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Absolute determination of zero-energy eigenphase shifts: Applications ton-p, n-d,
and p-d scattering

Leonard Rosenberg
Department of Physics, New York University, New York, New York 10003

~Received 16 April 1998!

A generalization of Levinson’s theorem, relating the phase shift at zero energy to the number of bound states
of the system, previously formulated to apply to the single-channel multiparticle scattering of a particle by a
neutral system@L. Rosenberg and L. Spruch, Phys. Rev. A54, 4978~1996!# is further generalized to allow for
multichannel scattering. An application to neutron-proton scattering with tensor forces leads to an extension of
the existing version of Levinson’s theorem for this system by providing information on each of the eigenphases
at zero energy rather than just their sum. The effect of the Pauli principle on the absolute determination of the
phase shift is illustrated with applications of the method to the scattering of neutrons and protons by deuterons.
@S0556-2813~98!02009-3#

PACS number~s!: 21.45.1v, 03.65.Nk, 03.80.1r
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I. INTRODUCTION

Levinson’s theorem relates the number of bound state
a given partial wave to the zero-energy partial-wave ph
shift. There has been a renewal of interest in recent yea
applications of this theorem to nuclear scattering proble
@1#. This has been stimulated in part by the need to estab
the compatibility of equivalent potentials—those that gi
rise to the sameS matrix—with different numbers of bound
states@2#. The original derivation of the theorem@3# was
restricted to single-channel potential scattering. An extens
to elastic multiparticle scattering, accounting for the effect
the Pauli principle, was conjectured by Swan@4# and has
been adopted in the recent literature@2#. Swan’s work was
based on the independent-particle model and further ana
is required for it to be applied with complete confidenc
Moreover, with tensor forces present a multichannel tre
ment is required, even for scattering at the physical thre
old. This is an issue that arises with the use of supersymm
ric quantum mechanics to relate phase-equivalent coup
channel potentials@5#. A closer examination of the
applicability to nuclear systems of theorems of the Levins
type therefore seems warranted.

A generalized Levinson theorem, valid for each part
wave, was given recently for multiparticle single-chann
scattering of a particle by a neutral compound target@6#. It is
formulated without dynamical assumptions~such as the
independent-particle model! and avoids reference to a pha
shift at infinite energy, nonexistent for scattering by co
pound targets. The procedure for determining the ze
energy phase shift requires information, not necessarily c
plete, concerning the target wave function; mo
significantly, conclusions are reached without the need
solve the scattering problem. The essential feature of
method is the use of the minimum principle for the scatter
length, applicable to the wide class of scattering proble
for which the scattering length can be defined. Soon after
PRC 580556-2813/98/58~3!/1385~8!/$15.00
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original version of the minimum principle was derived@7# a
useful corollary was proved by Ohmura@8#, and it is this
version that was applied in Ref.@6#. In addition to the mini-
mum principle a knowledge of the energy-dependence of
phase shift near threshold, as obtained from effective ra
theory, plays a role in determining the effect of a zero-ene
resonance on the phase shift.

Earlier applications were confined to single-chann
electron-atom scattering@9#. Motivated partly by revived in-
terest in theorems of the Levinson type we here disc
nuclear applications using an extended version of the
proach of Ref.@6#. The manner in which the effects of th
Pauli principle and repulsive Coulomb interactions are
counted for is illustrated by our treatment, in Sec. IV,
nucleon-deuteron scattering. The effect of a tensor forc
discussed in Sec. III in the context of the neutron-prot
system. The existing version for coupled-channel proble
relates the sum of the eigenphases to the number of bo
states@10#. An extended version, derived here, provides
formation on individual eigenphases—this should be help
for example, in an analysis of equivalent potentials in t
problem ofn-p scattering with tensor forces@5#. A generali-
zation of the minimum principle applicable to multichann
scattering problems has been available for some time@11#,
but not a multichannel extension of Ohmura’s corollary@8#;
a proof suitable for our present purposes is given in Sec
To make our presentation reasonably self-contained we
gin, in Sec. II, with a summary of our approach
Levinson’s theorem in the context of the familiar singl
channel potential scattering problem. The remainder of
paper will focus on new features of the theory.

II. PRELIMINARIES: SCATTERING BY A CENTRAL
POTENTIAL

Sturm-Liouville theory, usually applied to bound state
has been extended to zero-energy potential scattering@12#. It
1385 © 1998 The American Physical Society
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1386 PRC 58LEONARD ROSENBERG
was shown that the number of nodes in the wave funct
for arbitrary orbital quantum numberl, is equal to the num-
ber of negative-energy bound states of the samel. This re-
sult, used in combination with the nodal definition of th
phases shift, some information on its threshold behavior,
the minimum principle for the scattering length@7# leads to
Levinson’s theorem. Such an approach is not directly ap
cable to the multiparticle scattering problem since the
evant wave function has a complicated and poorly und
stood nodal structure. However, it does suggest that n
properties may still play a role, though less directly, alo
with the minimum principle and effective range theory,
applications to a wider class of systems. These ideas, de
oped earlier@6#, will now be reviewed. It will be done in the
simpler context of potential scattering to provide a suita
background for the discussion to follow.

For definiteness we considers-wave scattering by a short
range potential. Generalizations are mentioned briefly bel
Let us first assume that the scattering length is finite. It th
follows from effective range theory that the phase shiftd is a
multiple of p in the zero-energy limit since cotd is infinite.
The Kohn variational principle for the scattering length is
fact a minimum principle provided that all bound states
included in the trial function with sufficient accuracy@7#.
Ohmura’s extension@8# gives a more detailed picture. Thu
suppose there areN bound states. With the simplest tria
functionf(r )5r obeying the boundary condition at infinity
the variationally determined scattering lengthA(0) is just the
Born approximation. One considers~in principle! an infinite
sequence of variational approximations for the scatter
length in which the accuracy of the trial function is stead
improved. The set of approximationsA(s),s50,1,..., is gen-
erated from the variational principle by introducing tri
functions

f ~s!~r !5f~r !1 (
s851

s

bs8 f s8~r !, ~2.1!

with f 1(r );21 for r→`. The calculated scattering lengt
makes a series of upward jumps as the trial function
steadily improved with the addition of more basis functio
and, after having made a total ofN jumps, it converges to the
exact value from above ass is increased indefinitely. It is
then convenient to define a monotonically increasing ‘‘len
phase’’ by writingA(s)5a coth(s), wherea is a characteris-
tic length~a fermi, for example, in a nuclear scattering pro
lem!. The phase shiftd ~at each stage of the approximatio
procedure! is defined by requiring that it lie on the sam
branch of the cotangent curve ash. More precisely, we im-
pose the condition 0<h2d,p. To obtain an absolute defi
nition of the length phase, and hence the phase shift its
we define a reference phased (0) as the phase shift associate
with the free wave functionf(r ). Since this function is
nodeless we must have, from the nodal definition,d (0)50.
~A modification of this assignment is required when antisy
metry is accounted for in the multiparticle case; see Sec
for an example.! The corresponding length phaseh (0) must
then be chosen to lie between zero andp. This choice for the
absolute definition of the phase shift for potential scatter
is essentially determined by the requirement that it confo
to the nodal definition combined with the relation betwe
n,
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bound states and nodes in the zero-energy scattering fun
deduced earlier@12#. As indicated above, the advantag
gained by this reformulation lies in the fact that it requires
nodal count of the free wave functionf(r ) and not the full
scattering wave function; it can therefore be applied una
biguously to the multiparticle scattering problem.~See Sec.
IV.!

A divergence in the approximate scattering length cor
sponds toh passing from one branch of the coth curve to
the adjacent one lying to its right as the trial function
improved. From the fact that the scattering length expe
encesN jumps in this process we may conclude that the t
value of h lies betweenNp and (N11)p. Since the scat-
tering length has been assumed to be finite in this first
ample, the relationA5a coth implies thath/p is not an
integer; it follows thatd5Np.

If the scattering length is infinite, corresponding to t
existence of ans-wave bound state at zero energy in additi
to N negative-energy bound states, the process of minim
tion will not terminate afterN upward jumps and the lengt
phase will approach (N11)p. From effective range theory
we know that cotd vanishes at threshold, so that, accordi
to the definition given above, namely, 0<h2d,p, we
haved5(N11/2)p. This ‘‘half-bound state’’ phenomenon
occurs only for s states—cotd diverges at threshold fo
higher partial waves.~These results remain valid for poten
tials that fall off as least as rapidly as 1/r 4.! The above analy-
sis can be extended to include potentials with a repuls
Coulomb tail. In this case, using the appropriate version
effective range theory, along with the fact that the Coulom
penetration factor decays exponentially as the scattering
ergy is reduced to zero, one sees that half-bound states d
appear. This conclusion is in agreement with that obtaine
two earlier, independent derivations, one based on Jost f
tion theory and the other on a nodal analysis of the wa
function @13#.

III. POTENTIAL SCATTERING WITH TENSOR FORCES

We consider a scattering system defined by two coup
equations that may be written in the matrix formL f 50,
where

L ji 52F d2

dr2 1k22 l i~ l i11!/r 2Gd j i 1
2m

\2 Vji , i , j 51,2.

~3.1!

While greater generality is possible, we assume here tha
potential matrix is local, energy independent, and of sh
range~falling off faster than any power ofr!. The potential
supports a finite number of bound states. As is appropriat
the appearance of a tensor force, the two channels have
same physical threshold, corresponding to energyE
[\2k2/2m50, and the orbital quantum numbers are rela
by l 25 l 112. The solution~normalized to have a finite zero
energy limit! has the asymptotic form

f j i ~r ,k!;
r

kl i
@ j l i

~kr !d j i 2nl j
~kr !K ji #, r→`. ~3.2!
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In the neighborhood of threshold theK matrix is known to
have the limiting form @10,14# K5kl 11/2K̄kl 11/2, where
kl 11/2 is diagonal, with diagonal elementskl 111/2 andkl 211/2,
and K̄ is analytic ink2.

We seek a multichannel generalization of Levinso
theorem stated in terms of the zero-energy eigenphase s
of the scattering system. The basic elements of the proce
outlined in Sec. II for the single-channel case are read
adapted to apply to the case at hand. An absolute determ
tion of these eigenphases is obtained by application of
nodal definition of the phase shifts to particular elements
the multichannel wave function in the representation
which the reaction matrix is diagonal, as described bel
The role of the scattering length in the single-channel cas
now played by the diagonal elements of a reduced reac
matrix from which threshold singularities have been
moved. These elements satisfy a minimum principle~derived
in Sec. V! and this may be used to trace the evolution of
eigenphases from their value in the absence of the pote
to their true values as the trial function is steadily improve
In this way the value of each zero-energy eigenphase is
pressed in terms of the number of bound states in the co
sponding eigenchannel. In analogy with the single-chan
treatment, the analysis accounts for the special role of z
energy bound states; here one makes use of the energ
pendence of the eigenphases near threshold as determ
from an application of effective-range theory@15,16#.

Following a standard procedure@10,14# we now diagonal-
ize the ~real, symmetric! K matrix with the transformation
matrix

x5S cos« 2sin «

sin « cos«
D . ~3.3!

The eigenvalues are tand5xTKx, the superscriptT denoting
transpose. With the potential taken here to be of short ra
effective range theory may be applied to give the expans
@15,16#

K̄21[M52A211
1

2
r 0k21O~k4!. ~3.4!

This information suffices to determine the threshold behav
of the eigenphases and mixture parameter to be tadi
→2k2li11Ai ~for brevity we writeAi[Aii ! and «→mkl 22 l 1

@17#. With the aid of the relation (Kx) j i 5xji tandi along
with Eq. ~3.2!, the asymptotic form of the transformed wav
function u5 f x is found to be

uji ~r ,k!;~r /kl i !xji @ j l j
~kr !2tan d inl j

~kr !#. ~3.5!

With k fixed and r going to infinity, we see tha
(kl i11 cotdi)uji;xji sin(kr2l jp/21d i). Note thatu1i andu2i
have thesamephase shifts; it is then sufficient to examin
only the diagonal elementsu11 andu22 to relateAi andd i in
a nodal analysis. Using the symbolui to denote the column
matrix with elementsu1i and u2i , and settingl 150 and
l 252 for definiteness, we find the asymptotic forms
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u1~r ,0!;S r 2A1

23mA1 /r 2D ; u2~r ,0!;S mr
r 3/1523A2 /r 2D .

~3.6!

At this stage we must determine the possible values of
eigenphases at threshold. Note first that cotd5xTK21x be-
haves asxTk2( l 11/2)Mk2( l 11/2)x near threshold. From the
effective range expansion ofM, along with the relation
M125M21 and the threshold behavior ofx, one finds that,
with M evaluated at threshold,

cot d15k21@M1112mM121m2M22#1O~k!. ~3.7!

Examination of the off-diagonal elements leads to the re
tion

05k23@M121mM22#1O~k21!, ~3.8!

from which we conclude thatm52M12/M22. These rela-
tions, along with the identification detM/M2252(A1)21,
imply the threshold behavior@15#

k cot d152A1
211O~k2!. ~3.9!

Now if A1 is finite, cotd1 becomes infinite at threshold; thu
d1(0)50(modp). If, on the other hand,A1 is infinite it
follows that cotd1→0 and d1(0)5p/2(modp). To con-
clude this preliminary analysis we observe that the relati

cot d252k21M11sin2 «2k23M12sin 2«1k25M22cos2 «
~3.10!

indicates that cotd2 diverges at threshold and therefo
d2(0)50(modp).

To obtain more explicit information on the zero-ener
eigenphases we begin by applying the minimum principle
the form derived in Sec. V, toA1 , the zero-energy limit of
2K11/k. Sinceu11 has the same asymptotic form as ans-
wave single channel wave function, we may adopt the sa
analysis~described in Sec. II! that relates the phase shift t
the number of upward jumps in the scattering length as b
functions are added to the trial function in the variation
calculation. A zero-energy resonance, if it exists, must
treated as a ‘‘half-bound’’ state as in the single-channel ca
Defining

u1,res~r ,0![ lim
A1→`

u1~r ,0!/A1 , ~3.11!

we see that this function has the asymptotic form

u1,res~r ,0!;S 21
23m/r 2D , ~3.12!

corresponding to an ‘‘almost normalizable’’ solution, regul
at the origin, and is identified as a zero-energy bound stat
eigenmode 1. To confirm this identification we determine
asymptotic form of the bound-state wave function by mak
the replacements tandi→2i and k→ ik in Eq. ~3.5!. The
asymptotic behavior then takes the formuji (r ,ik)
;@r /( ik) l i#xji hl j

( ikr ). With i 51, we take the limits

k→0, x11→1, andx21→2mk2 and conclude thatku1(r ,ik)
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1388 PRC 58LEONARD ROSENBERG
may be identified withu1,res; the two solutions are regular a
the origin and have the same asymptotic forms.

Following very closely the procedure outlined in Sec.
we define a length phaseh1 by writing a coth15A1 and
introduce an absolute definition of the zero-energy ph
shift d1(0) by requiring that 0<h12d1(0),p. We then
find thatd1(0) itself satisfies a version of Levinson’s the
rem for coupled-channel scattering. When suitably exten
to arbitrary values ofl 1 with l 25 l 112, the theorem state
that ~i! For l 150, d1(0)5(N11j)p, whereN1 is the num-
ber of negative-energy bound states in mode 1 andj5 1

2 if
there is in addition a zero-energy bound state in that mo
while j50 if there is no such bound state.~ii ! For l 1.0,
application of effective range theory shows that cotd1 di-
verges at threshold. It follows thatd1(0)5N1p whereN1 is
the number of bound states in mode 1, including, wh
present, a zero-energy bound state.

In a similar way we consider the possibility of a zer
energy resonance appearing in eigenmode 2, associated
the divergence of the parameterA2 . We introduce the reso
nant wave function

u2,res~r ,0!5 lim
A2→`

u2~r ,0!/A2 ~3.13!

with asymptotic form

u2,res~r ,0!;S 0
23/r 2D . ~3.14!

This function may be identified with a zero-energy bou
state in eigenmode 2. Thus, referring to Eq.~3.5! with
i 52, we again set tandi→2i and evaluatek5u2(r ,ik) in the
limit k→0. We find that it has the same asymptotic form
u2,res(r ,0) and since the two solutions are regular at the o
gin their equality is confirmed.

We now consider an application of the minimum princip
to the zero-energy limit of 2K22/k552@ tand1 sin2 «
1tand2 cos2 «#/k5, which is evaluated asm2A11A2 , and is
expressed, in terms of a ‘‘length phase’’h2 , as a5 coth2.
Noting that the zero-energy limit off 2(r ,k) has the
asymptotic form

f 2~r ,0!;S 2mA1

r 3/1523~m2A11A2!/r 2D , ~3.15!

we choose a trial function regular at the origin and havin
similar behavior at infinity, but with the parametersA1 and
A2 replaced by trial values. As the number of terms in t
trial function is increased, upward jumps ina5 coth2 appear
each time a bound state enters, whether in mode 1 or mod
@f 2(r ,k) is a mixture of modes, even at zero energy.# For
A1→` we see that the wave functionf 2 /(mA1) has the
same asymptotic form asu1,res, as shown in Eq.~3.12!. This
corresponds to the appearance of a zero-energy~non-
normalizable! bound state in mode 1. ForA2→` we see that
f 2 /A2 has the same asymptotic form asu2,res, as shown in
Eq. ~3.14!. This corresponds to the appearance of a ze
energy~normalizable! bound state in mode 2.

An absolute definition of the sum of zero-energy eige
phase shifts follows from the condition 0<h22@d1(0)
1d2(0)#,p. A version of Levinson’s theorem is then ob
e

d

e,

n

ith

s
i-

a

e

2.

-

-

tained, valid whether or notN2 , the number of bound state
in mode 2 includes one at zero energy. It may be stated
follows.

~i! For l 150, d1(0)1d2(0)5(N11N21j)p, whereN1
is the number of negative-energy bound states in mode 1
j51/2 if there is in addition a zero-energy bound state
that mode, whilej50 if there is no such bound state.

~ii ! For l 1.0, d1(0)1d2(0)5(N11N2)p, whereN1 is
the number of bound states in mode 1, including, wh
present, a zero-energy bound state.~As in the single-channe
version of the theorem, the half-bound state phenome
appears only if the state is non-normalizable.! Combining
this latter result with that obtained above ford1(0), we see
that d2(0)5N2p, independent of the existence of zer
energy bound states. This result extends that of Newton@10#
in that it provides information on each of the zero-ener
phase shifts rather than on the sum alone.

IV. EFFECT OF ANTISYMMETRIZATION: n-d AND p-d
SCATTERING

It was shown earlier, in the context of electron-atom sc
tering @9#, how the effect of the Pauli principle can be a
counted for in the absolute determination of the zero-ene
phase shift. For all but the lightest atoms, phase shifts w
determined with the use of Hartree-Fock wave functions
represent the target. Significantly, the procedure does
depend on a knowledge of the structure of the true scatte
wave function. While practical difficulties arise due to th
more complicated nature of the interactions, as well
reduced-mass effects, the same procedure is applicabl
principle, to nuclear scattering problems. As an illustratio
we consider the zero-energy scattering of neutrons and
tons by deuterons. As our main focus will be on the effect
antisymmetrization, we simplify the discussion by assum
s-wave scattering with central forces.

In generalizing the treatment of potential scattering o
lined in Sec. II the wave functionf appearing in Eq.~2.1!,
and representing the Born approximation, is replaced by
antisymmetrized product of the deuteron wave funct
c(r 23)—taken in some approximation—and the zero-ene
free-particle wave function describing the motion of the
cident projectile relative to the target. We denote the Bo
wave function asf(r 23,q), whereq is the projectile-target
separation. Following the procedure outlined previously@6#,
an effective single-particle wave functionF(q) is obtained
by projectingf(r 23,q) onto the target functionc(r 23) and a
reference phase shiftd (0) is determined from a nodal analys
of F(q). In contrast to the potential scattering proble
whered (0) is determined to be zero, nodes may appear in
function F(q). „In some simplified independent-partic
models of the scattering process, the number of node
F(q) may be related to the number of composite bou
states excluded by the Pauli principle@4#. This may be help-
ful in forming a physical interpretation but it should be em
phasized that the version of the generalized Levinson th
rem described here does not depend on the validity of su
model.… It is shown below that in the quartet state, for bo
n-d andp-d scattering, a single node appears, so thatd (0) is
set equal top. For doublet scattering on the other hand,F(q)
is found to be nodeless, again for bothn-d andp-d scatter-
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PRC 58 1389ABSOLUTE DETERMINATION OF ZERO-ENERGY . . .
ing. With f(r 23,q) as trial function a Born approximatio
A(0) is determined and a length phaseh (0) is defined, modulo
p, by writing A(0)5a coth(0). To preserve the condition 0
<h2d,p at each stage of the variational construction
fix h (0) to lie betweenp and 2p for quartet scattering and
between zero andp for doublet scattering. The minimum
principle is then used formally, in the manner described e
lier in Sec. II, to follow the evolution of the length phase—
and with it the zero-energy phase shift—as the accurac
the trial function is increased through the introduction of
increasing number of basis functions. Since only one co
posite doublet bound state exists, and no quartet states
zero-energy phase shift is determined, by this general
Levinson theorem, to bep for both doublet and quartet sca
tering of neutrons and protons by deuterons@18#.

To illustrate the nodal analysis leading to the determi
tion of the reference phase we first considern-d quartet scat-
tering. LetxQ represent a normalized quartet spin functi
with a particular~unspecified! projection; it is unchanged
when acted on by the interchange operatorP12. The zero-
energy Born wave function has the form~with particle 1 the
incident neutron and particle 2 the bound neutron!

f~r 23,q!5~12P12!c~r 23!xQ5@c~r 23!2c~r 13!#xQ .
~4.1!

~It is more convenient here not to remove a factor 1/q from
the wave function.! The effective single-particle wave func
tion is

F~q!5E d3r 23xQ
T c~r 23!f~r 23,q!512G~q!, ~4.2!

where, withc(r 23) taken to be normalized to unity, we hav

G~q!52pE
21

1

dpE
0

`

dr23r 23
2 c~r 23!c~r 13!, ~4.3!

with r 135@(r 23/2)21q22qr23p#1/2. Given a reasonably ac
curate deuteron wave functionF(q) can readily be deter
mined. We say ‘‘reasonably accurate’’ since only the num
of nodes inF(q), rather than its detailed form, is required.
sufficient, though not necessary, condition forF(q) to have a
single node is thatG(q) decrease monotonically to zero
with G(0).1. We have verified this property under the a
sumption that the deuteron wave function can be represen
in the relevant region of bounded interparticle separatio
by a sum of Gaussian functions

c~r !5(
i 51

n

ciexp~2a i r
2! ~4.4!

with positive coefficientsci . A three-term function of this
form was introduced some time ago@19#. The integrals in
Eq. ~4.3! may then be performed analytically giving

G~q!5~4p!3/2(
i

(
j

cicj~a i14a j !
23/2

3expF2
4a ia j

a i14a j
q2G . ~4.5!
r-

of
n
-

the
d

-

r

-
d,

s,

This form satisfies the condition stated above forF(q) to
have a single node. It is evidently positive. Moreover, aq
50 the functionc(r 13) in Eq. ~4.3! exceedsc(r 23) from
which it follows thatG(0) exceeds unity, the value of th
normalization integral.

A similar procedure may now be followed for the doubl
case. We have

f~r 23,q!5~12P12!c~r 23!xD
~S! , ~4.6!

wherexD
(S) is a doublet spin function symmetric in the spin

of particles 2 and 3. The effective single-particle wave fun
tion, obtained by projecting the Born wave function on
c(r 23)xD

(S) , is determined, using the relationxD
(S)TP12xD

(S)

521/2, to be

F~q!511
1

2
G~q!. ~4.7!

This function is seen to be nodeless provided only that
deuteron wave function is nodeless, a property expecte
hold under very general conditions@20#.

An application to proton-deuteron scattering is comp
cated somewhat by the need to include the effect of the
pulsive Coulomb interaction on the Born wave functio
With particle 1 the incident proton and particle 2 the bou
proton we introduce the zero-energy Coulomb wave funct

E~q!5~R/q!1/2I 1@2~q/R!1/2#, ~4.8!

whereR5(3\2/2Me2) andI 1(x) is the modified cylindrical
Bessel function of order unity. The functionE(q) is node-
less, goes to unity at the origin and diverges asymptotica
The Born wave function, for the quartet state, is expresse

f~r 23,q!5~12P12!c~r 23!E~q!xQ , ~4.9!

and the effective single-particle function is

F~q!5E~q!22pE
21

1

dpE
0

`

dr23r 23
2 c~r 23!c~r 13!E~q8!,

~4.10!

FIG. 1. Plot of the effective single-particle wave function f
proton-deuteron scattering in the quartet state showing a si
node arising from the antisymmetrization of the zero-energy B
wave function. This implies a value ofp for the reference phase
shift d (0).
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where

q825S 3r 23

4 D 2

1S q

2D 2

1
3

4
qr23p. ~4.11!

Even with the deuteron function taken as a sum of Gauss
we are unable to evaluate the integral in Eq.~4.10! analyti-
cally. A numerical integration was performed with th
Christian-Gammel wave function@19#. The result obtained
for qF(q) is plotted in Fig. 1 and shows the single node th
indicates a value ofp for the reference phased (0).

For doubletp-d scattering, taking into account the ove
lap of doublet spin functions, we have

F~q!5E~q!1
1

2
2pE

21

1

dpE
0

`

dr23r 23
2 c~r 23!c~r 13!E~q8!

~4.12!

with the deuteron wave function assumed to be nodeless
function is clearly nodeless, from which we conclude that
reference phase is zero.

V. THE MINIMUM PRINCIPLE

Some time ago, a corollary to the minimum principle f
the scattering length@7# was derived@8# which proved to be
useful in the derivation@6# of a generalized version o
Levinson’s theorem for single-channel scattering. The sha
ened version of the minimum principle obtained by Ohmu
states that when the system hasN bound states the variation
ally determined scattering length increases in value preci
N times as the number of adjustable linear parameters in
trial function is increased, and thereafter decreases mo
tonically with further improvement in the trial function. Her
we extend this result to apply to multichannel scatter
problems, such as that considered earlier in Sec. III. It will
clear from the derivation that the result applies to arbitr
partial waves, and may also be extended to allow for lo
range polarization forces as well as repulsive Coulomb in
actions ~p-d scattering, for example!. The minimum prin-
ciple is a variant of the Rayleigh-Ritz principle, widely use
in bound-state calculations. The present application of
minimum principle is of a formal nature—no numerical ca
culation need be performed and a particular choice of va
tional basis need not be specified.

The minimum principle will be formulated in terms of
reduced zero-energy reaction matrix element defined as

Ai 8 i52 lim
k→0

k2~ l i1 l i 811!Ki 8 i . ~5.1!

We suppose that the scattering problem has been reduc
one defined~in terms of a real, symmetric effective potenti
matrix Vji ! by a set ofn coupled radial equations given i
matrix form asL f i50, whereL is given by Eq.~3.1! and f i
is a column matrix corresponding to incident channeli. The
asymptotic form of the solution~assuming a short-range po
tential for simplicity! is obtained by taking the zero-energ
limit of Eq. ~3.2!, leading to

f j i ~r !;
r l i11

~2l i11!!!
d j i 2

~2l j21!!!

r l j
Aji . ~5.2!
ns
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A trial function f j i ,t is introduced, vanishing at the origin a
does the true function, and having the same asymptotic f
but with Aji replaced by a trial matrixAji ,t . A variational
identity of the type derived by Kato for potential scatterin
@21# is readily derived in the matrix form

Ai 8 i5Ai 8 i ,t1~ f i 8 ,L f i ,t!, ~5.3!

where the scalar product is defined as

~ai 8 ,bi !5(
j 51

n E
0

`

aji 8~r !bji ~r !dr. ~5.4!

The identity is verified by using an integration by parts a
applying the wave equation and boundary conditions.
variational approximation is obtained by replacing the ex
~row! matrix functionf i 8(r ) by a trial functionf̄ i 8,t(r ), with
this function andf i ,t(r ) allowed to vary independently.

In an extension of the procedure outlined in Sec. II,
consider a sequence of variational calculations in which t
functions f i ,t , now labeled asf i

(s) to indicate the number o
linear parameters they contain, are chosen in the form

f j i
~s!~r !5f j i ~r !1 (

s851

s

bji ,s8 f j i ,s8~r !. ~5.5!

Here f(r ) and f s8(r ) are matrix functions vanishing at th
origin and behaving at infinity in a manner consistent w
Eq. ~5.2!. In particular,bji ,1 is identified as the trial reaction
matrix elementAji ,t . The trial function f̄ (s)(r ) is similarly
constructed, with the matrix parametersbs8 replaced byb̄s8 .
The variational approximation for theA matrix obtained with
this set of trial functions is denoted asA(s). Its form is sim-
plified by application of the identity

bii 8,11~f i 8 ,L f i ,1!5~Lf i 8 , f i ,1!, ~5.6!

obtained@as in the derivation of Eq.~5.3!# by integration by
parts and use of the boundary conditions. Fors8.1 the func-
tions f s8 are assumed to fall off fast enough for the relati
(f i 8 ,L f i ,s8)5(Lf i 8 , f i ,s8) to hold, without the appearanc
of surface terms. Fors51 and l j50, f j i ,1(r );21 asymp-
totically. To allow for the applicability of Rayleigh-Ritz
methods we insert a cutoff factor in the definition off j i ,1
which is ultimately removed, this justified by a demonstr
tion of continuity in the limiting procedure@7#. Now with all
basis functions of the bound-state type we may replace
linear parametersbji ,s8 by bi ,s8 , with no reference to an exi
channel; a similar replacement is made forb̄s8 . With these
parameters determined variationally, and with the introd
tion of the notationLf i(r )5wi(r ) and Ai 8 i

(0)
5(f i 8 ,Lf i),

the variational approximation for theA matrix takes the form
@22#

Ai 8 i
~s!

5Ai 8 i
~0!

2 (
s8,s951

s

~wi 8 , f i ,s8!F 1

L ~s!G
s8s9

~ f i 8,s9 ,wi !,

~5.7!
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whereL (s) ~channel labelsi ,i 8 are omitted in this definition!
is the matrix with elementsLs8s9

(s)
5( f i 8,s8 ,L f i ,s9) for 1

<s8,s9<s.
We wish to determine the conditions under which t

variational approximation for one of the diagonal eleme
Aii either increases or decreases when an additional b
function is included in the trial function. This information
most easily obtained from the identity

A~s11!2A~s!52
@D ~s!#2

uL ~s!uuL ~s11!u
, ~5.8!

where the channel indexi has been omitted and we hav
defined

D ~s!5U L11 ¯ L1s ~ f 1 ,w!

] ] ]

Ls1 ¯ Lss ~ f s ,w!

Ls11,1 ¯ Ls11,s ~ f s11 ,w!

U . ~5.9!

To cover the cases50 we apply Eq.~5.7! directly to obtain

A~1!2A~0!52~w, f 1!~ f 1 ,L f 1!21~ f 1 ,w!. ~5.10!

Thus the change in going from the Born approximationA(0)

to the first-order approximationA(1) is positive—an upward
jump—if at least one bound state exists and the functionf 1 is
accurate enough to support it, that is if (f 1 ,L f 1) is negative.
Otherwise there is a downward jump. Fors51, Eq. ~5.8! is
verified without difficulty by direct calculation. To treat th
general case@23# it is convenient to transform to a new bas
in which the matrix elements (f s8 ,w) vanish for 1<s8<s.
In this basis we haveA(s)5A(0) for s>2 and

A~s11!2A~s!52~w, f s11!F 1

L ~s11!G
s11,s11

~ f s11 ,w!.

~5.11!

This can be put in the form

A~s11!2A~s!52~w, f s11!
uL ~s!u

uL ~s11!u
~ f s11 ,w!. ~5.12!

Noting that in this systemD (s)5uL (s)u( f s11 ,w), we arrive at
Eq. ~5.8!, a result which remains valid upon transformati
back to the original basis.

Now following the argument in Ref.@8# one notes that
each of the determinants in the denominator of Eq.~5.8!, one
of dimensions and the other dimensions11, may be ex-
pressed as a product of eigenvalues of the correspon
Hamiltonian matrix. From the Hylleraas-Undheim theore
@24# the two sets of eigenvalues satisfy the interlacing pr
erty

E1
~s11!<E1

~s!<E2
~s11!<E2

~s!<¯Es
~s!<Es11

~s11! .
~5.13!

From this property it may be seen that the number of ne
tive eigenvaluesCs11 in the (s11)th approximation is ei-
s
sis

ng

-

a-

therCs11 or Cs . In the first case the sign ofuL (s)uL (s11)u is
negative and in the second case it is positive. SinceCs can-
not be larger thanN, the number of physical bound states, t
number of values ofs for which the right-hand side of Eq
~5.8! is positive cannot exceedN. Furthermore, under the
assumption that the basis functions can be properly chose
assure convergence to the true solution, the number of p
tive values ofA(s11)2A(s) that is encountered ass is in-
creased arbitrarily must be preciselyN. Once N positive
jumps in the zero-energy scattering parameter have been
served one is assured that with further improvement in
trial function A(s) will decrease monotonically. This sharp
ened version of the minimum principle is just the prope
needed in the development of the generalized Levinson th
rem, as discussed in Sec. II.

VI. SUMMARY

Levinson’s theorem for potential scattering is usua
stated in terms of the difference between the phase shi
zero energy and at infinite energy in which case the ques
of an absolute determination of the phase shift does not a
With composite targets, however, scattering at infinite
ergy is not characterized by a single phase shift and whi
version of the theorem has been given that involves the s
tering matrix at infinite energy@25#, a formulation involving
only zero-energy scattering can be useful. The version gi
earlier @6,9#, and extended here to allow for multichann
scattering, removes the ambiguity in multiples ofp that
would otherwise be present through the introduction of
absolute definition of the phase shift that incorporates
effect of the Pauli principle in a relatively simple fashio
This feature was illustrated in the context of nucleo
deuteron scattering in Sec. IV. The theorem can be applie
other nuclear scattering problems provided a reasonably
curate model of the target wave function is available;
eigenphase shifts at zero energy take on discrete rather
continuous values, so that results tend to be rather robus
knowledge of the full scattering wave function is not r
quired.

An application to a two-channel problem~n-p scattering
with tensor forces is the prototype! was described in Sec. III
It led to a relation, for each of the two eigenmodes, betwe
the zero-energy eigenphase shift and the number of bo
states in the corresponding mode, with the contribution
zero-energy bound states properly accounted for. The p
of this relation required application of a particular version
the zero-energy minimum principle, the derivation of whi
was given in Sec. V. Results obtained here may find use
current studies of multichannel scattering involving pha
equivalent potentials that generate different numbers
bound states.
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