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Analysis of exchange terms in a projected extended random phase approximation theory applied
to the quasielastic(e,e’) reaction
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A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to
quasielastic €,e') reactions is presented. The study is performed within the framework of the extended
random phase approximation, which in conjuction with a projection method permits a separation of various
contributions tied to different physical processes. The calculations are performed in nuclear matter up to
second order in the residual interaction for which we takera p) model with the addition of the Landau-
Migdal g’ parameter. Exchange terms are found to be important only for the random-phase-approximation-
type contributions around the quasielastic pd&556-28138)02508-4

PACS numbgs): 21.65:+f, 24.10.Cn, 25.30.Fj

[. INTRODUCTION phase approximatioRPA) type. As it is not our aim to
describe the full set of approaches, we will comment only on
The nuclear response to an electromagnetic probe is #e ones which lead to our particular theory, which is based
common tool used to investigate the behavior of the atomi®n the perturbative approach.
nucleus[1]. In contrast to a hadronic probe it allows a per- A simple way to introduce in the response the nucleon-
turbative treatment in the external operator coupling conhucleon correlations originated by the residual_interaction is
stant. In this work we will concentrate on the study of theby means of the RPA theory, where one-particle—one-hole
nuclear response function for longitudinal and transverse in€xcitations are summed up to infinite order. Although im-
clusive quasi-elastic electron scattering reactions. These r€roving the Fermi gas picture, the RPA approximation is not
sponses are experimentally separdt2d?], showing that a able to explain some feature“s _of”the response such as, for
simple model such as the Fermi gas model fails to reproduc'@Stance’ the strength in the “dip™ region of the transverse
the experimental data. The attempts to go beyond this mod&fFSPOnse- .
can be classified in two groups. On one side there are thz;| An |mprovement upon the RPA theory consists of allow-
Ing the coupling of one-particle—one-hole states to two-

methods that assume the nucleus as an assembly of nonint‘f)rairticle—two-hole ones. This corresponds to what has been
acting nucleons with individual properties, such as the

. . . called final state correlations. Two formalisms study this
charge radius, modified with respect to the vacuum due t@;nq of processes. One is the second RESRPA theory

the presence of the other nucledBs-11]. Another option is (see Ref[15], and references thergimnd the other is the
to explore the possibilities of a rigorous many-body theorysreen function scheme of R¢1L7] (see also Ref§18-21)).
[12-36 keeping the nucleons as essential degrees of freerne first one introduces final state correlations over the
dom with the same properties as in the vacuum, before reparticle-hole bubbles of the RPA theory. In the second one
sorting to such exotic effects. This work falls into this secondthe relationship between forward virtual Compton scattering
strategy. and inclusive electron scattering is used to construct a one-
Several approaches to the nuclear many-body problem dfody approximation to quasielastic electron scattering. In
the nucleus for these processes have been extensively arfaet, at large momentum transfers, where the effect of long-
lyzed in the literaturd1]. Microscopic many-body theories range correlations is negligible, the SRPA and the optical-
must deal with short-range correlatiofSRC’s originated model Green’s function approach should coindid8].
from the short-range repulsion of the nucleon nucle) Both the SRPA and the optical-model Green function ap-
interaction. Variational calculations account for SRC’s byproaches use the full residual interaction and allow for many-
introducing a Jastrow correlation factor explicitly in the particle—many-hole final states. Still in both approaches the
wave function. In this way, it is possible to define a corre-one-body external operator is limited to creéte destroy a
lated basis functiofCBF) and build a fast converging per- one-particle—one-hole pair. Once the external operator is al-
turbation theory using this basis. There are recent studies dbwed to scatter a particléor hole), then two-particle—two-
both longitudinal and transversal responses for nuclear matole states stemming from ground-state correlati@SC'’y
ter in this frameworK 16]. Alternatively, the effect of SRC’s could be activated. The importance of these GSC's are par-
can be incorporated by introducing a well-behaved effectiveicularly relevant in the dip region for the transverse channel
interaction ofG-matrix type or the standard Landau-Migdal [23]. A theory to calculate the response function which takes
parametrization, with which one can perform perturbationinto account all the above requirements is already established
theory to build other correlations, for instance of random-as the extended RP&RPA) theory[25,27. Still, the appli-
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cation of the ERPA theory is in general a prohibitively large =0.88, w«,=4.70 are related to the proton and neutron
task. In Ref.[30] we developed a projection method which magnetic moments. In faaf), is the charge density operator
extracts the main ingredients of the ERPA theory. In thatwhile O is related to the convection and magnetization cur-
work, the scheme was presented and the response was caleent density. The structure functions are related to the re-
lated neglecting the exchange part in the matrix elements dfponse function&_ (g, ) through the usual dipole elec-
the nuclear particle-hole interaction. Therefore it seems nearomagnetic form factoGg(q,% )

essary to complete the scheme by investigating and estab-

lishing the influence of the exchange graphs in the longitu-

dinal and transverse responses of nonrelativistic nuclear Ge(q,iw)=
matter. Actually, the importance of the exchange terms in
RPA theory is a well-known problem which cannot be satis-

factorily solved for finite range interactions, although Severalprojects inton pnh configurations witm=0,1, defined with

attempts ha_ve been made. In a previous W&, we de- _respect to the HF vacuum, which corresponds to the nase
veloped a simple scheme to evaluate the full antisymmetric_ " 514 is denoted bf). In addition, two projection opera-

RPA series contributing to the nuclear matter response, WitlfbrsQ andR are introduced. The action GI(R) is to project
the result that exchange contributions are important, spe;.. thenpnh space withn being an even integer greater or

cially at. low momentpm trans_fer, _and can.not b_e accounte qual to 2 0 odd greater or equal to) 3Explicit expressions
for by simply evaluating the ringdirect series with an ef- are given by

fective g’ parameter.
In view of the importance of the RPA exchange terms and

the ongoing efforts to improve the description of the nuclear P= E [n)(n|, (6)

response it seems appropriate to explore whether the ex- n=ot,

change terms in the remaining types of diagrams contained

(hcq)2—(hw)?]

1+
(839 MeV)?

©)

We introduce now the usual projection opera@grwhich

in the ERPA scheme are also important. In this work, we Q= 2 [n)(n|, )
undertake this task and evaluate for the first time the contri- "o

bution of the exchange terms to the nuclear response up to
second order in the effective interaction.

The paper is organized as follows. In Sec. Il we present R:n%d [n)(nl, 8
the formalism. In Sec. Il the results for the exchange con- n=>3,

tributions to the nuclear matter structure function are pre-
sented and compared with the corresponding direct ones. Ff!
nally, the conclusions are summarized in Sec. IV.

here|n) indicates anpnh configuration.

In the literature only one projection operator, which is the
sum of Q andR, is usually used. The present separation is
done for convenience as it helps to clarify the role pf38
configurations(see Ref.[30]). It is easy to verify thatP

The longitudinal {) and transverseT() structure func- +Q+R=1, P2=P, Q%=Q, R’=R, and PQ=QP
tions S (0,7 w) are defined as =PR=RP=QR=RQ=0.
Inserting the identity in Eq(1) one obtains

S=Spp+Spot Sgpt Sgot Sprt Sppt Srrt SorT SR(%é)

II. FORMALISM

1
S r(ghw)=— ;|m<O|OL,TTG(hw)OL,T|O>v 1

wheref w represents the excitation energy apthe magni- S . _
tude of the three momentum transfer. The nuclear grounwhere, for simplicity, we have omitted the subscriftsT.
state is denoted by0) while the polarization propagator The expression foSpp is given by

G(hw) is given by Im

1 1 Spp(q,ﬁw):—?<0|OTPG(ﬁw)P@|0>, (10

G(hw):ﬁw—H-i-ir]_ﬁw-f-H—iﬂ’ @

and similar expressions can be written 85, etc. To
evaluate the propagatoPG P, PGQ, etc., one has to solve
the following equation:

whereH is the nuclear Hamiltonian. Explicit forms for the
external excitation operato(S, 1 are given by

A .
OLZE l_|—+3(])eiq'xj, (3) g.g*lzl, (11)
=1
A ) where
1 1+ 74()) -
Or=3mas | 2 Lox{p e }] PGP PGQ PG P O O
st g, 73()) . . G=| QGP QGQ QGR, |=|{0 Q O
i g et < alke T, (@) RGP RGQ RG o o R

wherem is the nucleonic masg; andp; denote the position This is an easy task once the properties of the projection
and momentum operators for individual nucleons, and operators are employed. Keeping terms up to second order in
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the nuclear interaction, all ®8h final state contributions with |) being the Hartree Fock ground state. More explicitly,
cancel each othdB0]. Thus, from all terms of Eq9), only  one can write

Spp: Sop(Spg), andSqq survive:

(2Hred)
Im 0)=))-2 ——"]2), (18)
Spp=— ? 2 €gsc
1 where the quantity . refers to the energy of the first-order
x{olotp olo), correction to the ground-state energy.
ho—H-3PRP—RexPRP1j 4 The aim of this section is to present the formalism show-

(12) ing explicitly antisymmetric matrix elements. The guidelines
to obtain analytical expressions are given in R8€], where
direct contributions were studied. To complete the scheme,

Sop=—— < 0 OTPW PH,.Q expressions for the exchange self-energy insertions are given
@=Ho™ 17 in Appendix A and exchange terms to the structure function
are presented in Appendix B. Also, in order to simplify the
XmQO’0>, (13)  calculation, we will limit ourselves to the case in which the
o™l 7 external operator is attached to the same bubble. We will
and study some exceptions to this as a consequence of antisym-
metrization. The three nonvanishing contributions
Im Spp, p, and , will be analyzed separately below.
Sqe= "~ ?< 0 OTQmQO‘O>* 14 SpeciziQattentionS(\fv(igll be paid t8pp as its structure is very
rich and represents the main contribution to the response
whereSqp equalsSpq. The self-energy operators introduced function.
in Eq. (12) are given by

A. Spp contribution

3PQP= PHrestQHresP (15) Let us carefully analyze all graphs stemming fr&@p .
0 To do this, we first insert the definition &f given by Eq.(6)
and into Spp [EQ. (12)]:
Re> PRP=— PH LY 16 Spp=— m > (00|n)
== ’eBhw——Ho reds (16) PRT T M &
whereP denotes the principal value. We have separated the 1
total HamiltonianH into a one-body pamd, and a residual x{n TR —<POP_ PRP . n’
interactionH . ho—Ho—Hres R&™ iy
As pointed out in Ref[30], there is still a contribution x(n'|0]0). (19
stemming from a B3h configuration given by the real part
of 3p3h-self-energy insertion (R&"RP) in Eq.(12). That s, Using the ground state given by E38) in the expression

up to second order, nopBh physical state is possible, but and neglecting all third and higher orders terms except the
virtual intermediate B3h configurations produce a shift in ones with self-energy insertions, one can write
the ground-state energigee Refs[30] and[26] for more

detaily. The next step is to establish the structure of the Spp= Spp-ndhardrseli-energy, g first-order RPA

ground-state. Including the ground state correlations pertur- cocond-order RPA

batively one gets, up to first order in the residual interaction, +Spp ) (20)
|0)=)—Ho 'QH,P|), (170  where

) 1
S, Lindhard+self-energy_ _ ~ |y o1yl 1 .(1'|0)), 21
PP ar ];l’ <| | >< |hw—HO—EPQP—ReEPRP+i77| >a< | |> ( )
Sppfirst—orderRPA:_£|m s <|@T|1>;‘<1|H J1) (1'|10])
T i ho—gi+in e aﬁw—sll+i7]
<|Hre42>a
-2 202l —————(1]0|) }, 22
; ; Sgsc < | | >ﬁw_81+|77< | |> ( )
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1
S second-order RPA. _ — E OT H |1 1'1H..11" 1O
PP 11’1”<| |>fiw 8+|77<| resJ >aﬁw—81r+i7]< | reJ >aﬁw—81n+i7]< | |>
(IH resJ )a
-2 2l0M1 — (1|H 1’ 1’10
5,3 e 010 ) o a1 (o)
<| reJ >a 1 <2|Hre4>a
2(’)T1—.1(’)2'—, (23
+3 3 Pl aioyy i) 2

andHg|n)=g,|n).
From Egs.(15) and (16) the self-energy insertions read
now

1
PQP|1 7\ _ /
(UEP11)=3 (UHed2)agy 7y (2Hedl e

(24
and
PRP P
(1R RAL)= =2 (1HredBag = ~(3Hed1)a-
(25

SppHindnardtseli-energy The presence of self-energy operators
makes the energy denominators in the right-hand @RS
of Eq.(21) nondiagonal in our particle-hole basis. Nondiago-
nal terms, shown by graphs SE2D, SE2E and SER2H-ig.
1, are evaluated at second order. For diagonal ones, shown
by graphs SE1D, SE1E, SE3D, and SE3E in Fig. 1, we first
build up an antisymmetric self-energy insertion and then sum
it up to infinite order.

The first two orders leading to the RPA responEegs.
(22) and (23)], are shown by graphs RPA1D to RPA2mH
Fig. 1, where only the forward going contributions are ex-
plicitly shown, that is, the ones stemming from the first terms
on the right-hand side of the above mentioned equations. If
exchange terms were neglected one would be able to sum

In all expressions we have made explicit indication of anti-terms up to infinite order leading to the usual ring series.

symmetric matrix elements.
In Fig. 1 some graphs contributing t8-p are shown.

As mentioned earlier, in this paper we keep terms up to
second order in the evaluation of exchange contributions.

Within brackets we have collected direct plus exchange contiowever, for RPA-type diagrams we use the method de-
tributions. Let us start by analyzing the contribution to Scribed in Ref[31], which allows us to effectively sum up

SEID SEIE SE2D SE2E SE2F

10§ -6l

Lind

SE3E

SE3D  SE3E
RPAID RPAEE RPA2D RPA2E  RPA2F’

§
+96 6]9@ 9§+ @+

FIG. 1. Goldstone diagrams stemming from E(&l)—(23). In

the full antisymmetric RPA series. That method is based on
splitting the interaction into a pure contact part and a remain-
ing part chosen such that the second-order ring coincides
with the full ring series. The pure contact term allows a
straightforward evaluation of the antisymmetric RPA series
up to infinite order, while only terms up to second order are
retained for the remaining part of the interaction.

B. Sgp contribution

Using the definition ofP andQ into Sqp [Eq. (13)] we
have

Sop ——2—|m 1; (10711 4o =gy (HHed2)a
)\ (2'[Hred)a | reJ>

Note that ag) is a one body operator, it can scatter a particle
(or hole or create(or destroy a particle-hole pair. That is,
the Hartree-Fock ground state is not connected tgpah2

every diagram the wavy lines represent the external probe witttonfiguration througto.

energy momentumd,w). The dashed line is the residual interac-
tion. For simplicity we show only forward-going contributions,

In Fig. 2 we present the second-order contributions to
Sop- As a consequence of antisymmetrization, a direct term

where the incoming external probe creates a particle-hole pair. IWvhere the external operator is attached to a different bubble

the backward-going diagraniaot represented her¢he probe can
also destroy a particle-hole pair.

has come into playgiven by graphSQPD' of this figure.
Naturally, when we act with the antisymmetrization opera-
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wn

QPE’ SQPD’ 2

Hed)=—5T2(0[G' ()77 0o’ +R' ()77 o107 11,
M
' O 29
"'{}\ with

FIG. 2. The same as Fig. 1 but for tBgp channel given by Eq. ~ FZ(I) |2
(26). The action of the external probe represents the interference g (h=g' - ;’ 03 5 (29
between scattering particle or a holeand creatingor destroying rz) "1+ ug
a particle-hole pair.
h' (1) ’ +F’§(|) "’ (30
tor over this term, the same set of graphs appears. We ac- ( 2142 T2(I) p|2+M’2),

count for this through a factor 2.

where u fic(u,fic) is the pion (rho) rest mass andC,
C. Sqq contribution =2.18. For the form factor of therNN(pNN) vertex we

Finally, the expression fo8qq [EQ. (14)] is simply have taken

2 2
1 <|Hre42>a 1 _Aﬂ',p_(lu'ﬂ',pﬁc)
=——Im —(2l0"2"y —— e (h=—F—r—r, (31
Se” 7 2,22’,2” €gsc 207 >hw—82,+i17 AZ +(hcl)?
(2"|Hred)a with A ;=1.3 GeV andA ,=2 GeV. The role of thg’ pa-
x(2'|0]2"y ————. (27)  rameter is to account for short-range correlations. Note that
Egsc for a pure contact interaction exchange contributions have

been traditionally included in the RPA series by a redefini-

Here, the only possible action for the external operator is tdion of the Landau-Migdal parameters. In particular, standard
scatter a particle or a hole. g’ values range from 0.7 to 0.95 but, when redefined to

In Fig. 3, we present the main contributions 8. account for antisymmetric terms, the values are lowered and
GraphsSQ@D’ presents a direct contribution with the ex- range from 0.5 to 0.737]. As we evaluate explicitly ex-
ternal operator attached to a different bubble, in completehange graphs a standaydvalue from 0.7 to 0.95 should be
analogy toSgp. used. We have employed the valgé=0.7. In addition, in
all the diagrams considered in our calculations, the nucleon
lines have been dressed in an average way by taking a
momentum-independent effective mass value rof/m

In order to benefit from the advantage of translational=0.85.
invariance, results have been obtained for infinite nuclear From Egs.(21)—(27), explicit expressions for the struc-
matter at normal saturation density corresponding to a Ferntbre functions in nuclear matter can be obtained, where the
momentunk:=1.36 fm .. For the residual interactiod,.; Sums over the different configurations are replaced by mul-
we assume theq-(+ p)_exchange model at the static limit tidimensional integrals. The eXpreSSionS of the direct terms

with the addition of the Landau Migdaj’ parameter. In Were reported in Re{.30] and will not be repeated here. In
pionic units it reads Appendix A we give the exchange self-energy insertions ap-

pearing in Eq(21) [see Egs(24) and(25)], while in Appen-

dix B the exchange contributions to Eq&1)—(23) and
SQQ20  SQQ2E (26)—(27) are showr(see also Figs. 193The multiple inte-
grations have been performed using a Monte Carlo tech-
nigue.

Let us analyze the three nonvanishing contributions
Sep, Sgp, andSyq to the response. We follow the notation
already shown in Figs. 1-3.

Tables | and Il give the results for th&,p channel. In
Table | we compare all direct and exchange contributions
from self-energy insertions. To avoid divergencies, diagonal
self-energy insertions are evaluated up to infinite of@dt.

To do this, an average over the hole momentum of the
bubble where the self-energy is attached should be done.
This procedure is outlined in Appendix A. From the table it

is clear that, although small in general, the exchange dia-
grams can amount to a non-negligible fraction of the direct

FIG. 3. The same as Fig. 1 but for t8g channel given by Eq.  ONes, especially at energies around and below the quasipar-
(27). The action of the external probe is to creéte destroy a  ticle peak. This is also visualized in Fig. 4, where the struc-
particle-hole pair. ture function including only the direct self-energy diagrams

Ill. RESULTS FOR NUCLEAR MATTER

SQQID  SQQE
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TABLE I. Free and self-energy contributions to the longitu- I T T ]
dinal and transverse structure function. All results are for nuclear [
matter at momentum transfeq=410 MeV/c in units of
10°% MeV~! fm~3. The first column represents the energy trans-
fer in MeV. Column Lind. represents the free structure function.
Columns SE13 give the dire@) and exchang€E) contribution to
the diagonal part of the self-energy up to infinite order. Their first
contributions are the graphs SE1D, SE3D, SE1E, and SE3E of Fig. . 1
1. Columns SE2D, SE2E, and SE2B&re the nondiagonal self- 80 Pt
energy contributions to the structure function as shown in Fig. 1. P ]
The last column is the sum of all these contributions given by Eq. 2 =

s0f |

S. (107 Mev™'tm™®)
A\
ll
|
i
b/

&> 60L A E
(21). ﬁE I . ]
ho Longitudinal . = wob \ f
(MeV) Lind. SE13D SE13E SE2D SE2E SER2ESHnd+SE = Eo ]
50.0 38.729 -1.269 0.715 -1.570 0.185 0.071 36.862 2 20;_,: f
100.0 46.106 -4.390 0.599 -0.559 0.374 0.159 42.289 & P ]
150.0 41.357 -5.949 0.397 1.085 -0.096 -0.050 36.743
200.0 24.481 -3.250 0.111 2.219 -0.045 -0.027 23.490 oo’- e TR T BT T
250.0 0.000 2971 -0.127 0.521 -0.004 -0.005 3.357 heo (Me)

Transverse

500 60380 -1.938 1112 -3.205 0.037 0181 56566 FIG. 4. Self-energy contributions to the longituditapper part

and transversélower par} structure function of nuclear matter at
1000 72.299 -6.943 0.046 -0.604 0.119 0.004 65.821 momentum transfeg=410 MeV/c. Short-dashed line: Lindhard
150.0 64.610 -9.354 0.621 2.575 -0.071 -0.232 58.149fnction using an effective mase*/m=0.85. Long-dashed line:
200.0 37.739 -4.948 0.164 5.337 -0.082 -0.357 37.853¢ffect of adding the direct self-energy terms. Full line: effect of
250.0 0.000 4.587 -0.195 0.726 -0.006 -0.079 5.032 adding the direct and exchange self-energy terms.

propagated to all orders. Actually, the usendaf is equiva-

(long-dashed lineis compared to that containing, in addi- lent to having a real and energy-independent self-energy pa-
tion, the exchange one$ull line) for both the longitudinal rametrized by a function quadratic in the momentum of the
(upper parnt and the transversdower par} channels. The nucleon. These mean field single-particle states define the
short-dashed line is the free structure function calculatedHF ground state and the basis in which the perturbation
with an effective mass of value of*/m=0.85. As has been theory has been constructed. The second-order self-energy
observed beford16,32-34, the dressing of the nucleon diagrams SE1D,SE3D,SE1E,SE3E are responsible for the
lines by self-energy insertions smears out the structure fun@ppearance of an imaginary part which yields a width to the
tion, moving strength out from the quasiparticle peak to thenucleon lines, which in turn is responsible for the observed
high missing energy region. spreading in the nuclear response.

Notice that in the diagrams shown in Figs. 1-3 we have In Table Il we analyze the RPA-type correlations showing
not explicitly included the first order self-energy insertion onexplicit results for first- and second-order contributions. This
the fermion propagators. Instead of this, we preferred to usis done for the transverse channel as RPA-type correlations
a Lindhard function calculated with an effective mass in are zero for the longitudinal one due to the election of our
the nucleon propagators and, therefore, already containing iimteraction with nof or f’ Landau-Migdal terms. In the last
an average way the effects of those self-energy insertionsolumn we also present the results for RPA correlations

TABLE Il. RPA-type contributions to the transverse structure function in units o 1BleV~* fm~3
for nuclear matter at momentum transfg=410 MeV/c. Columns RPA1D(RPA1E and RPA2D
[RPA2(E+E’)] are the first- and second-order diréexchanggpart to the RPA response, respectively. The
notation is the same as in Fig. 1. Note that in that figure only forward-going contributions are shown while
the present results contain both forward and backward-going contributions. Column RPAL2Bhe sum
of all first- and second-order contributiofgiven by Eqs(22) and(23)]. Finally, column RPA,.is the result
for a full antisymmetric RPA using the formalism given in RES1].

hw

(MeV) RPA1D RPA1E RPA2D RPA2(EE’') RPA12D+E RPA
50.0 -30.233 8.844 9.028 -2.912 -15.273 -19.527
100.0 -13.801 4.209 -3.098 0.914 -11.775 -9.988
150.0 5.122 -1.132 -3.441 1.204 1.753 3.307
200.0 10.354 -3.206 1.468 -0.466 8.150 7.186

250.0 0.000 0.000 0.000 0.000 0.000 0.000
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80 [ T - TABLE lll. Longitudinal and transverseSqgp-type structure
s ] function in units of 10° MeV~! fm~3 for nuclear matter at mo-
F . = ] mentum transfeq=410 MeV/c. The notationSQPDto SQPD
£ gok N ] is the same as in Fig. 2. Column SQRs the sum of all contribu-
g g ! Pt RN ] tions.
ool L / SO\ ]
|> T ; / AN B . .
Y 4ob Al "\ ] Longitudinal
= v \\ ] ho SQPD SQPE SQPE SQPD SQPy
IO g ’," // \‘\\\ \ . (MeV)
z - \ ]
_ R0F Ry . 50.0 4.950 -0.003 -0.077 1.101 5.971
0 / 3 . 100.0 4.136 -0.016 -0.110 1.142 5.152
A ] 150.0 3.116 -0.055 -0.075 0.589 3.575
O N 200.0 1.598 -0.037 -0.007 0.234 1.789
0 50 100 150 200 250
250.0 -1.284 0.004 0.022 -0.058 -1.316
fhow (MeV)
Transverse

FIG. 5. RPA contributions to the transverse structure function of50 0

. . 7.469 -0.604 -0.101 1.324 8.089
nuclear matter atgy=410 MeV/c. Short-dashed line: Lindhard

100.0 5.412 -0.672 -0.144 1.374 5.969

function (m*/m=0.85). Long-dashed line: direct ring diagrams.

Full line: full RPA structure function including the exchange terms 150.0 3.656 -0.436 -0.098 0.928 4.049

to all orders. 200.0 0.906 -0.001 -0.009 0.491 1.387
250.0 -3.652 0.341 0.029 -0.073 -3.356

when exchange contributions are included up to infinite or-
der, following the scheme of Rdf31]. From Table Il is clear
that exchange terms of RPA type are very important. Theihole pair and scatters a parti¢er hole. We have evaluated
size is comparabléeven biggerto other direct diagrammatic the case where the external operator scatters a particle. The
contributions to the structure function and, therefore, theycase where it scatters a hole is negligible as can be found in
should not be neglected. Given the magnitude of these RPRef.[30]. As mentioned above, due to the action of the an-
exchange terms, the differences between the next-to-last atidymmetrization operator a graph where the external opera-
last columns of Table Il also suggest that it is important totor is attached to different bubbles has to be considered. This
sum them up to infinite order as was done in R8fl]. The graph isSQPD in Fig. 2 and has some influence as can be
effect of the RPA diagrams in the transverse structure funcseen from Table Ill. The other exchange graphs are negli-
tion is also displayed in Fig. 5, where the full antisymmetricgible.
RPA series(full line) is compared to the direct ring series  In Table IV the results for th€,4 channel are shown. As
(long-dashed ling We observe that the transfer of strengthfor the Sgp channel, exchange graphs are very small. The
from the low- to the high-energy region typical of the polar- importance of the ground-state correlation diagrams is
ization (ring) diagrams is partly restored by the incorporationclearly seen in Fig. 6, where the full lines represent the ad-
of the exchange diagrams. dition of Syp+ Sgq to the long-dashed lines, which contain

In Table Ill, we study theSyp channel. In this kind of the Spp contributions. In the longitudinal channélpper
graph the external operator creates destroys a particle-  pard, only the self-energy terms contribute$pp, while the

TABLE IV. Longitudinal and transvers8yq-type structure function in units of 16 Mev~* fm =3 for
nuclear matter at momentum transtgr 410 MeV/c. The notationSQQLD to SQ@@D is the same as in
Fig. 3.SQ@BE,; is the sum ofSQ@E, SQQE’, andSQD' from the same figure. ColumBQ Q,
is the sum of all contributions.

Longitudinal
fiw SQQD SQQLE SQQD SQQE SQ@D SQ@Ey SQQu
(MeV)
50.0 4.692 -0.042 2.455 -0.074 -0.552 0.041 6.520
100.0 8.535 -0.327 1.428 -0.046 -0.629 0.042 9.003
150.0 9.807 -0.344 0.661 -0.019 -0.299 0.029 9.834
200.0 10.426 -0.278 0.310 -0.008 -0.220 0.020 10.249
250.0 10.342 -0.167 0.047 -0.003 -0.113 0.011 10.118
Transverse
50.0 6.064 -0.051 4,413 -0.062 -1.614 0.012 8.762
100.0 12.673 -0.307 2.493 -0.027 -2.230 0.017 12.617
150.0 15.153 -0.313 1.179 -0.007 -1.848 0.014 14.178
200.0 17.352 -0.263 0.559 -0.003 -0.467 0.012 17.188

250.0 16.551 -0.167 0.090 -0.001 -0.271 0.006 16.208
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R IR T ] In addition our findings also support the idea that the use

o ] of an effectiveg’ to account for exchange terms in the
:g 50 - e 1 nuclear response is not appropriate. This point was already
= N . raised in Ref[31], where we built a prescription to calculate
= [ RSN ] the full antisymmetric RPA series of the nuclear response. In
4 ) \\ 1 that work, we showed that the use of a standard average
= A AN 1 prescription forg’” was not able to reproduce the RPA anti-
wo L RN symmetric response, especially for intermediate values of the

100

momentum transfer. Using the averagfefor calculating the
other types of correlations would not be appropriate either
because we have shown that they are basically dominated by
] the direct contributions. This is visualized in Table V where,
L P RN 1 changing theg’ parameter to an effective value gf =0.5
s0p 7/ - N ] does not, in the first place, reproduce the antisymmetric RPA
L i, \ 1 response contained implicitly in the first column of the trans-
N A\ . verse part(a point already raised in Reff31]) but also in-
i N . duces non-negligible modifications in the other contribu-
/) i ] tions, especially those related to ground-state correlations
Er géd ] (compare the next-to-last and last columns _
ho (MeV) Erom our s_tudy we conclgde thgt the nuclear response is
basically dominated by the direct diagrams and the exchange

FIG. 6. Contribution of ground-state correlations to the longitu-On€s only need to be consideré&hd to all ordergfor the
dinal (upper part and transverséower pan structure function of ~RPA-type correlations.
nuclear matter at momentum transfg=410 MeV/c. Short-
dashed line: Lindhard functionn{*/m=0.85). Long-dashed line:
Spp structure function. Full line: inclusion of the ground-state cor- IV. CONCLUSIONS
relation diagrams to th8&gp structure function.

Sr (107 MeV 'fm™)

A projection method to extract the main contributions of
transverse channglower par} contains, in addition, the the ERPA theory with the explicit inclusion of exchange
RPA-type correlations. In view of these results it is clear thaterms has been developed. This work is a continuation of a
incorporating theSyp and Sy channels is necessary in any previous ondg30] in which only direct terms were studied.
perturbative calculation of the nuclear matter response as olidere we have tried to clarify the importance of exchange
served in Ref.[30]. Having established in this work the terms of the particle-hole interaction, by performing a quan-
smallness of the corresponding exchange terms is particulatitative analysis of their influence in the nuclear response.
interesting, since the calculation of these channels can be The projection method classifies the contributions to the
restricted to the direct graphs thus avoiding a great deal afiuclear structure function into three channels, called
numerical computation. Sep, Sgp, andSyq With P andQ being projections opera-

TABLE V. Comparison between our results and the corresponding direct values calculated with a modi-
fied value of theg’ Landau-Migdal parameteig(=0.5) to partially reproduce the exchange contributions.
Our results are given b$PP,;, SQP,y, andSQQ,, where a valugg’'=0.7 was employed with the
explicit inclusion of exchange graphs. The results, given in units 6 1BleV~! fm~3, are for nuclear
matter at momentum transfgr=410 MeV/c.

Longitudinal
fiw SPPy SPPy,9'=05 SQPyn Sdeir,g’zo.s SQQu SQQiir,g’zo.S
(MeV)
50.0 36.862 36.409 5.971 5.034 6.520 2.529
100.0 42.289 43.256 5.152 5.442 9.003 4.995
150.0 36.743 36.430 3.575 4312 9.834 5.971
200.0 23.490 19.059 1.789 0.966 10.249 6.291
250.0 3.357 2.393 -1.316 -1.336 10.118 6.015
Transverse
fiw Sppant SI:)pdir,g’zo.s SQPant Sdeir,g’zo.s SQQnt SQQiir,g’zO.S
(MeV)
50.0 37.039 47.428 7.109 5.533 8.762 5.049
100.0 55.833 63.337 5.362 5.719 12.617 9.092
150.0 61.456 59.066 4.049 3.864 14.178 10.814
200.0 45.039 33.882 1.727 1.392 17.188 11.586

250.0 5.032 3.719 -3.356 -1.883 16.208 10.800
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tors defined in Sec. I. This separation permits the study of the It is also important to stress that the interaction employed
effects of the different types of correlations. In this senseand in particular the value fay’, comes from parametriza-
Spp represents final state correlatio®s,o ground-state cor-  tions of processes at a lower-energy-momentum region than
relations, andSyp the interference between them. Throughthe ones considered here. Those values do not necessarily
the analysis of our results we can conclude that all types ofiold for us. Also from Table V, we see that a small change in
correlations are important and should be considered whegne parameter can produce a noticeable change in the struc-
one studies the nuclear response. ) ture function. In any case, our objective was not to search for
After this statement, the problem is the big number ofine gptimal paremeters that produce good agreement with the

graphs which should be evaluated when the exchange part @f herimental data but to careful analyze the exchange dia-
the nucleon-nucleon interaction is retained. Before the nu- rams and our conclusions should remain valid in a wide

merical calculation we can see no reason to neglect any co Variety of situations.

tribution. Our calculations show that for final state correla- In summary, our study shows that the nuclear response is

tions, Iie., self-energy insertions and mainly RPA_typt:‘\l?ﬁlsicallydominated by the direct diagrams, the most relevant

correlations, the exchange graphs are relevant in agreemeb . L
- eing those of Figs. 1-3, and the exchange contributions
with Refs.[37,38. On the other hand, they can be neglectedonly need to be considerddnd to all ordersfor the RPA-

for ground-state correlations. Also, within the energy- ) X . .
momentum region under consideration, exchange terms C&Mpe correlations, which can be evaluated using the prescrip-
not be parametrized by a redefinition of the parameter.  tion of Ref.[31].

APPENDIX A
In this appendix we show explicit expressions for exchange contributions to the self-energy insertions Direct contributions

can be found in Refl30]. Exchange self-energy insertions from E¢&4) and (25) (which contribute to graphs SE1E and
SE3E of Fig. 1, respectivelyare given by

art exc 1 fi 2mC2kF4 ! ! !
[SPRP(Q, v, h)]Pat E_(zw)4<4wﬁ0) ) Jd3kJ d3k’ 6(|h+Q—k|—1)0(1—|h+Q—k—K'|)(|h+Q—k'| 1)
XT2(K)T2(k'){3g'2—[2(k-k')2—1]h"2+ 29"’} ! (A1)

v—(Q%2+h-Q—k.k)+iy

and

[Rez PRP(Q, v, h)]part excho

[ 2 )chsz4

(27,-)4\47-rﬁc wl

f d3kf dk’#(1—|h+Q—k|) 6(|lh+Q—k—k'|—1)6(1—|h+Q—K’|)
1

I2(k)T2(k'){3g'2-[2(k-K')?—1]h'2+ 29 "R’ .
X 77( ) 71—( ){ g [ ( ) ] + g }V—(Q2/2+h'Q+k'k’)

(A2)

We have used dimensionless quantit@sg/ke and v=hw/2e¢; kg and e being the Fermi momentum and energy,
respectively.

In order to simplify the calculation, it is a good approximation to eliminate the dependence on the hole momentum, using
an average procedurfeee Ref[30]), as follows:

1
EPQ(R)P(Q, V)E4_ d3h 2PQ<R)P(Q,V,h). (A3)
3T
APPENDIX B

In this appendix we show explicit expressions for exchange contributions to the structure function. Direct contributions can
be found in Ref[30].
Let us first consider th&,, channel. Graph SE2E of Fig.[$ee Eq(21)] is given by
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A [ f2
(277)5\477710

23(mc)3
2(hcu,)?

[Ssen(Q) 1= — [ @ [ [ @k ovi m et ) oI+ Q1= 1) 1~ k)

><a(|h+k+k’|—1)0(1—|h+k|)9(|h+k+Q|_1)(_71”")

{ 1 1 1
. (B1)

8 v—(Q%2+Q-h)+in v—(Q¥2+Q-h+k-K')+in v—[Q%2+Q-(h+k)]+in

Graph SE2E of Fig. 1[see Eq(2D)]:
A [ 2 )2 3(mc)3
(2m®\47he] 2(hcu,)t

[Sse2e(Qiv) ] 7=~ fdshf d3kf d3k’ OV 1).se2e 8(1—|h|) (Jh+Q| = 1) (1 —|h+k]|)

><0(1—|h+k+k’+QI)0(|h+k’+QI)9(|h+k+Q|‘1)(_71'”‘)

X{ 1 | 1 | 1 ] ©2)
v—(Q%2+Q-h)+in v—(Q2+Q-h—k-k)+in v—[Q%2+Q-(h+k)]+i7
where
OV seae= OV seae = PA(K)T2(K'){3g 2~ [2(k-k')2— 1Th'2+ 29 "R} (B3)
and
OVT,SEZI:: OVT,SEZE’
_ ﬁCkF ’ 2 2 ’ ~ ~ 12 T L2 T2 pings
= g ] TA0OrZk) | 4 (h+l0—(QWIQ- (h+kIH3G 2~ [2(k-K)?~ 1] 2+ 25 R’}
+ (= 3+ 1, ){Q% 2+ [(Q-K)2—2(k-K')(Q-K)(Q-k") Th"2+(Q-K)Zg’ (W' (K)
o - 2 -
+[Q2—2(Q-k)z]g’(k’)h’(k)}—(—3Ms+m)h’2§(k~k’)[(k-Q)k"(2h+k)—(k’-Q)k-(2h+k)]]-
(B4)
First-order exchange contribution to the RPA-type correlafg®e Eq(22) and graph RPALE of Fig.]1
A / f2 3(mc?)?
[Srpard Q:¥) ] 7=~ (277)3\47Tﬁ0)2(ﬁc,u7,)2ﬁ0k,:f dahj d*kOV,_ 1) rea1ef(1—h)6(|h+ Q| —1)
X 6(1—|h+Kk))o(|h+k+ |—1(—£I ) ! — ! )
( " A=bi—Zm 2v—(Q*+2h-Q)+in 2v+(Q%*+2h-Q)
1 1
X — — , (B5)
(2v—[Q2+2(h+k)-Q]+|77 2v+[Q2+2(h+k)-Q])}
where
OV reare=T2(K)(3g' +h) (B6)
and
thFzz = 2 2 2002ra ~ R (k.02
OVir),rPALE= oM 2k (39" +h"]4{[h-(h+k)—(Q-h)Q- (h+K) [/Q7} + (—3us"+ u,9) Q" +h'(k-Q)7]).

(B7)
Graph RPAZ2E of Fig. Isee Eq(23)]:
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A | f2 )23(mc2)3/

[Srpa2e Qi¥) 1= ){E(QJ’)f d3hJ dgkOV(L,T),RPAZEa(l_h)6(|h+Q|_1)

- -
(2mP\47hc] (hep )t T
X 6(1—|h+k|)6(|h+k+ |—1)< ! - ! )
( ( Q 2v—(Q?+2h-Q)+in 2v+(Q?+2h-Q)
1 1
X — — , (B8)
(2v—[Q2+2(h+k)-Q]+|17 2v+[Q2+2(h+k)-Q])]
with
L£(Q )=fd3 0(|p+Q/2[—1)6(1—| —Q/ZI)( : - ! ) (B9)
o PP P 2v—Q?—2Q-p+in 2v+Q%+2Q-p/’
and
OVr) reaze=T2(Q)T2(K)Q%4g’ 11,29’ +h’ (k- Q)21. (B10)

(Note that for the present interaction the longitudinal contribution is zero.
Graph RPA2E of Fig. 1[see Eq.(23)]:

[Srpaze (Q, V)]L,T:

A / 2 \26mck2 5 . .
1

2v—(Q?+2h-Q)+iy

><0(|h+k+Q|—1)0(1—|h+k+k’|)0(|h+k+k’+Q|—1)( —%Im)[(

1 1 1
20+ (Q%+ 2h~Q)) <2v—[Q2+2(h+ K)-Ql+in 2v+(Q2+2(h+ k)-Q))

x( ! — ! ) , (B11)
2v—[Q%+2(h+k+k')-Q]+in 2v+[Q?+2(h+k+k')-Q]
where

OV1) reaze =T2(KT2(k)109(g")2+h"2+6g"h'] (B12)
and

2
oV _[ fcke I2(KI2 (k)1 4009(g")2+h'2+6g9"h'|{[h- (h+k+k')—(Q-h)Q- (h+k+k)]/Q%
(T),RPA2E ome - o g g

Qul+ u,? ~ o~ L~ ~ . —~ o~ o~
B @@y 2+ R 2(k K2 - 11D+ R QK2+ (Q K2 -2(Q-R(Q K (k)]

+§;ﬁ'[(Q-R>2+(Q-P>2]]. (B13)
Going now to theSqp and Sy channeldsee Eqs(26) and(27)] we have for grapt8 QPEof Fig. 2

A | f2 )23(mc2)3
(2m)®\4mhc) a(hcp,)?

[Ssord Q)] 1= sthdekf d*k’ OV 1).s0pef(1—|h]) 8(|h—k| 1)

X 0(|h—k+Q|—1)8(|h—k'+Q| - 1) 6(|h+Q| - 1)8(1— |h—k—Kk'+Q|)

—Im
k- (k=Q1 =

X ! , ! —|. (B14)
v—(Q2+Q-h—k-kK)+in v—(Q%2+Q-h)+ip

GraphSQPE of Fig. 2:
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A [ £
(277)5\471%0

23(mc)3
A(fcp,)

[Ssqre(Q1) ] 1= [ @ [ o [ OV sqpe o1~ ) -k~ 1)

1 /-1
><0(|h—k’+Q|—1)0(|h+Q|—1)0(|h—k’|—1)0(1—|h—k—k’|)ﬁ(7lm)

1 1
% v—[Q¥2+Q-h—K - (k+Q)]+in v—(Q¥2+Q-h)+in| (B15
where
OV sore= OV se2E (B16)
OVr sope= OVr se2E, (B17)

OVs copu— | 1S ZFZ(k)FZ(k’) afh- (h+k)—(Q-MIQ- (h+K)TH3g 2~ [2(k-K' )2~ 1]h'2+2g h'}+(~3ps?
T,SQPE ome - p g g Ms

+1,9{Q%0" 2+ [(Q-K)?—2(k-K')(Q-K)(Q-K) Th'2+(Q-K )G’ (KR’ (k') +[Q?—2(Q-k)?]g’ (k')F’ (k)}

R N —~ A
_(_3Ms+ﬂv)h,2§(k'k,)[(k‘Q)k,'(2h+k,)_(k/'Q)k'(2k+k/)]

. (B19)
GraphSQPD of Fig. 2:
A 2 12 3(mc)?3 ,
[Sopor(Q)ILr=— (sz»( 47T,LC) TG f d*h f d*h f d*kOViL1),sqpo O(1=[h]) (| +Q| - 1)
X 0(|lh—k|—1)0(|h'+k+Q|—1)6(|n"+k|—1)6(1— || ;(_—ﬂ )
( ) Ql-1)6( (L= G| —im
1 1
X - —. (B19
v—(Q%2+Q-h)+in v—[k*+Q?%2+k-(h'—h)+ Q- (k+h")]+i7
GraphSQ@D’ of Fig. 3:
A [ 2 \23(mc)? ,
[SQQBD’(Q-V)]L,T:(ZW)5\4Wﬁc) Z(ﬁc,uﬂ)“f d3hf d*h fdakOV(L,T),SQQBD’e(l_|h|)0(|h_k|_1)
X 6(1—|h'+Q)o(lh—k+Q—1)6(|h’+k —1)
X 6(1—1|h'|) !
( k2—k-h+k-h’ k2+k-(h'—h)+Q-(h—h’—k)
-1 1
X —Im) —. (B20)
T y—[K2+ Q22+ k- (' —h)+ Q- (h—K)]+i 7

In Egs.(B19),(B20), we have used
k'=k—Q

and

OV sopo=OVLsqap = 2(K)T2(K)5{3g' %+ (k-k )?h'?+2g'R'}, (B21)
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TSQPDT| S (9] Il Ofh-( (Q-h)[Q-
X{4Q%g 2+ [Qx (kxk)]%h"2+[ Q%+ (Q-K' )?]g
2~ .
—(3us+2m)h’2§(k-k’){(k~Q)[k’-(h+h’+k)]—(k’-Q)[k-(h+h’+k’)]}]
and
OVT,SQQGD': ma
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(h'+K)1}[39'2+ (k-K )%h'2+ 29" R ]+ (Bul+2u,2)

"(k)h' (k") +[Q%+(Q-k)2]g’ (k" )h' (k)}

(B22)

heke |2 . A - -
20—F> Fi(k)ri(k’){20{h’-(h—k)—(Q-h')[Q-(h—k)]}[3g'2+(k~k')Zﬁ’2+29'h’]+(3usz+2,uv2)

X{4Q%9" 2+ [ QX (kX k") PR 2+[Q%+(Q-k")2]g’ (KR’ (k') +[Q2+(Q-K)2]g’ (k") R’ (K)}

-0 2 A~ . — — N
—(3ﬂs+2Mu)h'2§(k'k' H(k-Qk'-(h+ h'—k)]—(k"Q)[k'(h+h'—k')]}}- (B23
GraphSQQLE of Fig. 3:
A [ 2 \29(mc)?3
[SSQQLE(Qu V)]L,T: - (277)5<47Thc) 4((hcﬂ ))4f dspf dakf dak,OV(L,T),SQQLEe(“)l_l) 0(1_|p+ k|)
X 0(|p+Q|—1)8(|p+k+k'|—1) (_—1I ) ! (B24)
(Ip+Q—Lédp k2 T |V (Q¥2r 0 prk Ky tin)

Finally, graphSQQE of Fig. 3:

A [ 2 \29(me)? ,
[SSQQZE(Q,V)]L,T:_(277)5<47Tﬁc) 4(“#7)4 dshj d3kf d*k’ OV, 1),s0ef(1—|h]) 6(|h—k|-1)
— 1
h—k'|—1)6(1—|h— 1-|h—k—k’ — ,
< = 16-lh-ahact—| l)(k-k’)z( m m)L—(QZ/2+Q-h—k'.k)+in
(B25)
where
OV soae= OV soee= OV see, (B26)
ke |2 . - o o
OVT,SQQlE:(ﬁ) 2Kk P = (Q-p)2]+ Q% (e + 1, HIM{39'2—[2(k-k')*~1]h"2+29'h"},  (B27)
and

f
oy =

2
CkF) T2(K)T2(K ) {[h2— (Q- 1) 2]+ Qe+ w, )14 {3g' 2~ [2(k-K )2 1]R"?+2g'R'}.  (B28)
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