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Deviation of the multiplicity distributiorP in a small bin from its Poisson counterpagt is studied within
the Ginzburg-Landau description for a second-order quark-hadron phase transition. The dynamicdl,factor
=P,/p, for the distribution and the ratid ,=d,/d; are defined, and novel scaling behaviors betwegrmre
found which can be used to detect the formation of quark-gluon plasma. The stdgyaotiD, is also very
interesting for other multiparticle production processes without a phase tranf8@556-281®8)05808-7

PACS numbg(s): 25.75.Dw, 12.38.Mh, 05.70.Fh, 24.85

The multiplicity distribution is one of the most important tuations in photon production at the threshold of lasing,
and most easily accessible experimental quantities in highwhich shows a similar type of phase transitig8], is al-
energy leptonic and hadronic collisions. From the well-ready in its mature age, although the theory and experiment
known KNO scaling and its violatiofi,2] to the novel scal- for a quark-hadron phase transition are still in their infancy.
ing form[3] investigated very recently the distribution shows As explained in[7—12) the Ginzburg-Landau model, which
a lot about the dynamical features for the processes. Locdlas been used in describing superconducting transitions and
multiplicity distributions have been studied for many yearsother macroscopic second-order phase transitions, can also
in terms of a variety of phase space variallés and sub- be used to describe the multiplicity fluctuations in both
stantial progress has been made recently in deriving analytsecond- and first-order phase transitions| 18] multiplicity
cal QCD predictions for those observab]&$ Based on as- distributions are studied for both first- and second-order
suming the validity of the local parton-hadron duality phase transitions. The authors showed that for a second-order
hypothesis, those analytical predictions for the parton levephase transition the probability, of finding g hadrons in
can be compared to experimental data. A global and locahe small bin under investigation decreases monotonically
study of multiplicity fluctuationg[6] shows, however, that with the increase of regardless of the value of the bin width
the theoretical predictions have a significant deviation fromand that for a first-order phase transitiBy is a decreasing
experimental data. The significant deviation of theoreticafunction ofq for a small bin width whereas the shape of the
predictions from experimental data indicates that we knowdistribution changes with the increase of the bin width. Thus
only a little about multiparticle production processes sincethe shape of the distribution was claimed as a tool for finding
the hadronization process in soft QCD is far from being un-the order of the phase transition.
derstood. In this paper we first show that the criterion[it?] based

In this paper we try to investigate the multiplicity distri- on the shape of the multiplicity distribution for the order of
bution in some small two-dimensional kinetic regiwhich  the phase transition is equivocal. This is easily seen once one
can be the rapidity and transverse momentum or azimuthaonsiders the trivial case without dynamical fluctuations. For
angle, for examplein high-energy heavy-ion collision pro- such a case, the multiplicity distributiqw, is a Poisson one:
cesses. In such collisions a new matter form, quark-gluon o
plasma(QGP, may be formed which subsequently cools and — & —
decays into the experimentally observed hadrons; thus the Pq(s)= ql exp—s) , @)
system undergoes a quark-hadron phase transition. The had-
rons proplu;:ed In §UCh processes may, In principle, Camyiith s the mean multiplicity. From this distribution one has
some relic information about their parent state. Thus the in-
vestigation of the multiplicity distribution may be interesting Pos1 s
and useful for probing the formation of QGP. In this paper L L (2
we are limited to discussing the multiplicity distribution un- Pg atl
der the assumption of a second-order phase transition, withiﬁ — . . . .
the Ginzburg-Landau description for the phase transition. $<2.0, pq is & monotonically d_ecreasmg function qf
Within the same description for quark-hadron phase transiwhereasp, changes its shape f@>2.0. Using the same
tions, the scaled factorial moments have been studied byarameters as ifil2] s is calculated and listed in Table I.
many authors for second-ordg7,8] and first-orde{9-12]  Thus one can see that the shapes of multiplicity distributions
phase transitions, and a universal scaling expoment.30 given in[12] are similar to those of Poisson ones. In real
is given in[7,8,11,12. experiments, one can always choose a bin width to ensure a

It is useful to point out that the study of multiplicity fluc- mean multiplicity larger than 2.0; then one cannot tell
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TABLE I. Mean multiplicitiess for second-order=+1) and  ten as a complex numbefor our purpose. One can see that
first-order 8= —1) phase transitions for different bin widthsis  the functional used here can be derived from thdtli4i by

a parameteftdifferent from the quantity used in this papassoci- integrating out all other components and neglecting higher-

ated with the bin width$, parametes in [12]. The mean multiplici-  order powers of remaining components in the exponential.

ties are calculated using E(L3) in [12]. One more simplification used in present functional is that the
derivative term is neglected since former studiese the last

X 1 2 4 6 two papers in[7] for detail9 find that the term has little

B—+1 0226 0.429 0.804 1155 contribution to the universal exponent which is a measure of

the fluctuations. Because of this simplification, the non-
Gaussian functional integral can be treated as a normal inte-
gral and can be evaluated directly.

whether the distribution is shaped due to statistical fluctua- With the free energy functional above thez system is in the
tions or due to the dynamics in the phase transitions. So orfdasma state foa>0 (the order parametgtso|* correspond-
cannot give the order of the quark-hadron phase transitiofd to the minimum o[ ¢] is zerg and in the hadron phase
just from the general shape of the distributions, and detaileéP” 2<0 (the order parametgtso|>0). In real experiments
information is needed. This result is not surprising, becaus&e témperature at which hadrons are emitted from the source
nondominant dynamical fluctuations can only modify theiS unknown and may be different from event to event. So we
shape of the statistical distribution to some extent but canndf€ata as a free parameter and discuss only the caseavith
change its general behavior drastically. <0 in the following since in the quark phase wib-0 only
Nevertheless, it should be pointed out that the study of thé& few hadrons can be produced through fluctuations. From
multiplicity distribution is still very interesting and useful for the distribution of Eq(3) one gets the mean multiplicity for
processes with the onset of quark-hadron phase transition8=<0,
In Ginzburg-Landau theory, the multiplicity distribution
turns out to be a Poisson one if the field is purely coherent. . Ja(lalx) (4
Conversely, the distribution turns into a negative binomial Jo(lax)’
one if the field is completely chaotic. In reality, one can " ]
assume multiplicity production arising from a mixture of With Ju(a)=/5 dy Y'exp(-y*+ay), x=&/\b representing
chaotic and coherent fields, and so the multiplicity distribu-the bin width, andaxT—T, representing the temperature
tion in real processes is not a Poisson one or a negativéhen the phase transition takes place. For a small phase
binomial one, and the deviation of the distribution from aspace bin the mean multiplicity in the bin is proportionakto
Poisson one is due to dynamical fluctuations. The real quarand thus can be very small. Under such circumstances the
tity concerned is the deviation of the experimerfgl from distribution must be concentrated arouﬁg,. and botth_
its theoretical Poisson counterpag. Thus studying the de- andpg for g>1 must be very small; so a direct comparison
viation may reveal features of the dynamical mechanism inbetween them could induce a large uncertainty. This de-
volved. Let the probability of having hadrons in a certain mMands that the bin width in a real experimental analysis
bin be P, ; the deviation ofP,, from its Poisson counterpart Should be large enough to ensure that the mean multiplicity

p, can be measured by the ratig=P,/p, . For the defini- in the bin will not be too smalllarger than 0.5, say Of
tion of d, to make sense, it is necessary to let the mearfOUrse, smaller bins can be used if a precise determination of

both P4 andp, can be obtained from high-statistical experi-
tions are shown to exist if the ratio is far from 1.0, eithermental data_._For a zero bin wu_jth the releyant result; are
rather sensitive to the cascading production of particles

much larger or much smaller, for some The ratiod, can rough resonances, and so an extremely small bin width
be called the dynamical factor, since it is 1.0 unless there arg1 9 . ’ y
should be avoided.

dynamical fluctuations in the process. In the Ginzburg-
Landau description for second-order phase transit®yss

B=-1 0.342 0.797 2.172 4.582

multiplicity s for P4 andp, be the same. Dynamical fluctua-

Because of the normalization of bokh, andp,, the dy-
namical factoid, must be larger than 1.0 for someand less

given by[8] than 1.0 for some othey if there exist dynamical fluctua-
tions. One can easily derive
P0)-2 [ Dgpy(FlgDe T, (@)

C3yxal- 1) Bdah)
W0= " 3gan e P ©

where Z=[Dge ¢! is the partition function,p,(s) the

Poisson distribution with averag?a andF[ ¢] the free en-

ergy functional: The dependence af, on q for differentx and|a| is shown

in Fig. 1 by choosinga]=1.0 and 2.0,—Inx=-1.0, 0.0,
F[¢]= 69 a|¢|2+b|p|*]. 1.0, 2.0, 3.0, respectively. From this figure, one can see that
the general shapes df, are similar for different choices of
It is instructive to note that a free energy functional with |a] but depend strongly on the bin width In detail, for
O(N) QCD order parameter was studied [it4]. The free largex (small —In x or high mean multiplicity d, is quite
energy functional used here is different from that[ii#] large whiled,-., are smaller than 1.0. For small (large
because of the consideration that we are now only interesteed In x or low mean multiplicity, howeverd, is smaller than
in final state charged hadrofimost of them arer™) so that  but close to 1.0 whiled,~, are larger than 1.0, indicating
a two-component order parameter is eno@ghich is writ-  that two or more particles are more likely to be in the same
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FIG. 1. Dependence of the dynamical factty on q for |a| ) o )
=1.0 and 2.0, for—In x=—1.0,0.0,1.0,2.0,3.0. Besidesx, there is in the last expression another parameter

|a] which is a measure of how far from the critical tempera-

small bin than for the pure statistical case. This phenomenofire the hadronization process occurs and is unknown in cur-
may be associated with the cluster effect or minijets infent experiments. First let us fa| to be 1.0. One can im-
quark-hadron phase transitions. For smathe values fod,  mediately see that, for any, D,<D$™%, a power law
are independent d&|. From Fig. 1 one can also see that the satisfied by Poisson, binomial, and many other distributions
dependence af, on x is quite complicated. For some large in statistics. For any value df|, Dq increases monotoni-
g, dq is monotonically increasing with the decreasexpbut cally with the decrease of. This shows that the dynamical
for small g, d, first decreases and then increases with thenfluence can be observed more easily in a high-resolution
decrease ok. Complicated behaviors can be seenfigtx), analysi_s. This can_be understood physically, since different
considering the fact thas is an increasing function og ~ dynamical fluctuations may offset each other and become

— less obviously observable in a large bin analysis. The behav-
iors of InD, as functions of resolution;-In x, are shown in
Fig. 2 for7a|=1.0 and 2.0 forg=2,3,4,5,6. For small
—In x values ofD, depend strongly on the parameta}, but
they approach parametés| independent values for large

while pq(g) changes its behavior a=q. But the ratio
Pq(X)/p1(x) is an increasing function of for g>1. More-
over, there exists a scaling law betwegjx

— g1 o)At —Inx. The similarity in the shapes of D, as functions of
Po(s) _ 2 / Pa(s) © In x suggests a power law for othier] betweerD, andD,
p(s) A \p(s)) similar to the case we showed f¢a|=1.0. InD, are re-

shown in Fig. 3 as functions of B, with the same data as in

Thus it may be more interesting to study the dependence ofig- 2. For both |a|=1.0 and 2.0 perfect linear
x of

d, P,/P;
Dy=—=-14 7
9 dy Pq/P1 @)

instead ofd,, and one may expect some scaling behavior of

D when the resolution is changed. Now we turn to stOdy 4T oo
for second-order quark-hadron phase transitions. If there is S
no dynamical reasorR,=p,, one can see th@ for all q c 2
can have only one value, 1.0, no matter how large or small = 1
the bin width is. So from the range of valuBs, takes, one 0l

-0.4 -0.2 0 0.2 0.4
In D,

FIG. 3. Scaling behaviors betweén, andD, for |a|=1.0 and
JO(|a|x) an(x(|a| -1) (8) 2.0. The data are the same as in Fig. 2. The curves, from the lower
Ji(|alx) Jix(la|—-1))° to the upper, are fog=3, 4, 5, 6, respectively.

can evaluate the strength of dynamical fluctuatidhg.can
be expressed in terms &f(«) as

In Dg=(g—1)In



1186 C. B. YANG AND X. CAl PRC 58

0.5 Fvia=1.0 : 1.4
o @ [ow=20 r
< ; .
c 05 F ’
- F 12 b
— v
[ L S R B S B P
Ellol=1.0 y=1.0 .
1.5 [4lal=2.0 y=1.1038 1L
m"' [ Bi=(a-1)
< 'Y
P EER S SRR [N T ST S N ST SUNTAS! SO S S i ) ) . | ) ) ) | ) ) , |
0.75 1 125 1.5 08 5 4 6
In (q—1) lal
FIG. 4. Coefficients for the scaling betwe®r, andD,, In D, FIG. 5. Dependence of exponepton |a|. For large|a|, y is

=Ay+BgIn Dy, as functions of Inf—1) for |a|=1.0 and 2.0. Linear ~about 1.34.
fitting curves are shown fdB,=(q—1)”.

large|a|. The dependence of on|a| is shown in Fig. 5. In
real experimentsal is not known for an event and may be
increasing in the hadronization process. Thus some average
over |a| should be made. The smallf|, the less the num-
ber of produced particles. Thus the main contributiorPtp
In Dg=Aq+Byln Dy, (99  comes from events with larda| or with high multiplicities.
For those events, one should getnear 1.30, close to the
universal exponents given in former studies of for
with A, and B, depending orja|. The fitted results oA,  second-order phase transitions. For events with low multi-
andB, from curves in Fig. 3 are shown in Fig. 4 as functions plicity, one can gety>0.819. So the theoretical range for the
of In(g—1) for [a]=1.0 and 2.0. It is obvious that both & exponenty is (0.819, 1.342% corresponding to a tempera-

dependences of D, on InD, can be seen. For other values
of |a| the similar linear dependence is checked to be true
Thus one has

and InB, have a linear dependence ondr(l) for fixed|al.  ture range froniT=T to T<T¢.
Especially, for the purpose of studying the power law, we |n conclusion, two new quantitied, and D, are intro-
investigateB, and find that duced to describe dynamical fluctuations in quark-hadron

phase transitions. In the Ginzburg-Landau description for
second-order quark-hadron phase transitiogsandD, are
investigated analytically, and it is found th&t, obeys a
power law DqscDBq, with By=(q—1)”. In experimental
with y depending orja|. For visualization, the linear fitting analysis, bothd, andD can be obtained quite easily. To get
curves for I, vs In (@—1) are shown also in Fig. 4 for P, one only needs to count the number of events with exact
|a|=1.0 and 2.0. The slopes for Ay, are about twice those ¢ hadrons in the binp, is of Poisson type and can be cal-

for In By, and they increase with increasipal. When|al is  ¢yjated from the experimental Simple algebras givé, and
zero, corresponding to the case in which hadrons are proy e existence of dynamical fluctuations can be con-
duced exactly at the critical point, numerical results Shov‘?ir?ned if dq andD can take values very different from 1.0.
thaty is 0.819. With the increase ¢, y increases quickly.  Tpe scaling betweeB, andD, is a possible signal for the
For sufficiently largejal, when the difference betwedn|  formation of QGP, because up to now no other dynamical
—1 and|a| can be neglected, corresponding to the case iRga50n is known to induce such a scaling. The value of the
which hadrons are produced at a temperature much below, ,,nent, can be used to measure the deviation of the tem-
the critical point, one finds thad (x) = Fo(|alx), with Fq perature, at which the hadronization occurs, from the critical
the scaled factorial moment which is given[8] for second- it The study oD, should be carried out in a real experi-
order phase transitions as mental analysis in the future to see whether QGP has been
formed in current high-energy heavy-ion collisions. As a tool
to study dynamical fluctuatiordy; andD, introduced in this
paper may also be interesting in an experimental analysis of
leptonic and hadronic interactions without quark-hadron
phase transitions. The study aof, and D in first-order
quark-hadron phase transitions is in preparation.

Be=(q-1)" (10

Fq(x) =300 3§ 1(%) I3 ().

A similar relation betweerD, and F is also true in the
small x limit. In these limiting cases, the scaling Bf, is
equivalent to that of the scaled factorial momehts, and This work was supported in part by the NNSF, the SECF,
one can get an exponemt=1.3424 for large—In x [15] or ~ and Hubei NSF in China.
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