Identification of 161Sm and 165Gd

S. Ichikawa,* K. Tsukada, I. Nishinaka, Y. Hatsukawa, H. Iimura, K. Hata, and Y. Nagame *Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan*

A. Osa

Japan Atomic Energy Research Institute, Takasaki 370-1292, Japan

M. Asai, Y. Kojima, T. Hirose, M. Shibata, and K. Kawade *Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603, Japan*

Y. Oura

Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0364, Japan (Received 17 March 1998)

Two new neutron-rich rare-earth isotopes ¹⁶¹Sm and ¹⁶⁵Gd produced in the proton-induced fission of ²³⁸U were identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The half-lives were determined to be 4.8 ± 0.8 s for 161 Sm and 10.3 ± 1.6 s for 165 Gd. The assignment of these isotopes was based upon the observation of Eu and Tb $K \times$ rays in the β -gated x/y -ray spectra measured for the separated mass fraction 177 and 181 as monoxide ions $^{161}Sm^{16}O^+$ and $^{165}Gd^{16}O^+$, respectively. $[$ S0556-2813(98)06308-0]

PACS number(s): $27.70.+q$, $21.10.Tg$, $23.20.Lv$, $25.85.Ge$

Nuclear properties such as half-lives and neutron binding energies of neutron-rich rare earth isotopes are particularly important in astrophysical calculations involving the rapid neutron capture process $[1]$ as well as in the field of nuclear structure and reactor technology $[2]$. These isotopes have mainly been produced in the thermal neutron-induced fission of ²³⁵U [3,4], the spontaneous fission of ²⁵²Cf [5,6], and the multinucleon transfer reactions with heavy ions $[7,8]$. On the other hand, relatively high fission yields in the fragment mass region around $A \sim 165$ where it is predicted that there would be strongly deformed nuclei with $Z \approx 65$ and $N \sim 100$ are expected via the proton-induced fission of actinides.

To study decay properties of neutron-rich rare earth isotopes with mass number beyond $A=160$ using protoninduced fission of actinides, we have developed the gas-jet coupled thermal ion source system in the JAERI (Japan Atomic Energy Research Institute)-ISOL (Isotope Separator On-Line) [9]. In the previous work, the new isotope $166Tb$ produced in the proton-induced fission of 238U was successfully identified with this unique system, where ¹⁶⁶Tb was mass separated as a monoxide ion $^{166}Tb^{16}O^+$ [10]. In this paper, we report on the identification of the further two isotopes 161 Sm and 165 Gd with this system, and the measured half-life values are compared with those from the predictions.

A stack of eight 238U targets was bombarded with 20 MeV proton beams with the intensity of about 1 μ A at the JAERI tandem accelerator facility. Each target (4 mg/cm^2) thick) was electrodeposited on an aluminum-foil backing and located inside the target chamber. Fission products emitted isotropically from the targets were thermalized in argon gas loaded with NaCl aerosols, then transported into the ISOL through a capillary. The transported nuclides were ionized in the thermal ion source, and mass separated electromagnetically. A mass resolution of about 900 $(M/\Delta M)$ around A \approx 100 was achieved in the present system. The separation efficiency of the whole system was a few percent for the isotopes of La, Pr, Pm, and Eu, and the total transit time between production and detection was evaluated to be about 3 s. The detailed performance of the ISOL and the gas-jet coupled thermal ion source is described elsewhere [9].

The mass-separated products were collected on an aluminized Mylar tape and transported to the detection port at prescribed time intervals. The detection port was equipped with two plastic scintillators, 30 mm \times 30 mm \times 1 mm, for the measurement of β rays through the Mylar window and two Ge detectors set behind the scintillators; one was a planar detector with 5 cm in diameter and 1 cm thick having an energy resolution of 0.61 keV full width at half maximum (FWHM) at 122 keV and the other was a coaxial detector with 28% in relative efficiency and 1.8 keV FWHM at 1.33 MeV. β - γ and γ - γ coincidence data were taken with these four detectors and recorded event by event together with time information.

 ^{161}Sm . As regards the $A=161$ isobaric fraction, the decay properties of 161 Eu (*T*_{1/2}=27 s) [3] and ¹⁶¹Gd (*T*_{1/2}=3.6 min) [11] had been studied prior to this work. The fission yield for 161 Sm was estimated to be much less than those for 161 Eu and 161 Gd by extrapolating the mass yield curve [9] and the charge distribution $[12]$ for the fission of 15 MeV $p + {}^{238}U: \sigma_f (161\text{Sm}) \sim 15 \mu \text{b}, \sigma_f (161\text{Eu}) \sim 80 \mu \text{b}$ and σ_f (¹⁶¹Gd) ~60 μ b. Thus, intense x and γ rays resulting from the β^- decay of ¹⁶¹Eu in the *A*=161 fraction would prevent observation of those from 161Sm. In the previous study, it was indicated that the monoxide-to-elemental ion beam intensity ratio (MO^+/M^+) of europium was several orders of magnitude lower than that of samarium and gadolinium in the present thermal ion source [13]. The $A=177$ *Electronic address: sichi@popsvr.tokai.jaeri.go.jp fraction containing $161Sm^{16}O^+$ was mass separated to iden-

FIG. 1. β -coincident x/ γ -ray spectrum measured with a 28% coaxial Ge detector for the $A=177$ fraction. The inset shows the low-energy portion of the x/y -ray spectrum.

tify the new isotope 161 Sm. To enhance the chemical reaction of $Sm+O \rightarrow SmO$ in the ion source, a small amount of oxygen gas was injected into the argon gas-jet stream. Each collection and counting period was 16 s.

Figure 1 shows a β -coincident x/ γ -ray spectrum together with the low-energy portion of the spectrum for the *A* = 177 fraction. No clear Gd *K* x rays from the β ⁻ decay of ¹⁶¹Eu are observed, while the Tb *K* x rays and the γ rays with energies of 56.3 and 102.3 keV associated with the β ⁻ decay of 161Gd are seen. The new isotope 161Sm was identified by observing the *K* x rays of Eu in the $A = 177$ fraction, as shown in the inset of Fig. 1. The γ ray of 263.7 keV coincident with the Eu *K* x rays is associated with the β ⁻ decay of ¹⁶¹Sm. The intensities of the Eu K_a x and 263.7 keV γ rays decayed with half-lives of 5.0 ± 0.6 s, 4.8 ± 1.0 s,

FIG. 2. Decay curves of the Eu K_{α} x-ray and the 263.7 keV γ -ray peaks obtained at $A=177$ fraction. These x and γ rays were measured with two Ge detectors, planar and 28% coaxial.

FIG. 3. β -coincident x/ γ -ray spectrum measured with a planar type Ge detector for the $A=181$ fraction.

and 4.4 ± 0.8 s, respectively as shown in Fig. 2. The half-life of 161 Sm is determined to be 4.8 ± 0.8 s as an average of each value with systematic errors.

 ^{165}Gd . For the $A=165$ isobaric chain the known neutron-rich isotopes are ¹⁶⁵Td ($T_{1/2}$ = 2.1 min) [14] and ^{165*m*,*g*}Dy ($T_{1/2}$ =1.3 min, 2.4 h) [15]. The fission yields are estimated to be: σ_f (¹⁶⁵Gd)~7 μ b, σ_f (¹⁶⁵Tb)~15 μ b and σ_f (^{165*m*}Dy) ~ 4 μ b. The new isotope ¹⁶⁵Gd was identified at the $A = 181$ fraction corresponding to its monoxide. The cycle time for sample collection and measurement were 32 s.

Figure 3 shows a β -coincident x/ γ -ray spectrum for the $A=181$ (¹⁶⁵Gd¹⁶O⁺) fraction. The Tb *K* x rays associated with the β^- decay of ¹⁶⁵Gd are clearly observed. The x ray peaks arisen from the mass-separated $^{144}Ba^{37}Cl^{+}$ ions are also seen. The ingredient Cl ions would come from NaCl contained in the aerosol of the gas-jet system. The La *K* x rays and the γ rays with energies of 103.7, 156.1, and 172.8 keV (not shown) were assigned to those from the β^- decay of 144 Ba ($T_{1/2}$ =11.5 s).

The intensity of the Tb $K_{\beta1+\beta3}$ x ray peak is about two times larger than that of the expected x-ray peak. It is re-

FIG. 4. Decay curves of the Tb $K_{\alpha,\beta}$ x-ray peaks from the β ⁻ decay of 165 Gd.

Isotope	Experimental $Half-life(s)$	Calculations			
		$Half-life(s)$	Gross theory (Refs. [25] and [18]) Q_{β} (MeV)	$Half-lives(s)$	pn-QRPA $(Ref. [24])$ Q_{β} (MeV)
161 Sm	4.8 ± 0.8	9.35	4.572 (Ref. [19])	12.6	4.98 (Ref. $[22]$)
		6.72	4.80 (Ref. [23])		
		5.821	4.90 (Ref. $[20]$)		
		4.156	5.15 (Ref. $[21]$)		
165 Gd	10.3 ± 1.6	34.3	3.76 (Ref. $[19]$)	18.4	4.14 (Ref. [22])
		27.97	3.83 (Ref. $[21]$)		
		16.0	4.19 (Ref. $[23]$)		
		12.33	4.35 (Ref. $[20]$)		

TABLE I. Half-lives of β decay of ¹⁶¹Sm and ¹⁶⁵Gd.

ported that there is the γ ray resulting from the β^- decay of $165Tb$ (2.1 min) with the energy of 50.4 keV [14] which is close to that of the Tb $K_{\beta1+\beta3}$ x ray (50.384 and 50.228) keV). As shown in Fig. 3, however, no clear Dy $K \times$ rays associated with the β ⁻ decay of ¹⁶⁵Tb are observed, and it was found that the intensity ratio of the Dy $K_{\alpha 1 + \alpha 2}$ x ray and 50.4 keV γ ray with the decay of ¹⁶⁵Tb was about 2 from the present β -coincident x/ γ -ray spectrum observed at the *A* $=165$ fraction with the collection-counting cycle time of 200 s. And the x/ γ -ray peak (Tb $K_{\beta1+\beta3}$ x+ γ ray in Fig. 3) of 50.3 keV decays with the half-life of 9.3 ± 2.3 s as depicted in Fig. 4. From these results, we interpret that the contribution from the 50.4 keV γ -ray with the β^- decay of ¹⁶⁵Tb would be negligible amounts in the 50.3 keV x/γ -ray peak. Furthermore, in the energy region around 50 keV, no γ ray in the β^- decay of ¹⁴⁴Ba was reported [16]. Thus, it is concluded that the 50.3 keV x/γ -ray peak consists of those from the Tb $K_{\beta1+\beta3}$ x ray and the γ ray with the β^- decay of ¹⁶⁵Gd. From the expected x-ray intensity ratios for Tb [17], the relative intensities of the Tb $K_{\alpha 1 + \alpha 2}$, $K_{\beta 1 + \beta 3}$ x-rays and a related γ ray are estimated to be 1.56, 0.30, and 0.26(5), respectively.

Figure 4 shows the decay curves of the β -coincident Tb $K_{\alpha1+\alpha2}$ x rays and Tb $K_{\beta1+\beta3}$ +50.3 keV γ ray counts. The respective half-lives were measured to be 11.2 ± 2.3 s and 9.3 ± 2.3 s. The average of these two gives the half-life of the β decay of ¹⁶⁵Gd, 10.3 ± 1.6 s.

In Table I, the present half-life values are compared with the theoretical predictions calculated by Tachibana *et al.* [18,25] using the gross theory with the selected Q_β values $[19,23]$ and by Staudt *et al.* $[24]$ with the proton-neutron quasiparticle random-phase approximation (pn-QRPA). It is found that the calculation with the gross theory predicts the reasonable half-life values within a factor of 1.2 when the Q_β values by Jänecke and Masson [20] are used, while the pn-QRPA reproduces the experimental values within a factor of 1.8–2.6 with the Q_β values of Möller and Nix [22]. Although the calculated half-life value depends considerably on the input data of the Q_β values as shown in Table I and as discussed in our previous study on the half-life of $166Tb$ [10], it should be noted that there are a number of factors associated with the β -decay strength function that can affect the accuracy of these calculations. To further the understanding of the β decay half-life systematics of nuclides far from the β stability line, experimental determination of Q_β values is needed.

We would like to express gratitude to Dr. T. Tachibana for calculations of the half-life of β decay. We also thank the JAERI tandem crew for supplying intense and stable beams for the experiments. This work was carried out along a line of the JAERI-University Collaboration Research Project.

- [1] F.-K. Thielemann, J.-P. Bitouzet, K.-L. Kratz, P. Möller, J. J. Cowan, and J. W. Truran, Phys. Rep. 227, 269 (1993).
- [2] *Nuclear Decay Modes*, edited by D. M. Poenaru (Institute of Physics, Bristol, 1996), p. 1.
- [3] H. Mach, A. Piotrowski, R. L. Gill, R. F. Casten, and D. D. Warner, Phys. Rev. Lett. **56**, 1547 (1986).
- [4] K. Okano, A. Taniguchi, S. Yamada, T. Sharshar, M. Shibata, and K. Yamauchi, Z. Phys. A 351, 243 (1995).
- [5] R. C. Greenwood, R. A. Anderl, J. D. Cole, and H. Willmes, Phys. Rev. C 35, 1965 (1987).
- [6] R. C. Greenwood, M. A. Lee, and R. A. Anderl, Radiochim. Acta 43, 129 (1988).
- [7] R. M. Chasteler, J. M. Nitschke, R. B. Firestone, K. S. Vierinen, and P. A. Wilmarth, Phys. Rev. C 42, R1171 (1990).
- [8] K. Becker, F. Meissner, W.-D. Schmidt-ott, U. Bosch, V. Kunze, and H. Salewski, Nucl. Phys. **A522**, 557 (1991).
- [9] S. Ichikawa, M. Asai, K. Tsukada, A. Osa, T. Ikuta, N. Shinohara, H. Iimura, Y. Nagame, Y. Hatsukawa, I. Nishinaka, K. Kawade, H. Yamamoto, M. Shibata, and Y. Kojima, Nucl. Instrum. Methods Phys. Res. A 374, 330 (1996).
- [10] M. Asai, K. Tsukada, S. Ichikawa, A. Osa, Y. Kojima, H. Yamamoto, K. Kawade, N. Shinohara, Y. Nagame, H. Iimura, Y. Hatsukawa, and I. Nishinaka, J. Phys. Soc. Jpn. **65**, 1135 $(1996).$
- [11] M. Gasser, J. Kern, and O. Huber, Nucl. Phys. A250, 106 $(1975).$
- [12] H. Umezawa, J. Inorg. Nucl. Chem. **33**, 2731 (1971).
- [13] S. Ichikawa, T. Sekine, H. Iimura, M. Oshima, and N. Taka-

hashi, Nucl. Instrum. Methods Phys. Res. A 274, 259 (1989).

- [14] R. C. Greenwood, R. J. Gehrke, J. D. Baker, D. H. Miekrantz, and C. W. Reich, Phys. Rev. C 27, 1266 (1983).
- [15] G. Mauron, J. Kern, and O. Huber, Nucl. Phys. A181, 489 $(1972).$
- [16] C. Chung, W. B. Walters, R. Gill, M. Shmid, R. E. Chrien, and D. S. Brenner, Phys. Rev. C **26**, 1198 (1982).
- [17] *Table of Isotopes*, 8th ed., edited by R. B. Firestone and V. S. Shirley (Wiley, New York, 1996).
- $[18]$ T. Tachibana (private communication).
- [19] P. Möller, J. R. Nix, D. W. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
- [20] J. Jänecke and P. J. Masson, At. Data Nucl. Data Tables 39, 265 (1988).
- [21] Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).
- [22] P. Möller and J. R. Nix, At. Data Nucl. Data Tables 26, 165 $(1981).$
- [23] G. Audi and A. H. Wapstra, Nucl. Phys. **A595**, 409 (1995).
- [24] A. Staudt, E. Bender, K. Muto, and H. V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44, 79 (1990).
- [25] T. Tachibana and M. Yamada, in *Proceedings of International Conference on Exotic Nuclei and Atomic Masses*, edited by M. de Saint Simon and O. Sorlin (Editions Frontieres, Paris, 1995), p. 763.