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