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Novel scaling behavior for the multiplicity distribution under second-order quark-hadron
phase transition
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Deviation of the multiplicity distributionPq in a small bin from its Poisson counterpartpq is studied within
the Ginzburg-Landau description for a second-order quark-hadron phase transition. The dynamical factordq

[Pq /pq for the distribution and the ratioDq[dq /d1 are defined, and novel scaling behaviors betweenDq are
found which can be used to detect the formation of quark-gluon plasma. The study ofdq andDq is also very
interesting for other multiparticle production processes without a phase transition.@S0556-2813~98!05808-7#
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The multiplicity distribution is one of the most importan
and most easily accessible experimental quantities in h
energy leptonic and hadronic collisions. From the we
known KNO scaling and its violation@1,2# to the novel scal-
ing form @3# investigated very recently the distribution show
a lot about the dynamical features for the processes. L
multiplicity distributions have been studied for many yea
in terms of a variety of phase space variables@4#, and sub-
stantial progress has been made recently in deriving ana
cal QCD predictions for those observables@5#. Based on as-
suming the validity of the local parton-hadron duali
hypothesis, those analytical predictions for the parton le
can be compared to experimental data. A global and lo
study of multiplicity fluctuations@6# shows, however, tha
the theoretical predictions have a significant deviation fr
experimental data. The significant deviation of theoreti
predictions from experimental data indicates that we kn
only a little about multiparticle production processes sin
the hadronization process in soft QCD is far from being u
derstood.

In this paper we try to investigate the multiplicity distr
bution in some small two-dimensional kinetic region~which
can be the rapidity and transverse momentum or azimu
angle, for example! in high-energy heavy-ion collision pro
cesses. In such collisions a new matter form, quark-gl
plasma~QGP!, may be formed which subsequently cools a
decays into the experimentally observed hadrons; thus
system undergoes a quark-hadron phase transition. The
rons produced in such processes may, in principle, c
some relic information about their parent state. Thus the
vestigation of the multiplicity distribution may be interestin
and useful for probing the formation of QGP. In this pap
we are limited to discussing the multiplicity distribution u
der the assumption of a second-order phase transition, w
the Ginzburg-Landau description for the phase transiti
Within the same description for quark-hadron phase tra
tions, the scaled factorial moments have been studied
many authors for second-order@7,8# and first-order@9–12#
phase transitions, and a universal scaling exponentn.1.30
is given in @7,8,11,12#.

It is useful to point out that the study of multiplicity fluc
PRC 580556-2813/98/58~2!/1183~5!/$15.00
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tuations in photon production at the threshold of lasin
which shows a similar type of phase transition@13#, is al-
ready in its mature age, although the theory and experim
for a quark-hadron phase transition are still in their infan
As explained in@7–12# the Ginzburg-Landau model, whic
has been used in describing superconducting transitions
other macroscopic second-order phase transitions, can
be used to describe the multiplicity fluctuations in bo
second- and first-order phase transitions. In@12# multiplicity
distributions are studied for both first- and second-or
phase transitions. The authors showed that for a second-o
phase transition the probabilityPq of finding q hadrons in
the small bin under investigation decreases monotonic
with the increase ofq regardless of the value of the bin widt
and that for a first-order phase transitionPq is a decreasing
function ofq for a small bin width whereas the shape of t
distribution changes with the increase of the bin width. Th
the shape of the distribution was claimed as a tool for find
the order of the phase transition.

In this paper we first show that the criterion in@12# based
on the shape of the multiplicity distribution for the order
the phase transition is equivocal. This is easily seen once
considers the trivial case without dynamical fluctuations. F
such a case, the multiplicity distributionpq is a Poisson one

pq~ s̄!5
s̄q

q!
exp~2 s̄! , ~1!

with s̄ the mean multiplicity. From this distribution one ha

pq11

pq
5

s̄

q11
. ~2!

If s̄,2.0, pq is a monotonically decreasing function ofq,
whereaspq changes its shape fors̄.2.0. Using the same
parameters as in@12# s̄ is calculated and listed in Table I
Thus one can see that the shapes of multiplicity distributi
given in @12# are similar to those of Poisson ones. In re
experiments, one can always choose a bin width to ensu
mean multiplicity larger than 2.0; then one cannot t
1183 © 1998 The American Physical Society
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1184 PRC 58C. B. YANG AND X. CAI
whether the distribution is shaped due to statistical fluct
tions or due to the dynamics in the phase transitions. So
cannot give the order of the quark-hadron phase transi
just from the general shape of the distributions, and deta
information is needed. This result is not surprising, beca
nondominant dynamical fluctuations can only modify t
shape of the statistical distribution to some extent but can
change its general behavior drastically.

Nevertheless, it should be pointed out that the study of
multiplicity distribution is still very interesting and useful fo
processes with the onset of quark-hadron phase transit
In Ginzburg-Landau theory, the multiplicity distributio
turns out to be a Poisson one if the field is purely cohere
Conversely, the distribution turns into a negative binom
one if the field is completely chaotic. In reality, one c
assume multiplicity production arising from a mixture
chaotic and coherent fields, and so the multiplicity distrib
tion in real processes is not a Poisson one or a nega
binomial one, and the deviation of the distribution from
Poisson one is due to dynamical fluctuations. The real qu
tity concerned is the deviation of the experimentalPq from
its theoretical Poisson counterpartpq . Thus studying the de
viation may reveal features of the dynamical mechanism
volved. Let the probability of havingq hadrons in a certain
bin bePq ; the deviation ofPq from its Poisson counterpar
pq can be measured by the ratiodq5Pq /pq . For the defini-
tion of dq to make sense, it is necessary to let the me
multiplicity s̄ for Pq andpq be the same. Dynamical fluctua
tions are shown to exist if the ratio is far from 1.0, eith
much larger or much smaller, for someq. The ratiodq can
be called the dynamical factor, since it is 1.0 unless there
dynamical fluctuations in the process. In the Ginzbu
Landau description for second-order phase transitionsPq is
given by @8#

Pq~d!5Z21E Dfpq~d2ufu2!e2F[f] , ~3!

where Z5*Dfe2F[f] is the partition function,pq( s̄) the
Poisson distribution with averages̄, andF@f# the free en-
ergy functional:

F@f#5d2@aufu21bufu4#.

It is instructive to note that a free energy functional w
O(N) QCD order parameter was studied in@14#. The free
energy functional used here is different from that in@14#
because of the consideration that we are now only intere
in final state charged hadrons~most of them arep6) so that
a two-component order parameter is enough~which is writ-

TABLE I. Mean multiplicitiess̄ for second-order (B511) and
first-order (B521) phase transitions for different bin widths.x is
a parameter~different from the quantity used in this paper! associ-
ated with the bin widthd, parameters in @12#. The mean multiplici-
ties are calculated using Eq.~13! in @12#.

x 1 2 4 6

B511 0.226 0.429 0.804 1.155
B521 0.342 0.797 2.172 4.582
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ten as a complex number! for our purpose. One can see th
the functional used here can be derived from that in@14# by
integrating out all other components and neglecting high
order powers of remaining components in the exponen
One more simplification used in present functional is that
derivative term is neglected since former studies~see the last
two papers in@7# for details! find that the term has little
contribution to the universal exponent which is a measure
the fluctuations. Because of this simplification, the no
Gaussian functional integral can be treated as a normal i
gral and can be evaluated directly.

With the free energy functional above the system is in
plasma state fora.0 ~the order parameteruf0u2 correspond-
ing to the minimum ofF@f# is zero! and in the hadron phas
for a,0 ~the order parameteruf0u2.0). In real experiments
the temperature at which hadrons are emitted from the so
is unknown and may be different from event to event. So
treata as a free parameter and discuss only the case wia
,0 in the following since in the quark phase witha.0 only
a few hadrons can be produced through fluctuations. F
the distribution of Eq.~3! one gets the mean multiplicity fo
a,0,

s̄5x
J1~ uaux!

J0~ uaux!
, ~4!

with Jn(a)[*0
` dy ynexp(2y21ay), x5d/Ab representing

the bin widthd, anda}T2Tc representing the temperatur
when the phase transition takes place. For a small ph
space bin the mean multiplicity in the bin is proportional tox
and thus can be very small. Under such circumstances
distribution must be concentrated aroundP0, and bothPq
andpq for q.1 must be very small; so a direct comparis
between them could induce a large uncertainty. This
mands that the bin width in a real experimental analy
should be large enough to ensure that the mean multipli
in the bin will not be too small~larger than 0.5, say!. Of
course, smaller bins can be used if a precise determinatio
both Pq andpq can be obtained from high-statistical expe
mental data. For a zero bin width the relevant results
rather sensitive to the cascading production of partic
through resonances, and so an extremely small bin w
should be avoided.

Because of the normalization of bothPq andpq , the dy-
namical factordq must be larger than 1.0 for someq and less
than 1.0 for some otherq if there exist dynamical fluctua
tions. One can easily derive

dq~x!5
Jq„x~ uau21!…

J0~xuau!
J0

q~xuau!
J1

q~xuau!
exp~ s̄!. ~5!

The dependence ofdq on q for different x and uau is shown
in Fig. 1 by choosinguau51.0 and 2.0,2 ln x521.0, 0.0,
1.0, 2.0, 3.0, respectively. From this figure, one can see
the general shapes ofdq are similar for different choices o
uau but depend strongly on the bin widthx. In detail, for
large x ~small 2 ln x or high mean multiplicity! d1 is quite
large while dq.1 are smaller than 1.0. For smallx ~large
2 ln x or low mean multiplicity!, however,d1 is smaller than
but close to 1.0 whiledq.1 are larger than 1.0, indicating
that two or more particles are more likely to be in the sa
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small bin than for the pure statistical case. This phenome
may be associated with the cluster effect or minijets
quark-hadron phase transitions. For smallx the values fordq
are independent ofuau. From Fig. 1 one can also see that t
dependence ofdq on x is quite complicated. For some larg
q, dq is monotonically increasing with the decrease ofx, but
for small q, dq first decreases and then increases with
decrease ofx. Complicated behaviors can be seen forpq(x),
considering the fact thats̄ is an increasing function ofx
while pq( s̄) changes its behavior ats̄5q. But the ratio
pq(x)/p1(x) is an increasing function ofx for q.1. More-
over, there exists a scaling law betweenpq :

pq~ s̄!

p1~ s̄!
5

2q21

q! S p2~ s̄!

p1~ s̄!
D q21

. ~6!

Thus it may be more interesting to study the dependence
x of

Dq[
dq

d1
5

Pq /P1

pq /p1
~7!

instead ofdq , and one may expect some scaling behavior
Dq when the resolution is changed. Now we turn to studyDq
for second-order quark-hadron phase transitions. If ther
no dynamical reason,Pq5pq , one can see thatDq for all q
can have only one value, 1.0, no matter how large or sm
the bin width is. So from the range of valuesDq takes, one
can evaluate the strength of dynamical fluctuations.Dq can
be expressed in terms ofJn(a) as

ln Dq5~q21!ln
J0~ uaux!

J1~ uaux!
1 ln

Jq„x~ uau21!…

J1„x~ uau21!…
. ~8!

FIG. 1. Dependence of the dynamical factordq on q for uau
51.0 and 2.0, for2 ln x521.0,0.0,1.0,2.0,3.0.
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Besidesx, there is in the last expression another parame
uau which is a measure of how far from the critical temper
ture the hadronization process occurs and is unknown in
rent experiments. First let us fixuau to be 1.0. One can im-
mediately see that, for anyx, Dq}D2

q21, a power law
satisfied by Poisson, binomial, and many other distributio
in statistics. For any value ofuau, Dq increases monotoni
cally with the decrease ofx. This shows that the dynamica
influence can be observed more easily in a high-resolu
analysis. This can be understood physically, since differ
dynamical fluctuations may offset each other and beco
less obviously observable in a large bin analysis. The beh
iors of lnDq as functions of resolution,2 ln x, are shown in
Fig. 2 for uau51.0 and 2.0 forq52,3,4,5,6. For small
2ln x values ofDq depend strongly on the parameteruau, but
they approach parameteruau independent values for large
2 ln x. The similarity in the shapes of lnDq as functions of
2 ln x suggests a power law for otheruau betweenDq andD2
similar to the case we showed foruau51.0. lnDq are re-
shown in Fig. 3 as functions of lnD2 with the same data as in
Fig. 2. For both uau51.0 and 2.0 perfect linea

FIG. 2. Dependences ofDq on the bin width2 ln x for uau
51.0 and 2.0 forq52, 3, 4, 5, 6.

FIG. 3. Scaling behaviors betweenDq andD2 for uau51.0 and
2.0. The data are the same as in Fig. 2. The curves, from the lo
to the upper, are forq53, 4, 5, 6, respectively.
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1186 PRC 58C. B. YANG AND X. CAI
dependences of lnDq on lnD2 can be seen. For other value
of uau the similar linear dependence is checked to be tr
Thus one has

ln Dq5Aq1Bqln D2 , ~9!

with Aq and Bq depending onuau. The fitted results ofAq
andBq from curves in Fig. 3 are shown in Fig. 4 as functio
of ln(q21) for uau51.0 and 2.0. It is obvious that both lnAq
and lnBq have a linear dependence on ln(q21) for fixed uau.
Especially, for the purpose of studying the power law,
investigateBq and find that

Bq5~q21!g , ~10!

with g depending onuau. For visualization, the linear fitting
curves for lnBq vs ln (q21) are shown also in Fig. 4 fo
uau51.0 and 2.0. The slopes for lnAq are about twice those
for ln Bq , and they increase with increasinguau. Whenuau is
zero, corresponding to the case in which hadrons are
duced exactly at the critical point, numerical results sh
thatg is 0.819. With the increase ofuau, g increases quickly.
For sufficiently largeuau, when the difference betweenuau
21 and uau can be neglected, corresponding to the case
which hadrons are produced at a temperature much be
the critical point, one finds thatDq(x)5Fq(uaux), with Fq
the scaled factorial moment which is given in@8# for second-
order phase transitions as

Fq~x!5Jq~x! J0
q21~x! J1

2q~x!.

A similar relation betweenDq and Fq is also true in the
small x limit. In these limiting cases, the scaling ofDq is
equivalent to that of the scaled factorial momentsFq , and
one can get an exponentg51.3424 for large2 ln x @15# or

FIG. 4. Coefficients for the scaling betweenDq and D2, ln Dq

5Aq1Bqln D2, as functions of ln(q21) for uau51.0 and 2.0. Linear
fitting curves are shown forBq5(q21)g.
e.

o-

in
w

large uau. The dependence ofg on uau is shown in Fig. 5. In
real experiments,uau is not known for an event and may b
increasing in the hadronization process. Thus some ave
over uau should be made. The smalleruau, the less the num-
ber of produced particles. Thus the main contribution toPq

comes from events with largeuau or with high multiplicities.
For those events, one should getg near 1.30, close to the
universal exponentn given in former studies ofFq for
second-order phase transitions. For events with low mu
plicity, one can getg.0.819. So the theoretical range for th
exponentg is ~0.819, 1.3424!, corresponding to a tempera
ture range fromT5TC to T!TC .

In conclusion, two new quantitiesdq and Dq are intro-
duced to describe dynamical fluctuations in quark-had
phase transitions. In the Ginzburg-Landau description
second-order quark-hadron phase transitions,dq andDq are
investigated analytically, and it is found thatDq obeys a
power law Dq}D2

Bq, with Bq5(q21)g. In experimental
analysis, bothdq andDq can be obtained quite easily. To g
Pq one only needs to count the number of events with ex
q hadrons in the bin.pq is of Poisson type and can be ca

culated from the experimentals̄. Simple algebras givedq and
Dq . The existence of dynamical fluctuations can be co
firmed if dq andDq can take values very different from 1.0
The scaling betweenDq andD2 is a possible signal for the
formation of QGP, because up to now no other dynami
reason is known to induce such a scaling. The value of
exponentg can be used to measure the deviation of the te
perature, at which the hadronization occurs, from the criti
point. The study ofDq should be carried out in a real exper
mental analysis in the future to see whether QGP has b
formed in current high-energy heavy-ion collisions. As a to
to study dynamical fluctuationsdq andDq introduced in this
paper may also be interesting in an experimental analysi
leptonic and hadronic interactions without quark-hadr
phase transitions. The study ofdq and Dq in first-order
quark-hadron phase transitions is in preparation.

This work was supported in part by the NNSF, the SEC
and Hubei NSF in China.

FIG. 5. Dependence of exponentg on uau. For largeuau, g is
about 1.34.
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