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Absolute determination of zero-energy eigenphase shifts: Applications to-p, n-d,
and p-d scattering
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A generalization of Levinson’s theorem, relating the phase shift at zero energy to the number of bound states
of the system, previously formulated to apply to the single-channel multiparticle scattering of a particle by a
neutral systenjL. Rosenberg and L. Spruch, Phys. Revb4 4978(1996)] is further generalized to allow for
multichannel scattering. An application to neutron-proton scattering with tensor forces leads to an extension of
the existing version of Levinson'’s theorem for this system by providing information on each of the eigenphases
at zero energy rather than just their sum. The effect of the Pauli principle on the absolute determination of the
phase shift is illustrated with applications of the method to the scattering of neutrons and protons by deuterons.
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PACS numbd(s): 21.45+v, 03.65.Nk, 03.80+r

I. INTRODUCTION original version of the minimum principle was derivgd a
useful corollary was proved by Ohmuf8], and it is this
Levinson’s theorem relates the number of bound states imersion that was applied in R¢6]. In addition to the mini-
a given partial wave to the zero-energy partial-wave phas&wum principle a knowledge of the energy-dependence of the
shift. There has been a renewal of interest in recent years iBhase shift near threshold, as obtained from effective range
applications of this theorem to nuclear scattering probleméheory, plays a role in determining the effect of a zero-energy
[1]. This has been stimulated in part by the need to establisfesonance on the phase shift.
the compatibility of equivalent potentials—those that give Earlier applications were confined to single-channel
rise to the samé& matrix—with different numbers of bound €lectron-atom scatterin@]. Motivated partly by revived in-
states[2]. The original derivation of the theorefi3] was terest in theorems of the Levinson type we here discuss
restricted to single-channel potential scattering. An extensiofiuclear applications using an extended version of the ap-
to elastic multiparticle scattering, accounting for the effect ofproach of Ref[6]. The manner in which the effects of the
the Pauli principle, was conjectured by Swg#] and has Pauli principle and repulsive Coulomb interactions are ac-
been adopted in the recent literatyfd. Swan’s work was counted for is illustrated by our treatment, in Sec. IV, of
based on the independent-particle model and further analysiyicleon-deuteron scattering. The effect of a tensor force is
is required for it to be applied with complete confidence.discussed in Sec. Il in the context of the neutron-proton
Moreover, with tensor forces present a multichannel treatsystem. The existing version for coupled-channel problems
ment is required, even for scattering at the physical threshielates the sum of the eigenphases to the number of bound
old. This is an issue that arises with the use of supersymmestates{10]. An extended version, derived here, provides in-
ric quantum mechanics to relate phase-equivalent coupledormation on individual eigenphases—this should be helpful,
channel potentials[5]. A closer examination of the for example, in an analysis of equivalent potentials in the
applicability to nuclear systems of theorems of the LevinsorProblem ofn-p scattering with tensor forcgs]. A generali-
type therefore seems warranted. zation of the minimum principle applicable to multichannel
A generalized Levinson theorem, valid for each partialScattering problems has been available for some {ibig,
wave, was given recently for multiparticle single-channelbut not a multichannel extension of Ohmura’s corollggy,
scattering of a particle by a neutral compound tafgétitis @ proof suitable for our present purposes is given in Sec. V.
formulated without dynamical assumptiorisuch as the To make our presentation reasonably self-contained we be-
independent-particle modeand avoids reference to a phase gin, in Sec. I, with a summary of our approach to
shift at infinite energy, nonexistent for scattering by com-Levinson's theorem in the context of the familiar single-
pound targets. The procedure for determining the ZeroChann6| potential scattering problem. The remainder of the
energy phase shift requires information, not necessarily conPaper will focus on new features of the theory.
plete, concerning the target wave function; most
significantly, conc;lusions are reached Without the need t0 || bRELIMINARIES: SCATTERING BY A CENTRAL
solve the scattering problem. The essential feature of the POTENTIAL
method is the use of the minimum principle for the scattering
length, applicable to the wide class of scattering problems Sturm-Liouville theory, usually applied to bound states,
for which the scattering length can be defined. Soon after thbas been extended to zero-energy potential scattgt?iglt
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was shown that the number of nodes in the wave functionbound states and nodes in the zero-energy scattering function
for arbitrary orbital quantum numbéyis equal to the num- deduced earlief12]. As indicated above, the advantage
ber of negative-energy bound states of the s&nikhis re-  gained by this reformulation lies in the fact that it requires a
sult, used in combination with the nodal definition of the nodal count of the free wave functiaf(r) and not the full
phases shift, some information on its threshold behavior, andcattering wave function; it can therefore be applied unam-
the minimum principle for the scattering lendthi] leads to  biguously to the multiparticle scattering problefGee Sec.
Levinson’s theorem. Such an approach is not directly appli{V.)

cable to the multiparticle scattering problem since the rel- A divergence in the approximate scattering length corre-
evant wave function has a complicated and poorly undersponds ton passing from one branch of the cgtcurve to
stood nodal structure. However, it does suggest that nodahe adjacent one lying to its right as the trial function is
properties may still play a role, though less directly, alongimproved. From the fact that the scattering length experi-
with the minimum principle and effective range theory, in encesN jumps in this process we may conclude that the true
applications to a wider class of systems. These ideas, develalue of 7 lies betweerN= and (N+1)7. Since the scat-
oped earlief6], will now be reviewed. It will be done in the tering length has been assumed to be finite in this first ex-
simpler context of potential scattering to provide a suitableample, the relatio’A=a cot  implies that »/# is not an
background for the discussion to follow. integer; it follows thats=Nr.

For definiteness we considemvave scattering by a short- If the scattering length is infinite, corresponding to the
range potential. Generalizations are mentioned briefly belowexistence of as-wave bound state at zero energy in addition
Let us first assume that the scattering length is finite. It theno N negative-energy bound states, the process of minimiza-
follows from effective range theory that the phase sbift a  tion will not terminate afteiN upward jumps and the length
multiple of 7 in the zero-energy limit since cétis infinite.  phase will approachN+ 1)#. From effective range theory
The Kohn variational principle for the scattering length is inwe know that co® vanishes at threshold, so that, according
fact a minimum principle provided that all bound states areto the definition given above, namely,<Oy— 6<w, we
included in the trial function with sufficient accuragy].  have 6= (N+ 1/2)7. This “half-bound state” phenomenon
Ohmura’s extensiofi8] gives a more detailed picture. Thus occurs only fors states—co# diverges at threshold for
suppose there arBl bound states. With the simplest trial higher partial waves(These results remain valid for poten-
function ¢(r) =r obeying the boundary condition at infinity, tials that fall off as least as rapidly ag4/) The above analy-
the variationally determined scattering lengtf?) is just the  sis can be extended to include potentials with a repulsive
Born approximation. One considefis principle) an infinite  Coulomb tail. In this case, using the appropriate version of
sequence of variational approximations for the scatteringffective range theory, along with the fact that the Coulomb
length in which the accuracy of the trial function is steadily penetration factor decays exponentially as the scattering en-
improved. The set of approximatiods®,s=0,1,..., is gen-  ergy is reduced to zero, one sees that half-bound states do not
erated from the variational principle by introducing trial appear. This conclusion is in agreement with that obtained in
functions two earlier, independent derivations, one based on Jost func-

tion theory and the other on a nodal analysis of the wave

fO(N)=g(r)+ > befe(r), 2.2) function[13].
s'=1

with f,(r)~—1 for r—o. The calculated scattering length lll. POTENTIAL SCATTERING WITH TENSOR FORCES

makes a series of upward jumps as the trial function is \ve consider a scattering system defined by two coupled
steadily improved with the addition of more basis functionsequations that may be written in the matrix forif =0,

and, after having made a total Nfjumps, it converges to the \yhere
exact value from above asis increased indefinitely. It is
then convenient to define a monotonically increasing “length

2
phase” by WritingA(S):a cot 77(8)., whereais a chara}cteris- L= —[7+k2—|i(|i+1)/r2 8+ 2_/2‘ Vi, ij=12.
tic length(a fermi, for example, in a nuclear scattering prob- dr h
lem). The phase shift (at each stage of the approximation (3.9

procedurg is defined by requiring that it lie on the same

branch of the cotangent curve gsMore precisely, we im-  \yhjle greater generality is possible, we assume here that the
pose the condition & »— <. To obtain an absolute defi- yotential matrix is local, energy independent, and of short
nition of the length phase, and hence the ph_ase Shlf'F itsel ange(falling off faster than any power af). The potential

we define a reference phas€) as the phase shift associated sypports a finite number of bound states. As is appropriate to
with the free wave functionp(r). Since this function is  the appearance of a tensor force, the two channels have the
nodeless we must have, from the nodal definitiéf?)=0.  same physical threshold, corresponding to enefy

(A modification of this assignment is required when antisym—EﬁZkZ/ZM:Q and the orbital quantum numbers are related
metry is accounted for in the multiparticle case; see Sec. I\py |,=|, + 2. The solutionnormalized to have a finite zero-

for an example. The corresponding length phasé” must  energy limiy has the asymptotic form
then be chosen to lie between zero and his choice for the

absolute definition of the phase shift for potential scattering
is essentially determined by the requirement that it conform For K)~ ro KDY S — 1 (KPK - o, (3.2
to the nodal definition combined with the relation between it (100 = Ly (kn) 8 =y (kDK ), 1=, (3.2
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In the neighborhood of threshold th& matrix is known to 1 mr
have the limiting form[10,14 K=Kk *YKk'*12 where Uy(r,0)~ —3mA /12 Ua(r.0)~| 1395 3A,/r2)
k'*12js diagonal, with diagonal elemerits * Y2 andk'2" 12, (3.6)
andK is analytic ink?. _ _ _

We seek a mu'tichannel genera“zaﬁon Of Levinson’s At thIS Stage we must determ|ne the pOSSIb|e Values Of the
theorem stated in terms of the zero-energy eigenphase ShiwenphasTesi 3’5 ;c/hzr)esh(i)l((lj; 1’/\5“9 first that &ek'K'x be-
of the scattering system. The basic elements of the proceduféves asck Mk~ x near threshold. From the
outlined in Sec. Il for the single-channel case are readilygffective range expansion dfl, along with the relation
adapted to apply to the case at hand. An absolute determindd12=M3; and the threshold behavior of one finds that,
tion of these eigenphases is obtained by application of th&ith M evaluated at threshold,
nodal definition of the phase shifts to particular elements of 4 5
the multichannel wave function in the representation in cot &=k [Myy+2mMyz+ m*Mz,]+O(k).  (3.7)
which the reaction matrix is diagonal, as described below
The role of the scattering length in the single-channel case i
now played by the diagonal elements of a reduced reactioH°"
matrix from which threshold singularities have been re- -3 1
moved. These elements satisfy a minimum princiglerived 0=k Mot mMzo] +O(k ™), 3.8
in Sec. V) and this may be used to trace the evolution of thefrom which we conclude that=—M,/M,,. These rela-

eigenphases from their value in the absence of the potentigl, ¢ along with the identification d&/M,=— (A;) .
to their true values as the trial function is steadily improved.imply’ the threshold behavidi5] 2 v

In this way the value of each zero-energy eigenphase is ex-

pressed in terms of the number of bound states in the corre- k cot 8,= —A1‘1+O(k2). (3.9
sponding eigenchannel. In analogy with the single-channel

treatment, the analysis accounts for the special role of zerqqq,y if A, is finite, cots; becomes infinite at threshold; thus
energy bound states; here one makes use of the energy dgl— 0)=0(mod ). If, on the other handA, is infinite it
pendence of the eigenphases near threshold as determing€fiows that cots,—0 and 8,(0)=m/2(mod ). To con-

from an application of effective-range thedis,16. clude this preliminary analysis we observe that the relation
Following a standard proceduf&0,14] we now diagonal-

ize the (real, symmetrig K matrix with the transformation  cot 5,= — k™M sir? & —k ™ 3M 1,8in 26 + K~ 5M »,c0€ &
matrix (3.10

l;xamination of the off-diagonal elements leads to the rela-

cose —sine indicates that cob, diverges at threshold and therefore
( ) (3.3 8,(0)=0(mod 7).

To obtain more explicit information on the zero-energy
eigenphases we begin by applying the minimum principle, in
The eigenvalues are taix'Kx, the superscripT denoting  the form derived in Sec. V, td,, the zero-energy limit of
transpose. With the potential taken here to be of short range; K,;/k. Sinceu,; has the same asymptotic form as &n
effective range theory may be applied to give the expansiowave single channel wave function, we may adopt the same
[15,16 analysis(described in Sec. )Ithat relates the phase shift to
the number of upward jumps in the scattering length as basis
functions are added to the trial function in the variational

sing cose

Kl=M=—-A"1+ % rok?+ O(k%). (3.4  calculation. A zero-energy resonance, if it exists, must be
treated as a “half-bound” state as in the single-channel case.
Defining
This information suffices to determine the threshold behavior
of the eigenphases and mixture parameter to begtan Uy red1,00= lim uy(r,0)/Aq, (3.11
——K¥iTiA (for brevity we writeA;=A;;) ande—mk2"'1 Ap—e

[17]. With the aid of the relation Kx); =X; tané along ) ) )
with Eg. (3.2), the asymptotic form of the transformed wave We Sée that this function has the asymptotic form
functionu=fx is found to be

, (3.12

-1
ul,res(ryo)w(_ 2
Ui (r, k) = (/K xgiy (kn) —tan gy (kn)]. (3.9 3mir
corresponding to an “almost normalizable” solution, regular
with k fixed and r going to infinity, we see that attheorigin, and is identified as a zero-energy bound state in
(k' "1 cot 8)u;~x; sinkr—1;m/2+ 5;). Note thatuy; anduy, eigenmoc_ie 1. To confirm this identification we _determine _the
have thesamephase shifts; it is then sufficient to examine @symptotic form of the bound-state wave function by making
only the diagonal elements;; andu,, to relateA; and s, in  the replacements taf——i and k—ix in Eg. (3.5. The
a nodal analysis. Using the symhgl to denote the column @symptotic behavior then takes the form;i(r,ix)
matrix with elementsu;; and uy, and settingl;=0 and  ~[r/(i K)li]xjihlj(i kr). With i=1, we take the limits
I,=2 for definiteness, we find the asymptotic forms k—0,X1,— 1, andx,;— — mk? and conclude thatu,(r i «)
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may be identified withu; s the two solutions are regular at tained, valid whether or nd¥i;, the number of bound states

the origin and have the same asymptotic forms. in mode 2 includes one at zero energy. It may be stated as
Following very closely the procedure outlined in Sec. Ii, follows.
we define a length phasg, by writing a cot »,=A; and (i) For1,=0, 6;(0)+ 82(0)=(Ny+ Ny + &) 7, whereN;

introduce an absolute definition of the zero-energy phasés the number of negative-energy bound states in mode 1 and
shift 5,(0) by requiring that & 5,;— 5,(0)<w. We then §=1/2 if there is in addition a zero-energy bound state in
find that 5,(0) itself satisfies a version of Levinson's theo- that mode, while§=0 if there is no such bound state.
rem for coupled-channel scattering. When suitably extended (i) For1;>0, 6,(0)+ ,(0)=(N;+Np) 7, whereN, is
to arbitrary values of; with I,=1,+2, the theorem states the number of bound states in mode 1, including, when
that (i) For1,=0, 8,(0)=(N,+ &) 7, whereN; is the num-  present, a zero-energy bound std#es in the single-channel
ber of negative-energy bound states in mode 1 &nd if version of the theorem, the half-bound state phenomenon
there is in addition a zero-energy bound state in that modeappears only if the state is non-normalizapl€ombining
while ¢=0 if there is no such bound statéi) For |,>0, this latter result with that obtained above 6y(0), we see
application of effective range theory shows that 8otdi-  that 6,(0)=N,7, independent of the existence of zero-
verges at threshold. It follows tha(0)=N,; = whereN, is ~ energy bound states. This result extends that of Ne@@oh
the number of bound states in mode 1, including, wherin that it provides information on each of the zero-energy
present, a zero-energy bound state. phase shifts rather than on the sum alone.

In a similar way we consider the possibility of a zero-
energy resonance appearing in eigenmode 2, associated Wity EFFECT OF ANTISYMMETRIZATION:  n-d AND p-d
the divergence of the paramet&s. We introduce the reso- SCATTERING

nant wave function o
It was shown earlier, in the context of electron-atom scat-

Uz red1,0)= lim uy(r,0)/A; (3.13  tering[9], how the effect of the Pauli principle can be ac-
A= counted for in the absolute determination of the zero-energy
phase shift. For all but the lightest atoms, phase shifts were
determined with the use of Hartree-Fock wave functions to
0 represent the target. Significantly, the procedure does not
uzlre;r,0)~( —3/r2>' (3.19 depend on a knowledge of the structure of the true scattering
wave function. While practical difficulties arise due to the

This function may be identified with a zero-energy boundMore complicated nature of the interactions, as well as
state in eigenmode 2. Thus, referring to EG.5 with reduced-mass effects, the same procedure is applicable, in
i =2, we again set tag— —i and evaluate®u,(r,i x) in the principle, to nuclear scattering problems. As an illustration,

limit x— 0. We find that it has the same asymptotic form asWe consider the zero-energy .scattering.of neutrons and pro-
Up edr,0) and since the two solutions are regular at the oriions by deuterons. As our main focus will be on the effect of

gin their equality is confirmed. antisymmetrization, we simplify the discussion by assuming

We now consider an application of the minimum principle SWave scattering with central forces. _ _
to the zero-energy limit of —K,,/kS=—[tans, sire In generalizing the treatment of potential scattering out-

+tan 8, co s]/k5, which is evaluated asm?A,+A,, and is lined in Sec. Il the wave functios appearing in Eq(2.1),
expressed, in terms of a “length phasej, asa® cot 7,. anq representing the Born approximation, is replaced by an
Noting that the zero-energy limit off,(r,k) has the antisymmetrized product of the deuteron wave function

asymptotic form ¥(r,3)—taken in some approximation—and the zero-energy
free-particle wave function describing the motion of the in-
—mA; cident projectile relative to the target. We denote the Born
fa(r.00~{ 1315 3(M2A; + A2 (3.19  wave function ash(r,3,q), whereq is the projectile-target
separation. Following the procedure outlined previolisly
we choose a trial function regular at the origin and having aan effective single-particle wave functidf(q) is obtained
similar behavior at infinity, but with the parameteks and by projectinge(r,3,q) onto the target functiog(r,3) and a
A, replaced by trial values. As the number of terms in thereference phase shi#? is determined from a nodal analysis
trial function is increased, upward jumpsan cot 7, appear  of F(qQ). In contrast to the potential scattering problem,
each time a bound state enters, whether in mode 1 or mode @here %) is determined to be zero, nodes may appear in the
[f,(r,k) is a mixture of modes, even at zero enefgyor  function F(q). (In some simplified independent-particle
A;— we see that the wave functiofy,/(mA;) has the models of the scattering process, the number of nodes in
same asymptotic form as, s, @s shown in Eq3.12. This  F(q) may be related to the number of composite bound
corresponds to the appearance of a zero-endmpn-  states excluded by the Pauli princighd. This may be help-
normalizablé bound state in mode 1. Fé,— >~ we see that ful in forming a physical interpretation but it should be em-
f,/A, has the same asymptotic form as,.., as shown in phasized that the version of the generalized Levinson theo-
Eg. (3.14. This corresponds to the appearance of a zerorem described here does not depend on the validity of such a
energy(normalizableé bound state in mode 2. model) It is shown below that in the quartet state, for both
An absolute definition of the sum of zero-energy eigen-n-d andp-d scattering, a single node appears, so #2tis
phase shifts follows from the condition <07,—[§1(0) set equal tar. For doublet scattering on the other haRdq)
+ 8,(0)]< . A version of Levinson's theorem is then ob- is found to be nodeless, again for bathd andp-d scatter-

with asymptotic form



PRC 58 ABSOLUTE DETERMINATION OF ZERO-ENERG . .. 1389

ing. With ¢(r,3,q) as trial function a Born approximation aF (D)
A® s determined and a length phag®’ is defined, modulo
, by writing A(®=a cot 9. To preserve the condition 0 100

< y— 6<r at each stage of the variational construction we
fix 79 to lie betweens and 2r for quartet scattering and
between zero andr for doublet scattering. The minimum q (£m)
principle is then used formally, in the manner described ear- ’
lier in Sec. Il, to follow the evolution of the length phase—
and with it the zero-energy phase shift—as the accuracy of _i4
the trial function is increased through the introduction of an
increasing number of basis functions. Since only one com-
posite doublet bound state exists, and no quartet states, the
zero-energy phase shift is determined, by this generalized
Levinson theorem, to be for both doublet and quartet scat-  FIG. 1. Plot of the effective single-particle wave function for
tering of neutrons and protons by deuterdb8]. proton-deuteron scattering in the quartet state showing a single
To illustrate the nodal analysis leading to the determinanode arising from the antisymmetrization of the zero-energy Born
tion of the reference phase we first consided quartet scat- wave function. This implies a value af for the reference phase
tering. Let yq represent a normalized quartet spin functionshift 5.
with a particular (unspecified projection; it is unchanged
when acted on by the interchange operé®gs. The zero- This form satisfies the condition stated above Fdig) to
energy Born wave function has the forfwith particle 1 the have a single node. It is evidently positive. Moreovergat
incident neutron and particle 2 the bound neutron =0 the functiony(rqi3) in Eq. (4.3 exceedsy(r,3) from
which it follows thatG(0) exceeds unity, the value of the
d(r23,0) = (1= P ¢h(r23) xo=[(r23) — ¢(ria) Ixq- normalization integral.
(4.1 A similar procedure may now be followed for the doublet
case. We have

50

-50

-150

(It is more convenient here not to remove a factay ftbm
:ir;envivsave function. The effective single-particle wave func- B(r3,0q)=(1—P1) ¢(r23)X(DS)’ (4.6)
where)((DS) is a doublet spin function symmetric in the spins

F(q)= f A Q29 b(r25,0)=1—G(q), (42  of particles 2 and 3. The effective single-particle wave func-

tion, obtained by projecting the Born wave function onto
S

. . . (S i ; (S (S)
where, withy(r,5) taken to be normalized to unity, we have #(r2dxp” . is determined, using the relatiop,”"P1oxp
=-—1/2, to be

1 )
G(Q):Zﬁf 1dpfo drogr 5p(ro (rie), (4.3 F(g)=1+ 1 &(0) @7
_ a)=1+3 G(q). .

with r13=[(r,392)?>+q%>—qr,sp]*2 Given a reasonably ac-

curate deuteron wave functiof(q) can readily be deter- This function is seen to be nodeless provided only that the
mined. We say “reasonably accurate” since only the numbefleuteron wave function is nodeless, a property expected to
of nodes inF(q), rather than its detailed form, is required. A hold under very general conditiofi20].

sufficient, though not necessary, condition Fqiq) to have a An application to proton-deuteron scattering is compli-
single node is thatG(q) decrease monotonically to zero, cate_d somewhat b_y the nged to include the effect of th.e re-
with G(0)>1. We have verified this property under the as_pu]swe (?oulomb interaction on the Born wave function.
sumption that the deuteron wave function can be represented/ith particle 1 the incident proton and particle 2 the bound
in the relevant region of bounded interparticle separationg?roton we introduce the zero-energy Coulomb wave function

by a sum of Gaussian functions

E(a)=(R/a)*,[2(a/R)¥], 4.8
n
W(r)=> ciexp— a;r?) (4.4  WhereR=(3%%2Me?) andl,(x) is the modified cylindrical
i=1 Bessel function of order unity. The functide(q) is node-

less, goes to unity at the origin and diverges asymptotically.

with positive coefficientsc;. A three-term function of this  The Born wave function, for the quartet state, is expressed as
form was introduced some time a@d9]. The integrals in

Eq. (4.3) may then be performed analytically giving B(r23,9)=(1-P1)¥(rnE(Q)xq, (4.9

_ d the effective single-particle function is
G(q)=(4m)%? cici(aj+4a;) 32 an
(q)=(4m) EI ; i ](a| aJ)

5 4aia]- 2
ex Cli+'441j q '

1 )
F(q>=E<q>—2wf_ldpf0 drad 3a0/(r29 ¥(r 19 E(Q'),

49 (4.10
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where A trial function f;; ; is introduced, vanishing at the origin as
) ) does the true function, and having the same asymptotic form

12_ 3r_23) (9 4.19) but with A;; replaced by a trial matrid;; ;. A variational

4 2 ' identity of the type derived by Kato for potential scattering

[21] is readily derived in the matrix form
Even with the deuteron function taken as a sum of Gaussians

we are unable to evaluate the integral in B410 analyti- A=A+ (Fi L), (5.3

cally. A numerical integration was performed with the vhoTE

Christian-Gammel wave functiofil9]. The result obtained . '

for gF(q) is plotted in Fig. 1 and shows the single node thatWhere the scalar product is defined as

indicates a value ofr for the reference phas&®. N
For doubletp-d scattering, taking into account the over- o — f“ B B

lap of doublet spin functions, we have (37, bi) 121 0 3jir (Nbji(rdr.

3
+Z qrosp.

(5.9

1 1 o . L " . . .
Fla)=E(a)+5 ZWJ’ dpf droaf 5ab(r 29) (1 1) E(Q’) The identity is verified by using an integration by parts and
-1 0 applying the wave equation and boundary conditions. A
(4.12  variational approximation is obtained by replacing the exact

with the deuteron wave function assumed to be nodeless th{%?;vzungxgz f;;\gftm(nrf)i 'g@)\%; tt(;'3';&niﬂé%n;ghté;)n'ﬂ;v'th
it .

function is clearly nodeless, from which we conclude that the In an extension of the procedure outlined in Sec. II, we

reference phase is zero. consider a sequence of variational calculations in which trial
V. THE MINIMUM PRINGIPLE functionsf; ;, now labeled ag® to indicate the number of
' linear parameters they contain, are chosen in the form

Some time ago, a corollary to the minimum principle for

the scattering lengtfi7] was derived 8] which proved to be ) s
useful in the derivation[6] of a generalized version of fIP(r)= ey (r) + > bjisfiie(n. (5.9
Levinson's theorem for single-channel scattering. The sharp- s'=1

ened version of the minimum principle obtained by Ohmura ) . o

states that when the system hasound states the variation- Here ¢(r) andfg (r) are matrix functions vanishing at the
ally determined scattering length increases in value preciselgigin and beha_vmg at |nf|_n|§y in a manner CO!’ISIStent.WIth
N times as the number of adjustable linear parameters in thgd: (5.2. In particular,b;; ; is identified as the trial reaction
trial function is increased, and thereafter decreases mondratrix elementA;; ;. The trial functionf®)(r) is similarly
tonically with further improvement in the trial function. Here constructed, with the matrix parametéxs replaced byb,; .
we extend this result to apply to multichannel scatteringThe variational approximation for th&matrix obtained with
problems, such as that considered earlier in Sec. lIl. It will bethis set of trial functions is denoted a$%. Its form is sim-
clear from the derivation that the result applies to arbitraryplified by application of the identity

partial waves, and may also be extended to allow for long-

range polarization forces as well as repulsive Coulomb inter- bir 1+ (i, LEi D=(Lebi/ i 1), (5.6)
actions (p-d scattering, for exampje The minimum prin-

piple is a variant of the Rayleigh-Ritz principle, 'widlely used obtained[as in the derivation of Eq5.3)] by integration by
in bound-state calculations. The present application of th%arts and use of the boundary conditions. §6¢ 1 the func-

minimum principle is of a formal nature—no numerical cal- . .
. . . ._tions f¢, are assumed to fall off fast enough for the relation
culation need be performed and a particular choice of varia

tional basis need not be specified. (¢i/ LT ¢)=(Ldi,T; &) to hold, without the appearance
The minimum principle will be formulated in terms of a of surface terms. Fos=1 andl; =0, f;; (r)~—1 asymp-

reduced zero-energy reaction matrix element defined as totically. To QHOW for the appllcat_nllty of R_a1)_/l_e|gh-R|tz
methods we insert a cutoff factor in the definition igf

Avi=—lim k=Gl DK, (5.1) which is ultimately removed, this justified by a demonstra-
K—0 tion of continuity in the limiting procedurg7]. Now with all
basis functions of the bound-state type we may replace the

We suppose that the scattering problem has been reducedltoear parameterb;; ¢ by b; ¢/, with no reference to an exit
one definedin terms of a real, symmetric effective potential channel; a similar replacement is made ir. With these
matrix V;;) by a set ofn coupled radial equations given in parameters determined variationally, and with the introduc-
matrix form asL f;=0, whereL is given by Eq.3.1) andf;  tjon of the notationL ¢;(r)=w;(r) and Ai(9i):(¢i' L),
is a column matrix corresponding to incident chanindihe  he yariational approximation for thematrix takes the form
asymptotic form of the solutiofassuming a short-range po- [22]
tential for simplicity is obtained by taking the zero-energy
limit of Eqg. (3.2), leading to s

1
r|i+l (le_l)” Al(’sl):Al((’)l)_ /Z . (Wi’lfi,s’)|:_|_(s):| (fi’,s”vwi)!
.. ~—_ L — .. s ,S = rgn
fJ|(r) (2||+1)” 5“ rTj AJI . (52) s's (57)
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whereL® (channel labels,i’ are omitted in this definition  therC¢+1 orCs. In the first case the sign of 9L is
is the matrix with elementg_(;)s,,:(fi,vs, Lf; &) for 1 negative and in the second case it is positive. Sidgean-
<sg’ §'<s, not be larger thai, the number of physical bound states, the

We wish to determine the conditions under which thenumber of values o$ for which the right-hand side of Eq.
variational approximation for one of the diagonal elements5.8) is positive cannot exceel. Furthermore, under the
A, either increases or decreases when an additional baskssumption that the basis functions can be properly chosen to
function is included in the trial function. This information is assure convergence to the true solution, the number of posi-
most easily obtained from the identity tive values of AST™1—A® that is encountered asis in-
creased arbitrarily must be precisely. Once N positive
B [D¥]? 58 jumps in the zero-energy scattering parameter have been ob-
[ILO|LETD) (58 Served one is assured that with further improvement in the

o . trial function A® will decrease monotonically. This sharp-
where the channel indek has been omitted and we have ened version of the minimum principle is just the property

AT _ A8 =

defined needed in the development of the generalized Levinson theo-
rem, as discussed in Sec. Il.
Lig 0 Lis (fy,w)
DO=| ' ' . (5.9
Lg - L (f,W) VI. SUMMARY
Ler11 = Lstis (fsi1,W) Levinson's theorem for potential scattering is usually

stated in terms of the difference between the phase shift at
To cover the case=0 we apply Eq(5.7) directly to obtain  zero energy and at infinite energy in which case the question
_ of an absolute determination of the phase shift does not arise.
AP =A== (w,fy)(fy,LE) M (fw). (510 With composite targets, however, scattering at infinite en-
ergy is not characterized by a single phase shift and while a
version of the theorem has been given that involves the scat-
tering matrix at infinite energf25], a formulation involving
only zero-energy scattering can be useful. The version given
earlier [6,9], and extended here to allow for multichannel
scattering, removes the ambiguity in multiples of that
would otherwise be present through the introduction of an
absolute definition of the phase shift that incorporates the
effect of the Pauli principle in a relatively simple fashion.
This feature was illustrated in the context of nucleon-
deuteron scattering in Sec. IV. The theorem can be applied to
(fsr1,W). other nuclear scattering problems provided a reasonably ac-
s+1s+1 curate model of the target wave function is available; the
(5.11 eigenphase shifts at zero energy take on discrete rather than
continuous values, so that results tend to be rather robust. A
knowledge of the full scattering wave function is not re-
L) quired.
ACTU—A® = —(w,f ) L) (fsy1,W). (5.12 An application to a two-channel problefn-p scattering
with tensor forces is the prototypwas described in Sec. lll.
Noting that in this syster®® = |L®)|(f.,,,w), we arrive at |t 1éd to a relation, for each of the two eigenmodes, between
Eq. (5.8), a result which remains valid upon transformation the zero-energy eigenphase shift and the number of bound
back to the original basis. states in the corresponding mode, with the contribution of
Now following the argument in Refi8] one notes that Z€ro-energy bound states properly accounted for. The proof
each of the determinants in the denominator of Gcg), one  Of this relation required application of a particular version of
of dimensions and the other dimensios+1, may be ex- the zero-energy minimum principle, the derivation of which
pressed as a product of eigenvalues of the correspondirf§@s given in Sec. V. Results obtained here may find use in
Hamiltonian matrix. From the Hylleraas-Undheim theoremcurrent studies of multichannel scattering involving phase

[24] the two sets of eigenvalues satisfy the interlacing prop_equivalent potentials that generate different numbers of
erty bound states.

Thus the change in going from the Born approximatidf

to the first-order approximatioA*) is positive—an upward
jump—if at least one bound state exists and the functiois
accurate enough to support it, that is f (Lf,) is negative.
Otherwise there is a downward jump. For 1, Eq.(5.8) is
verified without difficulty by direct calculation. To treat the
general casg23] it is convenient to transform to a new basis
in which the matrix elementsf{, ,w) vanish for I=s’'<s.

In this basis we havA(®=A© for s=2 and

AT A= —(w,fg, )

L&D

This can be put in the form

s+1 S s+1 S S s+1
ESTV<EP<ES V<EP< - EP<ESHY.
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