
PHYSICAL REVIEW C SEPTEMBER 1998VOLUME 58, NUMBER 3
Three-body halos. V. Computations of continuum spectra for Borromean nuclei
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We solve the coordinate space Faddeev equations in the continuum. We employ hyperspherical coordinates
and provide analytical expressions allowing easy computation of the effective potentials at distances much
larger than the ranges of the interactions where onlys waves in the different Jacobi coordinates couple.
Realistic computations are carried out for the Borromean halo nuclei6He (n1n1a) for Jp506,16,26 and
11Li ( n1n19Li) for 1

2
6, 3

2
6, 5

2
6. Ground state properties, strength functions, Coulomb dissociation cross

sections, phase shifts, and complexS-matrix poles are computed and compared to available experimental data.
We find enhancements of the strength functions at low energies and a number of low-lyingS-matrix poles.
@S0556-2813~98!00509-3#

PACS number~s!: 21.45.1v, 11.80.Jy, 21.10.Dr, 21.60.Gx
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I. INTRODUCTION

The present paper is part of a sequence discussing
general properties of three-body halos@1–6#. These papers
all deal with three-body systems, weakly bound and spati
extended compared to the energy and range of the two-b
interactions@7–10#. Most of the detailed information abou
halo nuclei is obtained from reaction experiments@11–15#.
Fragmentation reactions of three-body halo nuclei were s
ied in the sudden approximation for11Li and 6He with spe-
cial emphasis on the effects of final state interactions, wh
in other words are the effects of the two-body continuu
@9,16–18#.

Borromean systems, where no binary subsystem is bo
are particularly interesting three-body halo candidates. T
have by definition a relatively low binding energy. The e
tablished nuclear prototypes are6He (n1n1a) and
11Li ( n1n19Li) and other examples are expected furth
up along the neutron drip line. The structure of6He is fairly
well understood whereas the structure of11Li is still contro-
versial. The reason is essentially the large amount of kno
edge, respectively the lack of knowledge, about the tw
body subsystems.

The number of bound states for Borromean system
almost always limited to the ground state. The effective tw
body interactions must be weak enough to exclude bo
states and strong enough to bind the three-body sys
Therefore one or more two-body resonances must be pre
at low energy. Then the low-lying continuum three-bo
spectrum would inevitably have a rather complicated str
ture. This has strong implications for the analyses and
understanding of the data accumulating from experime
with nuclear halos and Borromean nuclei@19–26#.

The general discussions of structure and breakup r
tions of halo nuclei should be extended to the three-b
continuum. Specific investigations are available, but imp
cise@19–22#. The technical difficulties formulated in coord
nate space are related to the necessary computation o
behavior of the effective potential at large distance. For
nately, a method treating the large distances analytically
the short distances numerically has recently become a
able @27,28#. The method is very powerful in structure ca
PRC 580556-2813/98/58~3!/1403~19!/$15.00
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culations as demonstrated by the succesful investigatio
the Efimov effect@8,27,29,30#. However, the implementation
has so far essentially concentrated on bound structures
generalization to applications in the three-body continuum
straightforward.

The purpose of this paper is to~i! describe the details of a
method to compute low-energy three-body continuum sp
tra for particles with or without intrinsic spin,~ii ! derive
asymptotic large-distance expressions allowing simple co
putations of the corresponding effective three-body poten
for arbitrary angular momenta and arbitrary short-range tw
body potentials, and~iii ! apply the method in detailed rea
istic numerical computations of the continuum structure a
various observables for6He and 11Li.

The paper generalizes first the analytic results obtai
for s waves and square well potentials@30#. Then the method
is applied to detailed studies of the continuum structure
the Borromean nuclei6He (n1n14He) and 11Li ( n1n
19Li). Brief reports describing some numerical results a
available in the literature@26,28#.

After the Introduction we give in Sec. II a general d
scription of the method and then we concentrate on t
cases of special interest. In Secs. III and IV we compute
detail the properties of6He and11Li, respectively. In Sec. V
we give a brief summary and the conclusions. A conveni
general expression for the transformation between differ
sets of Jacoby coordinates is derived in the Appendix.

II. THEORY

We shall consider a system of three interacting inert ‘‘p
ticles.’’ Their intrinsic degrees of freedom are frozen a
only the three-body~halo! degrees of freedom shall b
treated here. In this section we first describe the gen
method of solving the Faddeev equations using hypersph
cal coordinates. In particular we specify the boundary con
tions at large distances by introducing theS matrix or
equivalently theR matrix. The angular equations at larg
distances are then treated essentially analytically. We t
consider a system of two identical neutrons surroundin
core first with finite spin and then with spin zero. Finally
this section we give the expressions for strength functi
1403 © 1998 The American Physical Society
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1404 PRC 58A. COBIS, D. V. FEDOROV, AND A. S. JENSEN
and Coulomb dissociation cross sections. We shall follow
method and the notation established previously@7–
9,27,28,26#.

A. Method

Thekth particle has massmk , chargeeZk , coordinater k ,
and spinsk . The two-body interactions between the partic
i and j areVi j . We shall use the three sets of Jacobi co
dinates (xi ,yi) and the corresponding three sets of hyp
spherical coordinates (r,V i)5(r, a i , Vxi

, Vyi
); see, for

example,@6,7#. The volume element in terms of one of th
sets of hyperspherical coordinates is given byr5dVdr,
where dV5sin2acos2adadVxdVy . The kinetic energy op-
erator is

T5
\2

2mS 2r25/2
]2

]r2
r5/21

15

4r2
1

L̂2

r2 D , ~1!

L̂252
1

sin~2a!

]2

]a2
sin~2a!1

l̂ x
2

sin2a
1

l̂ y
2

cos2a
24, ~2!

where the angular momentum operatorsl̂ x
2 and l̂ y

2 are related
to thex andy degrees of freedom andm is a normalization
mass arising from the definition ofr. In the following m is
assumed to be the nucleon mass.

The total wave functionCJM of the three-body system
~with total spinJ and projectionM ) is written as a sum of
three componentscJM

( i ) , which in turn for eachr are ex-
panded on a complete set of generalized angular funct
Fn

( i )(r,V i):

CJM5(
i 51

3

cJM
~ i ! ~xi ,yi !5

1

r5/2 (
n51

`

f n~r!(
i 51

3

Fn
~ i !~r,V i !,

~3!

wherer25/2 is the radial phase space factor.
The angular functions are now for eachr chosen as the

eigenfunctions of the angular part of the Faddeev equati

\2

2m

1

r2
@L̂22ln~r!#Fn

~ i !1Vjk~Fn
~ i !1Fn

~ j !1Fn
~k!!50,

~4!

where$ i , j ,k% is a cyclic permutation of$1,2,3%.
The radial expansion coefficientsf n(r) are obtained from

a coupled set of ‘‘radial’’ differential equations@7,31#, i.e.,

S 2
]2

]r2
2

2m@E2V3~r!#

\2 1
1

r2S ln~r!1
15

4 D2QnnD f n~r!

5 (
n8Þn

S 2Pnn8

]

]r
1Qnn8D f n8~r!, ~5!

whereE is the three-body energy,V3(r) is an anticipated
additional three-body potential, and the functionsP and Q
are defined as angular integrals:
e

s
-
-

ns

s:

Pnn8~r![ (
i , j 51

3 E dVFn
~ i !* ~r,V!

]

]r
Fn8

~ j !
~r,V!, ~6!

Qnn8~r![ (
i , j 51

3 E dVFn
~ i !* ~r,V!

]2

]r2 Fn8
~ j !

~r,V!. ~7!

The diagonal part of the effective potential is then

\2

2mF S ln~r!1
15

4 D r222QnnG1V3~r!. ~8!

For Borromean systems the coupling termsP andQ ap-
proach zero at least as fast asr23 @7,27,30#. We can then
choose those solutionsCn8 to Eq. ~3! where the large-

distance (r→`) boundary conditions forf n
(n8) are given by

@32#

f n
~n8!~r!→dn,n8Fn

~2 !~kr!2Sn,n8Fn
~1 !~kr!. ~9!

The S matrix introduced here is a unitary matrix,k2

52mE/\2 and Fn
(6) are related to the Hankel functions o

integer order by

Fn
~6 !~kr!5Amr

4\2
HKn12

~6 ! ~kr!

→A m

2pk\2
expF6 ikr6

ip

2 S Kn1
3

2D G ,
~10!

whereKn is the hyperspherical quantum number correspo
ing to the valueKn(Kn14) approached at large distance b
the angular eigenvalueln . The continuum wave functions
CJM are orthogonal and normalized to delta functions
energy. Sometimes it is more convenient to work with theR
matrix given asR5 i (12S)/(11S). The boundary condi-
tions must then be changed into sin and cos instead of
exponentials in Eq.~10!.

By diagonalization of theS ~or R) matrix we obtain
eigenfunctions and eigenphases. These phase shifts re
the continuum structure of the system. In particular, a ra
variation with energy indicates a resonance. A precise co
putation of resonances and related widths can be done by
of the complex energy method, where Eq.~5! is solved
for E5Er2 iG/2 with the boundary condition f n

}(Amr/4\2)HKn12

(1) (kr). These solutions correspond t

poles of theS matrix @32#.

B. Angular eigenvalue equation

The angular functionsFn
( i )(r,V i) are expanded in prod

ucts of the three-body spin functionsxsxsySms

( i ) and spherical

harmonicsYl xmx
(Vxi

) and Yl ymy
(Vyi

). The orbital angular
momenta and their projections associated withx and y are
( l x ,mx) and (l y ,my) while the spins of the two particle
connected by thex coordinate couple to the spinsx , which
coupled to the spinsy of the third particle results in the tota
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spin S and its projectionms . Indicating these angular mo
mentum couplings bŷ the result can be written

Fn
~ i !~r,V i !5 (

l xl yLsxS

fnlxl yLsxS
~ i ! ~r,a i !

sin~2a i !

3@Yl xl y

LML~Vxi
,Vyi

! ^ xsxsySms

~ i ! #JM, ~11!

where sin(2ai) is a factor related to phase space and

Yl xl y

LML~Vxi
,Vyi

![@Yl xmx
~Vxi

! ^ Yl ymy
~Vyi

!#LML, ~12!

where the projections of the intermediate couplings are gi
although the final result is independent of them.

To solve the angular Faddeev equations the compon
in Eq. ~4! must be expressed in one Jacobi coor
nate set, say, labeled byi . The wave functions
fnlxl yLsxS

( j ) (r,a j )/sin(2aj), which only depend ona j and r,

are first expressed in terms of thei th set of hyperspherica
coordinates. The equations are multiplied from the left by
square brackets in Eq.~11! and subsequently integrated ov
the four angular variables describing the directions ofxi and
in-

e
o.
fa
ia
n

ts
-

e

yi . The interactionVjk , only depending on the distance b
tween the particles, is independent of these angles.

The operator describing this transformation from thej th
to the i th Jacobi coordinate system is denotedRi j . This op-
eration maintains both total spin and total orbital angu
momentum. The result of the transformation from a spec
set of angular momentum statesl x8l y8L is projected on the se

l xl yL. This operatorR
i j

l xl yl x8 l y8L
is then given by

R
i j

l xl yl x8 l y8LFfnl
x8 l

y8Ls
x8S

~ j !
~r,a j !

sin~2a j !
G

[E dVxi
dVyi

@Yl xl y

LML~Vxi
,Vyi

!#*
fnl

x8 l
y8Ls

x8S
~ j !

~r,a j !

sin~2a j !

3Y
l
x8 l

y8

LML~Vxj
,Vyj

!. ~13!

When the two-body interaction is assumed to be diago
in the total two-body spin we now rewrite the angular eige
value equation in Eq.~4! as
S 2
]2

]a i
2

1
l x~ l x11!

sin2a i

1
l y~ l y11!

cos2a i

1r2v i
sxS

~r sin a i !2nn
2~r!D fnlxl yLsxS

~ i ! ~r,a i !

1r2sin~2a i !v i
sxS

~r sin a i ! (
l x8 l y8sx8

S Csxsx8S
i j R

i j

l xl yl x8 l y8LFfnl
x8 l

y8Ls
x8S

~ j !
~r,a j !

sin~2a j !
G1Csxsx8S

ik R
ik

l xl yl x8 l y8LFfnl
x8 l

y8Ls
x8S

~k!
~r,ak!

sin~2ak!
G D 50,

~14!
ns
ir

le

ts
n-
wherenn
2(r)[ln(r)14 and the reduced spin-averaged

teractions are given by

v i
sxS

~x!5K xsxsySms

~ i ! U2m

\2
VjkS x

m jk
DUxsxsySms

~ i ! L , ~15!

with mm jk
2 [mjmk /(mj1mk). The coefficientsCsxsx8S

ik , ex-

pressing the overlap of the spin functions, are defined by

Csxsx8S
ik

5^xsxsySms

~ i ! uxs
x8sySms

~k!
&. ~16!

These matrix elements are independent ofms , symmetric,
i.e., Css8S

ik
5Cs8sS

ki , and diagonal insx and sx8 for i 5k, i.e.,
Css8S

ii
5dss8 .

C. Large-distance angular eigenvalues

For larger only smalla values contribute in Eq.~14! to
the terms proportional tor2v i

sxS(rsinai). These potentials are
assumed to have short ranges and they vanish consequ
for larger for all a i except in a narrow region around zer
We assume that they vanish exponentially or at least as
as 1/r3, for distances larger than the ranges of the potent
ntly

st
ls

@7,27,30#. The two terms described by the transformatio
Ri j and Rik in Eq. ~14! can then be approximated by the
expansion to leading order in the variablea i .

We show in the Appendix that all partial waves decoup
to leading order ina i or in 1/r with the essential exception
of s waves in thex degree of freedom, i.e., the componen
with l xi

50, i 51,2,3, and the total orbital angular mome

tum L5 l yi
. This means that an expansion in powers ofa i of

the terms obtained from the transformationRi j only provides
nonzero contributions in the limit ofa i50 for l x5 l x850,
l y5 l y85L. These finite contributions are fora i50 found to
be

Ri j
0L0LLFfn0LLs

x8S
~ j !

~r,a j !

sin~2a j !
G5~21!L

fn0LLs
x8S

~ j !
~r,wk!

sin~2wk!
,

~17!

tan wk5Amk~mi1mj1mk!

mimj
, ~18!

where $ i , j ,k% again must be a permutation of$1,2,3%.
Higher order terms ina i are neglected. Nonzerol x values
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had produced leading terms of at least first order ina i in an
expression analogous to Eq.~17!.

Thus for nonzerol x values the angular eigenvalue equ
tions in Eq.~14! decouple asymptotically and reduce to

S 2
]2

]a i
2

1
l x~ l x11!

sin2a i

1
l y~ l y11!

cos2a i

1r2v i
sxS

~r sina i !2nn
2~r!D

3fnlxl yLsxS
~ i ! ~r,a i !50 ~19!

for all sets of values ofl xÞ0,l y ,L,sx ,S. The large-distance
asymptotic eigenvaluesnn

25(K12)2 related to these partia
waves approach the hyperspherical spectrum, whereK is odd
or even natural numbers depending on the parity. T
asymptotic behavior is reached on a distance scale define
the short range of the interactionsv i

sxS in Eq. ~19!.
For l x50 insertion of Eq.~17! into Eq.~14! gives instead

the three coupled asymptotic angular equations

S ]2

]a i
2

1k i
2~r,a i !D fn0LLsxS

~ i ! ~r,a i !

52a i~21!LCLsxS
~ i ! r2v i

sxS
~r sina i !, ~20!

k i
2~r,a i !52FL~L11!

cos2a i

1r2v i
sxS

~r sina i !2nn
2~r!G ,

~21!

CLsxS
~ i ! [(

sx8

S Csxsx8S
i j

fn0LLs
x8S

~ j !
~r,wk!

sin~2wk!

1Csxsx8S
ik

fn0LLs
x8S

~k!
~r,w j !

sin~2w j !
D . ~22!

Also these eigenvalue solutionsnn
2 converge towards the hy

perspherical spectrum asr increases. However, because
the coupling, the asymptotic values are now approached
a distance defined by the scattering lengths, which migh
very much larger than the ranges of the interactions.

As mentioned above the potentialsr2v i
sxS(rsinai) vanish

for larger for all a i except in a narrow region around zer
The conditions for the effective range approximation the
fore become better and better fulfilled asr increases and an
potential with the same scattering length and effective ra
would lead to the same results. Let us then in the region
large r use square well potentialsVjk(r )52S0

( i )(sjsk)Q(r
,Ri

sxS) or, equivalently, expressed by the reduced quanti

v i
sxS(x)52s0

( i )(sxS)Q(x,Xi
sxS

5Ri
sxSm jk), where the range

and depth parameters are adjusted to reproduce the two-
scattering lengths and effective ranges of the initial poten
The corresponding solutions are then accurate approx
tions to our original problem at distances larger than 2Ri

sxS

@30#.
-

is
by

er
e

-

e
of

s

dy
l.
a-

The square well potentialsv i
sxS(rsinai) are zero in region

II defined bya i.a0
( i )(sxS)5arcsin(Xi

sxS/r). Then Eq.~20! is
especially simple, i.e.,

S 2
]2

]a i
2

1
L~L11!

cos2a i

2nn
2D fn0LLsxS

~ i ! ~r,a i !50, ~23!

and the solutions, vanishing ata i5p/2, are given by

fn0LLsxS
~ i ,II ! ~r,a!5An0LLsxS

~ i ! PL~nn ,a!, ~24!

PL~nn ,a![cosLaS ]

]a

1

cosa D L

sinFnnS a2
p

2 D G ~25!

for arbitrary constantsAn0LLsxS
( i ) .

The potentialsv i
sxS(rsinai) are finite and constant fo

large r in region I defined bya i,a0
( i )(sxS)!1. Then Eq.

~20! is approximately

S ]2

]a i
2

1k i
2~r,a i50!D fn0LLsxS

~ i ! ~r,a i !

522a i~21!Lr2s0
~ i !~sxS!CLsxS

~ i ! , ~26!

where the wave functions inCLsxS
( i ) in Eq. ~22! must be

fn0LLsxS
( i ,II) . The solutions to Eq.~26!, vanishing fora i50, are

then

fn0LLsxS
~ i ,I! ~r,a!5Bn0LLsxS

~ i ! sin@ak i~r,a50!#

22a~21!L
r2s0

~ i !~sxS!

k i
2~r,a50!

CLsxS
~ i ! ~27!

for arbitrary constantsBn0LLsxS
( i ) , wherek i are defined in Eq.

~21!.
Matching the solutions, Eqs.~24! and ~27!, and their de-

rivatives ata i5a0
( i )(sxS) gives a linear set of equations fo

An0LLsxS
( i ) and Bn0LLsxS

( i ) with given L and S for i 51,2,3 and

all possiblesx . Physical solutions are then only obtaine
when the corresponding determinant is zero. This is
quantization condition forn2 ~or l) and, as such, the eigen
value equation determining the large-distance asymptotic
havior of l(r).

The square well solution in Eq.~27! is not exact since the
first order expansion ina i is used in Eqs.~20! and ~26! and
consequently also in the last term of Eq.~27!. Improvements
could be obtained by using Eq.~24! in Eq. ~A15! and thereby
changing the right hand sides of Eqs.~17!, ~20!, ~26!, and
~27!. For L50 these expressions are given in@30#.

Also the eigenvalue equation for nonzerol x values in Eq.
~19! can be solved for square well potentials. Fora i

.a0
( i )(sxS) in region II, we have the equation

S 2
]2

]a i
2

1
l x~ l x11!

sin2a i

1
l y~ l y11!

cos2a i

2nn
2D fnlxl yLsxS

~ i ! ~r,a i !50

~28!
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and the solutions vanishing atp/2 are then

fnlxl yLsxS
~ i ,II ! ~r,a!

5Anlxl yLsxS
~ i ! Nnlxl y

sinl xa cosl yaPn
l x11/2,l y11/2

@cos~2a!#

~29!

for arbitrary constantsAnlxl yLsxS
( i ) , wherePn

l x11/2,l y11/2 are the

Jacobi polynomials andNnlxl y
are normalization constant

given explicitly in the Appendix.
For a i,a0

( i )(sxS)!1 in region I, Eq.~19! is approxi-
mately

S 2
]2

]a i
2

1
l x~ l x11!

a i
2

2k i
2~r,a50!D fnlxl yLsxS

~ i ! ~r,a i !50,

~30!

with the solutions vanishing asa i
l x11 at a i50,

fnlxl yLsxS
~ i ,I! ~r,a!5Bnlxl yLsxS

~ i ! j l x
@ak i~r,a50!#, ~31!

k i
2~r,a50!52@ l y~ l y11!2r2s0

~ i !~sxS!2nn
2#, ~32!

whereBnlxl yLsxS
( i ) is an arbitrary constant andj l x

is the spheri-

cal Bessel function, i.e., the usual solution to the radial tw
body Schro¨dinger equation for an angular momentuml
5 l x .

Matching the logarithmic derivatives of the solutions
Eqs. ~29! and ~31! then provides the quantization conditio
for n2 ~or l) and therefore the large-distance asympto
behavior ofl(r).

D. Large-distance behavior for two neutrons and a core

We shall now consider a system of two neutrons~labeled
2 and 3! and a core~labeled 1! with spinsc . For a given total
spin and for each set of orbital quantum numbers the
possible components,fnlxl yLsxS

( i ) , i 51,2,3, each with twosx

values, are related to the three-body spin wave functi
xsx50,1

(1) , xsx5sc61/2
(2) , and xsx5sc61/2

(3) , where the first set of

Jacobi coordinates corresponds to thex coordinate between
the two neutrons. As a result of the Pauli principle, on
three of these wave functionsf are independent and th
remaining components are determined by antisymmetry,

fnlxl yLsxS
~1! 50 for odd l x1sx , ~33!

fnlxl yLsxS
~3! 5~2 !sc11/22sx1 l x21fnlxl yLsxS

~2! . ~34!

Specifically the three independents-wave components
can be characterized byL, S, and one value ofsx ,
i.e., fLS

(1)[fn0LL0S
(2) , fLS

(2)[fn0LLsc21/2S
(2) , and fLS

(3)

[fn0LLsc11/2S
(3) . These components are coupled over a d

tance defined by the scattering lengths whereas all other
tial waves decouple for larger above a distance scale d
fined by the range of the interactions.
-

c

ix

s

.,

-

ar-

The componentsfLS
( i ) obey for larger the coupled angular

Faddeev equations in Eq.~20!, where the coefficientsCLS
( i )

[CLsxi
S

( i ) (sx1
50,sx2

5sc2 1
2 ,sx3

5sc1 1
2 ) explicitly are

given by

CLS
~1!52C0,sc21/2,S

12
fLS

~2!~w!

sin~2w!
22C0,sc11/2,S

12
fLS

~3!~w!

sin~2w!
,

CLS
~2!5C0,sc21/2,S

12
fLS

~1!~w!

sin~2w!
1Csc21/2,sc21/2,S

23
fLS

~2!~ w̃ !

sin~2w̃ !

1Csc21/2,sc11/2,S
23

fLS
~3!~ w̃ !

sin~2w̃ !
, ~35!

CLS
~3!5C0,sc11/2,S

13
fLS

~1!~w!

sin~2w!
1Csc21/2,sc11/2,S

23
fLS

~2!~ w̃ !

sin~2w̃ !

2Csc11/2,sc11/2,S
23

fLS
~3!~ w̃ !

sin~2w̃ !
,

where we omitted the argumentr in the functionsf and
further definedw5w25w3 , w̃5w1 . For S5sc all terms are
present, but forS5sc61 the first term inCLS

( i ) should be
removed together with the equation corresponding toi 51.

The spin overlap coefficients are explicitly given by

C0,sc21/2,sc

12 5C0,sc21/2,sc

13 52A sc

2sc11
, ~36!

C0,sc11/2,sc

12 52C0,sc11/2,sc

13 5A sc11

2sc11
, ~37!

Csc21/2,sc11/2,sc

23 5
A4sc~sc11!

2sc11
, ~38!

Csc21/2,sc21/2,sc

23 5Csc11/2,sc11/2,sc

23 52
1

2sc11
, ~39!

Csc21/2,sc21/2,sc11
23 5Csc11/2,sc11/2,sc21

23 5Csc21/2,sc11/2,sc61
23

50, ~40!

Csc21/2,sc21/2,sc21
23 5Csc11/2,sc11/2,sc11

23 51. ~41!

The potentialsr2v i(rsina) approach for sufficiently large
r the zero-range potentials, where the sensitivity to the sh
disappears. Any potential with the same scattering length
effective range would then lead to results accurate to
order r22. We shall therefore for convenience use su
equivalent square well potentials, where the solutions to
~20! then again are given by Eqs.~24! and ~27!, and the
large-distance physical solutions are obtained as descr
above.

We shall now consider a system of two neutrons an
core with spinsc50. All quantities wheresc2 1

2 appears as
an index should now be substituted by zero. Then the th
coupleds-wave equations in Eq.~20! reduce forS50 to two
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as seen from Eq.~35! whereCL0
(2) then is zero. These equa

tions are to leading order ina ~larger) explicitly given by

S 2
]2

]a1
2

1
L~L11!

cos2a1

1r2vNN~r sina1!2n2D fL
~1!~r,a1!

522a1~21!Lr2vNN~r sina1!CL
~1! , ~42!

S 2
]2

]a3
2

1
L~L11!

cos2a3

1r2vNc~r sina3!2n2D fL
~3!~r,a3!

522a3~21!Lr2vNc~r sina3!CL
~3! , ~43!

where vNN(x1)5v1
(00)(x1), vNc(x2)5v2

(1/2,0)(x2)
5v3

(1/2,0)(x2), fL
( i )[fL0

( i ) , CL
( i )[CL0

( i ) , and

CL
~1!52

fL
~3!~w!

sin~2w!
, CL

~3!5
fL

~1!~w!

sin~2w!
1

fL
~3!~ w̃ !

sin~2w̃ !
. ~44!

The equivalent square well solutions are again given by E
~24! and ~27!, and the large-distance asymptotic behavior
obtained as described above.

For S51 only Eq.~43! remains fors waves and now with
CL

(3)5fL
(3)(w̃)/sin(2w̃). The square well solution and th

large-distance behavior are then easily obtained.

E. Strength functions and Coulomb cross sections

The strength functionsdBEl /dE describing electric mul-
tipole excitations of the ground stateuJ0

p0& into the con-
tinuum stateunJpE& are defined by

dBEl~E!

dE
5

1

2J011(nJp
u^nJpEuuM ~El!uuJ0

p0&u2, ~45!

M ~El,m!5 (
k51

3

eZkr k
lYlm~ r̂ k!. ~46!

in terms of the reduced matrix element and the electr
multipole operatorM . The corresponding sum rule is

E dE
dBEl~E!

dE
5

2l11

4p (
k51

3

e2Zk
2^J0

p0ur k
2luJ0

p0&, ~47!

where only the core contributes for a system of two neutr
around a core.

Nuclear excitations of monopole type are possible w
the corresponding operatorr25(k(r k2Rc)

2, where Rc is
the coordinate of the center of mass. The related stren
function dNE0 /dE and the sum rule are then

dNE0~E!

dE
5

1

2J011(n
u^nJ0

p0Eur2uJ0
p0&u2, ~48!

E dE
dNE0~E!

dE
5

1

4p
~^J0

p0ur4uJ0
p0&2^J0

p0ur2uJ0
p0&2!.

~49!
s.
s

l

s

th

The Coulomb dissociation cross section can now be co
puted in the high-beam-energy limit where the approxim
tion of straight-line trajectories is valid and only one phot
is exchanged between projectile and target. The cross se
is then obtained by multiplying the electromagnetic tran
tion matrix elementsdBEl(E)/dE from ground state to con
tinuum states with the virtual photon spectrumnEl(v),
which is given by@33#

nE1~v!5
2

p
Zt

2a
c2

v2F jK0~j!K1~j!

2
v2j2

2c2
@K1~j!22K0~j!2#G , ~50!

nE2~v!5
2

p
Zt

2a
c4

v4F2S 12
v2

c2D K1~j!2

1jS 22
v2

c2D 2

K0~j!K1~j!

2
v4j2

2c4
@K1~j!22K0~j!2#G , ~51!

and the resulting differential cross section is

dsE1~E!

dE
5

16p3a

9
nE1~E* /\!

1

e2

dBE1~E* !

dE*
, ~52!

dsE2~E!

dE
5

4p3a

75 S E*

\c D 2

nE2~E* /\!
1

e2

dBE2~E* !

dE*
,

~53!

where K is the modified Bessel function,a5e2/\c, j
5vR/gv, v is the beam velocity,g51/A12v2/c2, Zt is the
charge of the target, andE* 5\v5Ef2Ei , where the final
and the initial energies are labeled byf and i . The dipole is
usually by far the largest contributor. In any case for m
halo nucei~the quadrupole excitation for6He is an excep-
tion! information about higher-lying angular momentu
states is not experimentally available and very difficult
predict theoretically due to the lack of knowledge about
binary subsystems.

III. 6He SYSTEM AS n1n1a

The three-body model developed above can be tested
the 6He system, which has been studied as the simplest
totype of a halo nucleus. The advantage is that the detail
low-energy two-body interactions are very well known e
perimentally and the particles only have high-lying excit
states. The resulting three-body properties are there
much less uncertain and related to the technique rather
to the lack of information about the subsystems. In this s
tion we shall first study the influence of the remaining u
certainties in the model, then predict physical properties
the three-body system, and along the way compare w
available data.
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A. Interactions and numerical details

We consider6He as two neutrons and an inert4He core.
The two-body interactions should in principle only reprodu
the low-energy scattering data which exclusively influen
the computations of spatially extended halo systems. Ex
for very accurately needed details it is even quantitativ
sufficient to reproduce the scattering lengths and the ef
tive ranges of the appropriate partial waves. This initial co
jecture@34# is now confirmed and details of the short-ran
behavior of the two-body interactions are not need
@7,8,10,30#. We shall therefore essentially always mainta
the same radial shapes of the interactions.

The neutron-neutron interaction reproduces the lo
energy properties of free nucleon-nucleon scattering.
have tried several parametrizations, i.e., the simple neut
neutrons-wave potential,~231 MeV! exp@2r2/(1.8 fm)2#,
from @34#, the extension to other partial waves in@9#, the
accurately adjusted nucleon-nucleon potential from@10#, and
previously known standard potentials as that of@35#. The
three-body results can hardly be distinguished from e
other and we shall here only present results with the inte
tion from @9#.

The neutron-a interaction is parametrized to reprodu
accurately thes-, p-, andd-phase shifts up to 20 MeV. We
use again Gaussians for the radial shape and allow anl de-
pendence of strengths and ranges, i.e.,

Vnc
~ l 50!548.00 exp~2r 2/2.332!,

Vnc
~ l 51!5247.40 exp~2r 2/2.302!

225.49l•snexp~2r 2/1.722!, ~54!

Vnc
~ l 52!5221.93 exp~2r 2/2.032!

225.49l•snexp~2r 2/1.722!,

where the strengths are in MeV, the lengths are in fm,sn is
the neutron spin, andl is the relative orbital angular momen
tum. The repulsives-wave potential corresponds to a scatt
ing length of22.13 fm and an effective range of 1.38 fm
The energies and widths of thep resonances defined as pol
of theS matrix areE(p3/2)50.77 MeV,G(p3/2)50.64 MeV,
E(p1/2)51.97 MeV, andG(p1/2)55.22 MeV, respectively.
The phase shifts from this potential are in Fig. 1 compa
with the results obtained from scattering experime
@36,37#.

Other parametrizations are possible even for the same
dial shape of the two-body potential. They differ in the nu
ber of two-body bound states of which the lowests state is
occupied for6He by the core neutrons and therefore sub
quently has to be excluded in the computation. For o
bounds state the interaction forl 50 is

Vnc
~ l 50!5275.06 exp~2r 2/1.532! ~55!

while the l 51,2 partial waves remain the same as in E
~54!. The s-wave scattering length and the effective ran
are the same as for Eq.~54! although the potential now is
attractive.

The three-body system computed from these two-b
interactions is underbound by about 500 keV. The requi
e
pt
y
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-
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d
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-
e
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fine-tuning is now obtained by adding a diagonal three-bo
force V3(r) in Eq. ~5!. The idea of using the three-bod
force is to include effects beyond those accounted for by
two-body interactions. Thus two-body polarization effec
are already included via the effective two-body interactio
The remaining part must then involve all three particles
multaneously polarizing each other and therefore only eff
tive at smallr values. We therefore use a three-body int
action only depending onr and still allowing for a
dependence of the total angular momentum of the syst
We tried both Gaussian and exponential shapes, i.e.,V3(r)
5S3gexp(2r2/b3g

2 ) andV3(r)5S3eexp(2r/b3e).
The range of the three-body force is by its definition r

lated to the hyperradius. For6He, r52 fm and 3 fm corre-
spond roughly to configurations where the neutrons, resp
tively, are at the surface of thea particle and outside the
surface by an amount equal to their own radius. This dista
can now be used directly as the range parameter or define
the distance where the three-body potential assumes ha
its central value. This means thatb3e5br / ln2 and b3g

5br /Aln 2, wherebr52 fm or 3 fm for the two different
geometric configurations.

The strength of the three-body interaction is finally for 01

adjusted to give the measured two-neutron separation en
0.9760.04 MeV of 6He. The different ranges and radia
shapes has an influence on the spatial extension of the th
body system. For Gaussian shapes we obtain root m
square radii of 2.45 fm for both the attractives-wave poten-
tial with one bound state and the repulsive potential with
bound states. The corresponding three-body interaction
rameters are, respectively,b3g52.9 fm, S3g527.55 MeV
andb3g53.0 fm, S3g523.35 MeV. For exponential shape
and a repulsives-wave potential, we obtain instead roo
mean square radii varying almost linearly from 2.61 fm
2.56 fm for S3e523.11 MeV, b3e54.3 fm to S3e524.77
MeV, b3e53.0 fm. For 21 we could instead fine-tune to th
well-known resonance of energy 0.82060.025 MeV and
width 0.11360.020 MeV @38#. The three-body interaction
parameters would then beJ dependent. For the repulsiv

FIG. 1. The computeds-, p-, andd-wave neutron-a phase shifts
~solid curves! compared to the values~triangles and circles! ex-
tracted from scattering experiments@36,37#. The interactions are
given in Eq.~54!.
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1410 PRC 58A. COBIS, D. V. FEDOROV, AND A. S. JENSEN
potential we obtainb3g52.061 fm andS3g5231 MeV for
Gaussian shapes.

In the computations we include all possibles, p, andd
waves. We use a hyperspherical basis for each of the Fa
deev components withK values up to about 150. The radial
equations are integrated from zero up tor values of about
180 fm. Further arguments for these numerical choices ca
be found in@26#.

B. Solutions andS-matrix poles

The angular eigenvaluesln are computed from Eq.~14!
for total angular momentum and parityJp506,16,26.
These eigenvalues are closely related to the effective pote
tials in the radial equation~5!. Their large-distance behavior
is essential and sometimes decisive as seen in the extre
case of Efimov states which owe their existence to a suffi
ciently negative value ofl at very large distance@27,29#. We
show in Fig. 2 these spectra for the lowest spins and paritie
both computed numerically with the appropriate basis siz
and from the analytic expressions for the coupleds waves.

The asymptotic behavior obtained at large distance is i
this case reached around 40 fm. This does not mean that
interactions produce the same results at such a distance
means that details are unimportant, but the scattering lengt
are still crucial. A larger basis would have reproduced th

FIG. 2. The lowest angular eigenvaluesln for 6He (n1n
1a) as functions ofr for angular momentum and parityJp

506,16,26. The solid lines are computed by numerical integra-
tion and the dot-dashed lines are the large-distance asymptotic b
havior obtained from Eqs.~42! and ~43!. The neutron-neutron in-
teraction is from@9# and the neutron-a interaction is from Eq.~54!.
Maximum K values up to about 150 are used in the basis.
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results of the analytical calculations up to higherr values.
However, this is not needed, because we use the asymp
solutions as soon as they are accurate enough. This impr
both the accuracy and speed of the computations. The fi
size of the basis gives a too fast convergence to the hy
spherical spectrum. Without an independent calculation
can therefore be difficult to assess the accuracy.

The lowest level for eachJp usually contributes with the
largest components of the wave function of both the poss
bound state and the low-lying continuum states. For all
cases in Fig. 2 we find pockets which, except for the1

ground state, are unable to bind the system, but are
responsible for several low-lyingS-matrix poles as we shal
see later.

The Pauli principle prohibits the core neutrons and
halo neutrons from occupying the same orbits. This has to
incorporated explicitly, since the three-body model on
deals with particles without intrinsic degrees of freedom, e
cept for their intrinsic spins. For a repulsives-wave potential
as described above, no bound state is present and no ov
has to be excluded. We also investigate another approxi
tion where we use an attractive neutron-core potential w
one bounds state and the same scattering length and eff
tive range. Because of this bound state, the lowest ang
eigenvalue must then bend over and diverge parabolic
towards2`. This corresponds at large distances to a c
figuration where a neutron is bound in the doubly degene
lowests state, which is Pauli forbidden for the halo neutron
At smaller distances the probability, or the wave functio
must be small, because otherwise a significant part of
halo wave function would be inside the core, the halo a
core degrees of freedom would not separate, and the th
body model would not be a good approximation. The effe
tive potential at these small distances is then rather unim
tant if the model is valid. Therefore a good and inexpens
approximation to include the Pauli principle is simply
omit the lowest diverging angular eigenvaluel from the
computations@9#.

In Fig. 3 the angular eigenvalue spectrum forJp501 for
both the repulsive and the attractives-wave potentials in
Eqs.~54! and ~55! is shown. The lowest diverging level fo
the attractive potential originating from zero is remov
from the figure as well as from the subsequent computatio
The second level for the attractive potential, originating fro
12, is almost identical to the lowest level from the repulsi
potential from aboutr51 fm. The levels from these two
potentials are remarkably similar even at smaller distan
and they are completely identical in the large-distan
asymptotic region.~Note that the figure only shows resul
up to 15 fm, where differences still can be seen.! One level
originating from 32 must cross an empty region, and the
fore deviate somewhat from all other levels, until it catch
up with one of the levels from the other potential approa
ing 12 for larger. However, the lowestl value~s! is domi-
nating in the wave functions of interest here and we theref
should focus on the corresponding effective potentials. T
differences in these potentials are small, but in precise c
putations they must be compensated in one way or anot
Fortunately the means for such fine-tuning is already pres
as a three-body potential, which is different for different tw
body potentials.

e-
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PRC 58 1411THREE-BODY HALOS. V. COMPUTATIONS OF . . .
For the lowest spins and parities we give in Table I t
lowest resonance energies and the related widths obtaine
S-matrix poles by the complex energy method. The differ
three-body forces in Table I can be considered to give

TABLE I. The real and imaginary values (Er ,G) ~in MeV! of
the two lowestS-matrix polesE5Er2 iG/2 for 6He for various
spins and parities. The interactions used in the upper part of
table are the same as in Fig. 4. The three-body interaction pa
eters areS3g527.55 MeV, b3g52.9 fm, S3g5231 MeV, and
b3g52.061 fm, respectively, for the first two and the last two c
umns. The 12 poles in the middle are obtained with the same
teractions except for an exponential shape for the three-body po
tial with parametersS3e523.11 MeV andb3e54.3 fm. In the
lower part of the table the repulsive potential is substituted by
attractive potential in Eq.~55!. The interactions used are otherwis
unchanged, except for the three-body interaction parameters, w
S3g523.35 MeV andb3g53.0 fm. The excitation energies ar
E* 5Er10.95 MeV andE* 5Er11.54 MeV for the left and right
hand sides of the table.

Jp Er G Er G Er G Er G

01 0.94 0.64 1.46 0.83 0.62 0.56 1.16 0.6
02 2.07 0.74 - - 2.07 0.74 - -
11 1.62 0.74 2.55 0.86 1.62 0.74 2.55 0.8
12 1.11 0.42 1.67 0.58 0.95 0.38 1.43 0.5
21 1.02 0.37 1.23 0.45 0.845 0.093 1.05 0.4
22 0.90 0.34 1.82 0.57 0.90 0.34 1.82 0.5

12 0.96 0.38 1.44 0.54

01 1.02 0.59 1.48 0.75
12 1.11 0.31 1.65 0.41
21 1.03 0.44 1.26 0.35

FIG. 3. The lowest angular eigenvaluesln for 6He (n1n
1a) as functions ofr for angular momentum and parityJp501

for the repulsive~solid line! and attractive~dashed line! s-wave
potentials in Eqs.~54! and ~55!. The neutron-neutron interaction i
the same as in Fig. 2. The lowest diverging level for the attrac
potential is omitted corresponding to our prescription for exclud
the Pauli-forbidden state. MaximumK values up to about 150 ar
used in the basis.
as
t
e

realistic range of the possible variation in the present mo
In contrast, all previous computations did not produce thr
body resonances in this low-energy region, except the es
lished 21 resonance@23–25#. For 02, 11, and 22 we obtain
identical poles, since the two three-body interactions o
contribute at small distances where the effective two-bo
potentials completely dominate. On the other hand, for 01,
12, and 21 we find differences of up to 0.3 MeV and 0.1
MeV for the position and the width, respectively. The sy
tematic shifts of the positions in the right hand side of t
table arise due to the slightly different 21 energy obtained by
adjusting the parameters.

The widths of theseS-matrix poles depend rather sens
tively on their energies, which are of the same order as
height of the corresponding effective radial barriers; see F
4. For these states with energies about 1 MeV, any wi
above 0.4 MeV corresponds to a smooth structure in
cross sections. Thus, even though the three-body interac
only amount to a fine-tuning of the energies, the con
quences for the presence and subsequent observation of
tinuum structures might be substantial.

The low-lying S-matrix poles seem to be rather close l
ing. By a sufficiently large additional artificial three-bod
attraction they move down towards threshold and beco
eventually bound states. Their apparent energies and wi
depend rather sensitively on the boundary condition int
duced when the wave functions are matched to the Han
functions at a given~large! distancermax. In general the
poles move towards the origin until converged with incre
ing rmax. Especially the widths are often sensitive to t
matching point. They systematically decrease or sometim
remain constant with increasingrmax.

For the 21 resonance the sensitivity is very small whe
rmax is larger than 40 fm. Most of the other poles, howev
require largerrmax, indicating that they are somewhat mo
related to the larger distances in hyperradius. This might b
reminiscence of the Efimov effect, where the bound sta
are pushed up into the continuum, but still with a relative
low-lying and dense energy spectrum. The Efimov eff
would arise as the consequence of very-low-lying two-bo
virtual s states in the neutron-core and the neutron-neut
subsystems. The actual parameters give energies of a
2200 keV for these virtuals states.1

The main part of the radial wave function is determin
by the angular-momentum-dependent effective potential c
responding to the lowestl. We show these potentials fo
06, 16, and 26 in Fig. 4, where we also exhibit the par
remaining after removal of the generalized centrifugal bar
terms, i.e.,\2(K13/2)(K15/2)/(2mr2), where K(K14)
5l(r5`) is the corresponding asymptotic hyperspheri
eigenvalue. As for two-body systems this remaining par
more revealing than the total potential, which could be
pulsive for all r and still produce a resonance provided
sufficiently strong attractive pocket is present in this ‘‘no
centrifugal’’ part of the potential.

1We shall use negative values corresponding to the energies o
S-matrix poles.
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FIG. 4. The total effective diagonal radial potentials for6He (n1n1a) defined in Eq.~8! ~solid curves! as functions ofr corresponding
to the three lowestl ’s for 06, 16, and 26. The dashed curves are the part remaining after removal of the generalized centrifugal term
\2(K13/2)(K15/2)/(2mr2), whereK(K14)5l(r5`) is the corresponding asymptotic hyperspherical eigenvalue. The interaction
the same as in Fig. 2 with an additional diagonal three-body interaction, i.e.,S3gexp(2r2/b3g

2 ), with S3g5231 MeV, b3g52.061 fm, added
in all partial waves, except forJ501 whereS3g527.55 MeV,b3g52.9 fm. The insets show the details of the lowest potentials.
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The pocket in the effective radial potential is absent
angular momentum 02, 16, and 22. The pocket for 21,
which definitely produces a narrow resonance at abou
MeV, is slightly less pronounced than for 01, where a bound
state at about 1 MeV is present. All the lowest effecti
potentials are attractive without the ‘‘centrifugal barrie
and therefore they could give rise to resonances.

The observables are related to real values of the ene
We therefore solve the radial equations on the real axis
energies corresponding both to the real values of
S-matrix pole and to values away from this pole; see Fig
We find 21 as a pronounced resonance and 12 which only
shows up as a much smaller and broader peak. Still, for2,
a substantial amount of strength is present between 5 fm
20 fm whenever the energy is within the width of th
S-matrix pole. Outside the widths of all the poles the wa
functions appear with very little probability at distances b
low 15 fm; see the curve for 12 with energy 1.4 MeV. These
poles produce observable effects depending on both the
tailed properties of the poles and the precise definition of
r

1

y.
r
e
.

nd

-

e-
e

observable. For other energies and angular momenta a s
lar picture is found.

C. Strength functions and Coulomb cross sections

The continuum structure can be investigated by elec
magnetic and/or nuclear excitations from the ground st
These transitions are described by observables such a
multipole strength functions. The lowest and most import
three of these are shown in Fig. 6 as functions of energy b
for plane waves and for the proper continuum wave fu
tions. The curves are normalized by their respective sum
values and each of them would therefore after integrat
over all energies give 1. The strengths below 10 MeV
97%, 78%, and 83% forl50, 1, and 2, respectively, and fo
the corresponding plane waves we obtain the somew
smaller values 94%, 60%, and 81%.

The influence of the final state interaction is directly r
flected in deviations from the broader plane wave distrib
tions. In general we always must have a rise from zero t
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FIG. 5. The absolute values of the radial wave functions for6He (n1n1a) after diagonalization as functions ofr for real energies in
intervals around the real parts of theS-matrix polesEr50.95 MeV for 12 andEr50.845 MeV for 21. Only the dominating component in
the full computation is shown. The interactions are the same as in Fig. 4.
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maximum and a fall off towards zero at large energy.
especially pronounced peak structure as observed forl52 is
the signature of a resonance, which in this case reflects
well-known 21 state at 0.8260.025 MeV of width 0.1136
0.020 MeV @38#, which in this computation appears at 0.8
MeV with width 0.093 MeV.

For 12 a peak and a shoulder appear at about 0.95 M
and 1.8 MeV. This 12 enhancement at low energy aris
from the two overlappingS-matrix poles seen in Table I; se
also@26#. The enhancement almost coincides in energy w
the dominating 21 peak and consequently it must be hard
to detect experimentally. The nuclear 01 strength function
resembles the plane wave result more than the higher m

FIG. 6. The strength functions, dBEl /dE
5(nu^nJpuuM (El)uu01&u2 for 6He (n1n1a) as functions
of energy for transitions from the ground state to 01 ~dotted
line!, 12 ~solid line!, and 21 ~dashed line! excited continuum

states. The operator isM (El,m)5r2 and ( i 51
3 eZir i

lYlm( r̂ i),
respectively, forl50 and 1,2. The units are the correspondi
sum rule values ^01ur4u01&2^01ur2u01&2 for l50 and
e2Za

2(2l11)^01ur a
2lu01&/(4p) for l51,2, whereeZa is the 4He

charge andr a is the 4He distance from the6He center of mass. The
interactions are the same as in Fig. 4. The smooth curves~smaller at
small distance! correspond to plane waves for the continuum sta
he

V

h
r

ti-

poles, reflecting broader underlying structures where
poles have larger widths if present at all.

The differential Coulomb dissociation cross section
now computed by multiplication of the strength functio
and virtual photon spectra. The results are shown in Fig
for Pb and Cu targets for both dipole and quadrupole exc
tions. As expected the dipole contribution has a width
about 2 MeV and it is by far dominating in absolute size. T
quadrupole distribution is much smaller, but strongly peak
at the resonance energy. The target dependence varyies
the square of the target charge as seen from Eq.~50!. Both
potentials as well as different three-body interactions g
similar, but distinguishable, results as seen in the right h
side of Fig. 7. The major differences arise from the diffe
ence in the ground state structure, in particular the lar
spatial extension found for the exponential three-body for
With the same ground state wave function almost ident
strength functions would appear.

Previous computations of 12-strength functions reported
peaks at about 2.5 MeV and shoulders at about 6 M
@20,23,25,39#. The present 12 strength function differs sub
stantially with much more strength at low energies indicat
contributions from larger distances. Unfortunately cor
sponding experiments are so far not available for6He.

The low-energy enhancement of the dipole strength fu
tion moves the strength towards energies with larger val
of the number of virtual photons. The total Coulomb diss
ciation cross section is therefore larger than that obtai
with plane waves in the final state. It is also necessarily la
compared to analogous cross sections for ordinary nuc
again due to a relatively large low-energy enhancement. T
is explained physically as the result of the weakly bou
neutrons easily separated by a small Coulomb disturban

The total Coulomb dissociation cross section is sim
obtained by integrating the differential cross section o
energy. The quadrupole contribution amounts here to ab
0.5% and the total cross section is 373 mb and 54 mb for
two targets and a beam energy of 800 MeV/nucleon. Thi
in agreement with the experimental extrapolation of@40# and
the calculated values in@22# while somewhat larger than
computed in@41#. This rather favorable comparison suppo
the three-body model with a substantial 12 low-energy en-.



. 4.

1414 PRC 58A. COBIS, D. V. FEDOROV, AND A. S. JENSEN
FIG. 7. The dipole and quadrupole~inset! contribution to the differential Coulomb dissociation cross section of6He (n1n1a) at 800
MeV/nucleon as function of the three-body energy for a Cu and a Pb target. The Cu results are multiplied by (82/29)2 to remove the
dominating, but trivial, overall charge scaling. The energy of the6He beam is 800 MeV/nucleon. The interaction is the same as in Fig
On the right hand side is shown the strength functionsdBE1 /dE for 6He for the attractive potential in Eq.~55! ~dashed line! and for the
repulsives-wave potential in Eq.~54! ~solid and dot-dashed lines! with Gaussian~G! and exponential~E! three-body interactions. The
parameters are given in Sec. III.
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hancement. However, the enhancement is not in itself p
of the presence of a low-lying three-body dipole resonan
Any attraction would produce more strength at low energ
A resonance needs more than marginal attraction. Furt
more, the enhancement could be due to relatively strong
derlying two-body structures. In the present case
S-matrix pole at about 1 MeV could indicate a resonan
which, however, overlaps the next pole at about 1.5 Me
This in turn results in the relatively weak peak in the wa
function at small distances in Figs. 5 and 6.

The total Coulomb dissociation cross section is shown
Fig. 8 as a function of beam energy. Both dipole and qu
rupole contributions are shown. The experimental point fr
@40# has very large error bars and therefore not surprisin
is in agreement with the computations. At high energy
find a slightly decreasing function with values of about a f

FIG. 8. The total Coulomb dissociation cross section as func
of the laboratory energy for a6He beam colliding with a208Pb
target. Both the quadrupole part and the total cross sections
shown. The plane wave results are shown as dashed curves
interaction is the same as in Fig. 4. The experimental point is fr
@40#.
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hundred mb. At energies below about 10 MeV/nucleon
cross section drops dramatically with decreasing energy.
though the approximations are dubious at these energies
precise behavior of this rapid change of the cross sec
should be sensitive to the details of the halo structure.

IV. 11Li SYSTEM AS n1n19Li

Thea particle has spin zero and the neutron-a system has
a low-lying p resonance. Consequently6He has spin zero
and consists mainly ofp2 configurations of the neutron-a
relative wave function. For11Li the spin and parity are32

2 as
for the 9Li core of the three-body system. Furthermore, t
neutron-9Li system has apparently a virtuals state at about
2200 keV and a somewhat higher-lyingp resonance at
about 600 keV@13,42#. Consequently11Li is expected to
consist of dominatings2 configurations of the relative
neutron-9Li wave function. The details of the two-body sub
systems are not accurately known, but already the possib
of low-lying s states is interesting, since the conditions f
the Efimov effect then are nearly fulfilled. In this section w
shall therefore use the knowledge obtained from the sim
and better known6He and predict the more uncertain pro
erties of 11Li.

A. Interactions and numerical details

The neutron-neutron interaction is the same as used in
previous computations for6He. The neutron-core effective
interaction often assumes zero spin for both9Li and 11Li
although the correct spins are32 for both nuclei. The spin-
orbit term l•sn for a neutron in the relative motion around
spin-zero core is used although the natural generalizat
which in fact has been used previously@9,43#, would be of
the form l•(sn1sc) for finite core spinscÞ0.

A qualitative difference from the zero core-spin compu
tions is the two possible couplings of the spins of the neut
and the core. For the neutron-9Li system the total spin can
then be 1 or 2. In general we therefore also include a sp
spin potential term to differentiate between these two s

n
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couplings for each orbital angular momentum state. Su
spin-splitting terms are most likely present due to the stro
spin dependence of the underlying basic interaction and c
sequently hard to ignore.

For finite core spin the interactions corresponding to
shallows-wave potential are

Vnc
~ l 50!5~27.2820.31sn•sc!exp~2r 2/2.552!,

Vnc
~ l 51!5~18.2511.47sn•sc155l•sn!exp~2r 2/2.552!.

~56!

The two s-wave scattering lengths and effective ranges a
~7.65 fm, 4.53 fm! and~10.88 fm, 4.77 fm! corresponding to
virtual s states at20.247 MeV and20.140 MeV for the
total spin of 1 and 2, respectively. The energies and wid
of the p1/2 resonances defined as poles of theS matrix are
E(p1/2)50.75 MeV,G(p1/2)50.87 MeV andE(p1/2)51.60
MeV andG(p1/2)53.74 MeV, respectively, for spin 1 and 2
In all cases the high-lyingp3/2 resonance is not contributing
in the three-body calculations and the Pauli blocking by t
core neutrons is simulated in this way.

In addition to the two-body potentials a diagonal thre
body force could be introduced for fine-tuning as for6He.
However, the idea of using the three-body force is to inclu
effects beyond those accounted for by the two-body inter
tions and too imprecise and too little information is availab
about this neutron-core system. It is therefore at the mom

FIG. 9. The lowest angular eigenvaluesln for 11Li ( n1n

19Li) as functions ofr for angular momentumJp5
1
2

6, 3
2

6, 5
2

6.
The dot-dashed lines are the large distance asymptotic beha
from Eq. ~20!. The neutron-neutron interaction is from@9# and the
neutron-9Li interaction is given in Eq.~56!. Maximum hyperspheri-
cal quantum numbers up to about 100 are used.
h
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as reasonable to adjust the two-body interaction instead
adding another uncertainty at this level.

The choice of interaction parameters is dictated by kno
edge of 11Li and the accumulating information about th
structure of 10Li, i.e., a p resonance at about 0.6 MeV,
low-lying virtual s state, and a small spin splitting of thes
states @13,42#. We obtain a three-body energy of abo
2300 keV reproducing the11Li binding energy of 295635
keV with the corresponding root mean square radius of 3
fm. Furthermore, the calculated fragment momentum dis
butions in 11Li breakup reactions also compare rather w
with measured values@9#. Then the11Li ground state wave
function has about 80% and 20% ofs2 and p2 configura-
tions, respectively.

We shall use this ‘‘realistic’’ interaction in the investiga
tion of the continuum properties of11Li. All possibles andp
waves are included. When the large-distance asymptotic
havior is reached the solutions are obtained from Eqs.~24!
and ~27!. The radial equations are integrated from zero
about 200 fm. Further arguments for these numerical cho
can be found in@26#.

B. Solutions andS-matrix poles

The angular eigenvalues for1
2

6, 3
2

6, and5
2

6 are shown in
Fig. 9 together with the asymptotic behavior obtained fro
the analytical expressions. For the ground state with3

2
2 the

two lowest levels are very similar to the spectrum for ze
core spin. For finite core spin, however, a series of additio
higher-lying levels also appears due to the broken sym
tries arising from the spin-spin interaction.

The spectra contain almost identical levels for1
2

1, 3
2

1,
and 5

2
1 as well as for1

2
2, 3

2
2, and 5

2
2. A number of addi-

tional levels are furthermore present for3
2

6. The correspond-
ing degeneracy is due to the weak neutron-core spin-split
potential. It can be explained by coupling two neutrons
s1/2 andp1/2 neutron-core states to 06 and 12 which in turn,

TABLE II. The real and imaginary values (Er ,G) ~in MeV! of
the lowestS-matrix polesE5Er2 iG/2 for 11Li for various spins
and paritiesJp. The excitation energyE* 5Er10.305 MeV. The
interactions for the upper part of the table are the same as in Fi
The middle of the table contains the results for a model withsc

50 and the same average positions of the lowest neutron-core
nances. i.e., an average energy of thes1/2 virtual state and thep1/2

resonance at20.18 MeV and 1.22 MeV, respectively.

Jp Er G Er G Er G Er G Er G

1
2

2 - - - - 1.37 0.51 1.56 0.56 1.98 0.65
3
2

2 20.305 0 0.89 0.43 1.41 0.56 1.60 0.61 2.03 0.
5
2

2 - - - - 1.36 0.49 1.60 0.68 2.01 0.72

1
2

1 0.65 0.35 - - 1.28 0.48 1.74 0.64 1.95 0.6
3
2

1 0.68 0.33 0.88 0.33 1.33 0.50 1.77 0.63 2.08 0.
5
2

1 0.68 0.37 - - 1.36 0.55 1.74 0.64 2.11 0.8

01 20.307 0 1.00 0.37 1.35 0.45 1.62 0.61 1.96 0.
11 - - - - 1.40 0.59 1.59 0.63 2.02 0.81

02 - - 0.92 0.39 1.25 0.51 1.82 0.62 2.02 0.6
12 0.64 0.31 - - 1.46 0.53 1.76 0.59 2.08 0.6
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coupled to the3
2

2 from the 9Li core, results in sets of nearl
degenerate3

2
6 and 1

2
1, 3

2
1, 5

2
1 states. The lowest12

2, 5
2

2

states arise from couplings of higher orbitals.
For the lowest spins and parities we give in Table II t

energies and widths of the lowestS-matrix poles both for
core-spin zero and32 . For zero core spin we find a low-lying
and relatively narrowS-matrix pole for 12, 02, and perhaps
also for 01 while we find nothing similar for 11. With the
correct finite core spin the symmetries are broken. We r
ognize the three times nearly degenerate 12 pole at about
0.65 MeV with a width of about 0.35 MeV. We also fin
degenerate 06 S-matrix poles at 0.89 MeV with widths o
0.33 MeV and 0.43 MeV. More discussion about these po
can be found in@26#. Higher-lying and broader poles ar
found for all angular momenta and parities. The struct
remains essentially unchanged for the deep potential.

The relatively large number ofS-matrix poles could be
due to the Efimov effect, which occurs when the scatter
lengths are much larger than the range of the interact
@27,44#. With increasing scattering lengths, the infinite
many poles of the three-bodyS matrix move towards the
point E50. For very large but finite scattering lengths
number of poles must already appear close to zero. Th
poles originate from the long-distance tail of the effecti
potential (}( i 51,3aim jk

21r23, where ai is the scattering
length of thei th subsystem! and they are not sensitive to th
details of the interactions. Since there are no confining b
riers for these poles, their corresponding widths must
rather large.

For 11Li the Efimov condition is almost fulfilled, since
annmnn

2112acnmcn
21'50 fm. This must necessarily result in

number of broadS-matrix poles near theE50 point. For
6He there is a low-lying two-bodyp3/2 resonance while for
11Li there is instead ans1/2 virtual state. The latter case i
therefore closer to the Efimov conditions and a larger nu
ber of low-lying three-bodyS-matrix poles could be ex
pected.

An indication of the properties and origin of thes
S-matrix poles is obtained by matching the radial wave fu
tions at various decreasing values ofrmax. The poles move
towards larger absolute values of the energies for decrea
matching radii. The imaginary values stay almost const
for the lowest 01 and 12 states, indicating resonancelik
structures. Both imaginary and real values increase for
other poles.

The lowest effective adiabatic potentials determine the
dial wave function and the energy of possible bound sta
They are shown in Fig. 10 for various spins and parities
all cases we find attractive potentials around 50 MeV d
after removal of the repulsive centrifugal barriers. Re
nances are therefore possible in all these channels. With
centrifugal barriers all the potentials are still attractive exc
those corresponding to12

2 and 5
2

2. The ground state ofJp

5 3
2

2 exhibits the largest attractive pocket and no barrier
the lowest adiabatic potential and a barrier height of
MeV at about 7 fm for the second potential. The 12 excited
states all have attractive pockets as well as repulsive bar
of about 0.6–0.9 MeV forr between 10 and 15 fm.

Compared to 01 of 6He we have now a less attractive b
broader3

2
2-potential corresponding to the ground state qu
c-
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tum numbers; see Fig. 4. The 12 excited states for6He have
no attractive pocket while it is substantial for11Li, in agree-
ment with the calculated low-lyingS-matrix poles, which
appear around the barrier height.

The wave functions corresponding to real energies aro
the real part of the pole energy 0.68 MeV are shown in F
11. For energies below 0.68 MeV and outside its width
peak moves to larger distances, but remains of compar
size. For the energy 0.8 MeV we find a similar peak a
slightly smaller distance. This peak can be viewed as
combined effect on the real axis of the two overlapping p
structures at 0.68 MeV and 0.88 MeV; see Table II. For
MeV, respectively within and outside the widths of the pol
at 0.88 MeV and 1.33 MeV, the peak has decreased
moved to a smaller distance. None of all these peaks
pronounced in comparison with the next peaks of the sa
wave function. Thus strong 12 resonance structures are n
obtained.

C. Strength functions and Coulomb cross sections

The dominating dipole term in electromagnetic exci
tions can excite the ground state to continuum states ofJp

5 1
2

1, 3
2

1, 5
2

1 while the nuclear monopole excitation on
produce 3

2
2 states. The corresponding calculated stren

functions are shown in Fig. 12 together with the results o
tained by using plane waves for the continuum wave fu
tions. The monopole strength resembles the results of
plane wave computation in agreement with the lack of lo
lying S-matrix poles below 0.8 MeV; see Table II. The d
pole strengths are almost proportional to the statist
weights of (2J11) and all of them are enhanced signi
cantly above the plane wave results at low energies. T
enhancement overlaps with the position of the lowest2

poles in Table II.
The total dipole strength function, where the contributio

from all Jp in the continuum are added, is in Fig. 13 com
pared to the zero core approximation and the three avail
measured distributions. The plane wave results are the s
for zero and finite core spin, because the ground state es
tially is unchanged. The interaction with zero core spin giv
a distribution shifted about 100 keV towards lower ener
compared to the result for the realistic full computation.
lower and broader peak is obtained for the potential fr
@34# where thep2 content of the three-body wave function
very small. The low-lying 12 poles around 0.65 MeV en
hance the strength functions at low energies compared to
plane wave results.

The computed strength functions substantially exce
most of the data points@13–15# in the peak region around
0.55 MeV. ~Note, however, that the data in@13,14# contain
much less total strength.! A reduction could be achieved with
higher energy and larger width of theS-matrix pole, but this
would probably only be provided by a potential with muc
too smallp2 content in the three-body wave function. It
also a curious fact that other models provide 12 strength
functions substantially closer although not in comple
agreement with the data@21,45,46#. This is of course related
to the lack of low-energy 12 resonances orS-matrix poles in
these computations.
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FIG. 10. The total effective diagonal radial potential~solid curves! as functions ofr corresponding to the four lowestl ’s for Jp

5
1
2

6, 3
2

6, 5
2

6 for 11Li ( n1n19Li). The dashed curves are the part remaining after removal of the generalized centrifugal term
\2(K13/2)(K15/2)/(2mr2), whereK(K14)5l(r5`) is the corresponding asymptotic hyperspherical eigenvalue. The interaction
as in Fig. 9. The insets show the details of the lowest potentials.
for
l

In this context it is worth pointing out that it is difficult to
find the most appropriate comparison with the different e
perimental results in the figure. The normalization must b
properly chosen and the theoretical results must be fold
with the distributions~unknown to us! related to the equip-
ment used in the different experiments.

The strength functions rise from zero to a maximum an
then fall off towards zero at large energy whereas the virtu
photon spectra decrease monotonically with excitation e
ergy @33#. The low-energy enhancement necessarily implie
a larger Coulomb cross section, since the dipole is the dom
nating dissociation mode. We show in Fig. 14 computed to
cross sections as function of beam energy for a11Li projec-
tile on a lead target. The only available data point with rela
tively large error bars is in agreement with the computatio
@13#, but substantially larger than the plane wave result. F
280 MeV/nucleon we find 1458 mb and 1501 mb, respe
tively, for the potentials with zero core spin and with a sma
p2 content of the wave function.
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FIG. 11. The absolute values of the radial wave functions
11Li ( n1n19Li) as functions ofr for real energies in an interva
around the real part of theS-matrix poleEr50.68 MeV for 3

2
1.

The interactions are the same as in Fig. 9.
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FIG. 12. The strength functionsdBEl /dE}(nu^nJpuuM (El)uuJ0
p0&u2, M (El,m)5( i 51

3 eZir i
lYlm( r̂ i), for 11Li ( n1n19Li) as a func-

tion of energy for transitions from the ground state via 01 to 3
2

2 ~left hand side! and via 12 ~right hand side! to 1
2

1, 3
2

1, and 5
2

1 excited
continuum states. The smooth curves~smaller at small distance! correspond to plane waves for the continuum states. The curves
normalized to the corresponding sum rule values given in Fig. 6. The interactions are the same as in Fig. 9.
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The cross section decreases at large beam energy d
the similar decrease of the virtual photon spectrum. At sm
energy, where the approximations are invalid, we find
increasing cross section due to the low-energy cutoff of
strength function by the virtual photon spectrum. At t
maximum around 5 MeV per nucleon this and other re
tions are expected to be sensitive to the details of the neu
halo structure.

V. SUMMARY AND CONCLUSIONS

Borromean halo systems are almost by definition wea
bound and excited states are usually entirely absent.
continuum is therefore easy to excite and unavoidable

FIG. 13. The strength functions dBEl /dE5(1/2J0

11)(nJpu^nJpuuM (El)uuJ0
p0&u2, M (El,m)5( i 51

3 eZir i
lYlm( r̂ i),

for l51 for 11Li ( n1n19Li) as function of energy. The smoot
curves correspond to plane waves for the continuum states.
interactions are the same as in Table II forsc50 and Fig. 9 for
sc5

3
2

2 except for the curve JJH obtained with the potential in@34#.
The experimental points are from@13–15#. The arbitrary units in
@15# are normalized to our sum rule value, while the absolute d
from @13,14# are left unchanged.
to
ll
n
e

-
on

y
he
in

descriptions of essentially all reactions involving such p
ticles. We solve the Faddeev equations in coordinate spac
two steps. First the discrete spectrum of the angular pa
computed and used as a complete basis set. Then the co
set of radial equations is solved with the appropriate c
tinuum wave boundary conditions. The angular equations
large distances outside the short ranges of the potentials
especially simple. However, they are essential and there
treated carefully.

The three Faddeev components are very useful in the
tailed description of the particle correlations. We show th
only the threes waves~one in each component! for a given
total orbital angular momentum couple at large distances.
other partial waves are decoupled. We therefore solve th
much smaller and simpler sets of coupled and uncoup
angular equations at large distances. Some of th
asymptotic solutions are obtained analytically and others
solutions to transcendental analytical equations. As a ne

he

ta

FIG. 14. The dipole approximation~solid curve! to the Coulomb
dissociation cross section of11Li as function of laboratory energy
per nucleon for a Pb target. The plane wave results are the da
curve. The interactions are the same as in Fig. 9. The data poi
from @13#.
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sary intermediate result we derive a convenient expres
for the transformation of angular functions between two d
ferent Jacobi coordinate systems.

Systems with two identical neutrons and a core of fin
spin are specifically treated. Then the continuum spectr
the two Borromean halo nuclei6He (n1n1a) and
11Li ( n1n19Li) are investigated numerically in some d
tail. Two-body interactions with and without bound state
but reproducing the observed low-energy scattering data
used for 6He. In addition three-body interactions with se
eral radial shapes are added to obtain the measured bin
energy. For11Li no three-body interaction is used, since t
two-body interaction is unknown and therefore directly p
rametrized to reproduce anticipated two-body resonan
and virtual states in addition to the momentum distributio
in fragmentation reactions.

The antisymmetry between the neutrons in the halo an
the core is accounted for in two ways: first by using a rep
sive or a shallow neutron-core potential without bound sta
and second by omitting the lowest adiabatic potential aris
from a more attractive neutron-core potential with one bou
state from the set of radial equations. The results are c
pared.

The adiabatic potentials are decisive for the radial so
tions. The lowest potential in each channel is attractive w
the corresponding generalized centrifugal barrier is remov
All channels are therefore potentially able to support re
nancelike structures. The pocket in the adiabatic radial
tential is absent for6He for angular momentum 02,16, and
22 and well developed for both 01 and 21. For 11Li the
adiabatic potentials for 12 excitations all have attractive
pockets and effective barriers of 0.7560.15 MeV. Also the
01 channel has a well-developed attractive pocket, but
barrier, for the lowest potential supporting the ground sta
The second potential for 01 excitations is also attractive with
a barrier of about 1.7 MeV.

We calculate theS-matrix poles by the complex energ
method. The lowest of these poles appear slightly above
barriers and their widths are consequently relatively la
and rather sensitive to fine-tuning of the interactions. O
exception is the known narrow 21 resonance in6He which
is reproduced in the calculation. The narrowest low-lyi
poles for 6He appear for 12 and 22 at about 1 MeV with
widths of 0.3–0.4 MeV. For11Li they appear for 12 and 06,
respectively, at about 0.65 MeV and 0.9 MeV with widths
about 0.35 MeV. The unusually many low-lyingS-matrix
poles could indicate that the Efimov limit is fairly close.

We computed the electric excitations from ground to co
tinuum states. The strength functions are rather strongly
hanced at low energies due to the low-lyingS-matrix poles.
The functions extracted from measurements for11Li are ap-
parently significantly smaller than our computations. On
other hand, the same experimental information agrees
the computed Coulomb cross section. A proper consis
comparison is still lacking. Also for6He we obtain enhance
dipole strength functions at low energies. Here the exp
mental strength function is not available, but the obser
12 resonance is reproduced almost within the experime
uncertainties. We have not attempted to reproduce this so
what controversial resonance more precisely.

In conclusion, we have developed a method to solve
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three-body problem for short-range potentials. The meth
treats with special care the large distances which are es
tial for the spatially extended halo systems. We investig
the continuum spectra for the two halo nuclei6He and 11Li
and find a number of low-lyingS-matrix poles. Strength
functions are computed and compared with other calcu
tions and available experimental data. Various disagreem
are pointed out and several controversial features are ex
ited.
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APPENDIX: ROTATIONS BETWEEN DIFFERENT SETS
OF JACOBI COORDINATES

We want to ‘‘rotate’’ the wave function from one set o
Jacobi coordinates to another set as defined in Eq.~13!. Only
the leading order in an expansion in 1/r is needed. We mus
then first express (xj ,yj ) in terms of (xi ,yi). The six-
dimensional transformation is@47,48#

xj52xicoswk1yisinwk, yj52xisinwk2yicoswk ,
~A1!

where wk is defined in Eq.~18!. Defining the angleg be-
tweenxi andyi by

cosg[
xi•yi

xiyi
, ~A2!

we have the relation between the hyperanglesa i anda j re-
lated to the two coordinates

sin2a j5cos2wksin2a i1sin2wkcos2a i

12 coswksinwksina icosa icosg. ~A3!

We now expand the following function, related to th
function in Eq.~13!, of a j in terms of Legendre polynomial
Pl(cosg):

fnl
x8 l

y8Ls
x8S

~ j !
~a j !

sin~2a j !sinl x8a jcosl y8a j

5(
l

A
l

l x8 l y8L
~a i !Pl~cosg!,

~A4!

A
l

l x8 l y8L
~a i !

[
2l 11

2 E d cosg
fnl

x8 l
y8Ls

x8S
~ j !

~a j !

sin~2a j !sinl x8a jcosl y8a j

Pl~cosg!,

~A5!

where a j is the function ofa i and g defined through Eq.
~A3!. Then changing the integration variable from cosg to
a j , i.e.,
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d cosg5
sin~2a j !

sin~2a i !

2

sin~2wk!
da j , ~A6!

we can rewrite Eq.~A5! as

A
l

l x8 l y8L
~a i !5

2l 11

sin~2wk!sin~2a i !
E

uwk2a i u

p/22up/22wk2a i u
da j

fnl
x8 l

y8Ls
x8S

~ j !
~a j !

sinl x8a jcosl y8a j

Pl@cosg~a i ,a j !#. ~A7!

Next we use the identities

Pl~cosg!5
4p

2l 11
Yll

00~Vxi
,Vyi

!, ~A8!

N0l
x8 l

y8
sinl x8a jcosl y8a jYl

x8 l
y8

LML~Vxj
,Vyj

!

5(
l 1l 2
R l

x8 l
y8→ l 1l 2

KL
~wk!Nnl1l 2

sinl 1a icosl 2a i Pn
l 111/2,l 211/2

3@cos~2a!#Yl 1l 2

LML~Vxi
,Vyi

!, ~A9!
Nnlxl y
5S n! ~n1 l x1 l y11!!2~2n1 l x1 l y12!

G~n1 l x13/2!G~n1 l y13/2! D 1/2

, ~A10!

Yll
00~Vxi

,Vyi
!Yl 1l 2

LM ~Vxi
,Vyi

!5(
l xl y
Bl xl yL

l 1l 2l Yl xl y
LM~Vxi

,Vyi
!,

~A11!

Bl xl yL
l 1l 2l

5~21!L1 l 11 l y1 l
A~2l 11!~2l 111!~2l 211!

4p

3^ l 10l0u l x0&^ l 20l0u l y0&H l x l 1 l

l 2 l y LJ , ~A12!

whereYl xl y

LML is defined in Eq.~12!, Nnl1l 2
are normalization

constants for the Jacobi polynomialsPn
l 111/2,l 211/2

@cos(2a)#,
$% and^& are the 6J symbols and the Clebsch-Gordon coe
ficients, and the coefficientsR l

x8 l
y8→ l 1l 2

KL
(wk) are the so-called

Raynal-Revai coefficients@47# with K5 l x81 l y852n1 l 1

1 l 2 .
Then by combining Eqs.~A4! and~A8!–~A12! we obtain
f Jacobi
fnl
x8 l

y8Ls
x8S

~ j !
~a j !

sin~2a j !
Yl x8l y8

LML ~Vxj
,Vyj

!

5(
l

A
l

l x8 l y8L
~a i !

4p

2l 11
Yll

00~Vxi
,Vyi

!(
l 1l 2

Nnl1l 2

N0l
x8 l

y8
R l

x8 l
y8→ l 1l 2

KL
~wk!sinl 1a icosl 2a i Pn

l 111/2l 211/2
@cos~2a i !#Yl 1l 2

LML~Vxi
,Vyi

!

5(
l xl y
C

l x ,l y

l x8 l y8L
~a i !Yl xl y

LM~Vxi
,Vyi

!, ~A13!

where the expansion coefficientsC are given by

C
l xl y

l x8 l y8L
~a i !5(

l
A

l

l x8 l y8L
~a i !

4p

2l 11(l 1l 2

Nnl1l 2

N0l
x8 l

y8
R l

x8 l
y8→ l 1l 2

KL
~wk!sinl 1a icosl 2a i Pn

l 111/2,l 211/2
@cos~2a i !#Bl xl yL

l 1l 2l . ~A14!

Finally we have therefore the desired expression for Eq.~13!:

R
i j

l xl yl x8 l y8LFfnl
x8 l

y8Ls
x8S

~ j !
~r,a j !

sin~2a j !
G5E dVxi

dVyi
@Yl xl y

LML~Vxi
,Vyi

!#*
fnl

x8 l
y8Ls

x8S
~ j !

~r,a j !

sin~2a j !
Y

l
x8 l

y8

LML~Vxj
,Vyj

!5C
l xl y

l x8 l y8L
~a i !. ~A15!

This completes the general derivation of the expression for the transformation of the wave function from one set o
coordinates to another.

The large-distance expansion is now found by first approximating Eq.~A3! for larger and smalla i asa j5wk1a icosg.
Then by usinga i!1 in Eq. ~A7! we obtain

A
l

l x8 l y8L
~a i50!5

fnl
x8 l

y8Ls
x8S

~ j !
~wk!

sin~2wk!sinl x8wkcosl y8wk

d l0 , ~A16!

which through Eqs.~A14! and ~A12! implies that



s

PRC 58 1421THREE-BODY HALOS. V. COMPUTATIONS OF . . .
C
l xl y

l x8 l y8L
~a i50!54pd l x0A

0
l x8 l y8L

~a i50!
Nn0L

N0l
x8 l

y8
Pn

1/2,L11/2~1!R l
x8 l

y8→0L
KL

~wk!B 0LL
0L0

5
Nn0L

N0l
x8 l

y8
Pn

1/2,L11/2~1!

fnl
x8 l

y8Ls
x8S

~ j !
~wk!

sin~2wk!

R l
x8 l

y8→0L
KL

~wk!

sinl x8wkcosl y8wk

. ~A17!

For l x850,l y85L, andn50 we can simplify the expression by usingP0
1/2,L11/2(1)51,R 0L→0L

LL (wk)5(21)LcosL(wk). We then
obtain Eq.~17!. The angular wave functions corresponding to nonzerol x8 rapidly approach zero for larger values and their
contributions are therefore here assumed to be zero.

Thus for short-range interactions for larger and therefore also for smalla only l xi
50 components receive contribution

from the rotated wave functions from the other Faddeev components. All partial waves withl xi
.0 can then be solved

independently. The remaining three components withl xi
50, i 51,2,3, must be solved as a set of coupled equations.
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