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Equation of state and collision rate tests of parton cascade models
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We develop two further numerical tests of parton cascade models: the ideal gas equation of state and the
collision frequency tests. The equation of state test checks the initial momentum distribution generator and free
expansion dynamics in periodic inhomogeneous geometries. The collision rate test is sensitive to spatial
inhomogeneities and the collision algorithm. These tests are applied to the recently developed ZPC parton
cascade model. The tests helped uncover unphysical correlations induced by one of the commonly used
random number generators and showed the necessity of particle subdivisions for convergence to the exact
analytic limit. @S0556-2813~98!06508-5#

PACS number~s!: 25.75.2q, 21.65.1f, 24.10.Jv, 24.10.Lx
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I. INTRODUCTION

Many observables in nuclear collisions are difficult to c
culate analytically because the number of particles is nei
large enough to justify rigorously the application of statis
cal mechanics nor small enough to justify impulse appro
mations. In most cases, numerical simulations of trans
equations are required to compare theory with experim
However, due to the complexity of the algorithms employ
and the number of untested dynamical assumptions@1–4#, it
is not straightforward to check or even reproduce the num
cal results from parton cascade codes. Recently, several
lytic tests were proposed to help check the accuracy
identify limitations of such codes. In the context of earli
nonrelativistic transport models tests such as comparing
the analytic Krook-Wu model@5# have been useful. In the
context of hydrodynamics, numerical hydrodynamic cod
have been tested in cases of expansion of baryon free m
into vacuum@6# and ‘‘slab-on-slab’’ collision@7#.

To address the new generation of parton cascade co
an Open Standard for Codes and Routines~OSCAR! @8# has
been developed to enable objective testing of essential c
ponents of algorithms and ensure reproducibility of nume
cal results. In this context, we have proposed in Ref.@9# a
dynamical test of the evolution of the transverse energy
111 dimensional expansion for cascade models. Anot
test of the frame and scattering scheme dependence of
cade models was proposed in@10,11#. In this paper, we pro-
pose two further tests for the OSCAR standard: the equa
of state and the collision rate test of one-component rela
istic classical gases.

The tests provide information about the nature of
code’s initial momentum distribution and check its evoluti
algorithm in free expansion in periodic spatial inhomoge
ities against nontrivial analytic expressions. The transve
to parallel momentum flux ratio tests the evolution of spa
time and momentum space correlations. The asymptotic
mogeneous equilibrated state tests the equation of state o
model against the expected ideal gas laws. The collision
quency test checks the basic collision algorithm.

We apply these tests to the recently developed ZPC
ton cascade model@4#. In order to pass these tests, we u
PRC 580556-2813/98/58~2!/1175~8!/$15.00
-
er

i-
rt
t.

d

ri-
na-
d

th

s
tter

es,

m-
i-

in
er
as-

n
v-

e

-
e
-
o-
the
e-

r-
-

covered and fixed a problem with one of the random num
generators used in ZPC. We discuss that example in deta
illustrate the importance of applying such numerical tes
We propose to add these tests to the group already in
OSCAR standard@8#.

The paper is organized as follows: In Sec. II, we rec
basic statistical mechanics relations of ideal gas and calcu
the free streaming evolution of periodic slab initial spat
distribution. In addition the collision rate is discussed. N
merical tests of ZPC are compared to analytical predicti
in Sec. III. We conclude by emphasizing the importance
testing cascade codes.

II. ANALYTIC TESTS

A. Equation of state

The partition function for an ideal relativistic classical g
with massm and degeneracyg is given by@12# (\5c5kB
51)

Z~N,T,V!5
1

N! S gV

2p2
~Tm2!K2~m/T!em/TD N

. ~1!

In the N@1 limit, the free energy,F52T ln Z is well ap-
proximated by

F~N,T,V!52NFT lnS g

2p2

VTm2

N
K2~m/T!D 1m1TG .

~2!

The pressure,P52]F/]V is given by the well-known
ideal-gas law

P~N,T,V!5rT, ~3!

in terms of the densityr5N/V, and the energy density i
given by

e~N,T,V!5rm@K1~bm!/K2~bm!13T/m#, ~4!

where b51/T. For fixed N,V an interesting quantity tha
reflects the softness of the equation of state is
1175 © 1998 The American Physical Society
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P

e
5

1

31bmK1~bm!/K2~bm!
. ~5!

In them/T!1 relativistic limit, P/e'1/3, while in the non-
relativistic limit, P/e'T/m.

In a cascade simulation, these thermodynamic quant
can be measured as a function of time by computing
spatially averaged energy-momentum tensor

^Tmn&5
1

V (
i

pi
mpi

n

Ei
. ~6!

Then e5^T00& and P5^T11&. In Sec. III, we will compare
the analytic results of the pressure-energy density ratio
function of m/T, and the energy density as a function ofT.

B. Free expansion in slab geometries

A simple test of equilibration in aperiodicbox of volume
V5L3 and fixed particle number is provided by taking t
initial spatial distribution to be confined to one half of th
box ~say withx.0):

f ~x,p,0!5r0S 11
4

p
Im tanh21@e2p ix/L# D f ~p!. ~7!

In the above,r05N/V is the equilibrium particle density,L
is the length of the box, and

f ~p!5
exp~2bAm21p2!

4p~m2/b!K2~bm!
. ~8!

For the free streaming case,f (xW ,pW ,t)5 f (xW2pW t/p0,pW ,0).
For the interesting case of massless partons, the mom

tum flux component,T11 evolves from its initial value

T11~x,0!5T11~`!S 11
4

p
Im tanh21@e2p ix/L# D , ~9!
n-
so
m
e
n

r o
es
e

a

n-

to its final valueT11(`)5r0*d3ppx
2/p0f (p) via

T11~x,t !

T11~`!
511

a

t3(l 50

`
sin~knx!

n4

3$@~knt !222#sin~knt !12knt cos~knt !%.

~10!

Here a53L3/(2p4), n52l 11, andkn52pn/L. The infi-
nite sum can be expressed in terms of the LerchF(z,n,a)
functions, but in practice the series converges very rapi
For example the evolution at the ‘‘midway’’ pointsx5(2k
11)L/4 involves damped oscillations with maxima an
minima occurring at timest5(2m11)L/4. At x5L/4, the
‘‘11’’ momentum flux oscillates within the envelopes

T11~x5L/4,0!5T11~`!F16
e

4S 3 L

t
2

L3

8t3D G ~11!

reaching the envelope at timest5(2m11)L/4. Note that
free streaming in this geometry leads to global homogene
equilibrium through mixing from neighboring slabs. The d
viation of the parton cascade evolution from this result wh
collisions terms are turned on are of physical interest as t
of collective hydrodynamic behavior.

Another interesting probe of the evolution is th
transverse-longitudinal momentum flux anisotropy,

Azx~x,t ![^T33~x,t !&/^T11~x,t !&. ~12!

Initially, in the 2L/2,x,0 region we setAzx50, while in
the 0,x,L/2 regionAzx51. In the case of free streaming
this anisotropy is given by
Azx~x,t !5

11~a/t3!(
l 50

`

@sin~knx!/n4# @sin~knt !2knt cos~knt !#

11~a/t3!(
l 50

`

@sin~knx!/n4# $@~knt !222#sin~knt !12 knt cos~knt !%

. ~13!
be

ed
We note that of course other nonequilibrium initial co
ditions, e.g., homogeneous spatial distribution with ani
tropic momentum distribution, can be set up to test dyna
cal relaxation toward global equilibrium. In this paper w
will study only the evolution of spatial inhomogeneous co
ditions.

C. Collision rate for an isotropic, homogeneous gas

The collision rate per unit volumeW is another quantity
that can be easily monitored. It is related to the numbe
collisionsNc in a period of timet via
-
i-

-

f

W5
Nc

Vt
. ~14!

We take the integrated parton elastic cross section to

sgg→gg5
p

m2
. ~15!

The total collision rate per unit volume can be calculat
from
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W5^sr1r2uvW 12vW 2u&

5
1

2

p

m2
g2E d3p1

~2p!3

d3p2

~2p!3
e2b~E11E2!uvW 12vW 2u,

~16!

and it is expected to be independent of the microscopic fo
of the differential cross section. The 1/2 on the right-ha
side of Eq.~16! takes into account the two identical incom
ing particles. The identity of two incoming gluons has be
taken into account in the scattering cross section. In App
dix A, we show that the above six-dimensional integral c
be reduced to a one-dimensional integral:

W5
8T6

p3m2
FS 2m

T D , ~17!

in which F(x)5*x
`dyy2(y22x2)K1(y) @13#.

III. NUMERICAL TESTS OF THE ZPC MODEL

For the cascade calculations, we take the temperatuT
50.5, 1, 1.5 GeV, and set the total number of particles
the periodic box to beN54000. The volume is related to th
density of particle at zero-chemical potential,

r5
g

~2p!3
4pE

0

`

dpp2e2bE, ~18!

via V5N/r. In ZPC, there are 1000 computation cells
volumeV/1000. We specify the cell size to the cascade co

To study the mass dependence, we choose three diffe
masses: 0, 2.5, and 5 GeV. For the dependence on the
tering cross section, the interaction lengthAs/p51/m is set
to be 0.5l, l, and 1.5l. In the abovel is a rough estimate
for the mean free path

l5
1

rs
. ~19!

We specify the screening massm to the cascade code.
The parameters for the cascade measurement are sho

Table I. Unless otherwise stated, we will use the ZPC def
scattering scheme, i.e., a collision time is determined in
two colliding particle center-of-mass frame, and the collisi
space point is the center of the two colliding particle po
tions in their center-of-mass frame. As we know@11#, this
scheme is not sensitive to the global frame used to order
collisions. We refer to this scheme as scheme~a! in the fol-
lowing.

Figure 1 shows the pressure-energy density ratioP/e as a
function of m/T, and Fig. 2 shows the energy density as
function of temperatureT for different particle masses. W
see very good agreement between the predictions and
cascade results. This indicates that the initial momentum
tributions are correctly generated. There is no time dep
dence of the pressure and energy density over a time pe
of 6 fm during which each particle has experienced;10
collisions on average.
m
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For periodic slab initial conditions,T11 evolution at posi-
tion L/4 in the free streaming case is compared with pred
tion in Fig. 3. Also shown in Fig. 3 is the result~filled
circles! with interactions turned on. We see that interactio
reduce the rate of collective expansion compared to f
streaming and also the oscillations damp faster than in
free streaming case. For the noninteracting free stream
case, good agreement of prediction~dashed line! and cascade
results~pluses! is shown for theT11 evolution atL/4 in Fig.
3 and time evolution of free streamingT11 spatial distribu-
tion in Fig. 4. Time evolution of free streamingAzx spatial
distribution ~Fig. 5! also agrees well with the prediction.

Figures 6 and 7 give scaled collision rate per unit volu
as a function ofm/T. The data points with the samem/T,

TABLE I. Input parameters to ZPC: cell size and screeni
mass for different temperatures and masses of particles.m1, m2, m3

correspond to three decreasing screening masses as described
text.

T50.5 GeV m50 GeV m52.5 GeV m55 GeV

l c ~fm! 0.532 405 97 1.315 035 18 5.196 534 01
m1 (fm21) 5.501 786 69 2.227 456 82 0.563 680 34
m2 (fm21) 4.366 770 96 1.767 933 64 0.447 393 38
m3 (fm21) 3.465 908 38 1.403 209 85 0.355 096 36

T51.0 GeV m50 GeV m52.5 GeV m55 GeV

l c ~fm! 0.266 202 98 0.367 664 46 0.657 517 57
m1 (fm21) 11.003 573 61 7.967 003 54 4.454 913 73
m2 (fm21) 8.733 542 10 6.323 414 86 3.535 867 35
m3 (fm21) 6.931 816 91 5.018 897 67 2.806 419 75

T51.5 GeV m50 GeV m52.5 GeV m55 GeV

l c ~fm! 0.177 468 65 0.209 810 78 0.293 208 39
m1 (fm21) 16.505 360 62 13.961 075 15 9.990 110 0
m2 (fm21) 13.100 313 31 11.080 912 61 7.929 155 5
m3 (fm21) 10.397 725 50 8.794 926 11 6.293 374 87

FIG. 1. Pressure-energy density ratioP/e as function ofm/T.
The dotted curve is the analytic prediction, and the filled black d
are cascade data.
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1178 PRC 58BIN ZHANG, MIKLOS GYULASSY, AND YANG PANG
and samem overlap. The three data sets at the samem/T
correspond to three different screening massesm. The
smaller the screening mass, the lower the collision rate.

The collision rate is the same for the ZPC defa
Yukawa-type scattering differential cross section and
straight line propagation. This indicates the collision num
loss is not due to particle shielding.

With small screening mass, the interaction range is la
When the interaction range is much larger than the mean
path, noncausal collisions become more abundant. To
cess the noncausal collision, we pick up one collision ou
several collisions for one particle according to the order
time ~see Ref.@11# for details!. This process neglects othe
collisions in the same noncausal collision set. Some of th
will not be recovered later. The larger the interaction ran
the larger percentage of noncausal collisions. Hence, m
collisions are neglected and the collision rate is lower th
expected.

In the dilute limit, the percentage of noncausal collisio
out of the total number of collisions for massless particles

FIG. 2. Energy densitye as a function of temperatureT for
different masses. The curves are predictions, and the dots are
cade data.

FIG. 3. Evolution of the longitudinal momentum flux.T11 is in
units of T11(`). The size of the box is determined by th
asymptotic temperatureT51.5 GeV, and the screening mass is s
to be 16.5 fm21 for the interacting case.
t
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proportional to the number of particles inside the cau
sphere in the two colliding particle center-of-mass fram
The radius of the sphere is proportional to the impact para
eter. So

Nnonc

Ntotal
}

1

sE0

As/p
2pbdb

4p

3
b3ḡr5

8

15
ḡr

s3/2

Ap
.

2pbdb/s is the probability of having impact parameterb.
Here,ḡ is for the averaged boost factor from lab frame to t
two colliding particle center-of-mass frame. In the case
massless particles,ḡ'2. 4pb3ḡr/3 gives the number of
particles in the sphere with radiusb in the two colliding
particle center-of-mass frame. The exact radius of the sph
depends on the definition of noncausal collisions@1,11# and
the collision prescription of cascade.

as-

t

FIG. 4. Evolution ofT11 spatial distribution. The predictions ar
drawn with solid and dashed lines alternatively with numbers in
cating the times in fm. The cascade data are drawn in filled circ
and pluses alternatively for different times. Asymptotic temperat
T51.5 GeV.

FIG. 5. Evolution ofAzx spatial distribution. The predictions ar
drawn with solid and dashed lines alternatively with numbers in
cating the times in fm. The cascade data are drawn in filled circ
and pluses alternatively for different times. Asymptotic temperat
T51.5 GeV.
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The noncausal to total ratio is closely related to the ra
of interaction length to the mean free path:

x5
As/p

1/rs
5r

s3/2

Ap
.

We seeNnonc/Ntotal decreases linearly withx as x→0.
This motivates the algorithm of reducing the noncausal c
lision percentage@1# by subdividing the particles by a facto
l so thatr→ lr while decreasings→s/ l . This preserves the
mean free path 1/sr while x}1/Al→0.

To study the noncausal collisions, it is easy to use the
particle center-of-mass scattering scheme with collision
sition for each particle taken as the position of the particle
the collision time in the two particle center-of-mass fram
@scheme~b!#. The number of noncausal collisions, and to
number of collisions for 4000 particles withm50, T50.5
GeV, and a time period of 6 fm is summarized in Table II.
the table,m is the screening mass.a gives the ratio of inter-

FIG. 6. Collision rate per unit volumeW as a function ofm/T.
The curve is the prediction, and the pluses are cascade data
open circle corresponds to the rate atm/T50 with m
53.465 908 38 fm21. The result from scaling the cross sectio
down by a factor of 10 and increasing the particle density b
factor of 10 is shown as the open triangle.

FIG. 7. Collision rate per unit volumeW as a function ofm/T.
The curve is the prediction, and the pluses are cascade data.
o

l-

o
-
t

l

action length to the estimate of mean free path before res
ing. l is the scaling parameter, i.e., the total number of p
ticles is increased by a factor ofl and the cross section i
decreased by a factor ofl ~but the number of collisions is stil
for 4000 particles!. x1 is the ratio of interaction length to th
estimate of mean free path including the rescaling, i.e.,x1

5a/Al . x2 is the ratio of interaction length to the measur
mean free path. The mean free path is measured through
formula, r/(2W), in which W is the collision rate per unit
volume and the particles are moving at the speed of lig
The ratio of the number of noncausal collisions to the to
number of collisions is also plotted in Fig. 8 against the ra
of interaction length to the mean free path. In Fig. 8, t
open circles are data againstx1 and the filled circles are
againstx2. It shows that when the density increases, i.
when x increases, the difference betweenx2 and x1 in-
creases. This tells us that when density is high, the na
formula for the estimate of mean free path,l51/(rs),
needs to be corrected. Also we see the data deviate f
linear formula and has a tendency of saturation when den
is large. This is consistent with the fact that the ratio sho
always be less than 50% from the definition of the noncau
collision.

When we fix m and increasel from 1 to 5, the total
number of collisions goes up from 64 700 forl 51 to 75 400
for l 55. For l 510, the total number of collisions is 77 800
We see clearly the trend toward a constant value of to
number of collisions whenl is increased. In scheme~a!, there

he

a

TABLE II. Measurement of noncausal collision number and
tal collision number.

m (fm21) a l x1 x2 Nnonc Ntotal R

5.501 786 69 0.5 1 0.5 0.48 3240 31400 10.3
4.366 770 96 1 1 1 0.88 8250 46100 17.9%
3.465 908 38 2 1 2 1.56 19000 64700 29.4%
3.465 908 38 2 5 0.89 0.81 12500 75400 16.6
3.465 908 38 2 10 0.63 0.59 9700 77800 12.5

FIG. 8. The number of noncausal collisions over the total nu
ber of collisions as a function of the ratio of interaction length to t
mean free path. The dashed curve is the estimate when the radi
causal sphere is taken to be the interaction range. Open~filled!
circles are data plotted againstx1 (x2) in Table II.
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1180 PRC 58BIN ZHANG, MIKLOS GYULASSY, AND YANG PANG
are 70 000, 78 000, and 80 000 collisions forl 51, 5, 10,
respectively. Scheme~a! collision rate withl 510 is shown
in Fig. 6 as an open triangle~the l 51 data is shown as a
open circle!. The data show that particle partition improv
the cascade result. In addition, we observe that scheme~a!
collision rate is always higher than that of scheme~b!. The
closer the cascade rate is to the analytic prediction,
smaller the percentage difference. In this sense, the perc
age difference of cascade results from different schemes
be used as an indicator of the cascade systematic errors

During the preliminary study of the collision rate, w
found whenm/T510, the collision rate is higher than th
predicted rate. By looking more carefully into the code,
found out that it was caused by the larger than statist
fluctuations in the position distribution. When the fugacityl
is not uniform in space, the collision rate per unit volume

W5E d3x

V
l2~x!I , ~20!

in which

I 5
p

m2
g2E d3p1

~2p!3

d3p2

~2p!3
e2b~E11E2!uvW 12vW 2u. ~21!

By using the inequality,

E d3x

V
l2~x!>S E d3x

V
l~x! D 2

, ~22!

and the fact that the system we prepared has zero chem
potential and hence averaged fugacity is one, we arrive

W>W05
p

m2
g2E d3p1

~2p!3

d3p2

~2p!3
e2b~E11E2!uvW 12vW 2u.

~23!

The equality holds only when the fugacity has no spa
dependence. This shows that when there are space clu
existing for some time period, the collision rate is high
than that expected for the uniform system.

It was found only inm/T510 and not in other case
because in them/T510 case, particles are moving ve
slowly, and they stay in clusters for a much longer time.

We traced the origin of the nonuniform distribution.
was caused by some correlation of random number gen
tors ~see Appendix B!. When we use ran1 from@14#, and
generate first the momenta for all the particles and then g
erate the positions for all the particles, there are no abnor
fluctuations. When we generate momentum and position
gether, we found abnormal fluctuations. This does not oc
when ran3 from@14# is used. We correct the generation b
separating the generation of particle momentum and par
position @15#.

IV. CONCLUSIONS

From the above study, we show that the equation of s
and the collision rate can be used to test the initial conditi
and collision mechanisms of relativistic parton cascade.
important to notice that for massless particles, when the
e
nt-
an

al

cal

l
ters
r

ra-

n-
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teraction range is larger than the mean free path, the cas
collision rate is significantly lower than the theoretical valu
This gives rise to systematic errors of parton cascade si
lations. Other methods, e.g., particle partition, have to
used to correct the collision rate.

The comparison of free streaming and the interacting c
cade approach to equilibrium indicate qualitative similarit
of the two cases. However, the damping and speed of co
tive motion are quite different. A detailed comparison of fr
streaming, ideal hydrodynamics, and cascade approac
global equilibrium in the case of half-filled periodic box in
tial conditions will be addressed in another paper@16#.

As discussed in this paper, spatial distribution with larg
than statistical fluctuations gives higher than thermal reac
rate.HIJING @17# predicts initial spatial clusters of partons fo
nucleus-nucleus collisions at collider energies. This impl
higher than thermal collision rates@18# and many other in-
teresting physical phenomena beyond the widely used
gluon scenario@19# predictions.

We emphasize the importance of using analytic tests
debugging numerical simulation codes. The spatial distri
tion with abnormal fluctuations illustrates well the usefulne
of the analytic collision rate test. As more components
added to the cascade code, more tests will be needed to
sure the consistency of different parts of the cascade c
and to enable disentangling of the actual physical assu
tions that define the model.
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APPENDIX A: REDUCTION OF THE PHASE SPACE
INTEGRAL IN THE COLLISION

RATE CALCULATION

To calculate the collision rate per unit volume, Eq.~16!,
we first replaceuvW 12vW 2u by

As~s24m2!

2E1E2
,

and get

W5
1

2

2p

m2
g2E

4m2

`

dsAs~s24m2!E d3p1

~2p!32E1

d3p2

~2p!32E2

3e2b~E11E2!d„s2~p11p2!2
…. ~A1!

The d function can be used to integrate out one angle
using:
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d„s2~p11p2!2
…5

1

2p1p2
dS cosu21

s22m222E1E2

2p1p2
D .

~A2!

After carrying out the angular integrals, the collision ra
becomes

W5
pg2

4~2p!6m2E4m2

`

dsAs~s24m2!
4pp1

2dp1 2pp2
2dp2

E1E2 2p1p2

3e2b~E11E2!QS 12U s22m222E1E2

2p1p2
U D . ~A3!

The Q function constraint can be written as

~E11E2!2m2,sE1E21m2s2
s2

4
.

Now we change integration variables fromE1, E2 to x
5E1E2, andy5E11E2. The collision rate becomes

W5
pg2

2~2p!4m2E4m2

`

dsAs~s24m2!

3E dxdy
e2y/T

Ay224x
QS x1m22

s

4
2

y2m2

s D .

~A4!

The integration overx can be carried out first. The abso
lute lower bound ofx5E1E2 is m2, but x is also restricted
by the Q function. By noticing y>s, and hencey2m2/s
2m21s/4.m2, we see the lower bound should bey2m2/s
2m21s/4. The upper bound is determined from the squ
root in the integrand to bey2/4. The result is

E
y2m2/s2m21s/4

y2/4
dx

1

Ay224x
5

1

2
A~s24m2!~y2/s21!.

~A5!

Now the collision rate per unit volume is reduced to
two-dimensional integral:

FIG. 9. Momentum distribution form55 GeV, T50.5 GeV
with 40 000 particles. The dotted line is the prediction, the op
circles come from code using ran1, and the filled circles are r
results.
e

W5
pg2

4~2p!4m2E4m2

`

ds~s24m2!E
As

`

dye2y/TAy22s.

~A6!

The y integral can be readily carried out to be

E
As

`

dye2y/TAy22s5AsTK1SAs

T D . ~A7!

In the above,K1(x) is the modified Bessel function. Takin
g516, we arrive at Eq.~17!.

APPENDIX B: ONE EXAMPLE SHOWING THE
INTERFERENCE OF GENERATIONS OF DISTRIBUTIONS

OF VARIABLES

The following is a sample program that generates the p
ticle momentum and position together. ran1 is taken fr
@14# and declared as a real*8 function.

program dist
implicit real*8 (a-h, o-z)
parameter (mul = 40000)
parameter (size = 5.19653401d0)
external ran1
common /para/ xmp
temp = 0.5d0
xmp = 5d0
do i = 1, mul

call energy(e, temp)
call momentum(px, py, pz, e)
x = 2d0 * ran1(iseed) - 1d0
x = x * 5d0 * size
y = 2d0 * ran1(iseed) - 1d0
y = y * 5d0 * size
z = 2d0 * ran1(iseed) - 1d0
z = z * 5d0 * size

end do
stop
end

subroutine energy(e, temp)
implicit real*8 (a-h, o-z)

n
3

FIG. 10. Number of particles per bin as a function of positionx
for m55 GeV,T50.5 GeV with 40 000 particles. The dotted curv
is ran1 result, while the solid curve is for ran3.
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external ran1
common /para/ xmp

1000 continue
e = ran1(iseed)
e = e * ran1(iseed)
e = e * ran1(iseed)
if (e .le. 0d0) goto 1000
e = - temp * log(e)
if (ran1(iseed) .gt. exp((e - sqrt(
& e ** 2 + xmp ** 2))/temp)) then

goto 1000
end if
return
end

subroutine momentum(px, py, pz, e)
implicit real*8 (a-h,o-z)
external ran1
parameter (pi = 3.14159265358979d0)
cost = 2d0 * ran1(iseed) - 1d0
sint = sqrt(1d0 - cost ** 2)
phi = 2d0 * pi * ran1(iseed)
px = e * sint * cos(phi)
py = e * sint * sin(phi)
s/

g

.

tt
pz = e * cost
return
end

The momentum distribution is shown in Fig. 9 along wi
that generated by ran3, and the theory prediction. We
that the momentum distribution is correctly generated w
reasonable fluctuations.

Figure 10 gives the positionx distribution from the above
program using ran1 and ran3. The ran1 result has m
larger fluctuations than the expected statistical fluctuatio
while the ran3 result is consistent with the expected stat
cal fluctuations.

When the generation of momentum and position are se
rated, the distributions all have reasonable fluctuations.
other possible~and more efficient! way to solve the problem
is to generate Gaussian momentum distribution for la
m/T values.

Since with the above program, the total number of ra
dom numbers used is 141 931 896, while we can easily sh
the period of ran1 with the given parameters is beyo
2 000 000 000, it is not clear that the large fluctuations
due to the period of the random number generator ran1.
this is a concrete example of ill-generated distribution.
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