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Complete and incomplete fusion in heavy-ion collisions

L. F. Canto, R. Donangelo, and Lia M. de Matos
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postale 68528, Rio de Janeiro, 21945-970, Brazil

M. S. Hussein
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postale 66318, Sa˜o Paulo, 05389-970, Brazil

P. Lotti
Istituto Nazionale di Fisica Nucleare, Sezione di Padova Via F. Marzolo 8, I-35131, Padova, Italy

~Received 28 July 1997!

We develop a formalism to study the influence of the breakup process of a weakly bound projectile on the
complete fusion cross section. We show that the complete fusion and the resulting incomplete fusion cross
sections can be expressed in terms of breakup and survival probabilities, which are evaluated with the help of
appropriate polarization potentials. The effects of the finite size of the projectile and of Fermi motion are
estimated. As examples, we consider light–heavy-ion collisions where threshold effects play an interesting
role. @S0556-2813~98!04908-5#
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I. INTRODUCTION

The fusion of heavy ions at energies in the vicinity of t
Coulomb barrier has been extensively discussed in the
several years. The question of coupled channel effects on
fusion cross sectionsF has been widely debated and a rath
satisfactory picture has emerged: coupled channels enh
sF in the no-coupling case, regardless of the nature of
channels~inelastic or transfer! and their region ofQ value.

Because of the normally largeQ value of the breakup
channels, their effects have usually been discussed w
above barrier energies, where ‘‘normal’’ coupled chann
have little effect. Breakup followed by fusion, so-called i
complete fusion~IF!, competes with complete fusion~CF!
~the fusion of the intact projectile! in this energy regime.
This competition, owing to the effect of coupling to th
breakup channel, leads to a reduction insCF.

The above scenario changes when discussing fusio
loosely bound projectiles. Even at sub-barrier energies th
are important breakup coupling effects. Therefore, a r
competition between ‘‘normal’’ and breakup channels ari
in this case. A natural question is raised in this connect
which is whether the breakup coupling results in anincrease
in the complete fusion cross section, just like the effect of
coupling to ‘‘normal’’ channels, or areduction, since the
incomplete fusion is operative here. The above question
recently been discussed in several papers@1–3# but a fully
satisfactory answer has not yet been given. Since experim
tal efforts to measuresF for 11Li on heavy target nuclei are
presently underway, a better understanding of this phen
enon is clearly called for. It is the purpose of this paper
further elucidate the role of breakup coupling on heavy-
fusion involving weakly bound two-cluster projectiles. B
doing so, we may assess the findings of the above referen

Since data do exist@4# for systems such as6Li112C and
6Li19Be, we shall, in the following, discuss a theoretic
framework through whichsCF and s IF can be calculated
with the effect of breakup included. This formulation allow
the projectile and/or target to break up.
PRC 580556-2813/98/58~2!/1107~11!/$15.00
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II. FORMAL REACTION THEORY

A natural framework through which the questions rais
in the introduction can be fully addressed is to consider
fusion of a two-cluster projectile with a target. Let us co
sider the collision of a projectilea with a targetA and intro-
duce the projectorsP̂, B̂, and R̂, acting on the full Hamil-
tonian H and on the total wave functionC. They project,
respectively, the components ofC in the elastic channe
( P̂C), in the space of breakup states (B̂C), and in the re-
maining reaction channels (R̂C). Using these projectors, th
full Schrödinger equation can be split into the coupled equ
tions

~E2 P̂HP̂!P̂C5~ P̂HR̂!R̂C1~ P̂HB̂!B̂C,

~E2R̂HR̂!R̂C5~R̂HP̂!P̂C1~R̂HB̂!B̂C, ~1!

~E2B̂HB̂!B̂C5~B̂HP̂!P̂C1~B̂HR̂!R̂C.

We are interested in the case where the subspace
jected byR̂ contains a single state~or an effective state!, so
that R̂C5CR and, further, that the states in the break
channel are such that the fragments are emitted with ne
gible relative energy in their center of mass frame. Equati
~1! then reduce to the simpler set

~E2H0
opt!C05V0RCR1V0BCB ,

~E2ER2HR
opt!CR5VR0C01VRBCB , ~2!

~E2EB2HB
opt!CB5VB0C01VBRCR .

Above, C05 P̂C, CR5R̂C, CB5B̂C, ER stands for the
intrinsic energy in channelR, andEB is given by the breakup
Q value.Hi

opt refers to the no-coupling optical Hamiltonia
in channeli ~with an imaginary part that takes into accou
the loss of flux to complete fusion in that channel!. In par-
1107 © 1998 The American Physical Society
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ticular, the HamiltonianHB
opt describes the optical propaga

tion of the two unbound clusters of the projectilec1 andc2
~with c11c25a) in the complex mean field of the targe
nucleus. TheV’s are appropriate channel-coupling pote
tials, assumed to be real.

It is convenient to formally eliminate the breakup cha
nel. By inverting the last of the equations in Eq.~2!, one can
write

CB
~1 !5~E2EB2HB

opt!21@VB0C0
~1 !1VBRCR

~1 !#

[GB
~1 !@VB0C0

~1 !1VBRCR
~1 !#. ~3!

Accordingly, the wave functionsC0
(1) and CR

(1) are so-
lutions of the equivalent two coupled equations

~E2H02V00
B pol!C05~V0R1V0R

B pol!CR ,

~E2ER2HR
opt2VRR

B pol!CR5~VR01VR0
B pol!C0 , ~4!

where the breakup effective polarization potentials are gi
by

Vi j
B pol5ViBGB

~1 !VB j . ~5!

Above, i and j stand for the channels 0 andR.
For future use, we write below the imaginary part

Vi j
B pol , assumingViB andVB j to be real. For this purpose, w

write the propagator in the breakup channel in the form

GB
~1 !5~E2EB2hc1

opt2hc2

opt1 i«!21, ~6!

where

hc1

opt5Kc1
1Uc1

and hc2

opt5Kc2
1Uc2

~7!

are the optical Hamiltonians for the collision of each of t
fragments with the target. We get

Im$Vi j
B pol%5ViB@pVB

~2 !d~E2EB2Kc1
2Kc2

!~VB
~2 !!†

1~GB
~1 !!†Im$Uc1

1Uc2
%GB

~1 !#VB j , ~8!

whereVB
(2) is the Mo” ller wave operator given by

VB
~2 !511GB

~2 !~Uc1
1Uc2

!†. ~9!

The quantity within square brackets in Eq.~8! corresponds to
the imaginary part of the Green’s function associated t
non-Hermitian Hamiltonian@5#, as shown in the Appendix
The first term on the right-hand side~RHS! of Eq. ~8! repre-
sents the contribution of elastic breakup, whereas the sec
term represents inelastic breakup~or incomplete fusion, if
Im$Uc1

% and Im$Uc2
% represent absorption ofc1 andc2 into

the fusion channels, as in our case here!. At this stage, one
should point out that the adopted form of the propagato
the breakup channel@Eqs.~6! and~7!# involves two approxi-
mations. The first is that we are neglecting final state in
actions between the fragments. The second is that the ta
recoil is not properly taken into account. This approximati
is justified when the target mass is much larger than thos
the projectile fragments. In our case this condition is n
-

n

a

nd

n

r-
get

of
t

fully met. As a consequence, it will be necessary to includ
correction in the incomplete fusion cross section, as will
discussed in the next section.

We may now perform further reduction of Eq.~4! to ob-
tain the effective equation forC0,

@E2H0
opt2Vpol#C0

~1 !50, ~10!

where the optical Hamiltonian in the elastic channel can
written H0

opt5K02U0. Above, we have introduced the tota
polarization potentialVpol

Vpol5V00
B pol1V00

R pol ~11!

including the contribution from the coupling to theR chan-
nel

V00
R pol5~V0R1V0R

B pol!GR
~1 !~VR01VR0

B pol!. ~12!

We have used the propagator

GR
~1 !5~E2ER2HR

opt2VRR
B pol1 i«!21, ~13!

whereHR
opt5KR2UR is the optical Hamiltonian for a colli-

sion initiated in channelR.
The total reaction cross section is then given by@5#

s r5
k

E
^C0

~1 !u2Im$U01V00
B pol1V00

R pol%uC0
~1 !&. ~14!

The reactive content ofV00
B pol is elastic breakup and in

complete fusion@see Eq.~8!#. The reactive content ofV00
R pol

is more complicated; complete fusion through theR space
plus higher-order processes that can be described in de
by evaluating its imaginary part. We have

Im$V00
R pol%5V0R@pVR

~2 !d~E2ER2KR!VR
~2 !†

2GR
~1 !† Im$UR1VRR

R pol%GR
~1 !#VR0 . ~15!

We define complete fusionsCF as that part ofs r which
contains explicit reference to Im$U0% and Im$UR%. We also
define incomplete fusions IF as that which contains referenc
to Im$Uc1

% or Im$Uc2
%. The rest of the total reaction cros

section is formed by elastic breakup to three-body sta
sel B and the inelastic excitation to states in theR spaces in .
Thus within our model, we write

s r5sel B1s in1sCF1s IF . ~16!

The elastic breakup cross sectionsel B is given by

sel B5
k

E
^C0

~1 !uV0BVB
~2 !

3d~E2EB2Kc1
2Kc2

!VB
~2 !†VB0uC0

~1 !&. ~17!

The inelastic cross section is

s in5
k

E
^C0

~1 !uV0RVR
~2 !d~E2ER2KR!VR

~2 !†VR0uC0
~1 !&,

~18!
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where the Mo” ller operatorVR
(2) , which contains the effect o

breakup on the distortion of theR channels, has a definitio
similar to Eq.~9!. The complete fusion cross section is

sCF5
k

E
$^C0

~1 !uIm$U0%uC0
~1 !&1^CR

~1 !uIm$UR%uCR
~1 !&%.

~19!

This cross section will be considered in detail in the n
section.

Finally, the incomplete fusion cross section can be writ

s IF5s IF 01s IF R , ~20!

where

s IF 05
k

E
^C0

~1 !uVB̂GB
~1 !† Im$Uc1

1Uc2
%GB

~1 !B̂VuC0
~1 !&

~21!

and

s IF R5
k

E
^CR

~1 !uVB̂GB2R
~1 !† Im$Uc12R

1Uc22R%GB2R
~1 ! VBRuCR

~1 !&. ~22!

The contributionss IF 0 and s IF R differ in the order of the
breakup process leading to the fusing fragment. In the
term, breakup is reached through the coupling with the
trance channel. The second term is more complicated. Th
the breakup channel is fed from an inelastic state, exc
from the entrance channel in a previous step. Accordingly
may involve a different Green’s function and different op
cal potentials. To emphasize these points, we use the n
tions GB R

(1) , Uc1 R , andUc2 R .

III. THEORY OF COMPLETE FUSION AND INCOMPLETE
FUSION REACTIONS

In the previous section we developed a general formal
to treat elastic and inelastic scattering together with comp
and incomplete fusion on the same grounds. Here, we
velop in detail approximate expressions to evaluate the c
plete and the incomplete fusion cross sections.

A. The complete fusion cross section

The complete fusion cross section is given by Eq.~19!. In
this equation the wave functionsC0 andCR are solutions of
the full coupled-channel problem@Eqs.~1!#. Therefore, they
are influenced by one another and also by the breakup c
nel. It is well known that in the absence of the break
channel the coupling tends to enhance the fusion cross
tion at sub-barrier energies. However, the coupling
breakup introduces additional complications, which sho
be considered with care. To simplify the discussion, let
fist consider̂ C0

(1)uU0uC0
(1)& in the absence of the inelast

channelR. By expanding in partial waves, we can write f
the fusion cross section the usual expression
t

n
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sF5
p

k2 (l 50

`

~2l 11!Tl , ~23!

Tl 5
8m

k\2E0

`

druC0,l ~k,r !u2Im$U0~r !%, ~24!

whereC0,l (k,r ) is the radial elastic wave function that sa
isfies the equation

F2
\2

2mS d2

dr2
2

l ~ l 11!

r 2 D 1U01V00,l
B pol2EGC0,l ~k,r !50.

~25!

To find C0,l (k,r ), we first introduce a Schro¨dinger equa-
tion in which the imaginary part of the polarization potent
of Eq. ~25! is neglected. Namely,

F2
\2

2mS d2

dr2
2

l ~ l 11!

r 2 D 1U01Re$V00,l
B pol%2EGF0,l ~k,r !

50. ~26!

We next introduce the ratio of the exact solutionC0,l (k,r )
to the approximate solutionF0,l (k,r ),

b l ~k,r !5
C0,l ~k,r !

F0,l ~k,r !
. ~27!

The functionsC0,l (k,r ) and F0,l (k,r ) are related by a
Lippmann-Schwinger equation involving the additional p
tential DV52 i Im$V00,l

B pol% and the Green’s function assoc
ated with Eq.~26!. The transmission coefficient can be put
the form

Tl 5
8m

k\2E0

`

drub l ~k,r !u2uF0,l ~k,r !u2Im$U0~r !%.

~28!

At this point, we would like to analyze the behavior of th
integrand inTl @Eq. ~24!#. Since Im$U0% represents fusion
one expects it to be of volume absorption nature with a rat
sharp surface~small diffuseness!. Further, the probability
density uC0,l (k,r )u2 is very much damped in the interio
region, owing to strong absorption or centrifugal repulsio
Thus, the integrand should be sharply peaked at the str
absorption radiusRF . Similar arguments can be made
C0,l is replaced byF0,l . This, in fact, we have numerically
verified. It is thus safe to replaceub l (k,r )u2 by its value at
r 5RF and move it out of the integral. Therefore, one c
write

Tl 5ub l ~k,RF!u2T̄l , ~29!

where T̄l is the transmission coefficient in the absence
Im$V00,l

B pol%. Then, the CF cross section takes the form

sF5
p

k2 (l 50

`

~2l 11!T̄l Pl
s , ~30!

where the factor
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Pl
s 5ub l ~k,RF!u2 ~31!

is the survival probability introduced in Ref.@1#, which will
be utilized in our applications in the following section. No
the major difference betweenC0,l (RF) andF0,l (RF) is the
change in magnitude of the barrier reflected wave. Using
WKB argument of Takigawaet al. @2# one finds

b l ~k,RF!5expF 2

\vE0

`

druF l ~k,r !u2Im$V00,l
B pol~k,r !%G .

~32!

Note that Re$V00,l
B pol% affectsF0,l through Eq.~26!.

B. The incomplete fusion cross section

As we have shown in the previous section, the incomp
fusion cross section is given by Eqs.~21! and ~22!. These
equations can be further simplified if we consider the con
butions from each fragment, integrating over the degree
freedom of the remaining one. Let us deal explicitly with E
~21!, since extending the same treatment to Eq.~22! is
straightforward. The incomplete fusion cross section can
written

s IF 05s IF 0
c1 1s IF 0

c2 , ~33!

where

s IF 0
c1 5

k

E
^C0

~1 !uVB̂GB
~1 !† Im$Uc1

%GB
~1 !B̂VuC0

~1 !&,

~34!

with a similar expression fors IF 0
c2 . Equation~34! can be put

in a simpler form if one integrates over the degrees of fr
dom of fragmentc2. For this purpose, we should use th
spectral representation of the Green’s function in the sp
of this fragment. It is, however, more convenient to expr
it in terms of wave functions with ingoing scattered wa
boundary conditions. From the identityGB

(1)[GB
(2)† , we get

GB
~2 !†5E d3k2

~2p!3
uxk2

~2 !)Gc1

~1 !~ x̃k2

~2 !u. ~35!

Above,xk2

(2) and x̃k2

(2) are distorted waves for the motion o

fragmentc2 satisfying the equations

@«k2
2hc2

opt#uxk2

~2 !)50,

@«k2
2~hc2

opt!†#ux̃k2

~2 !)50, ~36!

and round brackets denote vectors in the space of this f
ment. The operator

Gc1

~1 !5@«12hc1

opt#21, ~37!

with «15E2EB2«k2
is a propagator acting exclusively o

the degrees of freedom of fragmentc1.
Using Eqs.~35!, its Hermitian conjugate and Eq.~37! in

Eq. ~34! we get
e

te

i-
of
.

e

-

ce
s

g-

s IF 0
c1 5

k

EE d3k2

~2p!3

d3k28

~2p!3

3^C0
~1 !uVB̂uxk

28
~2 !

!Gc1

~1 !†~ x̃k2

~2 !ux̃k
28

~2 !
!

3Im$Uc1
%Gc1

~1 !~xk2

~2 !uB̂VuC0
~1 !&. ~38!

We now make the approximation

~ x̃k2

~2 !ux̃k
28

~2 !
!5d~k22k28!22i

~ x̃k2

~2 !uIm$Uc2
%ux̃k

28
~2 !

!

Ek2
2Ek

28
1 i e

'd~k22k28!, ~39!

which corresponds to taking the overlap integral to low
order in Im$Uc2

%. With this approximation, Eq.~38! be-
comes

s IF 0
c1 5

k

EE d3k28

~2p!3
^Qc1 ,k

28
uIm$Uc1

~r 1!%uQc1 ,k
28
&, ~40!

where

uQc1 ,k
28
&5Gc1

~1 !~xk
28

~2 !uB̂VuC0
~1 !&5~xk

28
~2 !uGc1

~1 !B̂VuC0
~1 !&.

~41!

We have used the notationuQc1 ,k
28
& to emphasize that it is a

vector inc1 space, which depends also on the momentum
fragmentc2.

To simplify uQc1 ,k
28
&, we rewrite the coupled-channe

equation@Eqs. ~2!# for uCB& neglecting the coupling toR
space, in the form

@E2EB2HB
opt#uCB

~1 !&5B̂VuC0
~1 !&. ~42!

Plugging the result into Eq.~41!, we get

uQc1 ,k
28
&5Gc1

~1 !@E2EB2«k
28
2hc1

opt#~xk
28

~2 !uCB
~1 !&. ~43!

Keeping in mind thatGc1

(1)
•@E2EB2«k

28
2hc1

opt#51 @see Eq.

~37!# and using the coordinate space representation for c
tersc1 andc2, we get

Qc1 ,k
28
~r1!5E dr2

3xk
28

~2 !†
CB

~1 !~r1 ,r2!. ~44!

To further reduce Eq.~40!, we approximate the wave func
tion CB

(1) by the eikonal form@6#

CB
~1 !~r1 ,r2!5A~k!xk1

~1 !~r1!xk2

~1 !~r2!f~r12r2!, ~45!

where k5A2mE/\ ẑ is the incident wave vector andf(r1
2r2) is a short-range correlation arising from the interacti
between the fragments. The wave vectors associated with
fragment motionsk1 and k2 are given in terms of the
breakup channel wave vectork85A2m(E2EB)/\ ẑ as k1
5(mc1

/ma)k8 andk25(mc2
/ma)k8. The fragment distorted

waves are
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xk2

~1 !~r2![xk2

~1 !~b2 ,z2!5eik
2
•r

2

3expH 2 i
k2

2E2
E

2`

z2
dz28Uc2

~b2 ,z28!J ~46!

and

xk
28

~2 !*
~r2![xk

28
~2 !*

~b2 ,z2!5e2 ik28–r 2

3expH 2 i
k28

2E28
E

z2

`

dz28Uc2
~b2 ,z28!J . ~47!

The distorted waves for fragmentc1 are given by analogou
expressions. In Eq.~45!, A(k) is a breakup probability am
plitude, which was taken to be equal to the one in Ref.@6#.
Using Eqs.~46! and ~47! in Eq. ~44!, we get

Qc1 ,k
28
~r1!5A~k!xk1

~1 !~r1!E d3r2ei ~k
2
2k28!•r2S2~k2b2!

3f~r12r2!, ~48!

wherer25b21zẑ and

S2~k2b2!5expH 2 i F k28

2E28
E

2`

z2
dz8Uc2

~b2 ,z8!

1
k2

2E2
E

z2

`

dz8Uc2
~b2 ,z8!G J

'expH 2 i
k2

2E2
E

2`

`

dz8Uc2
~b2 ,z8!J ~49!

is the elasticS matrix for the scattering of the fragmentc2
from the target. The approximation involved in the obtenti
of Eq. ~49! is the neglect of theQ value of the process. We
now use the wave function of Eq.~48! to evaluate the incom
plete fusion cross section@Eq. ~40!#. We get

s IF 0
c1 5

k

EE d3r1uA~k!xk1

~1 !~r1!u2Im$Uc1
~r 1!%F~k1 ,r1!,

~50!

where

F~k1 ,r1!5E d3r
2
d3r28S2~k2b2!S2* ~k2b28!f~r12r2!

3f* ~r
1
2r28!E d3k28

~2p!3
eiq

2
~r

2
2r28!

5E d3r2uS2~k2b2!u2uf~r12r2!u2. ~51!

Above,F(k1 ,r1) plays the role of the survival probability o
fragmentc2 averaged over the projectile extension. If w
treat the projectile as a point particle~the effects of its finite
size will be considered in the next section!, namely take
f(r12r2)'d(r12r2), we get the simplificationF(k1 ,r1)
5uS2(k2b1)u2 and, using the eikonal form forxk1

(1)(r1) @Eq.

~46!#, the incomplete fusion cross section becomes

s IF 0
c1 5

k

EE d2b1uA~k!u2uS2~k2b1!u2

3E
2`

`

dz1 Im$Uc1
~b1 ,z1!%

3expH 2
k1

E1
E

2`

z1
dz18 Im$Uc1

~b1 ,z18!%J . ~52!

The integration overz1 is straightforward and we get

s IF 0
c1 5

kE1

k1EE d2b1uA~k!u2uS2~k2b1!u2~12uS1~k1b1!u2!.

~53!

The accuracy of the above expression at low collision en
gies can be improved if one converts the impact paramete
a partial wave, according to the usual prescription. Name

bk1→~ l 111/2!, E d2b1→
p

k1
2(

l 1

~2l 111!,

bk2→~ l 211/2!, ~54!

bk→~ l 011/2!.

Equation~53! then becomes

s IF 0
c1 5S v8

v D p

k1
2(

l 1

~2l 111!

3~12uS1~ l 1 ,E1!u2!uA~ l 0!u2uS2~ l 2 ,E2!u2,

~55!

wherev85\k8/m andv5\k/m.
Introducing the transmission coefficient for fragme

c1 Tl 1

(1)(E1) the breakup probabilityPl 0

B (E) and the sur-

vival probability for fragmentc2 @12Tl 2

(2)(E2)# given by

Pl 0

B ~E!5uA~ l 0!u2,

Tl 1

~1!~E1!5~12uS1~ l 1 ,E1!u2!, ~56!

@12Tl 2

~2!~E2!#5uS2~ l 2 ,E2!u2,

Eq. ~55! takes the final form

s IF 0
c1 5S v8

v D s̄ IF 0
c1 , ~57!

with

s̄ IF 0
c1 5

p

k1
2(

l 1

~2l 111!Tl 1

~1!~E1!Pl 0

B ~E!@12Tl 2

~2!~E2!#.

~58!

1. Effect of the finite nuclear size on incomplete fusion

In this subsection we drop the approximations of infin
target mass and of a pointlike projectile. In the previous s
tion, the angular momentum of fragmentc2 was determined
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from l 1 through the relationl 25(k2 /k1)l 1. In a projectile
with finite extension, the impact parameters of the two fra
ments are no longer the same and a givenl 1 value leads to
a distributionW(l 1 ,l 2) for the angular momentum of frag
mentc2. As we will see below, this distribution can be d
termined from the wave funcion describing the fragment m
tion inside the projectile. Furthermore, if the target mass
finite, one has to be careful to write the angular momenta
the appropriate coordinate frame. If one intends to emp
stardard results for the cross section of Eq.~58!, the angular
momental 1, l 2, and l 0 should be given in thec1-target,
c2-target, and projectile-target rest frames, respectively.
the other hand, given the angular momental 1 andl 2 of the
two fragments, the angular momentum of the projectile c
ter of massl 0 is uniquely determined. If we find the distr
bution W(l 1 ,l 2), the cross section of Eq.~58! can be writ-
ten as

s̄ IF 0
c1 5

p

k1
2(

l 1

~2l 111!^P
l 1

c1 &, ~59!

with

^P
l 1

c1 &5Tl 1

~1!~E1!(
l 2

W~ l 1 ,l 2!Pl 0~ l 1 ,l 2!
B ~E!

3@12Tl 2

~2!~E2!#. ~60!

Above, the average is taken with respect to the possible
ues of the angular momentuml 2 for a given l 1 and the
notation Pl 0(l 1 ,l 2)

B is used to stress the fact thatl 0 is a

function of l 1 and l 2. Of course, one must have

(
l 2

W~ l 1 ,l 2!51 for any l 1 . ~61!

In order to determineW( l 1 ,l 2), we first consider the im-
pact parameters associated to the corresponding orbita
gular momentabi5 l i /ki ( i 51,2), whereki5A2m iEi /\, m i

5mimT /(mi1mT), andEi5m iAE2EB/m is the energy of
theci-target motion considered in the c.m. frame of this s
tem andB is the breakup energy. The probability distributio
W(l 1 ,l 2) then leads to a probability densityw(b1 ,b2). No-
tice thatw(b1 ,b2) is a differential probability, since the im
pact parametersb2 is a continous variable. To calculat
w(b1 ,b2), we assume that the wave function for the sepa
tion between the two fragments is Gaussian, so that t
separationr12r2 has the distribution

P~r12r2![uf~r12r2!u25A expF2S r12r2

a D 2G , ~62!

wherea is a typical length of the fragment distribution an
A51/(aAp)3 is a normalization constant. Expressingr1 and
r2 in terms of cylindrical coordinates (b1 ,w1 ,z1 ;b2 ,w2 ,z2)
and integratingP(r12r2) over z2 andw2, we get

w~b1 ,b2!5E dz2dw2P~r12r2!

5
2

a2
expF2

~b12b2!2

a2 G Ī 0~ t !, ~63!
-

-
s
in
y

n

-

l-

n-

-

-
ir

wheret52b1b2 /a2 and Ī 0 is related to the standard mod
fied Bessel functionI 0 through Ī 0(t)5e2tI 0(t).

From the impact parameter distributionw(b1 ,b2) we can
switch to the angular momentum distribution. We first r
placebi5 l i /ki , i 51,2, take integer values forl 1, and then
find W( l 1 ,l 2) through the semiclassical prescription

W~ l 1 ,l 2!5E
l 221/2

l 211/2

w~ l 1 /k1 ,l2 /k2!l2dl2 . ~64!

In the casel 250 the lower integration limit must be take
equal to zero, and the final distribution for each value ofl 1
must be normalized according to Eq.~61!.

From l 1 and l 2 we may determine the orbital angular m
mentum of the projectile-target system in their c.m. framel 0
as the nearest integer to the semiclassical value

S m11mT

mP1mT
D l 11S m21mT

mP1mT
D l 2 . ~65!

2. Inclusion of the breakup energy distribution

Let us now estimate the effect of the kinetic energy as
ciated to the relative motion between projectile fragments
the incomplete fusion cross section. For simplicity, we co
sider the contribution arising from the fusion of fragmentc1
with the target through the coupling with the ground state
the projectile. The contribution from fragmentc2 as well as
the effects of the coupling with the excited stateR can be
evaluated in a similar way. We take as a starting point
momentum probability distribution corresponding to t
Fourier transform ofP(r12r2) @Eq. ~62!#, approximated by
the Gaussian

dP~p!

d3p
5N8 expS 2

p2

p0
2D , ~66!

where p is the relative momentum between the two fra
ments andp05\/a. Equation~66! is basically the distribu-
tion used in Ref.@7#. This distribution gives rise to the dis
sociation energy spectrum in the projectile frame

dP~«!

d«
5NA «

«0
expS 2

«

«0
D . ~67!

In Eqs. ~66! and ~67!, p0 and and«0 are parameters of the
distribution to be determined from the experimental dissoc
tion spectra andN8 andN are appropriate normalization con
stants.

This dissociation energy spectrum leads to a dispersio
the fragment energyE18 around the valueE1 appearing in
Eqs.~57! and ~58!. This distribution is given by

dP

dE18
5^d@E182E1~p!#&5N8E e2~p/p0!2

d@E182E1~p!#d3p,

~68!

whereE1(p) is the fragment kinetic energy in the c.m. of th
fragment-target frame when the relative momentum of
fragments isp. In this way we obtain the distribution
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dP

dE18
5C@e2~AE182AE1!2/D12e2E1 /D2#, for

~AE182AE1!2

D1
<

E1

D2

50, otherwise, ~69!
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whereC is a normalization constant andD1 andD2 are re-
lated to the parameter«0 of Eq. ~67! as

D15
mTm2

mP~mT1m1!
«0 , ~70!

D25
m1~mP1mT!

mP~mT1m1!
«0 . ~71!

The contribution from fragmentc1 to the incomplete fu-
sion cross section is obtained averaging Eq.~57! with the
above distribution. Namely,

s IF
c1~E1!5E s IF

c1~E18!F dP

dE18
GdE18 . ~72!

Notice that in the absence of Fermi motion the distribut
dP/dE18 becomes proportional to ad function and one re-
covers the result of the previous section.

IV. APPLICATIONS

In this section we calculate the complete and incomp
fusion cross sections for the collision of6Li and 9Be projec-
tiles on a 12C target. These systems have some interes
features. First, the thresholds for projectile breakup
B(6Li→2d1a)51.47 MeV,B(9Be→n18Be)51.65 MeV,
which are extremely low in comparison to that for th
breakup of a typical heavy ion ('10 MeV!. In this sense,
these collisions behave in a manner similar to reactions
volving nuclei far from the stability line. Second, the diss
ciation energies are not negligible compared to the Coulo
barrier, which may lead to important threshold effects
incomplete fusion. This can be seen in Eq.~55! where the
transmission coefficient@12uS(l 1 ,E1)u2# vanishes below
the thresholdE1,(E2EB)m1 /m.

To handle the complete and incomplete fusion proces
under the same footing, we treat the nuclear interaction
both cases in a consistent way@8#: we consider a standar
double-folding calculation of the nuclear potential. We e
ploy theM3Y force @9# and take nuclear densities from e
periment@10# to construct the optical potentials for projecti
target and fragment target. From the total~nuclear
1 Coulomb1 centrifugal! optical potentialsVl

( i )(r ) we de-
termine the transmission coefficients for each partial wa
At sub-barrier energies, these coefficients are calculated
ing the improved WKB approximation

Tl
~ i !~Ei !5

1

11exp@Q l
~ i !~Ei !#

, ~73!

where
e

g
e

-

b
r

es
in

-

e.
s-

Q l
~ i !~Ei !52E

r 1

r 2A2m i@Ei2Vl
~ i !~r !#

\
dr ~74!

is the penetrability factor, withr 1 andr 2 the inner and outer
turning points. At energies above the barrier we take
Hill-Wheeler expression Q l

( i )(Ei)52p(VB,l
( i ) 2Ei)/\v l

( i ) ,
whereVB,l

( i ) and v l
( i ) are the height and curvature of the e

fective barrier for the interaction between fragmenti and the
target at thel th partial wave. We should remark that, a
though satisfactory for a qualitative view of the problem, o
should not expect that this general treatment of the nuc
potential gives an accurate description of the fusion bar
and, consequently, of the fusion cross section. One sho
keep in mind that we are dealing with very light nuclei, f
which details of their structure may bring about importa
changes in their interaction.

The breakup probabilities appearing in the incomplete
sion cross sections and also in the survival probabilities
given in Refs.@11,1,4#. They can be written

Pl
bu~E!512expF2

2F 0
2

E~E2B!
uSl~E2B!uI l

2~h,s,j!G ,
~75!

whereuSl(E2B)u2'12Tl
(0)(E2B) is the absolute value o

the l -projected opticalS matrix for a collision initiated in the
elastic channel with energyE2B. The Coulomb radial inte-
gral I l(h,s,j) is given by

I l~h,s,j!5E
0

`

Fl~h,k,r !Fl~h8,k8,r !e2r /adr. ~76!

Above,h, k (h8, k8) are, respectively, the entrance chann
values of the Sommerfeld parameter and the wave num
for the collision energy E ~collision energy E8). a
5A2mPB/\, wheremP5m0Ai(Ap2Ai)/Ap is the character-
istic length of the fragment orbit within the projectile,s
51/(ka), and j5(k2k8)/(k1k8). In Eq. ~75!, F0 is the
strength of the breakup form factor. Since it depen
strongly on the projectile-target system and on the collis
energy range, it should be fitted to the experimental situa
under study. If one knows this quantity for a given project
P and targetT at near barrier energies, it can be estima
for a different targetT8 through the scaling rule@11#

F0~T8!5F0~T!e~RT82RT!/a. ~77!

It should be noted that in the present calculation we neg
the real part of the polarization potential, as in Ref.@11#.
This part vanishes within the on-energy-shell approximat
for the Green’s function. However, it is likely that it be
comes relevant at sub-barrier energies leading to a lo
effective barrier and enhancing the fusion cross section@3#.

We used the above results to study complete and inc
plete fusion in the collision6Li112C. In this case, incom-
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1114 PRC 58CANTO, DONANGELO, DE MATOS, HUSSEIN, AND LOTTI
plete fusion corresponds to the fusion of the12C target with
one of the fragments (d or a) produced in the projectile
dissociation. The breakup of12C can be neglected due to i
large dissociation energy.

In Fig. 1, we show the complete and incomplete fus
cross sections for the collision6Li112C. The contributions
from d anda to incomplete fusion are plotted separately.
the calculation, we have used the strengthF055.0 MeV,
which is of the order of those used in Ref.@4# for similar
systems. As we can see, at sub-barrier energies (VB /E.1)
the effect of breakup onsCF is negligible. However, at
higher energies, incomplete fusion becomes appreciable
complete fusion starts deviating from the one-dimensio
optical prediction. It is interesting to note that the incomple
fusion corresponding to the capture of the deuteron do
nates over that of thea particle at energies below 2.5VB ,
while the situation is reversed above this energy. Th
trends depend on the share of the incident energy carrie
each fragment and on the fragment charge. Optimal co
tions for sub-barrier and near-barrier fusion are a large r
m i /m and a small ratioZi /Zp . It can be easily checked tha
the deuteron fragment is favored by this criterion. Therefo
the fusion with deuteron is enhanced at lower impact en
gies, in comparison to that of thea particle. At higher ener-
gies, this effect becomes negligible and the larger spa
extent of thea particle, as reflected in the Coulomb barri
radius, predominates. It should be mentioned that the co
sponding results presented in the preliminary calculation
Ref. @8# are somewhat different. The discrepancies have
origins. The first is that in the present calculation we us
M3Y interaction strength which is suitable for low-ener
applications. The second is that in Ref.@8# we made the
crude approximation of neglecting the differences among
angular momental 0, l 1, andl 2. This approximation leads
to appreciable differences in the incomplete fusion cross
tions.

In Fig. 2 we show the effect of the pointlike approxim
tion and in Fig. 3 that of the Fermi motion on the incomple

FIG. 1. The complete and incomplete fusion cross sections
the system6Li112C, normalized to the asymptotic valuepRB

2 . See
the text for details.
nd
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fusion cross section induced by thea-particle and deuteron
fragments. We notice that, especially in the case of thea
particle, the former approximation is important at high en
gies while the Fermi motion effects are dominant at lo
energies, extending into the sub-barrier region.

Figures 4–6 illustrate the results for the case of an in
dent 9Be projectile. In this case we did not consider t
incomplete fusion process induced by the neutron, exc
through its hindrance on the8Be fragment incomplete fusion
cross section. The results are qualitatively similar, althou
the incomplete fusion process is more important than in
6Li case at large collision energies.

Comparison with experiment.In this section we compare
theoretical predictions of the present theory with experim
tal data. Although there are no available data on incomp
fusion for the systems considered in the previous sect
there are some data on the complete fusion of6Li112C. For
a quantitative description of the corresponding cross sect
the use of a general potential, such as the one in the prev
section, would not be appropriate. One should use a pote
that could lead to an accurate fusion barrier in the absenc
breakup. Breakup effects could then be taken into acco
through the inclusion of survival probabilities, as in Eq.~30!.
In the 6Li112C case, it is possible to find such a fusio
barrier from the CF data of the7Li112C collision. These two
systems are nearly identical in the entrance channel. H
ever, the7Li breakup energy~into ana particle and3H) is
about 1 MeV larger than that for6Li. Since the breakup
probability depends critically on the breakup energy@12#, it
is reasonable to neglect breakup in the7Li112C case. There-
fore, this system can be seen as6Li112C with breakup
‘‘switched off.’’

An appropriate fit of the optical potential to the7Li
112C CF data requires a fully quantal treatment~rather than
the simple WKB tunneling with infinite short-range volum

r

FIG. 2. Effect of the finite extension of the projectile fragmen
on the incomplete fusion cross sections for the system6Li112C.
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absorption! and should include surface absorption. Instead
carrying out this procedure, we follow the simpler approa
used by Takahashiet al. @4#. First, we parametrize the fusio
barrier@13# in terms of its heightVb , radiusRb , and curva-
ture \v. In addition, we introduce a cutoff in the partia
wave summation at the angular momentum\Lcrit . This pa-
rameter depends on the entrance channel and also on
details of the compound nucleus produced in the comp
fusion process.Vb , Rb , \v, andLcrit are then fitted to re-
produce the CF data in the7Li112C collision. Using the
same barrier parameters and including a survival probab
for each partial wave, one then obtains the CF cross sec

FIG. 3. Effect of Fermi motion on the incomplete fusion cro
sections for the system6Li112C.

FIG. 4. Similar to Fig. 1 for the system9Be112C.
f
h

the
te

ty
on

for the 6Li112C collision. In Ref. @4# this procedure was
followed for these collisions and also for7Li19Be and 6Li
19Be. The agreement between theory and experiment
quite good. For illustration, we use here the same appro
for 6Li112C. In Fig. 7~a!, the experimental CF cross sectio
for 7Li112C is compared to the parametrized cross sect
for Vb54.14 MeV, Rb56.32 fm, \v53.31 MeV, and for
the cutoff angular momentum it isLcrit510\. The fit is quite
good. SinceVb , Rb , and \v depend exclusively on the
entrance channel, it is safe to use the same values for
fusion barrier in the6Li112C system.

The results for6Li112C are shown in Fig. 7~b!, in com-
parison with the data. The agreement is good, indicating
breakup effects insCF can be taken into account through th
survival probability discussed in the previous sections. W
should mention that it was necessary to use a different c
cal angular momentumLcrit58. SinceLcrit depends on the
details of the compound nucleus, which are rather differ
in these two cases, this situation is not surprising.

V. CONCLUSIONS

In the present paper, we developed a model that allo
the study of the competition between fusion and breakup
rather weakly bound two-cluster nucleus impinging on a t
get. Starting from the coupled-channel equations, we ob
expressions for complete and incomplete fusion cross
tions. The expression forsCF containing a survival probabil-
ity factor which has been assumed in a previous paper@1#
was formally derived. The effects of the final extension
the projectile and also of the fragment Fermi motion ins

FIG. 5. Similar to Fig. 2 for the system9Be112C.

FIG. 6. Similar to Fig. 3 for the system9Be112C.
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1116 PRC 58CANTO, DONANGELO, DE MATOS, HUSSEIN, AND LOTTI
the projectile have been assessed.
It is important to emphasize that although in the pres

work we have discussed at length the effect of the brea
channel on the complete fusion cross section, our theory
mits the inclusion of other couplings, our subspaceR, that
would result in the well-known phenomenon of the enhan
ment of complete fusion at sub-barrier energies. It also
lows similar enhancement in the incomplete fusion cross s
tion.

The model was used to study the complete fusion of6Li
and 9Be projectiles with a12C target nucleus. The complet
fusion cross section is found to be significantly hindered
energiesE>1.5VB . At slightly higher energies, the total fu
sion cross section is also smaller than that in the no-coup
limit. The incomplete fusion cross sections were shown to
smaller than those corresponding to complete fusion for b

FIG. 7. Experimental and theoretical cross sections for comp
fusion in the collisions~a! 7Li112C and~b! 6Li112C. The data are
from Takahashiet al. @4#. For details, see the text.
t
p
r-

-
l-
c-

t

g
e
th

systems considered. However, at large energies they sh
be easily measurable. These findings are of great relevan
the fusion of halo nuclei such as11Li and 11Be.
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APPENDIX: THE IMAGINARY PART
OF AN ABSORPTIVE GREEN’S FUNCTION

In this appendix we derive a general formal expression
the imaginary part of the Green’s function that describes
propagation of a particle in a complex optical potential

G~1 !~E!5
1

E2H02U1 i e
, ~A1!

whereH0 is the Hermitian kinetic energy operator andU is
taken to be non-Hermitian (U†ÞU). We write now the in-
verse ofG(1)

@G~1 !~E!#215E2H02U1 i e ~A2!

and its complex conjugate

@G~1 !~E!#21†
5E2H02U†2 i e. ~A3!

The difference between Eqs.~A2! and ~A3! is then

@G~1 !~E!#21†
2@G~1 !~E!#21

5U2U†22i e

5U2U†1@G0
~1 !~E!#21†

2@G0
~1 !~E!#21, ~A4!

where we have introduced the free propagator

G0
~1 !~E!5

1

E2H01 i e
. ~A5!

Multiplying Eq. ~A4! on the right byG(1)(E) and on the
left by G(1)†

(E) we obtain

G~1 !~E!2G~1 !~E!†

5G~1 !~E!†~U2U†!G~1 !~E!1G~1 !~E!†

3@G0
~1 !~E!21†

2G0
~1 !~E!21#G~1 !~E!. ~A6!

We now use the Lippman-Schwinger representation
G(1) andG(1)†

G~1 !~E!5G0
~1 !1G0

1UG~1 !~E!5G0
~1 !@11UG~1 !~E!#

G~1 !~E!†5G0
~1 !~E!†1G~1 !~E!†U†G0

~1 !†

5~11G~1 !†
U†!G0

~1 !†
. ~A7!
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Employing Eq.~A7! in the second term on the RHS o
Eq. ~A6!, we obtain finally

G~1 !~E!2G~1 !~E!†

5G~1 !~E!†~U2U†!G~1 !~E!1V~2 !~E!

3@G0
~1 !~E!2G0

~1 !~E!†#V~2 !~E!†, ~A8!

where we have introduced the Mo” ller operatorsV (2)(E)
5@11G(1)†

U†# which when used transforms the plan
wave into an ingoing distorted wave:
lo

d
e

ep
V~2 !~E!u k
⇀

&5ux
k
⇀~2 !

&, ~A9!

which is a solution of the dual Schro¨dinger equation

~Ek2H02U†2 i e!uxk
~2 !&50. ~A10!

Equation~A8! is the desired relation which is employe
to obtain Eq.~8!. Notice thatG(1)(E)†5G(2)(E). For more
details concerning scattering theory for non-Hermitian p
tentials see Ref.@14#.
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