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Equation of state and collision rate tests of parton cascade models
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We develop two further numerical tests of parton cascade models: the ideal gas equation of state and the
collision frequency tests. The equation of state test checks the initial momentum distribution generator and free
expansion dynamics in periodic inhomogeneous geometries. The collision rate test is sensitive to spatial
inhomogeneities and the collision algorithm. These tests are applied to the recently developed ZPC parton
cascade model. The tests helped uncover unphysical correlations induced by one of the commonly used
random number generators and showed the necessity of particle subdivisions for convergence to the exact
analytic limit. [S0556-281®8)06508-5

PACS numbgs): 25.75—q, 21.65+f, 24.10.Jv, 24.10.Lx

[. INTRODUCTION covered and fixed a problem with one of the random number
generators used in ZPC. We discuss that example in detail to
Many observables in nuclear collisions are difficult to cal-illustrate the importance of applying such numerical tests.
culate analytically because the number of particles is neitheve propose to add these tests to the group already in the
large enough to justify rigorously the application of statisti- OSCAR standard8].
cal mechanics nor small enough to justify impulse approxi- The paper is organized as follows: In Sec. Il, we recall
mations. In most cases, numerical simulations of transporfasic statistical mechanics relations of ideal gas and calculate
equations are required to compare theory with experiment_he free streaming evolution of periodic slab initial spatial
However, due to the complexity of the algorithms employeddistribution. In addition the collision rate is discussed. Nu-
and the number of untested dynamical assumptitrs], it merical tests of ZPC are compared to analytical predictions
is not straightforward to check or even reproduce the numeriln Sec. Ill. We conclude by emphasizing the importance of
cal results from parton cascade codes. Recently, several arfgsting cascade codes.
Iytic tests were proposed to help check the accuracy and
identify limitations of such codes. In the context of earlier Il. ANALYTIC TESTS
nonrelativistic transport models tests such as comparing with
the analytic Krook-Wu mode]5] have been useful. In the
context of hydrodynamics, numerical hydrodynamic codes The partition function for an ideal relativistic classical gas
have been tested in cases of expansion of baryon free matteith massm and degeneracy is given by[12] (A=c=kg
into vacuum[6] and “slab-on-slab” collision7]. =1)
To address the new generation of parton cascade codes,
an Open Standard for Codes and Routi(@SCAR) [8] has
been developed to enable objective testing of essential com-
ponents of algorithms and ensure reproducibility of numeri-
cal results. In this context, we have proposed in R8f.a | the N>1 limit, the free energyF=—T In Z is well ap-
dynamical test of the evolution of the transverse energy ifyroximated by
1+1 dimensional expansion for cascade models. Another
test of the frame and scattering scheme dependence of cas- y VTn?
cade models was proposed[it0,11. In this paper, we pro- F(N,T,V)=—N| T In(—2 N Ko(m/T)
pose two further tests for the OSCAR standard: the equation 2m
of state and the collision rate test of one-component relativ- @
istic classical gases. L
The tests Srovide information about the nature of the?rhe pressureP=—gF/oV is given by the well-known
o L . . “ideal-gas law
code’s initial momentum distribution and check its evolution
a_lgorlthm_ in free expansion in periodic §pat|al inhomogene- P(N,T,V)=pT, 3)
ities against nontrivial analytic expressions. The transverse
to parallel momentum flux ratio tests the evolution of spacein terms of the density=N/V, and the energy density is
time and momentum space correlations. The asymptotic hqyiven by
mogeneous equilibrated state tests the equation of state of the
model against the expected ideal gas laws. The collision fre- €(N,T,V)=pm[K,(Bm)/K,(Bm)+3T/m], 4
guency test checks the basic collision algorithm.
We apply these tests to the recently developed ZPC pawhere 8=1/T. For fixed N,V an interesting quantity that
ton cascade modg¢#]. In order to pass these tests, we un-reflects the softness of the equation of state is

A. Equation of state

1V 2 miT "
Z(N,T,V)Zm ﬁ(Tm YKo(m/T)e . (1)

+m+T
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P 1 to its final valueT*() = po[d3ppZ/p°f(p) via
© 3% BmKy(BM)IK,(Bm)° ©
11 !
In them/T<1 relativistic limit, P/e~1/3, while in the non- ~ T_ XD _ 3 Sinkox)
relativistic limit, P/e~T/m. TH( ) =0 n*
In a cascade simulation, these thermodynamic quantities
can be measured as a function of time by computing the X[ (knt)2—2]sin(Knt) + 2knt cogkat)}.
spatially averaged energy-momentum tensor (10)
Nt
(T >:in E ®  Herea=3L%(2#7%, n=21+1, andk,=2mn/L. The infi-

nite sum can be expressed in terms of the Lekdz,n,a)
Then e=(T% and P=(T%. In Sec. IIl, we will compare functions, but in practice the series converges very rapidly.
the analytic results of the pressure-energy density ratio as lgor example the evolution at the “midway” points= (2k

function of /T, and the energy density as a functionTof ~+1)L/4 involves damped oscillations with maxima and
minima occurring at times=(2m+1)L/4. At x=L/4, the

B. Free expansion in slab geometries “11” momentum ﬂUX OSC'”ateS Wlthln the enve|0peS

e/3L LS
1+ —— —
40 t g3

A simple test of equilibration in geriodicbox of volume
V=L3 and fixed particle number is provided by taking the
initial spatial distribution to be confined to one half of the TH(x=L/4,00=T"()
box (say withx>0):

(11)

reaching the envelope at timés-(2m+1)L/4. Note that
free streaming in this geometry leads to global homogeneous
i o ) i equilibrium through mixing from neighboring slabs. The de-
In the abovep,=N/V is the equilibrium particle density,  yjation of the parton cascade evolution from this result when

4 )
f(x,p.0)=po| 1+ —1m tanh {2 |f(p). (7)

is the length of the box, and collisions terms are turned on are of physical interest as tests
of collective hydrodynamic behavior.
2 7
f(p)= exp(— fVm~+p°) ®) Another interesting probe of the evolution is the
4m(m? B)Ko(Bm) transverse-longitudinal momentum flux anisotropy,

For the free streaming casi(x,p,t) = f(x— pt/p°,p,0). X +\— 733 11

For the interesting case of massless partons, the momen- AT =(THOCOKTHOG). (12
tum flux componentT*! evolves from its initial value
Initially, in the —L/2<x<0 region we sefA?*=0, while in
the 0<x<L/2 regionA**=1. In the case of free streaming,

4 .
11, —T11 _ =1 p2mix/L
TG0 =T (=) 1+ T Im tanh e 1, ® this anisotropy is given by

1+(a/t3)|20 [sin(k,x)/n*][sin(k,t) —kqt cogk,t)]
AZX(x,t)= — . (13)
1+ (a/t3)l_2O [sin(kyX)/N*T{[ (Kat)2—2]sin(K,t) + 2 knt cogkat)}

We note that of course other nonequilibrium initial con- N,
ditions, e.g., homogeneous spatial distribution with aniso- W_V_t' (14)
tropic momentum distribution, can be set up to test dynami-
cal relaxation toward global equilibrium. In this paper we
will study only the evolution of spatial inhomogeneous con-
ditions.

We take the integrated parton elastic cross section to be

T

Ogg-gg= - (15
)

C. Collision rate for an isotropic, homogeneous gas

The collision rate per unit volum&/ is another quantity
that can be easily monitored. It is related to the number of The total collision rate per unit volume can be calculated

collisionsN. in a period of timet via from
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TABLE I. Input parameters to ZPC: cell size and screening

mass for different temperatures and masses of partiglgsus, us

_ } T, d3p1 d3p2 e*ﬂ(EﬁEz)w 5| correspond to three decreasing screening masses as described in the
2 2 3 3 1~ U2, text.
M (2m)* (27)
(16) T=0.5 GeV m=0 GeV m=25GeV  m=5 GeV
and it is expected to be independent of the microscopic forrr|1c (fT) 4 gggi ;122 2; ;2;3 222 ;2 g'égg 223 2411
of the differential cross section. The 1/2 on the right-hand“? (fmil) 4.366 77096 1.767 93364 0'447 39338
side of Eq.(16) takes into account the two identical incom- #2 ( mfl) . . )
ing particles. The identity of two incoming gluons has been*3 (fm™=5) 3.465008 38 140320085  0.35509636
taken into account in the scattering cross section. In Appen-
dix A, we show that the above six-dimensional integral canT=1.0 GeV.~~ m=0 GeV =~ m=25GevV =~ m=5 GeV
be reduced to a one-dimensional integral: I, (fm) 0.266 202 98 0.36766446 065751757
. uq (fm™h) 11.00357361  7.96700354  4.45491373
We 8T (2_”‘) ap Mz (M 8.73354210  6.32341486  3.53586735
773M2 T/ g (fm™1) 6.93181691 5.018897 67 2.80641975
in which F(x) =[5 dyy?(y?>—x?)K4(y) [13]. T=15 GeV m=0 GeV m=25GeV m=5 GeV
I (fm) 0.177 468 65 0.20981078 0.293208 39
Ill. NUMERICAL TESTS OF THE ZPC MODEL uq (fm™h) 16.50536062 13.96107515  9.99011002
For the cascade calculations, we take the temperdture #2 (fm:i) 1310031331 11.08091261  7.92915553
=0.5, 1, 1.5 GeV, and set the total number of particles in*s (fM™) 10.39772550  8.79492611  6.29337487

the periodic box to b&=4000. The volume is related to the
density of particle at zero-chemical potential,

For periodic slab initial conditions[** evolution at posi-
tion L/4 in the free streaming case is compared with predic-
tion in Fig. 3. Also shown in Fig. 3 is the resuffilled
circles with interactions turned on. We see that interactions
. ) reduce the rate of collective expansion compared to free
via V=N/p. In ZPC, there are 1000 computation cells of streaming and also the oscillations damp faster than in the
volumeV/1000. We specify the cell size to the cascade codefree streaming case. For the noninteracting free streaming

To study the mass dependence, we choose three d|ffereegse, good agreement of predictiarashed lingand cascade
masses: 0, 2.5, and 5 GeV. For the dependence on the sl jts(pluses is shown for theT! evolution atL/4 in Fig.
tering cross section, the interaction Ier)gm =1/uis set 3 and time evolution of free streamirit! spatial distribu-
to be 0.5, A, and 1.5.. In the above\ is a rough estimate jon in Fig. 4. Time evolution of free streamim? spatial
for the mean free path distribution (Fig. 5 also agrees well with the prediction.

Figures 6 and 7 give scaled collision rate per unit volume
N 1 (19) as a function ofm/T. The data points with the samma/T,

p= (18

4 fed e PE,
2m® o PP

We specify the screening magsto the cascade code. 0.40 |
The parameters for the cascade measurement are shown
Table I. Unless otherwise stated, we will use the ZPC default ..
scattering scheme, i.e., a collision time is determined in the 5,
two colliding particle center-of-mass frame, and the collision
space point is the center of the two colliding particle posi- )
tions in their center-of-mass frame. As we kn#d], this . .
scheme is not sensitive to the global frame used to order the & ™ .
collisions. We refer to this scheme as scheaein the fol-
lowing.

Figure 1 shows the pressure-energy density afioas a 0.10
function of m/T, and Fig. 2 shows the energy density as a
function of temperatur@ for different particle masses. We
see very good agreement between the predictions and th ¢ ‘ ‘ ‘ ‘
cascade results. This indicates that the initial momentum dis- 00 20 oo %0 80 100
tributions are correctly generated. There is no time depen-
dence of the pressure and energy density over a time period F|G. 1. Pressure-energy density raRée as function ofm/T.
of 6 fm during which each particle has experienced0  The dotted curve is the analytic prediction, and the filled black dots
collisions on average. are cascade data.
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_FIG. 2. Energy densitye as a function of temperaturé for FIG. 4. Evolution ofT* spatial distribution. The predictions are
different masses. The curves are predictions, and the dots are cagawn with solid and dashed lines alternatively with numbers indi-
cade data. cating the times in fm. The cascade data are drawn in filled circles

and pluses alternatively for different times. Asymptotic temperature

and sameu overlap. The three data sets at the sami@  T=1.5 GeV.
correspond to three different screening masges The
smaller the screening mass, the lower the collision rate.  proportional to the number of particles inside the causal

The collision rate is the same for the ZPC defaultsphere in the two colliding particle center-of-mass frame.
Yukawa-type scattering differential cross section and thelhe radius of the sphere is proportional to the impact param-
straight line propagation. This indicates the collision numbeeter. So
loss is not due to particle shielding.

With small scre_ening mass, the interaction range is large. Npone 1 (VoT7 47 8 _ o3P
When the interaction range is much larger than the mean free —x —J' Zwbdb? b¥yp= B =
path, noncausal collisions become more abundant. To pro- toral  7J0 V

cess the noncausal collision, we pick up one collision out of
several collisions for one particle according to the ordering2mbdb/o is the probability of having impact parameter
time (see Ref[11] for detail9. This process neglects other Here,y is for the averaged boost factor from lab frame to the
collisions in the same noncausal collision set. Some of thertwo colliding particle center-of-mass frame. In the case of
will not be recovered later. The larger the interaction rangemassless particlesy~2. 4wb%yp/3 gives the number of
the larger percentage of noncausal collisions. Hence, morgarticles in the sphere with radius in the two colliding
collisions are neglected and the collision rate is lower tharparticle center-of-mass frame. The exact radius of the sphere
expected. depends on the definition of noncausal collisiphg 1] and

In the dilute limit, the percentage of noncausal collisionsthe collision prescription of cascade.
out of the total number of collisions for massless particles is

8.0
20 1
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FIG. 5. Evolution ofA** spatial distribution. The predictions are

FIG. 3. Evolution of the longitudinal momentum fluX! is in drawn with solid and dashed lines alternatively with numbers indi-
units of TY(). The size of the box is determined by the cating the times in fm. The cascade data are drawn in filled circles
asymptotic temperatur€=1.5 GeV, and the screening mass is setand pluses alternatively for different times. Asymptotic temperature
to be 16.5 fm'* for the interacting case. T=1.5 GeV.
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20.0 . T TABLE II. Measurement of noncausal collision number and to-
tal collision number.

B M~ (fmil) a l X1 X2 Nione  Niotal R
550178669 05 1 0.5 0.48 3240 31400 10.3%
4.366 77096 1 1 1 0.88 8250 46100 17.9%

1 3.465908 38 2 1 2 1.56 19000 64700 29.4%
3.465908 38 2 5 0.89 0.81 12500 75400 16.6%
3.465908 38 2 10 0.63 059 9700 77800 12.5%

action length to the estimate of mean free path before rescal-
ing. | is the scaling parameter, i.e., the total number of par-
ticles is increased by a factor dfand the cross section is
decreased by a factor bfbut the number of collisions is still

for 4000 particles x, is the ratio of interaction length to the
The curve is the prediction, and the pluses are cascade data. Thetimate Of_ mean fr_ee pgth mclgdlng the rescaling, k.,
open circle corresponds to the rate at/T=0 with =al\l. x, is the ratio of interaction length to the measured
=3.465908 38 fm’. The result from scaling the cross section mean free path. The mean free path is measured through the

down by a factor of 10 and increasing the particle density by aformula, p/(2W), in which W is the collision rate per unit
The noncausal to total ratio is closely related to the rationumber of collisions is also plotted in Fig. 8 against the ratio
againsty,. It shows that when the density increases, i.e.,
X= lipo :pﬁ'
formula for the estimate of mean free path=1/(po),
lision percentagél] by subdividing the particles by a factor linear formula and has a tendency of saturation when density
collision.
sition for each particle taken as the position of the particle a] or 1=5. Forl =10, the total number of collisions is 77 800.
number of collisions for 4000 particles with=0, T=0.5

factor of 10 is shown as the open triangle. volume and the particles are moving at the speed of light.
of interaction length to the mean free path: of interaction length to the mean free path. In Fig. 8, the
when y increases, the difference betwegn and y, in-
We seeNnone/Nioia) decreases linearly witly as x—0. needs to be corrected. Also we see the data deviate from
| so thatp— | p while decreasing— o/1. This preserves the is large. This is consistent with the fact that the ratio should
To study the noncausal collisions, it is easy to use the two When we fix » and increasd from 1 to 5, the total
the collision time in the two particle center-of-mass frameWe see clearly the trend toward a constant value of total
GeV, and a time period of 6 fm is summarized in Table II. In 050

6.0 8.0 10.0

FIG. 6. Collision rate per unit volum#é/ as a function ofn/T.

The ratio of the number of noncausal collisions to the total
open circles are data againgti and the filled circles are
Vol a3

creases. This tells us that when density is high, the naive
This motivates the algorithm of reducing the noncausal col;
mean free path #p while yo 1/\—0. always be less than 50% from the definition of the noncausal
particle center-of-mass scattering scheme with collision po- umber of collisions goes up from 64 700 for 1 to 75 400
[scheme(b)]. The number of noncausal collisions, and tOtalnumber of collisions whehis increased. In schenta), there

the table,u is the screening masa.gives the ratio of inter- 7
//
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10° 20 60 80 100 FIG. 8. The number of noncausal collisions over the total num-
mT ber of collisions as a function of the ratio of interaction length to the

mean free path. The dashed curve is the estimate when the radius of

causal sphere is taken to be the interaction range. Qfikked)

circles are data plotted againgt (x,) in Table II.

0.0 2.0

FIG. 7. Collision rate per unit volumé/ as a function ofn/T.
The curve is the prediction, and the pluses are cascade data.
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are 70 000, 78 000, and 80 000 collisions ferl, 5, 10, teraction range is larger than the mean free path, the cascade
respectively. Schem@) collision rate withl=10 is shown collision rate is significantly lower than the theoretical value.
in Fig. 6 as an open trianglghe | =1 data is shown as an This gives rise to systematic errors of parton cascade simu-
open circle. The data show that particle partition improves lations. Other methods, e.g., particle partition, have to be
the cascade result. In addition, we observe that sch@ne used to correct the collision rate.
collision rate is always higher than that of schethg The The comparison of free streaming and the interacting cas-
closer the cascade rate is to the analytic prediction, theade approach to equilibrium indicate qualitative similarities
smaller the percentage difference. In this sense, the percenif the two cases. However, the damping and speed of collec-
age difference of cascade results from different schemes cdive motion are quite different. A detailed comparison of free
be used as an indicator of the cascade systematic errors. streaming, ideal hydrodynamics, and cascade approach to
During the preliminary study of the collision rate, we global equilibrium in the case of half-filled periodic box ini-
found whenm/T=10, the collision rate is higher than the tial conditions will be addressed in another pafis].
predicted rate. By looking more carefully into the code, we As discussed in this paper, spatial distribution with larger
found out that it was caused by the larger than statisticalhan statistical fluctuations gives higher than thermal reaction
fluctuations in the position distribution. When the fugagity —rate.HIJING [17] predicts initial spatial clusters of partons for
is not uniform in space, the collision rate per unit volume: nucleus-nucleus collisions at collider energies. This implies
higher than thermal collision rat¢48] and many other in-
teresting physical phenomena beyond the widely used hot
gluon scenarig19] predictions.
We emphasize the importance of using analytic tests in
in which debugging numerical simulation codes. The spatial distribu-
tion with abnormal fluctuations illustrates well the usefulness
T d®p; d%p, CBELEy 5 of the analytic collision rate test. As more components are
) J W (27)33 [01-02l. (2)  added to the gascade code, more tests will be needed to en-
sure the consistency of different parts of the cascade code
and to enable disentangling of the actual physical assump-
tions that define the model.

d3x
W= f sz(x)l, (20

u?

By using the inequality,

d >< d3x )2

and the fact that the system we prepared has zero chemical We thank S. A. Chin, P. Danielewicz, V. Koch, B. A. Li,

potential and hence averaged fugacity is one, we arrive at S. Pratt, and J. Randrup for useful discussions. We also
thank Brookhaven National Laboratory and Lawrence Ber-
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existing for some time period, the collision rate is higher

than that expected for the uniform system. APPENDIX A: REDUCTION OF THE PHASE SPACE
It was found only inm/T=10 and not in other cases INTEGRAL IN THE COLLISION
because in then/T=10 case, particles are moving very RATE CALCULATION

slowly, and they stay in clusters for a much longer time.
We traced the origin of the nonuniform distribution. 1t ~ To calculate the collision rate per unit volume, E#6),

was caused by some correlation of random number gener¥e first replacgs; —v,| by

tors (see Appendix B When we use ranl frorfil4], and

generate first the momenta for all the particles and then gen- s(s—4m?)

erate the positions for all the particles, there are no abnormal

fluctuations. When we generate momentum and position to- 2E:F,
gether, we found abnormal fluctuations. This does not occur
when ran3 from{14] is used. We correct the generation by and get
separating the generation of particle momentum and particle
position[15]. 127 o a3 RE
W=3— yzf _dsys(s—4m?) Sl 52
IV. CONCLUSIONS M am (2m)72E, (2m)°2E,
x e PELTEI§(s— (py+pa)?). (A1)

From the above study, we show that the equation of state
and the collision rate can be used to test the initial conditions
and collision mechanisms of relativistic parton cascade. It is The 6 function can be used to integrate out one angle by
important to notice that for massless particles, when the inusing:
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FIG. 9. Momentum distribution fom=5 GeV, T=0.5 GeV FIG. 10. Number of particles per bin as a function of position

with 40 000 particles. The dotted line is the prediction, the operfor m=5 GeV,T=0.5 GeV with 40 000 particles. The dotted curve
circles come from code using ranl, and the filled circles are ran®s ranl result, while the solid curve is for ran3.
results.

2

Yy
35 (pr+pa))= 5o o cosy 222 W iy 54T | aye s
S— = cos —_—.
P P2 2pi, 2 2p1p, (A6)
(A2) They integral can be readily carried out to be
After carrying out the angular integrals, the collision rate . /s
becomes f_dye‘y”\/yz—s= \/§TK1(?). (A7)
2 (e 4mpidp, 2mpd "
= LJ dsys(s—4m?) TP10P1 £7P20P, In the aboveK,(x) is the modified Bessel function. Taking
4(2m)°u? S am? E1E2 2p1p; y=16, we arrive at Eq(17).
- s—2m?—2E,E,
xe BEITEI@| 1— B Tee— (A3) APPENDIX B: ONE EXAMPLE SHOWING THE
P1P2 INTERFERENCE OF GENERATIONS OF DISTRIBUTIONS
The O function constraint can be written as OF VARIABLES

2 . .
S The following is a sample program that generates the par-
(E;+E,)’m?<sEE,+ m?s— — d ble prog d P

4" ticle momentum and position together. ranl is taken from

. . ) [14] and declared as a real*8 function.
Now we change integration variables frdfm, E, to x

=E;E,, andy=E;+E,. The collision rate becomes program dist
7y implicit real*8 (a-h, 0-2)
— | ds/s(s—4md parameter (mul = 40000)
2(277')4 Zj parameter (size = 5.19653401d0)
JT - external ranl
- s y'm common /para/ xmp
2_ 2
fdxdy Jy?—4x x X+m=g s | temp = 0.5d0
xmp = 5d0
(Ad) doi =1, mul
The integration ovek can be carried out first. The abso- call energy(e, temp)
lute lower bound of=E;E, is m?, butx is also restricted call momentum(px, py, pz, e)

2d0 * ranl(iseed) - 1dO
x * 5d0 * size
2d0 * ranl(iseed) - 1dO
y * 5d0 * size
2d0 * ranl(iseed) - 1dO
z * 5d0 * size

by the ® function. By noticingy=s, and hencey’m?/s X
—m?+s/4>m?, we see the lower bound should p&m?/s X
—m?+s/4. The upper bound is determined from the square y
root in the integrand to bg?/4. The result is y
z
z

y2/4 l
s—4m?)(y?/s—1 end do
fyzmzls m2+s/4 \/ 2\/( o ) stop
(AS5) end

Now the collision rate per unit volume is reduced to a subroutine energy(e, temp)
two-dimensional integral: implicit real*8 (a-h, o0-z)
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external ranl
common /para/ xmp

1000 continue

e = ranl(iseed)

e = e * ranl(iseed)
e = e * ranl(iseed)
if (e .le. 0d0) goto 1000
e = - temp * log(e)

if (ranl(iseed) .gt. exp((e - sqrt(

& e ** 2 + xmp ** 2))/temp)) then
goto 1000

end if

return

end

subroutine momentum(px, py, pz, €)
implicit real*8 (a-h,o0-z)

external ranl

parameter (pi = 3.14159265358979d0)
cost = 2d0 * ranl(iseed) - 1dO

sint = sqrt(1d0 - cost ** 2)

phi = 2d0 * pi * ranl(iseed)

px = e * sint * cos(phi)

py = e * sint * sin(phi)
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pz = e * cost
return
end

The momentum distribution is shown in Fig. 9 along with
that generated by ran3, and the theory prediction. We see
that the momentum distribution is correctly generated with
reasonable fluctuations.

Figure 10 gives the positioxndistribution from the above
program using ranl and ran3. The ranl result has much
larger fluctuations than the expected statistical fluctuations,
while the ran3 result is consistent with the expected statisti-
cal fluctuations.

When the generation of momentum and position are sepa-
rated, the distributions all have reasonable fluctuations. An-
other possibldand more efficientway to solve the problem
is to generate Gaussian momentum distribution for large
m/T values.

Since with the above program, the total number of ran-
dom numbers used is 141 931 896, while we can easily show
the period of ranl with the given parameters is beyond
2 000 000 000, it is not clear that the large fluctuations are
due to the period of the random number generator ranl. But
this is a concrete example of ill-generated distribution.
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