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Three-body halos. V. Computations of continuum spectra for Borromean nuclei
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We solve the coordinate space Faddeev equations in the continuum. We employ hyperspherical coordinates
and provide analytical expressions allowing easy computation of the effective potentials at distances much
larger than the ranges of the interactions where anlyaves in the different Jacobi coordinates couple.
Realistic computations are carried out for the Borromean halo nfidlei (n+n+ «) for J7=0%,1%,2* and
Ui (n+n+°Li) for 3%, 3%, 3. Ground state properties, strength functions, Coulomb dissociation cross
sections, phase shifts, and comp&xnatrix poles are computed and compared to available experimental data.
We find enhancements of the strength functions at low energies and a number of lov&yiatrix poles.
[S0556-28188)00509-3

PACS numbgs): 21.45+v, 11.80.Jy, 21.10.Dr, 21.60.Gx

[. INTRODUCTION culations as demonstrated by the succesful investigation of
the Efimov effec{8,27,29,30. However, the implementation
The present paper is part of a sequence discussing tHeas so far essentially concentrated on bound structures, but
general properties of three-body halds-6]. These papers generalization to applications in the three-body continuum is
all deal with three-body systems, weakly bound and spatiallytraightforward.
extended compared to the energy and range of the two-body The purpose of this paper is (0 describe the details of a
interactions[7—10]. Most of the detailed information about method to compute low-energy three-body continuum spec-
halo nuclei is obtained from reaction experimeftd—15. tra for particles with or without intrinsic spinji) derive
Fragmentation reactions of three-body halo nuclei were studgdsymptotic large-distance expressions allowing simple com-
ied in the sudden approximation fotLi and ®He with spe-  putations of the corresponding effective three-body potential
cial emphasis on the effects of final state interactions, whicfior arbitrary angular momenta and arbitrary short-range two-
in other words are the effects of the two-body continuumbody potentials, andiii) apply the method in detailed real-
[9,16-1§. istic numerical computations of the continuum structure and
Borromean systems, where no binary subsystem is boundarious observables fdtHe and *'Li.
are particularly interesting three-body halo candidates. They The paper generalizes first the analytic results obtained
have by definition a relatively low binding energy. The es-for s waves and square well potenti@80]. Then the method
tablished nuclear prototypes aréHe (n+n+«) and is applied to detailed studies of the continuum structure for
i (n+n+°Li) and other examples are expected furtherthe Borromean nuclePHe (n+n+“*He) and ''Li (n+n
up along the neutron drip line. The structure®sfe is fairly +9Li). Brief reports describing some numerical results are
well understood whereas the structure'dfi is still contro- ~ available in the literaturg26,28§.
versial. The reason is essentially the large amount of knowl- After the Introduction we give in Sec. Il a general de-
edge, respectively the lack of knowledge, about the twoscription of the method and then we concentrate on two
body subsystems. cases of special interest. In Secs. Il and IV we compute in
The number of bound states for Borromean systems igletail the properties ofHe and*'Li, respectively. In Sec. V
almost always limited to the ground state. The effective two-we give a brief summary and the conclusions. A convenient
body interactions must be weak enough to exclude boungeneral expression for the transformation between different
states and strong enough to bind the three-body systeri€ts of Jacoby coordinates is derived in the Appendix.
Therefore one or more two-body resonances must be present
at low energy. Then the low-lying continuum three-body Il THEORY
spectrum would inevitably have a rather complicated struc-
ture. This has strong implications for the analyses and the We shall consider a system of three interacting inert “par-
understanding of the data accumulating from experimentticles.” Their intrinsic degrees of freedom are frozen and
with nuclear halos and Borromean nudl&b—26. only the three-body(halo degrees of freedom shall be
The general discussions of structure and breakup readreated here. In this section we first describe the general
tions of halo nuclei should be extended to the three-bodynethod of solving the Faddeev equations using hyperspheri-
continuum. Specific investigations are available, but impre<al coordinates. In particular we specify the boundary condi-
cise[19-27. The technical difficulties formulated in coordi- tions at large distances by introducing ti& matrix or
nate space are related to the necessary computation of tleguivalently theR matrix. The angular equations at large
behavior of the effective potential at large distance. Fortudistances are then treated essentially analytically. We then
nately, a method treating the large distances analytically andonsider a system of two identical neutrons surrounding a
the short distances numerically has recently become avaiktore first with finite spin and then with spin zero. Finally in
able[27,28. The method is very powerful in structure cal- this section we give the expressions for strength functions
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and Coulomb dissociation cross sections. We shall follow the 3
method and the notation established previougly— Pan’ (p)_ 2 dQCD(' (p, Q)—CI)(J)(p,Q), (6)
9,27,28,26.

A Method Qun(p)= 2 dQal* (p, m cbn,(p Q). @

Thekth particle has mass,, chargeeZ,, coordinater, =1
and spins,. The two-body interactions between the particles
i andj areV;;. We shall use the three sets of Jacobi coor-
dinates §;,y;) and the corresponding three sets of hyper- 72 15
spherical coordinatesp(();)=(p, a@;, Q,, Q,); see, for —|:<)\n(p)+—

o i 2m 4
example,[6,7]. The volume element in terms of one of the
sets of hyperspherical coordinates is given @dQdp,
where dQ) = sirfacosadad(,d(), . The kinetic energy op-

The diagonal part of the effective potential is then

p~“—Qnn| +Va(p). ®

For Borromean systems the coupling terfh@and Q ap-
proach zero at least as fast as® [7,27,30. We can then

erator is choose those solution¥,,, to Eq. (3) where the large-
72 2 15 A2 distance p— ) boundary conditions fof " are given by
T= >m —[)7“’:’/2(9 2p5/2+ F + — | (D) [32]
P e p
L . f ()= 8 P (kp) = Sa PR (kp). (9)

y
~ 7 sin2a) 5 Sln(2a)+smza oZa % @ The S matrix introduced here is a unitary matrix?
=2mE/A? and F(™) are related to the Hankel functions of

- - integer order b
where the angular momentum operattf{sandlg are related g y

to thex andy degrees of freedom and is a normalization

mass arising from the definition @f. In the followingm is F) (kp)= /m ) (kp)

assumed to be the nucleon mass. " hz Kn+2
The total wave functiond j, of the three-body system

(with total spinJ and projectionM) is written as a sum of m L +ivr 3
three components/{),, which in turn for eachp are ex-- TN 2R =y Knt 3]
panded on a complete set of generalized angular functions
) (p.02)): (10)
3 whereK, is the hyperspherical quantum number correspond-
T 2 %M(X Vi) z f (P)Z q)(u (p,Q), ing to the valueK (K, +4) approached at large distance by
4 5/2 n

the angular eigenvalug,,. The continuum wave functions
(3) Y,y are orthogonal and normalized to delta functions in
energy. Sometimes it is more convenient to work with e
wherep 2 is the radial phase space factor. matrix given asR=i(1—S)/(1+S). The boundary condi-
The angular functions are now for eaphchosen as the tions must then be changed into sin and cos instead of the
eigenfunctions of the angular part of the Faddeev equationsxponentials in Eq(10).
By diagonalization of theS (or R) matrix we obtain

a coupled set of “radial” differential equation§,31], i.e.,

2 eigenfunctions and eigenphases. These phase shifts reveal
—S[AZ=Ny(p)]PF + V(@) + D+ D) =0, the continuum structure of the system. In particular, a rapid
variation with energy indicates a resonance. A precise com-
4) putation of resonances and related widths can be done by use
of the complex energy method, where E®) is solved
where{i,j k} is a cyclic permutation of1,2,3. for E=E,—il'/2 with the boundary condition f,
The radial expansion coefficientg(p) are obtained from “(\/W)H(Kﬁlz(@)- These solutions correspond to

poles of theS matrix [32].

2m

2
— (;_2 — M + ( (p)+ 15 an> f(p) B. Angular eigenvalue equation
op » The angular function®{)(p,0;) are expanded in prod-
d ucts of the three-body spin funcuoaé and spherical
= E <2Pnn’{9_+an'> fn’(p)l (5) h Q d Q Shsn’k b I |
nan p armonlch|xmx( Xi) an Y,ymy( yi). The orbital angular

momenta and their projections associated witandy are

whereE is the three-body energy/;(p) is an anticipated (I,,m,) and (,,m,) while the spins of the two particles
additional three-body potential, and the functidhsand Q connected by th& coordinate couple to the spsy, which
are defined as angular integrals: coupled to the spiss, of the third particle results in the total
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spin S and its projectionms. Indicating these angular mo- y;. The interactiorV;,, only depending on the distance be-

mentum couplings by the result can be written tween the particles, is independent of these angles.
The operator describing this transformation from {lie
M Q) D ¢nInyLsxS(P’ a;) to theith Jacobi coordinate system is denofg. This op-
n (P, i)_l JTes  sin2a) eration maintains both total spin and total orbital angular
* momentum. The result of the transformation from a specific
><[YLML(QX ,le)®x(s')sy5ms]”", (11)  set of angular momentum statgs, L is projected on the set

) ) IlyL. This operatorR'X'yIXIy is then given by
where sin(2y) is a factor related to phase space and

YE O 0 =1 ()91 (01, (12 s LV?&';LS;S(A%)]
where the projections of the intermediate couplings are given sin(2a)
although the final result is independent of them. ¢§1j|)| Lodpa))
To solve the angular Faddeev equations the components J dQ, d, [YLML(Q Q) )
in Eq. (4 must be expressed in one Jacobi coordi- RN sin(2a;)
nate set, say, labeled byi. The wave functions o
ng]J,)XWLSXS(p,aj)/sin(Zaj), which only depend on; and p, Y, |' (D, Qy ). (13

are first expressed in terms of tiélh set of hyperspherical

coordinates. The equations are multiplied from the left by the When the two-body interaction is assumed to be diagonal
square brackets in E@l1) and subsequently integrated over in the total two-body spin we now rewrite the angular eigen-
the four angular variables describing the directions;adnd  value equation in Eg4) as

~ _2+|X(|x+1) . ly(ly+ 1)
c?aiz sirfa; COS"ai

p%v SX (p sin al)_Vn(P)) oY JyLs, s(p,aj)

(1)
” sS, . Ll 1L ¢”'§'§L545(p’aj) ik Ly 1L
+psin(2a)v(p sin ;) X | CL RV “sin2a) | T CssesRi
leysX J

k
¢£1I))’(I)’,Ls)’(s(p’ ay)
S|n( 2ak)

B

(14

where v2(p)=\,(p)+4 and the reduced spin-averaged in-[7,27,30. The two terms described by the transformations
teractions are given by Ri; and R in Eq. (14) can then be approximated by their
expansmn to leading order in the varialate.
2m X We show in the Appendix that all partial waves decouple
52 ij( m ) Xs s,Smy 19 o leading order iny; or in 1l/p with the essential exception
with m,u]k—m my/(m;+my). The coefﬁuents(:S 5 /S
pressing the overlap of the spin functions, are deflned by

xS — (i)
vi (X)_<XSSSH’E
of s waves in thex degree of freedom, i.e., the components
with Ixi=0, i=1,2,3, and the total orbital angular momen-
tumL= Iyi. This means that an expansion in powersxpbf
the terms obtained from the transformatis only provides
k=D ibuti ' imi - =|'=
Csxsxfs_<Xs|XsySng|Xs g Snb) (16) no_nz,ero contributions in the limit of;=0 for I,=1,=0,
ly=ly=L. These finite contributions are far;=0 found to
These matrix ‘elements are independentgf, symmetric, be
ie., Css,S ch ., and diagonal irs, ands;,, for i=k, i.e.,

Cl =6 . OLOLL
ss's™ Ri'

ex-

s’sS?

¢nOLLs S(p a/J) ¢£10|_|_s S(p ®)
—— | =(-D"

sin(2a;) sin2¢,)
C. Large-distance angular eigenvalues 17

For largep only small« values contribute in Eq14) to
. 2 S, . m,(m; +m,+my)
the terms proportional tp“v*"(psing;). These potentials are tan o= -~ 3 % (18)
assumed to have short ranges and they vanish consequently m;m
for largep for all «; except in a narrow region around zero.
We assume that they vanish exponentially or at least as fagthere {i,j,k} again must be a permutation dfL,2,3.
as 1p°, for distances larger than the ranges of the potential$ligher order terms iny; are neglected. Nonzerq values
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had produced leading terms of at least first ordetjinn an The square well potentia[slsxs(psinai) are zero in region

expression analogous to EQ-7). Il defined bya;> a§(s,S) = arcsink™*/p). Then Eq.(20) is
Thus for nonzerd, values the angular eigenvalue equa- . ¥a' %0 (5:5) &/p). a.(20)
especially simple, i.e.,

tions in Eq.(14) decouple asymptotically and reduce to

5 #  L(L+1) .
_ d +|x(|x+1)+|y(|y+1) (—F‘FF—Vﬁ ¢E1I()]LLSXS(p’ai):O’ (23)
da?  sirfa; coda; “i “i

and the solutions, vanishing at= /2, are given by
S .
+p% X (psina;) — vi(p) m 0
$notis s(pr @) =AnoLLs sPL(Vn @), (24)
X ¢$1i|)x|yLsXs(P’ai) =0 (19
P (v,,a)=cosa

wcom] -3

— —— sinv,| a— = (25
for all sets of values of,#0J,,L,s,S. The large-distance da COs 2
asymptotic eigenvalueﬂﬁz(KJrZ)2 related to these partial _ 0
waves approach the hyperspherical spectrum, wkdseodd for arbitrary ConStantAHOLLSxS'
or even natural numbers depending on the parity. This The potentialsvisxs(psinai) are finite and constant for
asymptotic behavior is reached on a distance scale defined hyrge p in region | defined bye;< al)(s,S)<1. Then Eq.
the short range of the interaction§XS in Eq. (19). (20) is approximately

Forl,=0 insertion of Eq(17) into Eq.(14) gives instead

the three coupled asymptotic angular equations 3 ) 0
— T ki(p,ai=0) | dnor s s(prai)

&_2+K2( @) ¢’(i) (p,a;) o . .
J |2 i P, noLLs,S\Pr &i =—Zai(—l)LpZSS)(SXS)C(L'QXS, (26)
=2ai(—1)LC§_is)Xspzvisxs(P sin;), (200 where the wave functions iC{? ¢ in Eq. (22) must be
¢S6LLs,s- The solutions to E¢(26), vanishing fore; =0, are
L(L+1) ) then
Kiz(P,ai)=_ m-kpzvisxs(psmai)—vﬁ(p) ,
| 21) BiLLs s @) =Bl s S axi(p,a=0)]

(1) 24(1)

0 i d)nOLLs)’(S(p’(Pk) _2a(_1)LpS°—(SXS)CgS (27)
C EZ Coce———5 k*(p,a=0) X
Ls,S - 5,8,/ S SII"(Z(,Dk) iLpP

for arbitrary constant8{) . s, wherex; are defined in Eq.
(22).

Matching the solutions, Eq$24) and(27), and their de-
rivatives ata;=all)(s,S) gives a linear set of equations for
Also these eigenvalue solution§ converge towards the hy- A%LLS s and ngLLS s with givenL and S for i=1,2,3 and
perspherical spectrum gsincreases. However, because of 5 hossiples, . Physical solutions are then only obtained
the_couplmg, the asymptotic valugs are now appr_oach(_ed OV&lhen the corresponding determinant is zero. This is the
a distance defined by the scattering lengths, which might bauantization condition for? (or \) and, as such, the eigen-

very much larger than the ranges of the interactions. value equation determining the large-distance asymptotic be-
As mentioned above the potentlz;ﬂ%vix (psine;) vanish  pavior of A (p).

for largep for all «; except in a narrow region around zero.  The square well solution in E¢27) is not exact since the

The conditions for the effective range approximation therefirst order expansion im; is used in Eqs(20) and(26) and

fore become better and better fulfilled @increases and any consequently also in the last term of E87). Improvements

potential with the same scattering length and effective rangeould be obtained by using E(4) in Eq. (A15) and thereby

would lead to the same results. Let us then in the region oghanging the right hand sides of Ed47), (20), (26), and

large p use square well potentialg;, (r) = —SS)(sjsk)@)(r (27). For L=0 these expressions are given[80].

<R>) or, equivalently, expressed by the reduced quantities Also the eigenvalue equation for nonzegovalues in Eq.

visxs(x): —Sg)(SXS)®(X<XiSXS: R?xsﬂjk)v where the range (l9)(i)can b_e solyed for square well pqtentlals. Far

and depth parameters are adjusted to reproduce the two-bo@ya0 (5xS) in region Il, we have the equation

scattering lengths and effective ranges of the initial potential. ,

The corresponding solutions are then accurate approxima{ 9" L(Ix+1) +|y(|y”L 1) _

tions to our original problem at distances larger thzﬁfxﬁ aaiz Sirfa; coSa;

[30]. (28)

(k)
" ¢nOLLs)’<S(p’(Pj)
+C! (22

SxSx'S SIn(Z(PJ)

2| L _
Vn gll)xlyLsXS(p!ai)_o
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and the solutions vanishing at/2 are then The component$>(') obey for largep the coupled angular
" Faddeev equations in ER0), where the coefficient€{'}
bl JLss(pa) EC(L'gX_S (S¢,=0:5,=Sc— 3,5,=Sc+3) explicitly ~are

:AnIIXIyLsXSNnIX|ySinIXC¥ CoémP'nxﬂlz"y+ Y3cog2a)] 9VEN by

(2) (3)
(29 cl=oc Ps(e) $is(e)
0., —-1/2S5 Sln(2 ) O,Sc+l/2,S SII’(Z(,D) ’
for arbitrary constants\{y, s whereP 2" 12 are the

. l 2 ~
Jacobi polynomials and}dn|x|y are normalization constants (2)_ 12 pde) P12 (e)

Ci<= —_— —_—
given explicitly in the Appendix. LS T0S 128 5in(2¢) TS M2eem 128 iy o)
For a;<al’(s,8)<1 in region |, Eq.(19) is approxi- (3~
mately drs(e)
Cs e~ 1/25,+1/2S in(ZZo) ! (39
L(x+1) ,
—— A+ —Kkp,a=0) | 4\ ,ai)=0,
da? a? e : P sl cll=cB $L3(e) c3 $15(e)
(30) O +1/28 W”L SC_l/ZSC+1/255II’](2gD)
with the solutions vanishing ass:x+1 at o;=0, ¢ (<P)

Cs +112s.+ 128 . o~

sin(2¢)’

where we omitted the argumeptin the functions¢ and
Kiz(p,a=0)— [ly(ly+1)—p s (SXS)—Vn] (320  further definedp=¢,=¢3, ¢=¢,. For S=s; all terms are
present, but forS=s.*1 the first term inC{'{ should be
whereB Ls,s IS @n arbitrary constant arjq is the spheri- removed together with the equation corresponding=td.
cal Bessel function, i.e., the usual solution to the radial two- 1he SPin overlap coefficients are explicitly given by
body Schrdinger equation for an angular momentum
=l,.
Matching the logarithmic derivatives of the solutions in
Egs. (29 and (31) then provides the quantization condition

for »? (or \) and therefore the large-distance asymptotic cl2 o _ [Sct1 37)
behavior of\(p). Osgtl/2s ™ — ~0s;+ 125, 2s.+ 1’

b s, (P @) =BRl s sl [aki(p.a=0)],  (31)

13 _ SC
COS —12s,~ CO,scfllz,sc_ - 25C+ 1 (36)

D. Large-distance behavior for two neutrons and a core Vasc(sc+1)

cs’ N TS (38)

We shall now consider a system of two neutrélabeled
2 and 3 and a corédlabeled 1} with spins;. For a given total
spin and for each set of orbital quantum numbers the six
possible componentg{;ﬂ|)x|yLsxs, i=1,2,3, each with twa,
values, are related to the three-body spin wave functions _,, 23 23
X(Si-)=0,17 Xé?:scil/z, and X(Si)=sci1/2’ where the first set of 3071/2'5071/250+1=Csc+1/250+1/25cfl=C5071/250+1/2*Sci1

Jacobi coordinates corresponds to theoordinate between =0, (40)
the two neutrons. As a result of the Pauli principle, only
three of these wave functiong are independent and the
remaining components are determined by antisymmetry, i.e.,

(33) The potentialgp?v;(psina) approach for sufficiently large
p the zero-range potentials, where the sensitivity to the shape
disappears. Any potential with the same scattering length and
oh LS~ =(—)S VTS ® JyLs,S® (34) effective range would then lead to results accurate to the
order p~2. We shall therefore for convenience use such
equivalent square well potentials, where the solutions to Eqg.
can be characterized by, S, and one value ofs,, (20 then again are given by Eq&4) and (27), and the
- (D= £(2) 2)— 4(2) (3) large-distance physical solutions are obtained as described
e, @ls=dnoios: PUs=PnoLLs,—1s: and @S above.
= hoLis,+1125- These components are coupled over a dis- e shall now consider a system of two neutrons and a
tance defmed by the scattering lengths whereas all other patcore with spins,=0. All quantities wheres,— 3 appears as
tial waves decouple for large above a distance scale de- an index should now be substituted by zero. Then the three
fined by the range of the interactions. coupleds-wave equations in Eq20) reduce forS=0 to two

cz =Cc2 .t (39)
s.—12s.,— 125, sct1/2s.+1/2s, 230+ 1’

23 _
cs 125~ 1/25,-1= Cs_+ 1725+ 1/25,+1= L (41

1 —
d)fﬂLyLsxS—O for odd I+s,,

Specifically the three independestwave components
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as seen from Eq35) whereC{3 then is zero. These equa-

tions are to leading order iar (large p) explicitly given by

( 2 L(L+1)
—_ + [

~o +p2onn(p sina;) — vz) ¢ (p,ay)
aq

coSa,

= —2a;(~ 1) pun(psinay)CLY, (42)

( .
-—+

2

dagz

=—2a3(— 1) p?vne(psinas)CY,

L(L+1)

+p%une(p sinag) — VZ) P(p,az)
cofas

(43

00 12,0
where o) =0P(x1),  one(X2) =05 %(x0)
=0§"%x,), p'=¢{}, c'=C{}, and
Be)
sin(2¢)

(3)
(1) Zﬂ

L Tsin(2¢)

@_ 9L (e)
L sin(2¢)

(44)

The equivalent square well solutions are again given by Egs.
(24) and (27), and the large-distance asymptotic behavior is

obtained as described above.
For S=1 only Eq.(43) remains fors waves and now with

C®= ¢ (p)/sin(Zp). The square well solution and the

large-distance behavior are then easily obtained.

E. Strength functions and Coulomb cross sections

The strength functiondBg, /dE describing electric mul-
tipole excitations of the ground statd;°) into the con-
tinuum statgnJ”E) are defined by

dBe(E) 1
dE  2J,+1

> (NI"E|IM(EN)|137%)]2, (45

nJ™

3
M(BN, )= 2, eZdriYaul(Ti)-

in terms of the reduced matrix element and the electricaﬁ

multipole operatoM. The corresponding sum rule is

de

3

2 €ZIIrMNIg), @7)
k=1

dBg, (E) _2A+1
dE 4w

where only the core contributes for a system of two neutrons m

around a core.
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The Coulomb dissociation cross section can now be com-
puted in the high-beam-energy limit where the approxima-
tion of straight-line trajectories is valid and only one photon
is exchanged between projectile and target. The cross section
is then obtained by multiplying the electromagnetic transi-
tion matrix elementsiBg, (E)/dE from ground state to con-
tinuum states with the virtual photon spectrumg,(w),
which is given by[33]

2
Nes(w)= " Zia—) eKo(£)Ka(4)
22
—%[sz—Ko(m], (50
2c
4 02
nEz(w)=;Zt2aF 2(1_§ Ki(&)?
02 2
T¢| 2— — | Ko(HKy(8)
C
4 £2
—%[Kl(f)z—Ko(f)z]], (51)
and the resulting differential cross section is
dog(E) 1673 1 dBg,(E*
U;E( ' : anEl(E*/h)g—;;(* R
d(rEz(E)_47r3a/E* 2 y 1 dBg,(E*)
dE - 75 \E nEZ(E ﬁ); dE* ’
(53

where K is the modified Bessel functiong=e?/%ic, &
=wR/yv, v is the beam velocityy=1/\/1—v?/c?, Z, is the
charge of the target, arl8* =Aw=E;—E;, where the final
and the initial energies are labeled byndi. The dipole is
sually by far the largest contributor. In any case for most
alo nucei(the quadrupole excitation fotHe is an excep-
tion) information about higher-lying angular momentum
states is not experimentally available and very difficult to
predict theoretically due to the lack of knowledge about the
binary subsystems.

SHe SYSTEM ASn+n+a

Nuclear excitations of monopole type are possible with The three-body model developed above can be tested on

the corresponding operatg=3,(r,—R.)?, whereR; is

the ®He system, which has been studied as the simplest pro-

the coordinate of the center of mass. The related strengtiptype of a halo nucleus. The advantage is that the details of

function dNgy/dE and the sum rule are then

dNgo(E) 1
— 0 21 170\ |2

(48)

= = (135 ~ (0511950
(49

J dEdNEO(E) 1

low-energy two-body interactions are very well known ex-
perimentally and the particles only have high-lying excited
states. The resulting three-body properties are therefore
much less uncertain and related to the technique rather than
to the lack of information about the subsystems. In this sec-
tion we shall first study the influence of the remaining un-
certainties in the model, then predict physical properties of
the three-body system, and along the way compare with
available data.
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A. Interactions and numerical details 180

We consider®He as two neutrons and an inéfitle core. 135 |
The two-body interactions should in principle only reproduce - e
. . . . [
the low-energy scattering data which exclusively influence ¢ 90 7
. . &0
the computations of spatially extended halo systems. Except.g

for very accurately needed details it is even quantitatively D5/2

j2)
—

sufficient to reproduce the scattering lengths and the effec- = e . |

tive ranges of the appropriate partial waves. This initial con- I \ b2

jecture[34] is now confirmed and details of the short-range % ]

behavior of the two-body interactions are not needed & CTE e SR ]

[7,8,10,30. We shall therefore essentially always maintain § =90 . S

the same radial shapes of the interactions. = s | fQg;g‘anﬁ?x‘;ﬁ;‘;gﬁﬁjy?18258)7317 197
The neutron-neutron interaction reproduces the low- —— this work

energy properties of free nucleon-nucleon scattering. We ~180 ‘ ‘

have tried several parametrizations, i.e., the simple neutron- 0 5 10 15

neutrons-wave potential(—31 MeV) exd—r%(1.8 fm)’], E._ (MeV)

from [34], the extension to other partial waves [i@], the

accurately adjusted nucleon-nucleon potential ffai, and FIG. 1. The computed-, p-, andd-wave neutrornz phase shifts

previously known standard potentials as that[85]. The (solid curve$ compared to the valueriangles and circlesex-
three-body results can hardly be distinguished from eaclracted from scattering experimerit36,37. The interactions are
other and we shall here only present results with the interaggiven in Eq.(54).
tion from [9]. ) o ) ) )

The neutrone interaction is parametrized to reproduce fine-tuning is now obtained by adding a diagonal three-body
accurately thes-, p-, andd-phase shifts up to 20 MeV. wWe force Vs(p) in Eq. (5. The idea of using the three-body

use again Gaussians for the radial shape and allowden force is to _include_effects beyond those accognte_d for by the
pendence of strengths and ranges, i.e., two-body interactions. Thus two-body polarization effects

are already included via the effective two-body interaction.

Vg'C:0>:48_00 exp—r2/2.3%), The remaining part must then involve all three particles si-
multaneously polarizing each other and therefore only effec-
Vglczl): —47.40 exp—r2/2.30) tive at smallp values. We therefore use a three-body inter-
action only depending onp and still allowing for a
—25.49-s.exp( —r?/1.72), (54)  dependence of the total angular momentum of the system.
(1=2) ) We tried both Gaussian and exponential shapes,Vigp)
Vie *'=—21.93exp—r%2.03) = Szgexp(—p?bEy) andVy(p) = Sgeexp(—plbsy).

B . 2 The range of the three-body force is by its definition re-
25.49-syexp( —r*/1.72), lated to the hyperradius. FéHe, p=2 fm and 3 fm corre-

where the strengths are in MeV, the lengths are indpis spond roughly to configurations where the neutrons, respec-
the neutron spin, anklis the relative orbital angular momen- tvely, are at the surface of the particle and outside the
tum. The repulsive-wave potential corresponds to a scatter-Surface by an amount equal to their own radius. This distance
ing length of —2.13 fm and an effective range of 1.38 fm. Can nNow be used directly as the range parameter or defined as
The energies and widths of tiperesonances defined as polesf‘he distance where th'e three-body potential assumes half of
of the S matrix areE(pyy) =0.77 MeV,'(ps) =0.64 MeV, IS central value. This means thak.=b,/In2 and b,
E(py) =1.97 MeV, andl’(py,) =5.22 MeV, respectively. sz/\/ln2, Wh('arebp'zz fm or 3 fm for the two different
The phase shifts from this potential are in Fig. 1 compare@&0metric configurations. _ o
with the results obtained from scattering experiments The strength of the three-body interaction is finally for 0
[36,37. adjusted to give the measured two-neutron separation energy
Other parametrizations are possible even for the same r&-97:0.04 MeV of °He. The different ranges and radial
dial shape of the two-body potential. They differ in the num-Shapes has an influence on the spatial extension of the three-
ber of two-body bound states of which the lowesstate is Pody System. For Gaussian shapes we obtain root mean
occupied for®He by the core neutrons and therefore subseSduare radii of 2.45 fm for both the attractigevave poten-
quently has to be excluded in the computation. For ondi@l with one bound state and the repulsive potential without

bounds state the interaction fdr=0 is bound states. The corresponding three-body interaction pa-
rameters are, respectivelpgy=2.9 fm, S;;=—7.55 MeV
V(=0 =75 06 exp—r%/1.5%) (55  andbzq=3.0 fm, S3;=—3.35 MeV. For exponential shapes

and a repulsives-wave potential, we obtain instead root
while the I=1,2 partial waves remain the same as in Eq.mean square radii varying almost linearly from 2.61 fm to
(54). The s-wave scattering length and the effective range2.56 fm for S;o=—3.11 MeV, b3,=4.3 fm to S3.=—4.77
are the same as for E¢54) although the potential now is MeV, b3,=3.0 fm. For 2" we could instead fine-tune to the
attractive. well-known resonance of energy 0.820.025 MeV and
The three-body system computed from these two-bodyvidth 0.113+0.020 MeV [38]. The three-body interaction
interactions is underbound by about 500 keV. The requiregharameters would then b& dependent. For the repulsive
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results of the analytical calculations up to highewalues.
However, this is not needed, because we use the asymptotic
solutions as soon as they are accurate enough. This improves
both the accuracy and speed of the computations. The finite
size of the basis gives a too fast convergence to the hyper-
spherical spectrum. Without an independent calculation it
can therefore be difficult to assess the accuracy.

The lowest level for eacl™ usually contributes with the
largest components of the wave function of both the possible
bound state and the low-lying continuum states. For all six
cases in Fig. 2 we find pockets which, except for the 0
ground state, are unable to bind the system, but are still
responsible for several low-lyin§-matrix poles as we shall
see later.

The Pauli principle prohibits the core neutrons and the
halo neutrons from occupying the same orbits. This has to be
incorporated explicitly, since the three-body model only
deals with particles without intrinsic degrees of freedom, ex-
cept for their intrinsic spins. For a repulsigevave potential
as described above, no bound state is present and no overlap
has to be excluded. We also investigate another approxima-
tion where we use an attractive neutron-core potential with
one bounds state and the same scattering length and effec-
tive range. Because of this bound state, the lowest angular
eigenvalue must then bend over and diverge parabolically

P (m) e (fm) towards —co. This corresponds at large distances to a con-
figuration where a neutron is bound in the doubly degenerate

FIG. 2. The lowest angular eigenvaluas for ®°He (n+n  |owests state, which is Pauli forbidden for the halo neutrons.
+a) as functions ofp for angular momentum and parity” At smaller distances the probability, or the wave function,
=07,1%,27. The solid lines are computed by numerical integra- myst be small, because otherwise a significant part of the
tion and the dot-dashed lines are the large-distance asymptotic bez|o wave function would be inside the core, the halo and
havior obtained from Eq942) and (43). The neutron-neutron in-  ~qra degrees of freedom would not separate, and the three-
tera<_:tion is from[9] and the neutrore interaction_ is from Eq(54). body model would not be a good approximation. The effec-
Maximum K values up to about 150 are used in the basis. tive potential at these small distances is then rather unimpor-

tant if the model is valid. Therefore a good and inexpensive
potential we obtairbsy=2.061 fm andS;y=—31 MeV for  approximation to include the Pauli principle is simply to
Gaussian shapes. omit the lowest diverging angular eigenvaldefrom the

In the computations we include all possitdep, andd computationg9].
waves. We use a hyperspherical basis for each of the Fad- In Fig. 3 the angular eigenvalue spectrum 3§=0" for
deev components witK values up to about 150. The radial both the repulsive and the attractigewave potentials in
equations are integrated from zero upgovalues of about Egs.(54) and(55) is shown. The lowest diverging level for
180 fm. Further arguments for these numerical choices cathe attractive potential originating from zero is removed
be found in[26]. from the figure as well as from the subsequent computations.
The second level for the attractive potential, originating from
12, is almost identical to the lowest level from the repulsive
potential from aboufp=1 fm. The levels from these two

The angular eigenvalues, are computed from Eql4) potentials are remarkably similar even at smaller distances
for total angular momentum and parity"=0+,1*,2~. and they are completely identical in the large-distance
These eigenvalues are closely related to the effective potemsymptotic region(Note that the figure only shows results
tials in the radial equatiofb). Their large-distance behavior up to 15 fm, where differences still can be sg@édne level
is essential and sometimes decisive as seen in the extreméginating from 32 must cross an empty region, and there-
case of Efimov states which owe their existence to a suffifore deviate somewhat from all other levels, until it catches
ciently negative value of at very large distande7,29. We  up with one of the levels from the other potential approach-
show in Fig. 2 these spectra for the lowest spins and paritiemg 12 for largep. However, the lowesk valuds) is domi-
both computed numerically with the appropriate basis sizanating in the wave functions of interest here and we therefore
and from the analytic expressions for the coupdedtaves.  should focus on the corresponding effective potentials. The

The asymptotic behavior obtained at large distance is imifferences in these potentials are small, but in precise com-
this case reached around 40 fm. This does not mean that glutations they must be compensated in one way or another.
interactions produce the same results at such a distance. Rortunately the means for such fine-tuning is already present
means that details are unimportant, but the scattering lengttes a three-body potential, which is different for different two-
are still crucial. A larger basis would have reproduced thebody potentials.

AP}

AP

AP}

B. Solutions and S-matrix poles
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K realistic range of the possible variation in the present model.
repulsive potential In contrast, all previous computations did not produce three-
---- attractive potential body resonances in this low-energy region, except the estab-
lished 2" resonanc¢23-25. For 0, 1*, and 2° we obtain
identical poles, since the two three-body interactions only
contribute at small distances where the effective two-body
potentials completely dominate. On the other hand, for 0
1-, and 2" we find differences of up to 0.3 MeV and 0.18
MeV for the position and the width, respectively. The sys-
tematic shifts of the positions in the right hand side of the
table arise due to the slightly different Znergy obtained by
adjusting the parameters.

The widths of thesé&-matrix poles depend rather sensi-
tively on their energies, which are of the same order as the
height of the corresponding effective radial barriers; see Fig.

p (fm) 4. For these states with energies about 1 MeV, any width
above 0.4 MeV corresponds to a smooth structure in the

FIG. 3. The lowest angular eigenvaluas for ®He (n+n  cross sections. Thus, even though the three-body interactions
+a) as functions ofp for angular momentum and parit/=0"  only amount to a fine-tuning of the energies, the conse-

for the repulsive(solid ling) and attractive(dashed ling s-wave  guences for the presence and subsequent observation of con-
potentials in Eqs(54) and(55). The neutron-neutron interaction is tinuum structures might be substantial.

the same as in Fig. 2. The Iow_est diverging Iev_el _for the attracpve The low-lying S-matrix poles seem to be rather close ly-
potential is omitted corresponding to our prescription for excluding.

the Pauli-forbidden state. Maximuk values up to about 150 are Ing. BY a sufficiently large additional artificial three-body
used in the basis. attraction they move down towards threshold and become
eventually bound states. Their apparent energies and widths
. - L depend rather sensitively on the boundary condition intro-
For the lowest spins and parities we give in Table | theduced when the wave functions are matched to the Hankel

lowest resonance energies and the related widths obtained RS\ ctions at a givenlarge distancep In general the
max-*

Smatrix poles by the complex energy method. The different oles move towards the origin until converged with increas-
three-body forces in Table | can be considered to give thé . 9 9 .
INg pmax- Especially the widths are often sensitive to the

matching point. They systematically decrease or sometimes
remain constant with increasingay.

40

30

20

(P

TABLE I. The real and imaginary value€(,I") (in MeV) of

. SR 5 .
th‘? two Iowes_t_Smatnx pO|eSETE’ 72 for "He for various For the 2" resonance the sensitivity is very small when
spins and parities. The interactions used in the upper part of the

table are the same as in Fig. 4. The three-body interaction paranﬁ)-max_IS larger than ‘,10 Tm' _MOSt of the other poles, however,
eters areSy,= —7.55 MeV, by,=2.9 fm, Syy=—31 MeV, and require largempmay, indicating that they are somewhat more
bsg=2.061 fm, respectively, for the first two and the last two col- '€lated to the larger distances in hyperradius. This might be a
umns. The I poles in the middle are obtained with the same in-reminiscence of the Efimov effect, where the bound states
teractions except for an exponential shape for the three-body potere pushed up into the continuum, but still with a relatively
tial with parametersS;.=—3.11 MeV andb;.=4.3 fm. In the low-lying and dense energy spectrum. The Efimov effect
lower part of the table the repulsive potential is substituted by theyould arise as the consequence of very-low-lying two-body
attractive potential in Eq(55). The interactions used are otherwise yirtyal s states in the neutron-core and the neutron-neutron
unchanged, except for the three-body interaqtiop paramet_ers, Whegﬂbsystems. The actual parameters give energies of about
2 Al oty 30 I The etalen snerge e 200 eV forthese vitumbsatest
hand SrideS. of the table ree The main part of the radial wave functlor_1 is determlned
' by the angular-momentum-dependent effective potential cor-
responding to the lowest. We show these potentials for
0*, 1%, and 2" in Fig. 4, where we also exhibit the parts
0" 094 064 146 083 062 056 116 0.67 remaining after removal of the generalized centrifugal barrier
0~ 207 074 - - 207 074 - - terms, i.e.,h?(K+3/2)(K+5/2)/(2mp?), where K(K+4)
1™ 162 074 255 086 162 0.74 255 0.86 =A(p=o) is the corresponding asymptotic hyperspherical
1~ 111 042 167 058 095 038 1.43 0.56 eigenvalue. As for two-body systems this remaining part is
2% 102 037 1.23 045 0.845 0093 1.05 0.40 more revealing than the total potential, which could be re-
2~ 0.90 034 1.82 057 090 034 182 057 pulsive for allp and still produce a resonance provided a
sufficiently strong attractive pocket is present in this “non-
1~ 09 038 144 054 centrifugal” part of the potential.

0t 1.02 059 1.48 0.75

1= 111 031 165 041

2* 103 044 126 0.35 Iwe shall use negative values corresponding to the energies of the
S-matrix poles.

JJ) E I E T E r g T
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FIG. 4. The total effective diagonal radial potentials féte (n+n+ «) defined in Eq(8) (solid curve$ as functions op corresponding
to the three lowest’s for 0, 1=, and 2°. The dashed curves are the part remaining after removal of the generalized centrifugal terms, i.e.,
12(K+3/2) (K +5/2)/(2mp?), whereK (K +4)=\(p=w) is the corresponding asymptotic hyperspherical eigenvalue. The interactions are
the same as in Fig. 2 with an additional diagonal three-body interactiorSjgexp(—pZ/bég), with Szg=—31 MeV, b3;=2.061 fm, added
in all partial waves, except fat=0" whereS;;=—7.55 MeV, bsy=2.9 fm. The insets show the details of the lowest potentials.

The pocket in the effective radial potential is absent forobservable. For other energies and angular momenta a simi-

angular momentum 0, 1*, and 2°. The pocket for 2,  lar picture is found.
which definitely produces a narrow resonance at about 1
MeV, is slightly less pronounced than for Dwhere a bound C. Strength functions and Coulomb cross sections

state at about 1 MeV is present. All the lowest effective ) ) _
potentials are attractive without the “centrifugal barrier” ~ 1he continuum structure can be investigated by electro-
and therefore they could give rise to resonances. magnetic and/or nuclear excitations from the ground state.
The observables are related to real values of the energ{}_.hese transitions are described by observables such as the
We therefore solve the radial equations on the real axis fofultipole strength functions. The lowest and most important
energies corresponding both to the real values of théhree of these are shown in Fig. 6 as functions of energy both
S-matrix pole and to values away from this pole; see Fig. 5for plane waves and for the proper continuum wave func-
We find 2" as a pronounced resonance andwhich only  tions. The curves are normalized by their respective sum rule
shows up as a much smaller and broader peak. Still, for 1 values and each of them would therefore after integration
a substantial amount of strength is present between 5 fm amaler all energies give 1. The strengths below 10 MeV are
20 fm whenever the energy is within the width of the 97%, 78%, and 83% fax=0, 1, and 2, respectively, and for
S-matrix pole. Outside the widths of all the poles the wavethe corresponding plane waves we obtain the somewhat
functions appear with very little probability at distances be-smaller values 94%, 60%, and 81%.
low 15 fm; see the curve forlwith energy 1.4 MeV. These The influence of the final state interaction is directly re-
poles produce observable effects depending on both the délected in deviations from the broader plane wave distribu-
tailed properties of the poles and the precise definition of théions. In general we always must have a rise from zero to a
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FIG. 5. The absolute values of the radial wave functions®fée (n+n+ «) after diagonalization as functions pffor real energies in
intervals around the real parts of tBematrix polesE,=0.95 MeV for 1~ andE,=0.845 MeV for 2. Only the dominating component in
the full computation is shown. The interactions are the same as in Fig. 4.

maximum and a fall off towards zero at large energy. Anpoles, reflecting broader underlying structures where the
especially pronounced peak structure as observed$d is  poles have larger widths if present at all.

the signature of a resonance, which in this case reflects the The differential Coulomb dissociation cross section is

well-known 2" state at 0.820.025 MeV of width 0.113  now computed by multiplication of the strength functions

0.020 MeV([38], which in this computation appears at 0.82 and virtual photon spectra. The results are shown in Fig. 7
MeV with width 0.093 MeV. for Pb and Cu targets for both dipole and quadrupole excita-

For 1~ a peak and a shoulder appear at about 0.95 Me\fions. As expected the dipole contribution has a width of
and 1.8 MeV. This I enhancement at low energy arises about 2 MeV and it is by far dominating in absolute size. The
from the two overlapping-matrix poles seen in Table I; see quadrupole distribution is much smaller, but strongly peaked
also[26]. The enhancement almost coincides in energy withat the resonance energy. The target dependence varyies with
the dominating 2 peak and consequently it must be harderthe square of the target charge as seen from(&g). Both
to detect experimentally. The nucleaf Gtrength function potentials as well as different three-body interactions give
resembles the plane wave result more than the higher multgimilar, but distinguishable, results as seen in the right hand
side of Fig. 7. The major differences arise from the differ-
ence in the ground state structure, in particular the larger
spatial extension found for the exponential three-body force.
With the same ground state wave function almost identical
strength functions would appear.

Previous computations of kstrength functions reported
peaks at about 2.5 MeV and shoulders at about 6 MeV
[20,23,25,3% The present 1 strength function differs sub-
stantially with much more strength at low energies indicating
contributions from larger distances. Unfortunately corre-
sponding experiments are so far not available fde.

The low-energy enhancement of the dipole strength func-
tion moves the strength towards energies with larger values

of the number of virtual photons. The total Coulomb disso-

ciation cross section is therefore larger than that obtained

2‘ 3 4“ 5 with plane waves in the final state. It.is also nece;sarily Iargg
Energy (MeV) _ compared to analo_gous cross sections for ordinary nuclg|,
again due to a relatively large low-energy enhancement. This

FIG. 6. The strength functions, dBg, /dE is explained _physically as the result of the Weakly bound
=3, [(nJ7|M(EN)[|0)|2 for ®He (n+n+a) as functions Neutrons easily separated by a small Coulomb disturbance.
of energy for transitions from the ground state t6 @dotted The total Coulomb dissociation cross section is simply
line), 1~ (solid line), and 2" (dashed ling excited continuum Obtained by integrating the d.iffer'ential cross section over
states. The operator iM(EA,u)=p? and 33 ,eZr}Y, (7)),  €Neroy. The quadrupole contribution amounts here to about
respectively, forh=0 and 1,2. The units are the corresponding 0-5% and the total cross section is 373 mb and 54 mb for the
sum rule values (0*[p%0*)—(0"|p2l0")2 for A=0 and two targets and a beam energy of 800 MeV/nucleon. This is
e272(2M+1)(07[r2|0*)/(4) for A=1,2, whereeZ, is the *He in agreement with the experimental extrapolatiofi4tf] and
charge and , is the *He distance from théHe center of mass. The the calculated values ifi22] while somewhat larger than
interactions are the same as in Fig. 4. The smooth cusreallerat ~ computed irf41]. This rather favorable comparison supports
small distancecorrespond to plane waves for the continuum statesthe three-body model with a substantial low-energy en-
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FIG. 7. The dipole and quadrupalmsed contribution to the differential Coulomb dissociation cross sectiofH# (n+n+ «) at 800
MeV/nucleon as function of the three-body energy for a Cu and a Pb target. The Cu results are multiplied by (82/ég)ove the
dominating, but trivial, overall charge scaling. The energy of the beam is 800 MeV/nucleon. The interaction is the same as in Fig. 4.
On the right hand side is shown the strength functidBg, /dE for ®He for the attractive potential in E¢55) (dashed lingand for the
repulsives-wave potential in Eq(54) (solid and dot-dashed linpsvith Gaussian(G) and exponentia(E) three-body interactions. The
parameters are given in Sec. Ill.

hancement. However, the enhancement is not in itself prodiundred mb. At energies below about 10 MeV/nucleon the

of the presence of a low-lying three-body dipole resonancecross section drops dramatically with decreasing energy. Al-

Any attraction would produce more strength at low energiesthough the approximations are dubious at these energies, the

A resonance needs more than marginal attraction. Furtheprecise behavior of this rapid change of the cross section

more, the enhancement could be due to relatively strong urshould be sensitive to the details of the halo structure.

derlying two-body structures. In the present case the

S-matrix pole at about 1 MeV could indicate a resonance, IV. i SYSTEM AS n+n+°Li

which, however, overlaps the next pole at about 1.5 MeV. . ]

This in turn results in the relatively weak peak in the wave ~Thea particle has spin zero and the neutrersystem has

function at small distances in Figs. 5 and 6. a low-lying p resonance. Consequentide has spin zero
The total Coulomb dissociation cross section is shown if2nd consists mainly op® configurations of the neutroa-

Fig. 8 as a function of beam energy. Both dipole and quadrelative wave function. Fot'Li the spin and parity arg~ as

rupole contributions are shown. The experimental point fronfor the °Li core of the three-body system. Furthermore, the

[40] has very large error bars and therefore not surprisinglyleutron®Li system has apparently a virtuslstate at about

is in agreement with the computations. At high energy we—200 keV and a somewhat higher-lying resonance at

find a slightly decreasing function with values of about a fewabout 600 keV[13,42. Consequently''Li is expected to
consist of dominatings® configurations of the relative

K . neutron®Li wave function. The details of the two-body sub-
100 /E1+E2 i systems are not accurately known, but already the possibility

of low-lying s states is interesting, since the conditions for
the Efimov effect then are nearly fulfilled. In this section we
shall therefore use the knowledge obtained from the simpler
and better knowrPHe and predict the more uncertain prop-
erties of L.

6, (mb)

A. Interactions and numerical details

The neutron-neutron interaction is the same as used in the
previous computations fo’He. The neutron-core effective
o CHer 0 — 24 ‘He s Ppb interaction often assumes zero spin for bSti and Li
b , although the correct spins agefor both nuclei. The spin-
](‘)1 162 0 ort_)it terml-s, fo_r a neutron in the relative motion arou_nd a
E_/nucleon (MeV) spin-zero core is used although j[he natural generalization,
la which in fact has been used previou$8;43], would be of

FIG. 8. The total Coulomb dissociation cross section as functiorfn® forml_~ (S_w+3c) for finite core spins,# 0. _
of the laboratory energy for &He beam colliding with a?%®p A qualitative difference from the zero core-spin computa-
target. Both the quadrupole part and the total cross sections a0ns is the two possible couplings of the spins of the neutron
shown. The plane wave results are shown as dashed curves. TR&d the core. For the neutrcti system the total spin can
interaction is the same as in Fig. 4. The experimental point is fronthen be 1 or 2. In general we therefore also include a spin-
[40]. spin potential term to differentiate between these two spin
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TABLE Il. The real and imaginary value€(,I") (in MeV) of
the lowestS-matrix polesE=E,—iI'/2 for Li for various spins
and parities]”. The excitation energ§* =E, +0.305 MeV. The
interactions for the upper part of the table are the same as in Fig. 9.
The middle of the table contains the results for a model wjth
=0 and the same average positions of the lowest neutron-core reso-
nances. i.e., an average energy of $hg virtual state and th@,,
resonance at-0.18 MeV and 1.22 MeV, respectively.

J) g T E T E T E T E T

= - - - - 137 051 156 0.56 1.98 0.65
3~ -0.305 0 0.89 0.43 1.41 0.56 1.60 0.61 2.03 0.68
5= - - - - 136 049 160 0.68 2.01 0.72
3 065 035 - - 1.28 048 174 0.64 1.95 0.68
3+ 0.68 0.33 0.88 0.33 1.33 0.50 1.77 0.63 2.08 0.71
5t 068 037 - - 136 055 1.74 0.64 2.11 0.84

* —-0.307 0 1.00 0.37 1.35 0.45 1.62 0.61 1.96 0.92
- - - - 1.40 0.59 159 0.63 2.02 0.81
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1= 064 031 - - 1.46 053 1.76 0.59 2.08 0.67
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¢ 20 40 60 80

 (6m) o as reasonable to adjust the two-body interaction instead of
adding another uncertainty at this level.
FIG. 9. The lowest angular eigenvaluas for *'Li (n+n The choice of interaction parameters is dictated by knowl-
+9Li) as functions ofp for angular momentund”™=3* 3+ 5* edge of !!Li and the accumulating information about the

The dot-dashed lines are the large distance asymptotic behavistructure of 1°Li, i.e., a p resonance at about 0.6 MeV, a
from Eq. (20). The neutron-neutron interaction is frdi] and the  |ow-lying virtual s state, and a small spin splitting of these
neutron®Li interaction is given in Eq(56). Maximum hyperspheri- states[13,42. We obtain a three-body energy of about
cal quantum numbers up to about 100 are used. —300 keV reproducing thélLi binding energy of 295 35

keV with the corresponding root mean square radius of 3.34
couplings for each orbital angular momentum state. Suclm. Furthermore, the calculated fragment momentum distri-
spin-splitting terms are most likely present due to the strongyutions in Li breakup reactions also compare rather well
spin dependence of the underlying basic interaction and coRgith measured value]. Then the!lLi ground state wave

sequently hard to ignore. _ _ function has about 80% and 20% st and p? configura-
For finite core spin the interactions corresponding to &jons, respectively.
shallows-wave potential are We shall use this “realistic” interaction in the investiga-

tion of the continuum properties dtLi. All possibles andp
waves are included. When the large-distance asymptotic be-
(-1 ) havior is reached the solutions are obtained from E24)

Vie '=(18.25+1.4%,- 5.+ 53 - 5,)exp( — r*/2.55). and (27). The radial equations are integrated from zero to
(56) about 200 fm. Further arguments for these numerical choices

) _ can be found irf26].
The two s-wave scattering lengths and effective ranges are

(7.65 fm, 4.53 fm and(10.88 fm, 4.77 fm corresponding to B Soluti ds . |

virtual s states at-0.247 MeV and—0.140 MeV for the - Solutions andS-matrix poles

total spin of 1 and 2, respectively. The energies and widths The angular eigenvalues fér", $*, and3~ are shown in

of the py/», resonances defined as poles of Bienatrix are  Fig. 9 together with the asymptotic behavior obtained from
E(p1)=0.75 MeV,I'(py,) =0.87 MeV andE(p;,)=1.60 the analytical expressions. For the ground state withthe
MeV andI'(p4») = 3.74 MeV, respectively, for spin 1 and 2. two lowest levels are very similar to the spectrum for zero
In all cases the high-lying,/, resonance is not contributing core spin. For finite core spin, however, a series of additional
in the three-body calculations and the Pauli blocking by thehigher-lying levels also appears due to the broken symme-
core neutrons is simulated in this way. tries arising from the spin-spin interaction.

In addition to the two-body potentials a diagonal three- The spectra contain almost identical levels for, $,
body force could be introduced for fine-tuning as fide.  and3* as well as for; ~, £, and3~. A number of addi-
However, the idea of using the three-body force is to includdional levels are furthermore present fof. The correspond-
effects beyond those accounted for by the two-body interacng degeneracy is due to the weak neutron-core spin-splitting
tions and too imprecise and too little information is availablepotential. It can be explained by coupling two neutrons in
about this neutron-core system. It is therefore at the momers;,, andp,,, neutron-core states to"0and 1~ which in turn,

Vi ¥ =(~7.28-0.31s, s, exp( —r2/2.55),
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coupled to the ~ from the °Li core, results in sets of nearly tum numbers; see Fig. 4. The kxcited states foPHe have

degeneraté® and 3", 2* 3* states. The lowes}~, 3~  no attractive pocket while it is substantial fbiLi, in agree-

states arise from couplings of higher orbitals. ment with the calculated low-lying-matrix poles, which
For the lowest spins and parities we give in Table Il theappear around the barrier height.

energies and widths of the loweStmatrix poles both for The wave functions corresponding to real energies around

core-spin zero and. For zero core spin we find a low-lying the real part of the pole energy 0.68 MeV are shown in Fig.
and relatively narrov8-matrix pole for 1, 07, and perhaps 11. For energies below 0.68 MeV and outside its width the
also for 0" while we find nothing similar for 1. With the  peak moves to larger distances, but remains of comparable
correct finite core spin the symmetries are broken. We recsize. For the energy 0.8 MeV we find a similar peak at a
ognize the three times nearly degenerate fole at about slightly smaller distance. This peak can be viewed as the
0.65 MeV with a width of about 0.35 MeV. We also find combined effect on the real axis of the two overlapping pole
degenerate ® S-matrix poles at 0.89 MeV with widths of structures at 0.68 MeV and 0.88 MeV; see Table Il. For 1.0
0.33 MeV and 0.43 MeV. More discussion about these pole#eV, respectively within and outside the widths of the poles
can be found inf26]. Higher-lying and broader poles are at 0.88 MeV and 1.33 MeV, the peak has decreased and
found for all angular momenta and parities. The structuremoved to a smaller distance. None of all these peaks are
remains essentially unchanged for the deep potential. pronounced in comparison with the next peaks of the same
The relatively large number db-matrix poles could be wave function. Thus strong~lresonance structures are not
due to the Efimov effect, which occurs when the scatteringbtained.
lengths are much larger than the range of the interactions
[27,44). With increasing scattering lengths, the infinitely C. Strength functions and Coulomb cross sections

many poles of the three-bod$ matrix move towards the o . . ) .
point E=0. For very large but finite scattering lengths a The domm_atmg dipole term in electrc_Jmagnetlc excita-
number of poles must already appear close to zero. Thedions can excite the ground state to continuum stated"of
poles originate from the long-distance tail of the effective=3",2% 2" while the nuclear monopole excitation only
potential @Eizl,g,aiuj}lp’e‘, where a; is the scattering produce~ states. The corresponding calculated strength
length of theith subsystemand they are not sensitive to the functions are shown in Fig. 12 together with the results ob-
details of the interactions. Since there are no confining bartained by using plane waves for the continuum wave func-
riers for these poles, their corresponding widths must beions. The monopole strength resembles the results of the
rather large. plane wave computation in agreement with the lack of low-
For !Li the Efimov condition is almost fulfilled, since lying S-matrix poles below 0.8 MeV; see Table Il. The di-
A+ 28cnuen~50 fm. This must necessarily resultin a pole strengths are almost proportional to the statistical
number of broadS-matrix poles near th&=0 point. For  weights of (2+1) and all of them are enhanced signifi-
®He there is a low-lying two-bodyps, resonance while for cantly above the plane wave results at low energies. This
) j there is instead ams,, virtual state. The latter case is enhancement overlaps with the position of the lowest 1
therefore closer to the Efimov conditions and a larger numpoles in Table II.
ber of low-lying three-bodyS-matrix poles could be ex- The total dipole strength function, where the contributions
pected. from all J7 in the continuum are added, is in Fig. 13 com-
An indication of the properties and origin of these pared to the zero core approximation and the three available
S-matrix poles is obtained by matching the radial wave func-measured distributions. The plane wave results are the same
tions at various decreasing valuesmf,,. The poles move for zero and finite core spin, because the ground state essen-
towards larger absolute values of the energies for decreasinglly is unchanged. The interaction with zero core spin gives
matching radii. The imaginary values stay almost constana distribution shifted about 100 keV towards lower energy
for the lowest 0 and 1 states, indicating resonancelike compared to the result for the realistic full computation. A
structures. Both imaginary and real values increase for thiower and broader peak is obtained for the potential from
other poles. [34] where thep? content of the three-body wave function is
The lowest effective adiabatic potentials determine the ravery small. The low-lying I poles around 0.65 MeV en-
dial wave function and the energy of possible bound stateshance the strength functions at low energies compared to the
They are shown in Fig. 10 for various spins and parities. Inplane wave results.
all cases we find attractive potentials around 50 MeV deep The computed strength functions substantially exceed
after removal of the repulsive centrifugal barriers. Reso-most of the data pointgl3—15 in the peak region around
nances are therefore possible in all these channels. With tht&55 MeV. (Note, however, that the data ji3,14 contain
centrifugal barriers all the potentials are still attractive exceptnuch less total strengihA reduction could be achieved with
those corresponding to~ and3 . The ground state o™  higher energy and larger width of ti8matrix pole, but this
=3~ exhibits the largest attractive pocket and no barrier fowould probably only be provided by a potential with much
the lowest adiabatic potential and a barrier height of 1.7oo smallp? content in the three-body wave function. It is
MeV at about 7 fm for the second potential. The éxcited also a curious fact that other models provide &trength
states all have attractive pockets as well as repulsive barriefanctions substantially closer although not in complete
of about 0.6—0.9 MeV fop between 10 and 15 fm. agreement with the daf21,45,48. This is of course related
Compared to O of ®He we have now a less attractive but to the lack of low-energy 1 resonances d-matrix poles in
broader3 ~-potential corresponding to the ground state quanthese computations.
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FIG. 10. The total effective diagonal radial potent{ablid curve$ as functions ofp corresponding to the four lowest's for J”

_ 1+ 3+ 5+

=3%,5%,3% for ™i (n+n+°Li). The dashed curves are the part remaining after removal of the generalized centrifugal terms, i.e.,
h2(K+3/2) (K +5/2)/(2mp?), whereK (K +4)=\(p=) is the corresponding asymptotic hyperspherical eigenvalue. The interactions are
as in Fig. 9. The insets show the details of the lowest potentials.

02 T ;
In this context it is worth pointing out that it is difficult to — Efg-z ﬁez
find the most appropriate comparison with the different ex-  E-068 I\ZeV
perimental results in the figure. The normalization must be = el E=08MeV
properly chosen and the theoretical results must be folded = B=10MeV -~

with the distributions(unknown to uj related to the equip-
ment used in the different experiments.

The strength functions rise from zero to a maximum and
then fall off towards zero at large energy whereas the virtual
photon spectra decrease monotonically with excitation en-
ergy [33]. The low-energy enhancement necessarily implies
a larger Coulomb cross section, since the dipole is the domi-
nating dissociation mode. We show in Fig. 14 computed total
cross sections as function of beam energy fdtia projec-
tile on a lead target. The only available data point with rela-
tively large error bars is in agreement with the computation
[13], but substantially larger than the plane wave result. For gG_ 11. The absolute values of the radial wave functions for
280 MeV/nucleon we find 1458 mb and 1501 mb, respeclj (n+n+°Li) as functions ofp for real energies in an interval
tively, for the potentials with zero core spin and with a smallaround the real part of th&-matrix pole E,=0.68 MeV for 3+.

p? content of the wave function. The interactions are the same as in Fig. 9.

radial wave function (fm
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FIG. 12. The strength functiordBg, /dE= = ,[(nJ7||M(EN)||37%|2, M(EN,u) =22 eZrY, (1), for 2Li (n+n+°Li) as a func-
tion of energy for transitions from the ground state via 2~ (left hand sidg and via 1~ (right hand sidgto 3*, 3%, and3* excited
continuum states. The smooth curv@snaller at small distangecorrespond to plane waves for the continuum states. The curves are
normalized to the corresponding sum rule values given in Fig. 6. The interactions are the same as in Fig. 9.

The cross section decreases at large beam energy duedescriptions of essentially all reactions involving such par-
the similar decrease of the virtual photon spectrum. At smalticles. We solve the Faddeev equations in coordinate space in
energy, where the approximations are invalid, we find artwo steps. First the discrete spectrum of the angular part is
increasing cross section due to the low-energy cutoff of theomputed and used as a complete basis set. Then the coupled
strength function by the virtual photon spectrum. At theset of radial equations is solved with the appropriate con-
maximum around 5 MeV per nucleon this and other reactinuum wave boundary conditions. The angular equations for
tions are expected to be sensitive to the details of the neutrdarge distances outside the short ranges of the potentials are

halo structure. especially simple. However, they are essential and therefore
treated carefully.
V. SUMMARY AND CONCLUSIONS The three Faddeev components are very useful in the de-

o tailed description of the particle correlations. We show that
Borromean halo systems are almost by definition weaklyop|y the threes waves(one in each componentor a given
bound and excited states are usually entirely absent. Theyt| orbital angular momentum couple at large distances. All
continuum is therefore easy to excite and unavoidable iRyther partial waves are decoupled. We therefore solve these

much smaller and simpler sets of coupled and uncoupled

2.5 , ‘ angular equations at large distances. Some of these
; o Sackett 1993 asymptotic solutions are obtained analytically and others as
/ ® Shimoura 1995 solutions to transcendental analytical equations. As a neces-
2.0+ A Zinser 1997
>
A N ; ;
2 s
) N r 1
E 10 +
e
810
3 5
Bost =
i = 100 ¢
Plane waves O ——p—=I== ©
0.0 I L I
0.0 0.5 1.0 L.5 2.0
Energy (MeV)
FIG. 13. The strength functions dBg, /dE=(1/2], 10™ ¥ ‘ .
+1)Z0e | (NITM(EN)[[3g9]%, M(EN, ) =2 1eZrY, (1), 10° 10' 10° 10°
for A=1 for Li (n+n+°Li) as function of energy. The smooth E,/nucleon (MeV)
curves correspond to plane waves for the continuum states. The
interactions are the same as in Table Il &0 and Fig. 9 for FIG. 14. The dipole approximatigisolid curve to the Coulomb
Sc= %’ except for the curve JJH obtained with the potentidi34. dissociation cross section dfLi as function of laboratory energy

The experimental points are froll3—15. The arbitrary units in  per nucleon for a Pb target. The plane wave results are the dashed
[15] are normalized to our sum rule value, while the absolute data@urve. The interactions are the same as in Fig. 9. The data point is
from [13,14] are left unchanged. from [13].
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sary intermediate result we derive a convenient expressiotiree-body problem for short-range potentials. The method
for the transformation of angular functions between two dif-treats with special care the large distances which are essen-
ferent Jacobi coordinate systems. tial for the spatially extended halo systems. We investigate
Systems with two identical neutrons and a core of finitethe continuum spectra for the two halo nucféle and *Li
spin are specifically treated. Then the continuum spectra gind find a number of low-lyingS-matrix poles. Strength
the two Borromean halo nucleHe (n+n+a) and functions are computed and compared with other calcula-
i (n+n+°Li) are investigated numerically in some de- tions and available experimental data. Various disagreements
tail. Two-body interactions with and without bound states,are pointed out and several controversial features are exhib-
but reproducing the observed low-energy scattering data, afted.
used for®He. In addition three-body interactions with sev-
eral radial shapes are added to obtain the measured binding ACKNOWLEDGMENTS
energy. For'lLi no three-body interaction is used, since the ) , )
two-body interaction is unknown and therefore directly pa- We thank E. Garrido and E. Nielsen for help and continu-
rametrized to reproduce anticipated two-body resonanceUs discussions. One of @A.C.) acknowledges the support
and virtual states in addition to the momentum distributiond"om the European Union through the Human Capital and
in fragmentation reactions. Mobility program Contract No. ERBCHBGCT930320.
The antisymmetry between the neutrons in the halo and in
the core is accounted for in two ways: first by using a repul-APPENDIX: ROTATIONS BETWEEN DIFFERENT SETS
sive or a shallow neutron-core potential without bound states OF JACOBI COORDINATES
and second by omitting the lowest adiabatic potential arising

from a more attractive neutron-core potential with one bounrg] Wg. want dt.o trot?te th;ahwavet fungtl;)_n f(;o_m oneOS(lat of
state from the set of radial equations. The results are co :acobi coordinates 1o another set as gefine i E3). Only
pared. the leading order in an expansion irplis needed. We must

The adiabatic potentials are decisive for the radial soluthen first express,y;) in terms of &;.y;). The six-
tions. The lowest potential in each channel is attractive Whe@mensmnal transformation [¢17,48
the corresponding generalized centrifugal barrier is removed.
All channels are therefore potentially able to support reso-
nancelike structures. The pocket in the adiabatic radial po-
tential is absent foPHe for angular momentumQ1*, and
2~ and well developed for both'0and 2. For !'Li the
adiabatic potentials for 1 excitations all have attractive
pockets and effective barriers of 0%9.15 MeV. Also the
0" channel has a well-developed attractive pocket, but no cosy= ,
barrier, for the lowest potential supporting the ground state. XiYi
The second potential for'0excitations is also attractive with
a barrier of about 1.7 MeV.

We calculate thes-matrix poles by the complex energy
method. The lowest of these poles appear slightly above the
barriers and their widths are consequently relatively large
and rather sensitive to fine-tuning of the interactions. One + 2 COSpSin g Sina;CoSa;COSy. (A3)
exception is the known narrow2resonance irffHe which
is reproduced in the calculation. The narrowest low-lying We now expand the following function, related to the
poles for °He appear for 1 and 2~ at about 1 MeV with  function in Eq.(13), of a;j in terms of Legendre polynomials
widths of 0.3-0.4 MeV. For'Li they appear for I and 0",  P,(cosy):
respectively, at about 0.65 MeV and 0.9 MeV with widths of
about 0.35 MeV. The unusually many low-lyirfggmatrix
pol\(/evs could indicate that the Eflr_noy limit is fairly close. . — : :2 A:X'VL(ai)P|(COSy),

e computed the electric excitations from ground to con- sin(2a;)sinxa;cosya; T
tinuum states. The strength functions are rather strongly en- (A4)
hanced at low energies due to the low-lyiSgnatrix poles.
The functions extracted from measurements ‘ftri are ap- L
parently significantly smaller than our computations. On theN*” (@)
other hand, the same experimental information agrees with a0)
the computed Coulomb cross section. A proper consistent 21+1 ¢nI;I§Ls;S(aJ)
comparison is still lacking. Also fofHe we obtain enhanced =72 dcosy
dipole strength functions at low energies. Here the experi-
mental strength function is not available, but the observed (A5)
1~ resonance is reproduced almost within the experimental
uncertainties. We have not attempted to reproduce this somghere «; is the function ofe; and y defined through Eq.
what controversial resonance more precisely. (A3). Then changing the integration variable from gde

In conclusion, we have developed a method to solve they;, i.e.,

Xj = —X;COSg,tY;singy, Y;=—XSiNng,—Y;CoSey,
(A1)

where ¢, is defined in Eq.(18). Defining the angley be-
tweenx; andy; by

o w2

we have the relation between the hyperangigand «; re-
lated to the two coordinates

sirfa; = co gysirfa; +sinfe,cos e,

(i)
oo\ &
¢nIXIyLsXS( J)

; — P(cosy),
sin(2a;)sinxa;cosya;
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sin2aej) 2 nt(n+ 1+l +1)12(2n+ 1+ 1, +2) | 12
dcosy= — - ; (AB) N = , (A10)
sin(2q«;) siN(2¢y) x'y I(n+1,+3/2)I'(n+1,+3/2)
we can rewrite EQ(A5) as
Il
AI;l;L _ 21+1 w2~ | w2~ o — a (QX vﬂy)YIlIZ(QX 19 ) 2 B|l|2|_Y (Qxinyi)a
) G2 sn2a) ) o “ (ALD)
D) J2I+1)(21,+ 1)(21,+ 1)
— Y P [cosy(a; Ja)]. (A7) B =(—1)LHlatly 1 2
Sln'xajcoéyaj Iyt 47
i iti I, 17 |
Next we use the identities ><(I10IO|IXO)(I20IO|IyO) x n (A12)
Ao l, 1, L
Pi(cosy)= 57 YI (92, 0y), (A8)
WhereY L is defined in Eq(12), N, |, are normalization
Noy’ ,,sm'xa codyver; YI |' H(Qy Q) constants for the Jacobi polynomleﬂ’éﬁ1/212”/2[005(20]
{} and() are the @ symbols and the Clebsch-Gordon coef-
fici he coefficien® -, he so-call
_2 R| o, (0N, . sinia. coéZa, plit+l2ip+ 172 icients, and the coe |C|enﬂ§|x|w|1|2(<pk) are the so-called
Raynal-Revai coefficient{47] with K=l +1/=2n+1,
x[cog2a)]¥} Y10 02y, no) Tz

Then by combining Eq4A4) and(A8)—(A12) we obtain

0
Piziris ()

Xy T T M
sin(2a;) Y|X,|y,(ij,Qyj)

=3 A <a.>2l+1v mx,ﬂy,)E

N | |’ 0 (@) sinta;cod2q;P 1“/22”/2[005(2 I)]Y"'\"L(QX_,Qy_)
ol Y

=2 Al a0, (A13)

where the expansion coefficierdsare given by

/rL

nl,l
XY ()= 2 Ay (a)2|+12 —12RIK|L, N (<pk)sm'1aicoé2aiPLl*l’z‘Z*l’z[cos(zai)]B1'2' (A14)
xy

I I,L"
1115 NOI)’(l)’/

Finally we have therefore the desired expression for (E§):

(J)
(ﬁnl;I;Ls;S(p’a]) LM,_ -
5 y .
sinzay Yy, () =G (@)- (ALS)

RixyhdyL
ij

(1)
"y e o
{ d)nIXIyLSXS(p )

LM *
sin(2a,) ] fdQ dQ [Y (Qxi’QYi)]

This completes the general derivation of the expression for the transformation of the wave function from one set of Jacobi
coordinates to another.

The large-distance expansion is now found by first approximatingA&3). for large p and smalla; as aj= @i+ @;C0Sy.
Then by usinga;<<1 in Eq. (A7) we obtain

(i)
¢n|>’(l o5l P
y X

L
APV (a=0)= ; — b0, (A16)
' ' sin(2¢y) sinx g cody @, 0

which through Egs(A14) and (A12) implies that
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e e N
I 1L I 1L oL + KL
CCI;’ (ai——O)——47T5|XOAOXV (ai——O)—n Pﬁlz'l' 1/2(1)72';'),, OL((pk)BgtE

/|/

(J) KL

Gy L) Ry o (@k)
X'y 7x X'y

sin(2¢y)

NnoL P1/2,L+1/2(1)

" Npirr M
lely

; —. (A17)
sinx @, cosy @,
Forl,=0J,=L, andn=0 we can simplify the expression by usiRg**""%(1)=1, Rg o (¢x) = (—1)"cos(@). We then
obtain Eq.(17). The angular wave functions corresponding to nonzgnapidly approach zero for large values and their

contributions are therefore here assumed to be zero.
Thus for short-range interactions for largeand therefore also for small only Ixi=0 components receive contributions

from the rotated wave functions from the other Faddeev components. All partial waveixiwim can then be solved
independently. The remaining three components Mith 0,i=1,2,3, must be solved as a set of coupled equations.
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