PHYSICAL REVIEW C VOLUME 58, NUMBER 2 AUGUST 1998

Complete and incomplete fusion in heavy-ion collisions
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We develop a formalism to study the influence of the breakup process of a weakly bound projectile on the
complete fusion cross section. We show that the complete fusion and the resulting incomplete fusion cross
sections can be expressed in terms of breakup and survival probabilities, which are evaluated with the help of
appropriate polarization potentials. The effects of the finite size of the projectile and of Fermi motion are
estimated. As examples, we consider light—heavy-ion collisions where threshold effects play an interesting
role. [S0556-28188)04908-5
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I. INTRODUCTION Il. FORMAL REACTION THEORY

A natural framework through which the questions raised

The fusion .Of heavy ions at Energies in the V'C'n.'ty of thein the introduction can be fully addressed is to consider the
Coulomb barrier has been extensively discussed in the pagision of a two-cluster projectile with a target. Let us con-

several years. The question of coupled channel effects on thgqe; the collision of a projectila with a targetA and intro-
fusion cross sectionr has been widely debated and a rather . P - . .
Eqgce the projector®, B, andR, acting on the full Hamil-

satlsfactory plcture. has emerged: coupled channels enhan ShianH and on the total wave functio. They project,
o in the no-coupling case, regardless of the nature of the

channeldinelastic or transfgrand their region of) value. rgspect.wely, the components & in Athe elast|§ channel
Because of the normally larg® value of the breakup (P¥), in the space of breakup state8), and in the re-

channels, their effects have usually been discussed whenaining reaction channelR{¥'). Using these projectors, the

above barrier energies, where “normal” coupled channeldull Schradinger equation can be split into the coupled equa-

have little effect. Breakup followed by fusion, so-called in- tions

complete fusion(IF), competes with complete fusioiCF)

(the fusion of the intact projectilein this energy regime. (E-PHP)P¥=(PHR)R¥Y +(PHB)BV,

This competition, owing to the effect of coupling to the

breakup channel, leads to a reductiornoige. (E-RHR)R¥=(RHP)P¥ +(RHB)BY, (1)
The above scenario changes when discussing fusion of

loosely bound projectiles. Even at sub-barrier energies there (E—BHB)BW = (BHP)PW + (BHR)RV.

are important breakup coupling effects. Therefore, a real
competition between “normal” and breakup channels arises e are interested in the case where the subspace pro-
in this case. A natural question is raised in this connectior}ected byﬁ contains a single stater an effective state so

which is whether the breakup coupling results iniserease - .
in the complete fusion cross section, just like the effect of théhat RY'=¥g and, further, that the states In the preakup_
channel are such that the fragments are emitted with negli-

coupling to “normal” channels, or aeduction since the ible relati i thei ter of f Equati
incomplete fusion is operative here. The above question h € refative energy In their center of mass frame. £quations
) then reduce to the simpler set

recently been discussed in several papérs3] but a fully
satisfactory answer has not yet been given. Since experimen-
tal efforts to measure for !Li on heavy target nuclei are
presently underway, a better understanding of this phenom-
enon is clearly called for. It is the purpose of this paper to
further elucidate the role of breakup coupling on heavy-ion oot
fusion involving weakly bound two-cluster projectiles. By (E-Eg—Hg”)Wp=VgoWo+ Ver¥r.

doing so, we may assess the findings of the above references. ~ . .

Since data do exig#] for systems such a¥i+*°C and Above, V(=PV¥, ¥;=R¥, V=BV, Ey stands for the
®Li+°Be, we shall, in the following, discuss a theoretical intrinsic energy in channé®, andEg is given by the breakup
framework through whichocr and o= can be calculated Q value.H™ refers to the no-coupling optical Hamiltonian
with the effect of breakup included. This formulation allows in channeli (with an imaginary part that takes into account
the projectile and/or target to break up. the loss of flux to complete fusion in that channéh par-

(E=H{)Wo=VorW¥r+ VeV,

(E-Er—HY)Wr=VroW¥o+Vre¥s, 2
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ticular, the Ham|Iton|arH°pt describes the optical propaga- fully met. As a consequence, it will be necessary to include a
tion of the two unbound clusters of the projectile andc, correction in the incomplete fusion cross section, as will be
(with ¢;+c,=a) in the complex mean field of the target discussed in the next section.
nucleus. TheV’s are appropriate channel-coupling poten- We may now perform further reduction of Ef) to ob-

It is convenient to formally eliminate the breakup chan-
nel. By inverting the last of the equations in Eg), one can
write

[E—HP'- VP vt =0, (10

where the optical Hamiltonian in the elastic channel can be
W5 = (E—Eg— HP) " VgoW§H + VerW &1 written H_gpt= Ko—Uo. Above, we have introduced the total
polarization potentiaV/P®

=Gy [VaoW" +Ver¥i 1. )
VPOl VB POl VP (11)

Accordingly, the wave function®{") and w{") are so-
lutions of the equivalent two coupled equations including the contribution from the coupling to tf chan-

nel
(E—Ho= V™) Wo=(Vor+ Vo) W,
R pol_ (V0R+ VB poI)G +)(VRO+VB pol). (12)
(E—Eg—HP'- VB W o= (Vo + VELNTy,  (4)
We have used the propagator
where the breakup effective polarization potentials are given

by GY'=(E—Eg—HY'-VER'+is) 1, (13)
Vi PI=Vig G V. (5)  whereHP'=Kg—Ug is the optical Hamiltonian for a colli-
_ _ sion initiated in channeR.
Above,i andj stand for the channels O arii The total reaction cross section is then given[ &}

For future use, we write below the imaginary part of
Vﬁ Pl assuming/;g andVyg; to be real. For this purpose, we

k
— ()] = pol 4 /R pol (+)
write the propagator in the breakup channel in the form Ir E<q’0 | 'm{U0+V Vo HWo ). (14

Z(E—Es—hgft_ hg§t+i8)71, (6) The reactive content of5," is elastic breakup and in-
complete fusiosee Eq(8)]. The reactive content of§ pol
where is more complicated; complete fusion through fhspace
opt_ opt_ plus higher-order processes that can be described in details
h01 =Ke, tUe, and hCz =Ke, T, (@) by evaluating its imaginary part. We have

are the optical Hamiltonians for the collision of each of the IM{VRPh =V mQ5 ) S(E—Er—Kp) QG
fragments with the target. We get
~GRT Im{Up+VER™GR Vro. (15
Im{V P} =Vig[ 705 S(E—Eg— K¢ — K )(Q5 )"
We define complete fusioncr as that part ofr, which

+(Gg)IM{U +U }GE Vg, (8 contains explicit reference to K} and In{Ug}. We also
define incomplete fusion g as that which contains reference
whereQ§ ) is the Mbler wave operator given by to Im{U, } or Im{U,}. The rest of the total reaction cross

section is formed by elastic breakup to three-body states
g g and the inelastic excitation to states in Repaceo;, .

) o i Thus within our model, we write
The quantity within square brackets in Ef) corresponds to

the imaginary part of the Green’s function associated to a 0,=0g g+ Tint Ocgt O . (16)
non-Hermitian Hamiltoniarj5], as shown in the Appendix.

The first term on the right-hand sidBRHS) of Eq. (8) repre-  The elastic breakup cross sectiog g is given by

sents the contribution of elastic breakup, whereas the second
term represents inelastic breakupr incomplete fusion, if
Im{U, } and I{U__} represent absorption @f andc, into

the fusion channels, as in our case hefd this stage, one (o)t (+)
should point out that the adopted form of the propagator in X S(E—Eg—K¢,—Kc,) Qg Vi ¥5").

the breakup channgEgs.(6) and(7)] involves two approxi-

mations. The first is that we are neglecting final state interThe inelastic cross section is

actions between the fragments. The second is that the target

recoil is not properly taken into account. This approximation (+) (-) (—)t (+)

is justified when the target mass is much larger than those of ¢ <qf VorQe "B~ Er—Kr)di "Vrol Vo ),
the projectile fragments. In our case this condition is not (18

Qg )=1+G (U +U )" (9)

K _
O B:E<‘I,E)+)|VOBQE3 )
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where the Mder operatorQ§ ), which contains the effect of T >
breakup on the distortion of tH@ channels, has a definition 0F=—22 (2/+1)T,, (23
similar to Eq.(9). The complete fusion cross section is k/=0

k _8Bu [~ 2
oer=g (V57 IM{Uo}[W5") + (L") Im{UgH | R")). T =2 dr|Wo, (k,r)[*Im{Uq(r)}, (24
(19
) where¥, (k,r) is the radial elastic wave function that sat-
This cross section will be considered in detail in the nextsfies the equation

section.
2 2 o0 g
Finally, the incomplete fusion cross section can be written Al d /(/+1) I
y p —ﬂ ﬁ_—rz +U0+V80F;)_E ‘I’O/(k,r)ZO.
OF=0Fot TR, (20) (29
where To find ¥ (k,r), we first introduce a Schdinger equa-

tion in which the imaginary part of the polarization potential
K A A of Eq. (25) is neglected. Namely,
0'|Fo:E<\I’B+)|VBG§3+)Jr Im{UC1+U02}G§3+)BV|\PE)+)>

w2 d>  /(/+1) 5
R el S poh _
(22) 20| 372 = +Uo+ReVe2} —E [®g (k,1)
and 0. (26)
k a We next introduce the ratio of the exact solutidr (k,r)
— D) ()t /K,
TIFR E<\PR [VBGy g Im{Ue, & to the approximate solutiof, ,(k,r),
+Uc,—rIGE RVer Wk ). (22 Vo, (k1)

B/(k,r)=—q)o/(k'r). 27

The contributionso ¢ and o g differ in the order of the .
breakup process leading to the fusing fragment. In the firsf N functionsW, (k,r) and @, (k,r) are related by a
term, breakup is reached through the coupling with the enliPPmann-Schwinger equation involving the additional po-
trance channel. The second term is more complicated. Thertential AV=—i Im{Vg,’} and the Green's function associ-
the breakup channel is fed from an inelastic state, excite@ted with Eq(26). The transmission coefficient can be put in
from the entrance channel in a previous step. Accordingly, ithe form

may involve a different Green’s function and different opti-
cal potentials. To emphasize these points, we use the nota-

8u (=
: T,=—| d k,r)|?|®g (k,r)|2Im{U :
tions G}, Uy, g, andU, g / kﬁzfo M8k, @0, (k,r)[FIm{Uo(r)}

(28
lll. THEORY OF COMPLETE FUSION AND INCOMPLETE At this point, we would like to analyze the behavior of the
FUSION REACTIONS integrand inT, [Eq. (24)]. Since I{U} represents fusion,

ne expects it to be of volume absorption nature with a rather
harp surfacgsmall diffuseness Further, the probability
lensity | W (k,r)|? is very much damped in the interior
‘egion, owing to strong absorption or centrifugal repulsion.

hus, the integrand should be sharply peaked at the strong
absorption radiuRg. Similar arguments can be made if
Vo, is replaced byP, . This, in fact, we have numerically

A. The complete fusion cross section verified. It is thus safe to replad@,(k,r)|? by its value at
The complete fusion cross section is given by &@). In r=_RF and move it out of the integral. Therefore, one can

this equation the wave functionis, andW, are solutions of ~ write
the full coupled-channel problefitgs.(1)]. Therefore, they _
are influenced by one another and also by the breakup chan- T,=|B,(kRe)|*T,, (29
nel. It is well known that in the absence of the breakup — o o ]
channel the coupling tends to enhance the fusion cross se@hereT, is the transmission coefficient in the absence of
tion at sub-barrier energies. However, the coupling tolM{Veg}. Then, the CF cross section takes the form
breakup introduces additional complications, which should
be considered with care. To simplify the discussion, let us
fist consideR ¥'{")|Uo| ¥§")) in the absence of the inelastic
channelR. By expanding in partial waves, we can write for
the fusion cross section the usual expression where the factor

In the previous section we developed a general formalisn?,
to treat elastic and inelastic scattering together with complet
and incomplete fusion on the same grounds. Here, we d
velop in detail approximate expressions to evaluate the co
plete and the incomplete fusion cross sections.

a * ) R
UF:F/Zo (2/+1)T,PS, (30)
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PS=[8,(k,Re)|? (3D k f d3k, d3k;

c _
77T E) (2m)3 (2m)3

is the survival probability introduced in Rdfl], which will

be utilized in our applications in the following section. Now
the major difference betweeb, (Rg) and®, (Rg) is the
change in magnitude of the barrier reflected wave. Using the R
WKB argument of Takigawat al.[2] one finds X Im{Ucl}G(cI)()((k;)lBVI‘I’&”). (39

X(‘I’(+)|VB|Xf< ))G“”(sz)lx

2 (= W ke th imati
B/(k,RF)=eX£{Hf dr|<I>/(k,r)|2Im{Vgop/°'(k,r)}}. e now make the approximation
0 ~ ~_
(32) N (X(kz)“m{uczHX:(é))
(xi, i )= d(ko—kj) —2i .
Note that R€Vg,®} affects®,, through Eq.(26). 2 B, B, tie

B. The incomplete fusion cross section ~d(ka=ka), (39)
As we have shown in the previous section, the incompletavhich corresponds to taking the overlap integral to lowest

fusion cross section is given by Eq®1) and (22). These order in In{U.}. With this approximation, Eq(38) be-

equations can be further simplified if we consider the contricomes

butions from each fragment, integrating over the degrees of

freedom of the remaining one. Let us deal explicitly with Eq. . k 3k,

(21), since extending the same treatment to E2R) is OFo= —f ?<®cl,ké|Im{Ucl(rl)H@cl,ké)’ (40)
straightforward. The incomplete fusion cross section can be (2m)

written where

+ , 33 I - 5
TR0~ TiEot O B3 106,19 =0L 00 IBVIWE ) =(xi, 164 BVIwE").
where (41
. We have used the notatidn@clvké) to emphasize that it is a
C1 _ v B+ +)A +
TiF o= _<\I’§> IVBGE"" Im{U. }GE BV W), vector inc, space, which depends also on the momentum of

(34)  fragmentc,.
To simplify |®01»k§>' we rewrite the coupled-channel

with a similar expreSS|on fOtD'”:O Equation(34) can be put equation[Eqs_ (2)] for I\IIB> neg|ecting the Coup”ng téR
in a simpler form if one integrates over the degrees of freespace, in the form

dom of fragmentc,. For this purpose, we should use the

spectral representation of the Green’s function in the space [E—Eg— H| W5y =BV|¥{"). (42)
of this fragment. It is, however, more convenient to express

it in terms of wave functions with ingoing scattered wave Plugging the result into E¢41), we get

boundary conditions. From the identi®5" =G ", we get _
0c, 1) =Gt [E-Ea—ei,—hPl(x, |V5"). (43

_ d3k,
Gy )T:f (2n )3|Xk2 Ge'(xi, |- (35  Keeping in mind thaGE:)-[E—EB—ské—hglp‘]=1 [see Eq.
(37)] and using the coordinate space representation for clus-

Above, x{ ) and{.’ are distorted waves for the motion of tersc, andc,, we get

fragmentc, satisfying the equations

O,y = [ arde W . a9
Lok, ~ 51| xi, ) =0, ’
To further reduce Eq40), we approximate the wave func-

Lo~ (hB) X, ) =0, (36  tion W) by the eikonal forn{6]
and round brackets denote vectors in the space of this frag- W5 (11,12 = AKX ()X () d(r1=12), (49)

ment. The operator -
wherek=+2uE/fiz is the incident wave vector and(r,

G =[g,— o1, (37)  —r,) is a short-range correlation arising from the interaction
! ' between the fragments. The wave vectors associated with the
with &,=E—Eg— sy, is a propagator acting exclusively on fragment motionsk; and k, are given in terms of the

Using Egs.(35), its Hermitian conjugate and E€R7) in = (Mc, /My)k” andk,=(mc,/m,)k’. The fragment distorted

Eq. (34) we get waves are
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X ("2) sz (bz,zz) e

X exp‘

" (0y,25)=€"

_IZ—EZI dZZUCZ(bZ'ZZ)] (46)

and

(=)* _ (= iko-r
' )= 2
X (ra) Xk, 2

ks F
xXexpy —i— | dzU.(b,,z5);. (4
p{ 255 ), 0Bz »] (a7

The distorted waves for fragmeai are given by analogous
expressions. In Eq45), A(k) is a breakup probability am-
plitude, which was taken to be equal to the one in Ré¥.
Using Eqgs.(46) and(47) in Eq. (44), we get

O, (1) = AKX (12) | @Proel 25, oy

Xp(ry—rs), (48)

wherer,=b,+zz and

S,(kob,)=expl —i I(—éjzzdz’u (by,2")
2D2) = 2E) - c,\ D2,
2E2f dz' UCz(bZ'Z)H

e

is the elasticS matrix for the scattering of the fragmeaos

_IZ_EZ,[ dz'U, (bzz)] (49

from the target. The approximation involved in the obtention

of Eq. (49) is the neglect of th&) value of the process. We
now use the wave function of EG8) to evaluate the incom-
plete fusion cross sectidiq. (40)]. We get

C1_

k
Tido fd3r1|A<k>x<“ (ro)[PIm{Ug (r)}F(ky,rp),

(50

where

Fikurs) = [ o 0P8k (kg 11— 1)

|q (r —r2)

X p*(r — 2)J

- [ eristcbfor -l 6

Above, F(kq,rq) plays the role of the survival probability of

fragmentc, averaged over the projectile extension. If we

treat the projectile as a point partigiihe effects of its finite
size will be considered in the next sectipmamely take
d(ri—ry)~8(r1—r,), we get the simplificatiorF (k,,r;)
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=|S,(k,b,)|? and, using the eikonal form fcx(kj)(rl) [Eq.
(46)], the incomplete fusion cross section becomes

C1_

k
So=g | oA IS, (b

Xf_ de_ |m{Ucl(b1,21)}

X exp|

The integration over, is straightforward and we get

kl 21 , ’
_E_lf_wdz1 Im{U; (by,z))}. (52

|S1(k1by)[?)
(53

1
TFo

kE
e | dbilacoissbyl-

The accuracy of the above expression at low collision ener-
gies can be improved if one converts the impact parameter to
a partial wave, according to the usual prescription. Namely,

r
bk,—(/1+1/2), fdzbl_?/z (2/,+1),
171

bk—(/o+1/2).

(59

Equation(53) then becomes

C1 _
TEo™

v\ ,
; >k_§/21 (2/,+1)

X (1=[S1(7 1, EDIDIAL0)I?S2(/ 2, Eo) %,
(55

wherev’=#k'/u andv=7%k/ u.
Introducing the transmission coefficient for fragment
c; TH(E,) the breakup probabilit? (E) and the sur-

vival probability for fragment, [1—T(/22)(E2)] given by

P2 (E)=|A(/0)I%,
TH(Ey)=(1-|S(/1,Ep)|?) (56)
[1—T</2;<Ez>]=|sz</z.E2>|2,

Eq. (55) takes the final form
U!
‘Tﬁ:lo_(v)?u:lo' (57)
with
ar
To= 52 (2/1+ DT(ENPZ(BN1-TA(Ey)]
171

(58)

1. Effect of the finite nuclear size on incomplete fusion

In this subsection we drop the approximations of infinite
target mass and of a pointlike projectile. In the previous sec-

tion, the angular momentum of fragmesyt was determined
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from /', through the relation’,= (k,/k;)/;. In a projectile  wheret=2b,b,/a? andl_O is related to the standard modi-
with finite extension, the impact parameters of the two frag<ieq Bessel function, throughl o(t) =e I o(t).

ments are no Ion’ger’the same and a gi¥grvalue leads to From the impact parameter distributier{b; ,b,) we can
a distributionW(/"1,/",) for the angular momentum of frag- switch to the angular momentum distribution. We first re-
mentc,. As we will see below, this distribution can be de- placeb,=1;/k;, i=1,2, take integer values fdg, and then

termined from the wave funcion describing the fragment mo<ing w(I,,1,) through the semiclassical prescription
tion inside the projectile. Furthermore, if the target mass is

finite, one has to be careful to write the angular momenta in lo+1/2

the appropriate coordinate frame. If one intends to employ W(Il'|2):fl 71,2W(|1/k1'7‘2/k2)}‘2d)‘2' (64)
stardard results for the cross section of E58), the angular 2

momenta/’y, />, and/ should be given in the;-target, | the casd,=0 the lower integration limit must be taken

c,-target, and projectile-target rest frames, respectively. ORqgya| to zero, and the final distribution for each valud of
the other hand, given the angular momeritaand/, of the  ,,ust be normalized according to EGJ).

two fragments, the angular momentum of the projectile cen- From|, andl, we may determine the orbital angular mo-

ter of mass/q is uniquely determined. If we find the distri- mentum of the projectile-target system in their c.m. frdme
butionW(/";,/’5), the cross section of E¢58) can be writ- 55 the nearest integer to the semiclassical value

ten as
m;+my m,+ My
™ 4 .
o= 53 (271 (PR, (59 mpt ) 1 (mp+ m) 2 (65)
171
with 2. Inclusion of the breakup energy distribution
. Let us now estimate the effect of the kinetic energy asso-
(P/11>=T</11)(E1)E W(/ 1,/ P2 /) s p(E) ciated to the relative motion between projectile fragments on
2 the incomplete fusion cross section. For simplicity, we con-
><[1—T(/2)(E2)]. (60) sider the contribution arising from the fusion of fragment
"2

with the target through the coupling with the ground state of

Above, the average is taken with respect to the possible vatn€ Projectile. The contribution from fragmeos as well as

ues of the angular momenturf, for a given/; and the the effects. of th(_a c_oupllng with the excited st&_tecan pe

notation PE (. IS used to stress the fact tha, is a evaluated in a similar way. We take as a starting point the
o\v 1.2

, ) momentum probability distribution corresponding to the
function of 7, and /. Of course, one must have Fourier transform of(r,;—r,) [Eq. (62)], approximated by

the Gaussian

> W(/1,/,)=1 forany /;. (61)
g dP(p) p’
. , , . =N'"exp — =], (66)
In order to determin&V(l,,l,), we first consider the im- d®p P3

pact parameters associated to the corresponding orbital an-
gular momentad; =1;/k; (i=1,2), wherek;=+2u;E;/#, w; where p is the relative momentum between the two frag-
=mym¢/(m;+my), andE;= u; VE—Eg/w is the energy of ments andoy=%/a. Equation(66) is basically the distribu-
the ¢;-target motion considered in the c.m. frame of this sys-ion used in Ref[7]. This distribution gives rise to the dis-
tem andB is the breakup energy. The probability distribution sociation energy spectrum in the projectile frame
W(/1,/,) then leads to a probability density(b, ,b,). No-
tice thatw(b, ,b,) is a differential probability, since the im- dP(e) N \/Eex;{ 3 i)

& €0 €p

(67)

pact parameterd, is a continous variable. To calculate d
w(bq,b,), we assume that the wave function for the separa-
tion between the two fragments is Gaussian, so that theih Egs.(66) and (67), p, and ands, are parameters of the
separatiorr;—r, has the distribution distribution to be determined from the experimental dissocia-
Fi—r,)\2 tion spectra antN’ andN are appropriate normalization con-

) } (62 stants.

@ This dissociation energy spectrum leads to a dispersion of
wherea is a typical length of the fragment distribution and the fragment energ§; around the valueE, appearing in
A=1/(a+/7)% is a normalization constant. Expressingand Egs.(57) and(58). This distribution is given by
r, in terms of cylindrical coordinatesb(,¢4,21;b,,¢,,2,)
and integrating?(r,—r,) overz, and ¢,, we get E=<6[E1—E1(p)]>=N’f e‘(p/pO)zé[Ei—El(p)]d%,

1
W(bllbz):f dzde,P(ry—ry) (68)

P(r1—15)=|b(r1—12)[2=A exp[_

5 bi—b.)2 whereE(p) is the fragment kinetic energy in the c.m. of the
= exd — g I_o(t), (63) fragment-target frame when the relative momentum of the
a? o? fragments ig. In this way we obtain the distribution
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r_ 2
d_P =C[e! JE—i— VEDZA_ o Ei/82], for Mg E
dE; Ay A,
=0, otherwise, (69)
|
whereC is a normalization constant ankh andA, are re- _ o2 Ei— V()]
lated to the parameter, of Eq. (67) as ®|(')(Ei)=2f 7 dr (74
"

f MM 7
L mp(mr+my) °0
_ my(mp+my) 71

2T N (om0
Mp(My+my)

The contribution from fragment, to the incomplete fu-
sion cross section is obtained averaging Es¥) with the
above distribution. Namely,

o ol dP |
0'|F(E1): 0'|F(E1) - dE;. (72

is the penetrability factor, with, andr, the inner and outer
turning points. At energies above the barrier we take the
Hill-Wheeler ~expression G)l(')(Ei)=27r(Vf3'?,— E)/hol,
Wherevg?, and ") are the height and curvature of the ef-
fective barrier for the interaction between fragmeand the
target at thelth partial wave. We should remark that, al-
though satisfactory for a qualitative view of the problem, one
should not expect that this general treatment of the nuclear
potential gives an accurate description of the fusion barrier
and, consequently, of the fusion cross section. One should
keep in mind that we are dealing with very light nuclei, for
which details of their structure may bring about important
changes in their interaction.

The breakup probabilities appearing in the incomplete fu-

Notice that in the absence of Fermi motion the distributionsion cross sections and also in the survival probabilities are

dP/dE; becomes proportional to & function and one re-

covers the result of the previous section.

IV. APPLICATIONS

In this section we calculate the complete and incomplete

fusion cross sections for the collision 8ifi and °Be projec-

given in Refs[11,1,4. They can be written
PPYE)=1—exg — 2—JT‘ZJIS«E—B)HZ( 5,€)
! E(E-B) 6]
(795)
where|S (E—B)|?~1-T{®)(E-B) is the absolute value of

tiles on a *’C target. These systems have some interestinawel-projected opticab matrix for a collision initiated in the
features. First, the thresholds for projectile breakup aré&'astic channel with energg—B. The Coulomb radial inte-

B(°Li—2d+ a)=1.47 MeV, B(°Be—n+2%Be)=1.65 MeV,

which are extremely low in comparison to that for the

breakup of a typical heavy ion~{10 MeV). In this sense,

these collisions behave in a manner similar to reactions in-

grall,(#,s,§) is given by

oo

l|<n,s,§>=f Fi(mk, )Ry K\ reTadr.  (76)

0

volving nuclei far from the stability line. Second, the disso- ppgye n Kk (7', k') are, respectively, the entrance channel
ciation energies are not negligible compared to the CoulomB,es of the Sommerfeld parameter and the wave number

barrier, which may lead to important threshold effects foriy, the collision energy E (collision energy E’).

incomplete fusion. This can be seen in Ef5 where the

transmission coefficienf1—|S(/1,E;)|?] vanishes below

the thresholE; <(E—Eg) u1/ .

To handle the complete and incomplete fusion process

o
=~\2upB/f, whereup=moA;(A,—Aj)/A, is the character-
istic length of the fragment orbit within the projectils,
=1/(ka), and ¢=(k—k")/(k+k"). In Eq. (75), Fy is the

e§trength of the breakup form factor. Since it depends

under the same footing, we treat the nuclear interaction i
both cases in a consistent wg§]: we consider a standard
double-folding calculation of the nuclear potential. We em-
ploy the M3Y force[9] and take nuclear densities from ex-
periment{ 10] to construct the optical potentials for projectile
target and fragment target. From the totahuclear

+ Coulomb+ centrifuga) optical potentials/{"(r) we de-
termine the transmission coefficients for each partial wave
At sub-barrier energies, these coefficients are calculated u%
ing the improved WKB approximation

r%trongly on the projectile-target system and on the collision
energy range, it should be fitted to the experimental situation
under study. If one knows this quantity for a given projectile

P and targefT at near barrier energies, it can be estimated
for a different targefl’ through the scaling rulgll]

FoT) = FyTyelRr-Fole, (77

should be noted that in the present calculation we neglect
e real part of the polarization potential, as in Refl].
This part vanishes within the on-energy-shell approximation
for the Green’s function. However, it is likely that it be-
comes relevant at sub-barrier energies leading to a lower
effective barrier and enhancing the fusion cross sed¢n

We used the above results to study complete and incom-
plete fusion in the collisiorfLi+*2C. In this case, incom-

TI(E))

T 1rexd®(E)]’ 73

where
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5Li + 2C Fusion 61 4+ 12C Fusion
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B 4 ¢ e
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i ' N N IF - with d -1 0.00 ) 1 1 ) l 1 1 L) ) l 1 1 ) )
bu-
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B 005
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FIG. 1. The complete and incomplete fusion cross sections for 0.00 L LI e b s o e s
the systenfLi +l.ZC, normalized to the asymptotic valueR3 . See 00 05 10 L5
the text for details. Vi /E
plete fusion corresponds to the fusion of tHe target with FIG. 2. Effect of the finite extension of the projectile fragments

one of the fragmentsd( or ) produced in the projectile ©" the incomplete fusion cross sections for the systeim °C.

dissociation. The breakup dfC can be neglected due to its
large dissociation energy. fusion cross section induced by theparticle and deuteron

In Fig. 1, we show the complete and incomplete fusionfragments. We notice that, especially in the case of ¢he
cross sections for the collisiofLi +*°C. The contributions particle, the former approximation is important at high ener-
from d and @ to incomplete fusion are plotted separately. Ingies while the Fermi motion effects are dominant at low
the calculation, we have used the strengf=5.0 MeV, energies, extending into the sub-barrier region.
which is of the order of those used in Ré#] for similar Figures 4-6 illustrate the results for the case of an inci-
systems. As we can see, at sub-barrier energigdE>1)  dent °Be projectile. In this case we did not consider the
the effect of breakup orrcg is negligible. However, at incomplete fusion process induced by the neutron, except
higher energies, incomplete fusion becomes appreciable artirough its hindrance on th#Be fragment incomplete fusion
complete fusion starts deviating from the one-dimensionatross section. The results are qualitatively similar, although
optical prediction. It is interesting to note that the incompletethe incomplete fusion process is more important than in the
fusion corresponding to the capture of the deuteron domi®Li case at large collision energies.
nates over that of the particle at energies below 2\3g, Comparison with experimenin this section we compare
while the situation is reversed above this energy. Thesgheoretical predictions of the present theory with experimen-
trends depend on the share of the incident energy carried bl data. Although there are no available data on incomplete
each fragment and on the fragment charge. Optimal condiusion for the systems considered in the previous section,
tions for sub-barrier and near-barrier fusion are a large ratiéhere are some data on the complete fusiofilof+ *°C. For
wilp and a small rati@; /Z,,. It can be easily checked that a quantitative description of the corresponding cross section,
the deuteron fragment is favored by this criterion. Thereforethe use of a general potential, such as the one in the previous
the fusion with deuteron is enhanced at lower impact enersection, would not be appropriate. One should use a potential
gies, in comparison to that of the particle. At higher ener- that could lead to an accurate fusion barrier in the absence of
gies, this effect becomes negligible and the larger spacidireakup. Breakup effects could then be taken into account
extent of thea particle, as reflected in the Coulomb barrier through the inclusion of survival probabilities, as in E80).
radius, predominates. It should be mentioned that the corrdn the 8Li+1%C case, it is possible to find such a fusion
sponding results presented in the preliminary calculations oparrier from the CF data of théLi + *2C collision. These two
Ref.[8] are somewhat different. The discrepancies have twsystems are nearly identical in the entrance channel. How-
origins. The first is that in the present calculation we use ®ver, the’Li breakup energyinto ana particle and>H) is
M3Y interaction strength which is suitable for low-energy about 1 MeV larger than that fofLi. Since the breakup
applications. The second is that in RE¢8] we made the probability depends critically on the breakup enefgg], it
crude approximation of neglecting the differences among thés reasonable to neglect breakup in thé + 1°C case. There-
angular momenta’,, /1, and/,. This approximation leads fore, this system can be seen &ki+°C with breakup
to appreciable differences in the incomplete fusion cross sec¢'switched off.”
tions. An appropriate fit of the optical potential to théli

In Fig. 2 we show the effect of the pointlike approxima- +%C CF data requires a fully quantal treatmértther than
tion and in Fig. 3 that of the Fermi motion on the incompletethe simple WKB tunneling with infinite short-range volume
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SLi + '2C Fusion Be + '>C Incomplete Fusion
Effect of Fermi Motion ( €,=2 MeV)
0.05
0.10 i 7] IF - finite extension
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FIG. 5. Similar to Fig. 2 for the systerfBe+ *°C.
0.10
i (F - o FM for the ®Li+'%C collision. In Ref.[4] this procedure was
il , followed for these collisions and also fét.i+°Be and®Li
R ———— (IF-d)with FM 9 .
Y . +°Be. The agreement between theory and experiment was
£ 005 quite good. For illustration, we use here the same approach
¢ i for 6Li+1%C. In Fig. 7M@), the experimental CF cross section
- TN for Li+'C is compared to the parametrized cross section
0.00 ] e for V,=4.14 MeV,R,=6.32 fm, Aw=3.31 MeV, and for
' o o 0'5 o 1'0 o o the cutoff angular momentum it Is= 104. The fit is quite

Vy/E

good. SinceV,, R,, and%w depend exclusively on the

entrance channel, it is safe to use the same values for the
FIG. 3. Effect of Fermi motion on the incomplete fusion cross fusion barrier in the®Li+%C system.

sections for the systerfLi +'°C. The results for®Li+%C are shown in Fig. (), in com-

parison with the data. The agreement is good, indicating that
absorption and should include surface absorption. Instead obreakup effects i can be taken into account through the
carrying out this procedure, we follow the simpler approachsurvival probability discussed in the previous sections. We
used by Takahasleit al.[4]. First, we parametrize the fusion should mention that it was necessary to use a different criti-
barrier[13] in terms of its heigh¥/,,, radiusR,, and curva- ¢al angular momenturh .=8. Sincel; depends on the
ture fiw. In addition, we introduce a cutoff in the partial details of the compound nucleus, which are rather different
wave summation at the angular momentfiin.;;. This pa-  in these two cases, this situation is not surprising.
rameter depends on the entrance channel and also on the
details of the compound nucleus produced in the complete
fusion processVy, Ry, fw, andL; are then fitted to re-
produce the CF data in théLi+'%C collision. Using the In the present paper, we developed a model that allows
same barrier parameters and including a survival probabilitghe study of the competition between fusion and breakup of a
for each partial wave, one then obtains the CF cross sectior@ther weakly bound two-cluster nucleus impinging on a tar-
get. Starting from the coupled-channel equations, we obtain
expressions for complete and incomplete fusion cross sec-
tions. The expression farg containing a survival probabil-
ity factor which has been assumed in a previous papgr
was formally derived. The effects of the final extension of
the projectile and also of the fragment Fermi motion inside

V. CONCLUSIONS

°Be + ?C Fusion

1.0 T T T T I T T 1 T I T T T T

Vy=4.1 MeV; Ry=7.8 fm

08 |~ -

“Be + 2C Fusion
Effect of Fermi Motion ( €,=2 MeV)

optical

o 0.10
® . 4
Al
b“* -
o T IF - no FM
o 4
1 B 0.05— -===- |IF- withFM
_ & i
. AN
N
N OOO T T T T I T = _I T T I T T T T
1.5 0.0 0.5 1.0 1.5

FIG. 4. Similar to Fig. 1 for the systeffBe+ °C. FIG. 6. Similar to Fig. 3 for the systeBe+ °C.
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1200 systems considered. However, at large energies they should
1100 - 7Li + 2C - Complete Fusion be easily measurable. These findings are of great relevance to
g the fusion of halo nuclei such dLi and 'Be.
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200+ APPENDIX: THE IMAGINARY PART
100 — OF AN ABSORPTIVE GREEN'S FUNCTION
0o4+— T T T | 1 In this appendix we derive a general formal expression for
0.0 0.1 02 0.3 04 0.5 the imaginary part of the Green’s function that describes the
1/E,,(MeVhH propagation of a particle in a complex optical potential
(+) S
1200 GT(E) E-Ho—U+ie’ (A1)
] 6] i 4 120 ;
1100__ Li+ *C - Complete Fusion whereH,, is the Hermitian kinetic energy operator audis
1000 — taken to be non-Hermitian"+ U). We write now the in-
900 . o Data verse of G(*)
800 Theory With P} [GUNE)] *=E—Ho—U+ie (A2)
—~ 7004  TFLINY _____._ s di | .
2 c00.] Theory Without P; and its complex conjugate
- _qt .
0 500 [G(E)] ' =E—Hy—U'—ie. (A3)
400 — The difference between EqéA2) and(A3) is then
300 — N
] GHNE)T Y =TcH)(E) L
200 [G(BE)] [G(E)]
100 - =U-U"-2ie
] _qt _
e e e L B =U-U"+[G,"(E)] " —[G,"(E)] 7, (A4)
0.0 0.1 0.2 0.3 0.4 0.5 .
1/E, . (MeV}h where we have introduced the free propagator
i ; ; 1
FIG. 7. Experimental and theoretical cross sections for complete GBH(E) _ (A5)

fusion in the collisionga) “Li + *2C and(b) bLi +%C. The data are
from Takahashet al. [4]. For details, see the text.

E_Ho+i6.

o Multiplying Eq. (A4) on the right byG(*)(E) and on the
the projectile have been assessed.

It is important to emphasize that although in the presenleft by G (E) we obtain
work we have discussed at length the effect of the breakug;(+)(E)_G<+)(E)f
channel on the complete fusion cross section, our theory per-

mits the inclusion of other couplings, our subsp&ethat =GE)(U-UHGH(E)+GH(E)T

would result in the well-known phenomenon of the enhance- "

ment of complete fusion at sub-barrier energies. It also al- X[Gy(E) 1 =G, (E) " HIG(E). (A6)
lows similar enhancement in the incomplete fusion cross sec-

tion We now use the Lippman-Schwinger representation for

Tg\e model was used t?zcs:tudy the complete fusiofilaf G and G’
and “Be projectiles with a“C target nucleus. The complete
fusion cross section is found to be significantly hindered at G(E)=Gf"'+Gg UG (E)=G( " [1+ UG (E)]
energieE=1.5Vy. At slightly higher energies, the total fu- t
sion cross section is also smaller than that in the no-coupling G(E)'=G{(E)"+G M (E)TUTGH"
limit. The incomplete fusion cross sections were shown to be ot e
smaller than those corresponding to complete fusion for both =(1+GUNGy" . (AT)
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Employing Eq.(A7) in the second term on the RHS of =) S )
Edq. (A6), we obtain finally QB K)Y=[x ) (A9)
G(E)-G(E)T which is a solution of the dual Schdimger equation
=G(E)NU-UNG(E)+Q)(E . _
(B )GT(E) (E) (Exc—Ho—UT—ie)|xt y=0. (A10)

x[G"(E)- Gy (E)1Q (BT, (A8)

Equation(A8) is the desired relation which is employed
where we have introduced the /Mer operatorsQ(")(E)  to obtain Eq(8). Notice thatG(*)(E)"=G()(E). For more
=[1+G(*)TUT] which when used transforms the plane details concerning scattering theory for non-Hermitian po-
wave into an ingoing distorted wave: tentials see Ref.14].
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