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Analysis of exchange terms in a projected extended random phase approximation theory applie
to the quasielastic„e,e8… reaction
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A systematic study of the influence of exchange terms in the longitudinal and transverse nuclear response to
quasielastic (e,e8) reactions is presented. The study is performed within the framework of the extended
random phase approximation, which in conjuction with a projection method permits a separation of various
contributions tied to different physical processes. The calculations are performed in nuclear matter up to
second order in the residual interaction for which we take a (p1r) model with the addition of the Landau-
Migdal g8 parameter. Exchange terms are found to be important only for the random-phase-approximation-
type contributions around the quasielastic peak.@S0556-2813~98!02508-4#

PACS number~s!: 21.65.1f, 24.10.Cn, 25.30.Fj
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I. INTRODUCTION

The nuclear response to an electromagnetic probe
common tool used to investigate the behavior of the ato
nucleus@1#. In contrast to a hadronic probe it allows a pe
turbative treatment in the external operator coupling c
stant. In this work we will concentrate on the study of t
nuclear response function for longitudinal and transverse
clusive quasi-elastic electron scattering reactions. These
sponses are experimentally separated@2–7#, showing that a
simple model such as the Fermi gas model fails to reprod
the experimental data. The attempts to go beyond this m
can be classified in two groups. On one side there are
methods that assume the nucleus as an assembly of non
acting nucleons with individual properties, such as
charge radius, modified with respect to the vacuum due
the presence of the other nucleons@8–11#. Another option is
to explore the possibilities of a rigorous many-body theo
@12–36# keeping the nucleons as essential degrees of f
dom with the same properties as in the vacuum, before
sorting to such exotic effects. This work falls into this seco
strategy.

Several approaches to the nuclear many-body problem
the nucleus for these processes have been extensively
lyzed in the literature@1#. Microscopic many-body theorie
must deal with short-range correlations~SRC’s! originated
from the short-range repulsion of the nucleon nucleon (NN)
interaction. Variational calculations account for SRC’s
introducing a Jastrow correlation factor explicitly in th
wave function. In this way, it is possible to define a cor
lated basis function~CBF! and build a fast converging per
turbation theory using this basis. There are recent studie
both longitudinal and transversal responses for nuclear m
ter in this framework@16#. Alternatively, the effect of SRC’s
can be incorporated by introducing a well-behaved effec
interaction ofG-matrix type or the standard Landau-Migd
parametrization, with which one can perform perturbat
theory to build other correlations, for instance of rando
PRC 580556-2813/98/58~2!/1052~14!/$15.00
a
ic

-

-
re-

ce
el

he
ter-
e
to

y
e-
e-
d

of
na-

-

of
t-

e

n
-

phase approximation~RPA! type. As it is not our aim to
describe the full set of approaches, we will comment only
the ones which lead to our particular theory, which is bas
on the perturbative approach.

A simple way to introduce in the response the nucleo
nucleon correlations originated by the residual interaction
by means of the RPA theory, where one-particle–one-h
excitations are summed up to infinite order. Although im
proving the Fermi gas picture, the RPA approximation is n
able to explain some features of the response such as
instance, the strength in the ‘‘dip’’ region of the transver
response.

An improvement upon the RPA theory consists of allo
ing the coupling of one-particle–one-hole states to tw
particle–two-hole ones. This corresponds to what has b
called final state correlations. Two formalisms study th
kind of processes. One is the second RPA~SRPA! theory
~see Ref.@15#, and references therein! and the other is the
Green function scheme of Ref.@17# ~see also Refs.@18–21#!.
The first one introduces final state correlations over
particle-hole bubbles of the RPA theory. In the second o
the relationship between forward virtual Compton scatter
and inclusive electron scattering is used to construct a o
body approximation to quasielastic electron scattering.
fact, at large momentum transfers, where the effect of lo
range correlations is negligible, the SRPA and the optic
model Green’s function approach should coincide@18#.

Both the SRPA and the optical-model Green function a
proaches use the full residual interaction and allow for ma
particle–many-hole final states. Still in both approaches
one-body external operator is limited to create~or destroy! a
one-particle–one-hole pair. Once the external operator is
lowed to scatter a particle~or hole!, then two-particle–two-
hole states stemming from ground-state correlations~GSC’s!
could be activated. The importance of these GSC’s are
ticularly relevant in the dip region for the transverse chan
@23#. A theory to calculate the response function which tak
into account all the above requirements is already establis
as the extended RPA~ERPA! theory@25,27#. Still, the appli-
1052 © 1998 The American Physical Society
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PRC 58 1053ANALYSIS OF EXCHANGE TERMS IN A PROJECTED . . .
cation of the ERPA theory is in general a prohibitively lar
task. In Ref.@30# we developed a projection method whic
extracts the main ingredients of the ERPA theory. In t
work, the scheme was presented and the response was c
lated neglecting the exchange part in the matrix element
the nuclear particle-hole interaction. Therefore it seems n
essary to complete the scheme by investigating and es
lishing the influence of the exchange graphs in the long
dinal and transverse responses of nonrelativistic nuc
matter. Actually, the importance of the exchange terms
RPA theory is a well-known problem which cannot be sa
factorily solved for finite range interactions, although seve
attempts have been made. In a previous work@31#, we de-
veloped a simple scheme to evaluate the full antisymme
RPA series contributing to the nuclear matter response, w
the result that exchange contributions are important, s
cially at low momentum transfer, and cannot be accoun
for by simply evaluating the ring~direct! series with an ef-
fective g8 parameter.

In view of the importance of the RPA exchange terms a
the ongoing efforts to improve the description of the nucl
response it seems appropriate to explore whether the
change terms in the remaining types of diagrams conta
in the ERPA scheme are also important. In this work,
undertake this task and evaluate for the first time the con
bution of the exchange terms to the nuclear response u
second order in the effective interaction.

The paper is organized as follows. In Sec. II we pres
the formalism. In Sec. III the results for the exchange c
tributions to the nuclear matter structure function are p
sented and compared with the corresponding direct ones
nally, the conclusions are summarized in Sec. IV.

II. FORMALISM

The longitudinal (L) and transverse (T) structure func-
tions SL,T(q,\v) are defined as

SL,T~q,\v!52
1

p
Im^0uOL,T

†G~\v!OL,Tu0&, ~1!

where\v represents the excitation energy andq the magni-
tude of the three momentum transfer. The nuclear gro
state is denoted byu0& while the polarization propagato
G(\v) is given by

G~\v!5
1

\v2H1 ih
2

1

\v1H2 ih
, ~2!

whereH is the nuclear Hamiltonian. Explicit forms for th
external excitation operatorsOL,T are given by

OL5(
j 51

A
11t3~ j !

2
eiq•xj , ~3!

OT5
1

2mq(j 51

A H 11t3~ j !

2
@q3$pj ,eiq•xj%#

1 i
ms1mvt3~ j !

2
$q3@s~ j !3q#%eiq•xjJ , ~4!

wherem is the nucleonic mass,xj andpj denote the position
and momentum operators for individual nucleons, andms
t
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50.88, mv54.70 are related to the proton and neutr
magnetic moments. In fact,OL is the charge density operato
whileOT is related to the convection and magnetization c
rent density. The structure functions are related to the
sponse functionsRL,T(q,\v) through the usual dipole elec
tromagnetic form factorGE(q,\v)

GE~q,\v!5F11
~\cq!22~\v!2

~839 MeV!2 G22

. ~5!

We introduce now the usual projection operatorP, which
projects intonpnh configurations withn50,1, defined with
respect to the HF vacuum, which corresponds to the casn
50 and is denoted byu&. In addition, two projection opera
torsQ andR are introduced. The action ofQ(R) is to project
onto thenpnh space withn being an even integer greater o
equal to 2 (n odd greater or equal to 3!. Explicit expressions
are given by

P5 (
n50,1,

un&^nu, ~6!

Q5 (
n even,

n>2,

un&^nu, ~7!

R5 (
n odd,
n>3,

un&^nu, ~8!

whereun& indicates anpnh configuration.
In the literature only one projection operator, which is t

sum of Q and R, is usually used. The present separation
done for convenience as it helps to clarify the role of 3p3h
configurations~see Ref.@30#!. It is easy to verify thatP
1Q1R51, P25P, Q25Q, R25R, and PQ5QP
5PR5RP5QR5RQ50.

Inserting the identity in Eq.~1! one obtains

S5SPP1SPQ1SQP1SQQ1SPR1SRP1SRR1SQR1SRQ ,
~9!

where, for simplicity, we have omitted the subscriptsL, T.
The expression forSPP is given by

SPP~q,\v!52
Im

p
^0uO †PG~\v!POu0&, ~10!

and similar expressions can be written forSPQ , etc. To
evaluate the propagatorsPGP, PGQ, etc., one has to solve
the following equation:

G•G215I , ~11!

where

G5S PGP PGQ PGR

QGP QGQ QGR

RGP RGQ RGR
D , I 5S P 0 0

0 Q 0

0 0 R
D .

This is an easy task once the properties of the projec
operators are employed. Keeping terms up to second ord
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1054 PRC 58E. BAUER, A. POLLS, AND A. RAMOS
the nuclear interaction, all 3p3h final state contributions
cancel each other@30#. Thus, from all terms of Eq.~9!, only
SPP , SQP(SPQ), andSQQ survive:

SPP52
Im

p

3K 0UO †P
1

\v2H2SPQP2ReSPRP1 ih
POU0L ,

~12!

SQP52
Im

p K 0UO †P
1

\v2H01 ih
PHresQ

3
1

\v2H01 ih
QOU0L , ~13!

and

SQQ52
Im

p K 0UO †Q
1

\v2H01 ih
QOU0L , ~14!

whereSQP equalsSPQ . The self-energy operators introduce
in Eq. ~12! are given by

SPQP5PHresQ
1

\v2H01 ih
QHresP ~15!

and

ReSPRP52PHresR
P

\v2H0
RHresP, ~16!

whereP denotes the principal value. We have separated
total HamiltonianH into a one-body partH0 and a residual
interactionH res.

As pointed out in Ref.@30#, there is still a contribution
stemming from a 3p3h configuration given by the real pa
of 3p3h-self-energy insertion (ReSPRP) in Eq. ~12!. That is,
up to second order, no 3p3h physical state is possible, bu
virtual intermediate 3p3h configurations produce a shift i
the ground-state energy~see Refs.@30# and @26# for more
details!. The next step is to establish the structure of
ground-state. Including the ground state correlations per
batively one gets, up to first order in the residual interacti

u0&5u&2H0
21QHresPu&, ~17!
e

e
r-
,

with u& being the Hartree Fock ground state. More explicit
one can write

u0&5u&2(
2

^2uH resu&
«gsc

u2&, ~18!

where the quantity«gsc refers to the energy of the first-orde
correction to the ground-state energy.

The aim of this section is to present the formalism sho
ing explicitly antisymmetric matrix elements. The guidelin
to obtain analytical expressions are given in Ref.@30#, where
direct contributions were studied. To complete the sche
expressions for the exchange self-energy insertions are g
in Appendix A and exchange terms to the structure funct
are presented in Appendix B. Also, in order to simplify th
calculation, we will limit ourselves to the case in which th
external operator is attached to the same bubble. We
study some exceptions to this as a consequence of antis
metrization. The three nonvanishing contributio
SPP , SQP , and SQQ , will be analyzed separately below
Special attention will be paid toSPP as its structure is very
rich and represents the main contribution to the respo
function.

A. SPP contribution

Let us carefully analyze all graphs stemming fromSPP .
To do this, we first insert the definition ofP given by Eq.~6!
into SPP @Eq. ~12!#:

SPP52
1

p
Im (

n,n851.
^0uO †un&

3K nU 1

\v2H02H res2SPQP2ReSPRP1 ih
Un8L

3^n8uOu0&. ~19!

Using the ground state given by Eq.~18! in the expression
and neglecting all third and higher orders terms except
ones with self-energy insertions, one can write

SPP5SPP
Lindhard1self-energy1SPP

first-order RPA

1SPP
second-order RPA, ~20!

where
SPP
Lindhard1self-energy52

1

p
Im(

1,18
^uO †u1&^1u

1

\v2H02SPQP2ReSPRP1 ih
u18&a^18uOu&, ~21!

SPP
first-order RPA52

1

p
ImH (

1,18
^uO †u1&

1

\v2«11 ih
^1uH resu18&a

1

\v2«181 ih
^18uOu&

22(
1

(
2

^uH resu2&a

«gsc
^2uO †u1&

1

\v2«11 ih
^1uOu&J , ~22!



PRC 58 1055ANALYSIS OF EXCHANGE TERMS IN A PROJECTED . . .
SPP
second-order RPA52

1

p
ImH (

1,18,19
^uO †u1&

1

\v2«11 ih
^1uH resu18&a

1

\v2«181 ih
^18uH resu19&a

1

\v2«191 ih
^19uOu&

22(
1,19

(
2

^uH resu2&a

«gsc
^2uO †u1&

1

\v2«11 ih
^1uH resu18&a

1

\v2«181 ih
^18uOu&

1(
1

(
2,28

^uH resu2&a

«gsc
^2uO †u1&

1

\v2«11 ih
^1uOu28&

^2uH resu&a

«gsc
J , ~23!
d

ti

o
to

rs

o-

own
rst
um

x-
ms
. If

sum
.

to
ns.
de-

on
in-

ides
a

ies
re

cle
,

to
rm
ble

ra-

wi
c-
s,
r.
andH0un&5«nun&.
From Eqs.~15! and ~16! the self-energy insertions rea

now

^1uSPQPu18&5(
2

^1uH resu2&a

1

\v2«21 ih
^2uH resu18&a

~24!

and

^1uReSPRPu18&52(
3

^1uH resu3&a

P
\v2«3

^3uH resu18&a .

~25!

In all expressions we have made explicit indication of an
symmetric matrix elements.

In Fig. 1 some graphs contributing toSPP are shown.
Within brackets we have collected direct plus exchange c
tributions. Let us start by analyzing the contribution

FIG. 1. Goldstone diagrams stemming from Eqs.~21!–~23!. In
every diagram the wavy lines represent the external probe
energy momentum (q,v). The dashed line is the residual intera
tion. For simplicity we show only forward-going contribution
where the incoming external probe creates a particle-hole pai
the backward-going diagrams~not represented here! the probe can
also destroy a particle-hole pair.
-

n-

SPP
Lindhard1self-energy. The presence of self-energy operato

makes the energy denominators in the right-hand side~RHS!
of Eq. ~21! nondiagonal in our particle-hole basis. Nondiag
nal terms, shown by graphs SE2D, SE2E and SE2E8 in Fig.
1, are evaluated at second order. For diagonal ones, sh
by graphs SE1D, SE1E, SE3D, and SE3E in Fig. 1, we fi
build up an antisymmetric self-energy insertion and then s
it up to infinite order.

The first two orders leading to the RPA response@Eqs.
~22! and ~23!#, are shown by graphs RPA1D to RPA2E8 in
Fig. 1, where only the forward going contributions are e
plicitly shown, that is, the ones stemming from the first ter
on the right-hand side of the above mentioned equations
exchange terms were neglected one would be able to
terms up to infinite order leading to the usual ring series

As mentioned earlier, in this paper we keep terms up
second order in the evaluation of exchange contributio
However, for RPA-type diagrams we use the method
scribed in Ref.@31#, which allows us to effectively sum up
the full antisymmetric RPA series. That method is based
splitting the interaction into a pure contact part and a rema
ing part chosen such that the second-order ring coinc
with the full ring series. The pure contact term allows
straightforward evaluation of the antisymmetric RPA ser
up to infinite order, while only terms up to second order a
retained for the remaining part of the interaction.

B. SQP contribution

Using the definition ofP and Q into SQP @Eq. ~13!# we
have

SQP522
1

p
ImH (

1,2,28
^uO †u1&

1

\v2«11 ih
^1uH resu2&a

3
1

\v2«21 ih
^2uOu28&

^28uH resu&a

«gsc
J . ~26!

Note that asO is a one body operator, it can scatter a parti
~or hole! or create~or destroy! a particle-hole pair. That is
the Hartree-Fock ground state is not connected to a 2p2h
configuration throughO.

In Fig. 2 we present the second-order contributions
SQP . As a consequence of antisymmetrization, a direct te
where the external operator is attached to a different bub
has come into play~given by graphSQPD8 of this figure!.
Naturally, when we act with the antisymmetrization ope

th

In
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tor over this term, the same set of graphs appears. We
count for this through a factor 2.

C. SQQ contribution

Finally, the expression forSQQ @Eq. ~14!# is simply

SQQ52
1

p
ImH (

2,28,29

^uH resu2&a

«gsc
^2uO †u28&

1

\v2«281 ih

3^28uOu29&
^29uH resu&a

«gsc
J . ~27!

Here, the only possible action for the external operator is
scatter a particle or a hole.

In Fig. 3, we present the main contributions toSQQ .
GraphsSQQ3D8 presents a direct contribution with the e
ternal operator attached to a different bubble, in comp
analogy toSQP .

III. RESULTS FOR NUCLEAR MATTER

In order to benefit from the advantage of translatio
invariance, results have been obtained for infinite nucl
matter at normal saturation density corresponding to a Fe
momentumkF51.36 fm21. For the residual interactionH res
we assume the (p1r)-exchange model at the static lim
with the addition of the Landau Migdalg8 parameter. In
pionic units it reads

FIG. 2. The same as Fig. 1 but for theSQP channel given by Eq.
~26!. The action of the external probe represents the interfere
between scattering~a particle or a hole! and creating~or destroying!
a particle-hole pair.

FIG. 3. The same as Fig. 1 but for theSQQ channel given by Eq.
~27!. The action of the external probe is to create~or destroy! a
particle-hole pair.
c-

o

te

l
r
i

H res~ l !5
f p

2

mp
2

Gp
2 ~ l !@ g̃8~ l !t•t8s•s81h̃8~ l !t•t8s• l̂ s8• l̂ #,

~28!

with

g̃8~ l !5g82
Gr

2~ l !

Gp
2 ~ l !

Cr

l 2

l 21mr
2

, ~29!

h̃8~ l !52
l 2

l 21mp
2

1
Gr

2~ l !

Gp
2 ~ l !

Cr

l 2

l 21mr
2

, ~30!

where mp\c(mr\c) is the pion ~rho! rest mass andCr

52.18. For the form factor of thepNN(rNN) vertex we
have taken

Gp,r~ l !5
Lp,r

2 2~mp,r\c!2

Lp,r
2 1~\cl !2

, ~31!

with Lp51.3 GeV andLr52 GeV. The role of theg8 pa-
rameter is to account for short-range correlations. Note
for a pure contact interaction exchange contributions h
been traditionally included in the RPA series by a redefi
tion of the Landau-Migdal parameters. In particular, stand
g8 values range from 0.7 to 0.95 but, when redefined
account for antisymmetric terms, the values are lowered
range from 0.5 to 0.7@37#. As we evaluate explicitly ex-
change graphs a standardg8 value from 0.7 to 0.95 should b
used. We have employed the valueg850.7. In addition, in
all the diagrams considered in our calculations, the nucl
lines have been dressed in an average way by takin
momentum-independent effective mass value ofm* /m
50.85.

From Eqs.~21!–~27!, explicit expressions for the struc
ture functions in nuclear matter can be obtained, where
sums over the different configurations are replaced by m
tidimensional integrals. The expressions of the direct ter
were reported in Ref.@30# and will not be repeated here. I
Appendix A we give the exchange self-energy insertions
pearing in Eq.~21! @see Eqs.~24! and~25!#, while in Appen-
dix B the exchange contributions to Eqs.~21!–~23! and
~26!–~27! are shown~see also Figs. 1–3!. The multiple inte-
grations have been performed using a Monte Carlo te
nique.

Let us analyze the three nonvanishing contributio
SPP , SQP , andSQQ to the response. We follow the notatio
already shown in Figs. 1–3.

Tables I and II give the results for theSPP channel. In
Table I we compare all direct and exchange contributio
from self-energy insertions. To avoid divergencies, diago
self-energy insertions are evaluated up to infinite order@24#.
To do this, an average over the hole momentum of
bubble where the self-energy is attached should be do
This procedure is outlined in Appendix A. From the table
is clear that, although small in general, the exchange
grams can amount to a non-negligible fraction of the dir
ones, especially at energies around and below the quas
ticle peak. This is also visualized in Fig. 4, where the stru
ture function including only the direct self-energy diagram

ce
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PRC 58 1057ANALYSIS OF EXCHANGE TERMS IN A PROJECTED . . .
~long-dashed line! is compared to that containing, in add
tion, the exchange ones~full line! for both the longitudinal
~upper part! and the transverse~lower part! channels. The
short-dashed line is the free structure function calcula
with an effective mass of value ofm* /m50.85. As has been
observed before@16,32–34#, the dressing of the nucleo
lines by self-energy insertions smears out the structure fu
tion, moving strength out from the quasiparticle peak to
high missing energy region.

Notice that in the diagrams shown in Figs. 1–3 we ha
not explicitly included the first order self-energy insertion
the fermion propagators. Instead of this, we preferred to
a Lindhard function calculated with an effective massm* in
the nucleon propagators and, therefore, already containin
an average way the effects of those self-energy insert

TABLE I. Free and self-energy contributions to the longit
dinal and transverse structure function. All results are for nuc
matter at momentum transferq5410 MeV/c in units of
1025 MeV21 fm23. The first column represents the energy tran
fer in MeV. Column Lind. represents the free structure functio
Columns SE13 give the direct~D! and exchange~E! contribution to
the diagonal part of the self-energy up to infinite order. Their fi
contributions are the graphs SE1D, SE3D, SE1E, and SE3E of
1. Columns SE2D, SE2E, and SE2E8 are the nondiagonal self
energy contributions to the structure function as shown in Fig
The last column is the sum of all these contributions given by
~21!.

\v Longitudinal
~MeV! Lind. SE13D SE13E SE2D SE2E SE2E8 SLind1SE

50.0 38.729 -1.269 0.715 -1.570 0.185 0.071 36.8
100.0 46.106 -4.390 0.599 -0.559 0.374 0.159 42.2
150.0 41.357 -5.949 0.397 1.085 -0.096 -0.050 36.7
200.0 24.481 -3.250 0.111 2.219 -0.045 -0.027 23.4
250.0 0.000 2.971 -0.127 0.521 -0.004 -0.005 3.35

Transverse

50.0 60.380 -1.938 1.112 -3.205 0.037 0.181 56.5
100.0 72.299 -6.943 0.946 -0.604 0.119 0.004 65.8
150.0 64.610 -9.354 0.621 2.575 -0.071 -0.232 58.1
200.0 37.739 -4.948 0.164 5.337 -0.082 -0.357 37.8
250.0 0.000 4.587 -0.195 0.726 -0.006 -0.079 5.03
d

c-
e

e

se

in
ns

propagated to all orders. Actually, the use ofm* is equiva-
lent to having a real and energy-independent self-energy
rametrized by a function quadratic in the momentum of
nucleon. These mean field single-particle states define
HF ground state and the basis in which the perturbat
theory has been constructed. The second-order self-en
diagrams SE1D,SE3D,SE1E,SE3E are responsible for
appearance of an imaginary part which yields a width to
nucleon lines, which in turn is responsible for the observ
spreading in the nuclear response.

In Table II we analyze the RPA-type correlations showi
explicit results for first- and second-order contributions. T
is done for the transverse channel as RPA-type correlat
are zero for the longitudinal one due to the election of o
interaction with nof or f 8 Landau-Migdal terms. In the las
column we also present the results for RPA correlatio

r

-
.

t
ig.

.

.

FIG. 4. Self-energy contributions to the longitudinal~upper part!
and transverse~lower part! structure function of nuclear matter a
momentum transferq5410 MeV/c. Short-dashed line: Lindhard
function using an effective massm* /m50.85. Long-dashed line
effect of adding the direct self-energy terms. Full line: effect
adding the direct and exchange self-energy terms.
he
while
TABLE II. RPA-type contributions to the transverse structure function in units of 1025 MeV21 fm23

for nuclear matter at momentum transferq5410 MeV/c. Columns RPA1D ~RPA1E! and RPA2D
@RPA2(E1E8)# are the first- and second-order direct~exchange! part to the RPA response, respectively. T
notation is the same as in Fig. 1. Note that in that figure only forward-going contributions are shown
the present results contain both forward and backward-going contributions. Column RPA12D1E is the sum
of all first- and second-order contributions@given by Eqs.~22! and~23!#. Finally, column RPAant is the result
for a full antisymmetric RPA using the formalism given in Ref.@31#.

\v
~MeV! RPA1D RPA1E RPA2D RPA2(E1E8) RPA12D1E RPAant

50.0 -30.233 8.844 9.028 -2.912 -15.273 -19.527
100.0 -13.801 4.209 -3.098 0.914 -11.775 -9.988
150.0 5.122 -1.132 -3.441 1.204 1.753 3.307
200.0 10.354 -3.206 1.468 -0.466 8.150 7.186
250.0 0.000 0.000 0.000 0.000 0.000 0.000
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1058 PRC 58E. BAUER, A. POLLS, AND A. RAMOS
when exchange contributions are included up to infinite
der, following the scheme of Ref.@31#. From Table II is clear
that exchange terms of RPA type are very important. Th
size is comparable~even bigger! to other direct diagrammatic
contributions to the structure function and, therefore, th
should not be neglected. Given the magnitude of these R
exchange terms, the differences between the next-to-last
last columns of Table II also suggest that it is important
sum them up to infinite order as was done in Ref.@31#. The
effect of the RPA diagrams in the transverse structure fu
tion is also displayed in Fig. 5, where the full antisymmet
RPA series~full line! is compared to the direct ring serie
~long-dashed line!. We observe that the transfer of streng
from the low- to the high-energy region typical of the pola
ization~ring! diagrams is partly restored by the incorporati
of the exchange diagrams.

In Table III, we study theSQP channel. In this kind of
graph the external operator creates~or destroys! a particle-

FIG. 5. RPA contributions to the transverse structure function
nuclear matter atq5410 MeV/c. Short-dashed line: Lindhard
function (m* /m50.85). Long-dashed line: direct ring diagram
Full line: full RPA structure function including the exchange term
to all orders.
-

ir

y
A
nd

c-

hole pair and scatters a particle~or hole!. We have evaluated
the case where the external operator scatters a particle.
case where it scatters a hole is negligible as can be foun
Ref. @30#. As mentioned above, due to the action of the a
tisymmetrization operator a graph where the external op
tor is attached to different bubbles has to be considered. T
graph isSQPD8 in Fig. 2 and has some influence as can
seen from Table III. The other exchange graphs are ne
gible.

In Table IV the results for theSQQ channel are shown. As
for the SQP channel, exchange graphs are very small. T
importance of the ground-state correlation diagrams
clearly seen in Fig. 6, where the full lines represent the
dition of SQP1SQQ to the long-dashed lines, which conta
the SPP contributions. In the longitudinal channel~upper
part!, only the self-energy terms contribute toSPP , while the

TABLE III. Longitudinal and transverseSQP-type structure
function in units of 1025 MeV21 fm23 for nuclear matter at mo-
mentum transferq5410 MeV/c. The notationSQPD to SQPD8
is the same as in Fig. 2. Column SQPant is the sum of all contribu-
tions.

Longitudinal
\v SQPD SQPE SQPE8 SQPD8 SQPant

~MeV!

50.0 4.950 -0.003 -0.077 1.101 5.971
100.0 4.136 -0.016 -0.110 1.142 5.152
150.0 3.116 -0.055 -0.075 0.589 3.575
200.0 1.598 -0.037 -0.007 0.234 1.789
250.0 -1.284 0.004 0.022 -0.058 -1.316

Transverse

50.0 7.469 -0.604 -0.101 1.324 8.089
100.0 5.412 -0.672 -0.144 1.374 5.969
150.0 3.656 -0.436 -0.098 0.928 4.049
200.0 0.906 -0.001 -0.009 0.491 1.387
250.0 -3.652 0.341 0.029 -0.073 -3.356

f

9
8

7
8
8
8

TABLE IV. Longitudinal and transverseSQQ-type structure function in units of 1025 MeV21 fm23 for
nuclear matter at momentum transferq5410 MeV/c. The notationSQQ1D to SQQ3D is the same as in
Fig. 3.SQQ3Etot is the sum ofSQQ3E, SQQ3E8, andSQQ3D8 from the same figure. ColumnSQQant

is the sum of all contributions.

Longitudinal
\v SQQ1D SQQ1E SQQ2D SQQ2E SQQ3D SQQ3Etot SQQant

~MeV!

50.0 4.692 -0.042 2.455 -0.074 -0.552 0.041 6.520
100.0 8.535 -0.327 1.428 -0.046 -0.629 0.042 9.003
150.0 9.807 -0.344 0.661 -0.019 -0.299 0.029 9.834
200.0 10.426 -0.278 0.310 -0.008 -0.220 0.020 10.24
250.0 10.342 -0.167 0.047 -0.003 -0.113 0.011 10.11

Transverse
50.0 6.064 -0.051 4.413 -0.062 -1.614 0.012 8.762
100.0 12.673 -0.307 2.493 -0.027 -2.230 0.017 12.61
150.0 15.153 -0.313 1.179 -0.007 -1.848 0.014 14.17
200.0 17.352 -0.263 0.559 -0.003 -0.467 0.012 17.18
250.0 16.551 -0.167 0.090 -0.001 -0.271 0.006 16.20



ha
y
o

e
la
b

l

se
e
dy

In
ge

i-
the

er
by

e,

PA
s-

u-
ns

is
ge

f
e
f a
.
e

n-
.
he
ed

tu-

:
r-

PRC 58 1059ANALYSIS OF EXCHANGE TERMS IN A PROJECTED . . .
transverse channel~lower part! contains, in addition, the
RPA-type correlations. In view of these results it is clear t
incorporating theSQP andSQQ channels is necessary in an
perturbative calculation of the nuclear matter response as
served in Ref.@30#. Having established in this work th
smallness of the corresponding exchange terms is particu
interesting, since the calculation of these channels can
restricted to the direct graphs thus avoiding a great dea
numerical computation.

FIG. 6. Contribution of ground-state correlations to the longi
dinal ~upper part! and transverse~lower part! structure function of
nuclear matter at momentum transferq5410 MeV/c. Short-
dashed line: Lindhard function (m* /m50.85). Long-dashed line
SPP structure function. Full line: inclusion of the ground-state co
relation diagrams to theSPP structure function.
t

b-

ry
e

of

In addition our findings also support the idea that the u
of an effectiveg8 to account for exchange terms in th
nuclear response is not appropriate. This point was alrea
raised in Ref.@31#, where we built a prescription to calculate
the full antisymmetric RPA series of the nuclear response.
that work, we showed that the use of a standard avera
prescription forg8 was not able to reproduce the RPA ant
symmetric response, especially for intermediate values of
momentum transfer. Using the averageg8 for calculating the
other types of correlations would not be appropriate eith
because we have shown that they are basically dominated
the direct contributions. This is visualized in Table V wher
changing theg8 parameter to an effective value ofg850.5
does not, in the first place, reproduce the antisymmetric R
response contained implicitly in the first column of the tran
verse part~a point already raised in Ref.@31#! but also in-
duces non-negligible modifications in the other contrib
tions, especially those related to ground-state correlatio
~compare the next-to-last and last columns!.

From our study we conclude that the nuclear response
basically dominated by the direct diagrams and the exchan
ones only need to be considered~and to all orders! for the
RPA-type correlations.

IV. CONCLUSIONS

A projection method to extract the main contributions o
the ERPA theory with the explicit inclusion of exchang
terms has been developed. This work is a continuation o
previous one@30# in which only direct terms were studied
Here we have tried to clarify the importance of exchang
terms of the particle-hole interaction, by performing a qua
titative analysis of their influence in the nuclear response

The projection method classifies the contributions to t
nuclear structure function into three channels, call
SPP , SQP , andSQQ with P andQ being projections opera-
modi-
ns.
TABLE V. Comparison between our results and the corresponding direct values calculated with a
fied value of theg8 Landau-Migdal parameter (g850.5) to partially reproduce the exchange contributio
Our results are given bySPPant, SQPant, and SQQant where a valueg850.7 was employed with the
explicit inclusion of exchange graphs. The results, given in units of 1025 MeV21 fm23, are for nuclear
matter at momentum transferq5410 MeV/c.

Longitudinal
\v SPPant SPPdir ,g850.5 SQPant SQPdir,g850.5 SQQant SQQdir,g850.5

~MeV!

50.0 36.862 36.409 5.971 5.034 6.520 2.529
100.0 42.289 43.256 5.152 5.442 9.003 4.995
150.0 36.743 36.430 3.575 4.312 9.834 5.971
200.0 23.490 19.059 1.789 0.966 10.249 6.291
250.0 3.357 2.393 -1.316 -1.336 10.118 6.015

Transverse
\v SPPant SPPdir,g850.5 SQPant SQPdir,g850.5 SQQant SQQdir,g850.5

~MeV!

50.0 37.039 47.428 7.109 5.533 8.762 5.049
100.0 55.833 63.337 5.362 5.719 12.617 9.092
150.0 61.456 59.066 4.049 3.864 14.178 10.814
200.0 45.039 33.882 1.727 1.392 17.188 11.586
250.0 5.032 3.719 -3.356 -1.883 16.208 10.800
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1060 PRC 58E. BAUER, A. POLLS, AND A. RAMOS
tors defined in Sec. I. This separation permits the study of
effects of the different types of correlations. In this sen
SPP represents final state correlations,SQQ ground-state cor-
relations, andSQP the interference between them. Throu
the analysis of our results we can conclude that all type
correlations are important and should be considered w
one studies the nuclear response.

After this statement, the problem is the big number
graphs which should be evaluated when the exchange pa
the nucleon-nucleon interaction is retained. Before the
merical calculation we can see no reason to neglect any
tribution. Our calculations show that for final state corre
tions, i.e., self-energy insertions and mainly RPA-ty
correlations, the exchange graphs are relevant in agree
with Refs.@37,38#. On the other hand, they can be neglec
for ground-state correlations. Also, within the energ
momentum region under consideration, exchange terms
not be parametrized by a redefinition of theg8 parameter.
e
,

of
n

f
of
-
n-
-

ent
d
-
an

It is also important to stress that the interaction employ
and in particular the value forg8, comes from parametriza
tions of processes at a lower-energy-momentum region t
the ones considered here. Those values do not necess
hold for us. Also from Table V, we see that a small change
one parameter can produce a noticeable change in the s
ture function. In any case, our objective was not to search
the optimal paremeters that produce good agreement with
experimental data but to careful analyze the exchange
grams and our conclusions should remain valid in a w
variety of situations.

In summary, our study shows that the nuclear respons
basically dominated by the direct diagrams, the most relev
being those of Figs. 1–3, and the exchange contributi
only need to be considered~and to all orders! for the RPA-
type correlations, which can be evaluated using the presc
tion of Ref. @31#.
ibutions
d

y,

, using

ons can
APPENDIX A

In this appendix we show explicit expressions for exchange contributions to the self-energy insertions Direct contr
can be found in Ref.@30#. Exchange self-energy insertions from Eqs.~24! and ~25! ~which contribute to graphs SE1E an
SE3E of Fig. 1, respectively! are given by

@SPQP~Q,n,h!#part exch52
1

~2p!4S f p
2

4p\cD
2mc2kF

4

mp
4 E d3kE d3k8u~ uh1Q2ku21!u~12uh1Q2k2k8u!u~ uh1Q2k8u21!

3Gp
2 ~k!Gp

2 ~k8!$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8%
1

n2~Q2/21h•Q2k.k8!1 ih
~A1!

and

@ReSPRP~Q,n,h!#part exch5
1

~2p!4S f p
2

4p\cD
2mc2kF

4

mp
4 E d3kE d3k8u~12uh1Q2ku!u~ uh1Q2k2k8u21!u~12uh1Q2k8u!

3Gp
2 ~k!Gp

2 ~k8!$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8%
1

n2~Q2/21h•Q1k•k8!
. ~A2!

We have used dimensionless quantitiesQ5q/kF and n5\v/2«F ; kF and «F being the Fermi momentum and energ
respectively.

In order to simplify the calculation, it is a good approximation to eliminate the dependence on the hole momentum
an average procedure~see Ref.@30#!, as follows:

SPQ~R!P~Q,n![
1

4
3 p

E d3h SPQ~R!P~Q,n,h!. ~A3!

APPENDIX B

In this appendix we show explicit expressions for exchange contributions to the structure function. Direct contributi
be found in Ref.@30#.

Let us first consider theSPP channel. Graph SE2E of Fig. 1@see Eq.~21!# is given by
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@SSE1~Q,n!#L,T52
A

~2p!5S f p
2

4p\cD
2 3~mc2!3

2~\cmp!4E d3hE d3kE d3k8OV~L,T!,SE2Eu~12uhu!u~ uh1Qu21!u~12uh1k8u!

3u~ uh1k1k8u21!u~12uh1ku!u~ uh1k1Qu21!S 21

p
ImD

3F 1

n2~Q2/21Q•h!1 ih

1

n2~Q2/21Q•h1k•k8!1 ih

1

n2@Q2/21Q•~h1k!#1 ih
G . ~B1!

Graph SE2E8 of Fig. 1 @see Eq.~21!#:

@SSE2E8~Q,n!#L,T52
A

~2p!5S f p
2

4p\cD
2 3~mc2!3

2~\cmp!4E d3hE d3kE d3k8OV~L,T!,SE2E8u~12uhu!u~ uh1Qu21!u~12uh1ku!

3u~12uh1k1k81Qu!u~ uh1k81Qu!u~ uh1k1Qu21!S 21

p
ImD

3F 1

n2~Q2/21Q•h!1 ih

1

n2~Q2/21Q•h2k•k8!1 ih

1

n2@Q2/21Q•~h1k!#1 ih
G , ~B2!

where

OVL,SE2E5OVL,SE2E85Gp
2 ~k!Gp

2 ~k8!$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8% ~B3!

and

OVT,SE2E5OVT,SE2E8

5S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!H 4$h•~h1k!2~Q̂•h!@Q̂•~h1k!#%$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8%

1~23ms
21mv

2!$Q2g̃821@~Q–k8!222~k–k8!~Q–k!~Q–k8!#h̃821~Q•k8̂!2g̃8~k!h̃8~k8!

1@Q222~Q• k̂!2 #g̃8~k8!h̃8~k!%2~23ms1mv!h̃82
2

Q2
~ k̂•k8̂ !@~ k̂•Q!k8̂•~2h1k!2~k8̂•Q!k̂•~2h1k!#J .

~B4!

First-order exchange contribution to the RPA-type correlation@see Eq.~22! and graph RPA1E of Fig. 1#:

@SRPA1E~Q,n!#L,T52
A

~2p!3S f p
2

4p\cD 3~mc2!2

2~\cmp!2\ckF
E d3hE d3kOV~L,T!,RPA1Eu~12h!u~ uh1Qu21!

3u~12uh1ku!u~ uh1k1Qu21!S 2
1

p
ImD H S 1

2n2~Q212h–Q!1 ih
2

1

2n1~Q212h–Q!
D

3S 1

2n2@Q212~h1k!–Q#1 ih
2

1

2n1@Q212~h1k!–Q#
D J , ~B5!

where

OV~L !,RPA1E5Gp
2 ~k!~3g̃81h̃8! ~B6!

and

OV~T!,RPA1E5S \ckF

2mc2D 2

Gp
2 ~k!„@3g̃81h̃8#4$@h•~h1k!2~Q•h!Q•~h1k!#/Q2%1~23ms

21mv
2!Q2@ g̃81h̃8~ k̂–Q̂!2#….

~B7!

Graph RPA2E of Fig. 1@see Eq.~23!#:
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@SRPA2E~Q,n!#T52
A

~2p!5S f p
2

4p\cD
23~mc2!3

~\cmp!4S 2
1

p
ImD HL~Q,n!E d3hE d3kOV~L,T!,RPA2Eu~12h!u~ uh1Qu21!

3u~12uh1ku!u~ uh1k1Qu21!S 1

2n2~Q212h•Q!1 ih
2

1

2n1~Q212h•Q!
D

3S 1

2n2@Q212„h1k…•Q#1 ih
2

1

2n1@Q212~h1k!•Q#
D J , ~B8!

with

L~Q,n!5E d3pu~ up1Q/2u21!u~12up2Q/2u!S 1

2n2Q222Q•p1 ih
2

1

2n1Q212Q•p
D , ~B9!

and

OV~T!,RPA2E5Gp
2 ~Q!Gp

2 ~k!Q24g̃8mv
2@ g̃81h̃8~ k̂•Q̂!2#. ~B10!

~Note that for the present interaction the longitudinal contribution is zero.!
Graph RPA2E8 of Fig. 1 @see Eq.~23!#:

@SRPA2E8~Q,n!#L,T5
A

~2p!5S f p
2

4p\cD
2 6mc2kF

2

~\cmp
2 !2E d3hE d3kE d3k8OV~L,T!,RPA2E8u~12h!u~ uh1Qu21!u~12uh1ku!

3u~ uh1k1Qu21!u~12uh1k1k8u!u~ uh1k1k81Qu21!S 2
1

p
ImD H S 1

2n2~Q212h•Q!1 ih

2
1

2n1~Q212h•Q!
D S 1

2n2@Q212~h1k!•Q#1 ih
2

1

2n1~Q212~h1k!•Q!
D

3S 1

2n2@Q212~h1k1k8!•Q#1 ih
2

1

2n1@Q212~h1k1k8!•Q#
D J , ~B11!

where

OV~L !,RPA2E85Gp
2 ~k!Gp

2 ~k8!10@9~ g̃8!21h̃8216g̃8h̃8# ~B12!

and

OV~T!,RPA2E85S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!H 40@9~ g̃8!21h̃8216g̃8h̃8#$@h•~h1k1k8!2~Q•h!Q•~h1k1k8!#/Q2%

1
9ms

21mv
2

2
„Q2$~ g̃28!21h̃82@2~ k̂–k8̂ !221#%…1h̃82@~Q• k̂!21~Q•k8̂ !222~Q• k̂!~Q•k8̂ !~ k̂•k8̂ !#

1g̃28h̃8@~Q• k̂!21~Q•k8̂ !2#J . ~B13!

Going now to theSQP andSQQ channels@see Eqs.~26! and ~27!# we have for graphSQPEof Fig. 2

@SSQPE~Q,n!#L,T5
A

~2p!5S f p
2

4p\cD
2 3~mc2!3

4~\cmp!4E d3hE d3kE d3k8OV~L,T!,SQPEu~12uhu!u~ uh2ku21!

3u~ uh2k1Qu21!u~ uh2k81Qu21!u~ uh1Qu21!u~12uh2k2k81Qu!
1

k•~k82Q!
S 21

p
ImD

3F 1

n2~Q2/21Q•h2k•k8!1 ih

1

n2~Q2/21Q•h!1 ih
G . ~B14!

GraphSQPE8 of Fig. 2:
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@SSQPE8~Q,n!#L,T5
A

~2p!5S f p
2

4p\cD
2 3~mc2!3

4~\cmp!4E d3hE d3kE d3k8OV~L,T!,SQPE8u~12uhu!u~ uh2ku21!

3u~ uh2k81Qu21!u~ uh1Qu21!u~ uh2k8u21!u~12uh2k2k8u!
1

k•k8
S 21

p
ImD

3F 1

n2@Q2/21Q•h2k8•~k1Q!#1 ih

1

n2~Q2/21Q•h…1 ih
G , ~B15!

where

OVL,SQPE5OVL,SE2E, ~B16!

OVT,SQPE5OVT,SE2E, ~B17!

OVT,SQPE85S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!S 4$h•„h1k8…2„Q̂•h…@Q̂•~h1k8!#%$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8%1~23ms
2

1mv
2!$Q2g̃821@~Q•k8!222~k•k8!~Q•k!~Q•k8!#h̃821~Q•k8̂ !2g̃8~k!h̃8~k8!1@Q222~Q• k̂!2#g̃8~k8!h̃8~k!%

2~23ms1mv!h̃82
2

Q2
~ k̂•k8̂ !@~ k̂•Q!k8̂•~2h1k8!2~k8̂•Q!k̂•~2k1k8!# D . ~B18!

GraphSQPD8 of Fig. 2:

@SQPD8~Q,n!#L,T52
A

~2p!5S f p
2

4p\cD
2 3~mc2!3

2~\cmp!4E d3hE d3h8E d3kOV~L,T!,SQPD8u~12uhu!u~ uh1Qu21!

3u~ uh2ku21!u~ uh81k1Qu21!u~ uh81ku21!u~12uh8u!
1

k22k•h1k•h8
S 21

p
ImD

3
1

n2~Q2/21Q•h!1 ih

1

n2@k21Q2/21k•~h82h!1Q•~k1h8!#1 ih
. ~B19!

GraphSQQ3D8 of Fig. 3:

@SQQ3D8~Q,n!#L,T5
A

~2p!5S f p
2

4p\cD
2 3~mc2!3

2~\cmp!4E d3hE d3h8E d3kOV~L,T!,SQQ3D8u~12uhu!u~ uh2ku21!

3u~12uh81Qu!u~ uh2k1Qu21!u~ uh81ku21!

3u~12uh8u!
1

k22k•h1k•h8

1

k21k•~h82h!1Q•~h2h82k!

3S 21

p
ImD 1

n2@k21Q2/21k•~h82h!1Q•~h2k!#1 ih
. ~B20!

In Eqs.~B19!,~B20!, we have used

k85k2Q

and

OVL,SQPD85OVL,SQQ3D85Gp
2 ~k!Gp

2 ~k8!5$3g̃821~ k̂•k8̂ !2h̃8212g̃8h̃8%, ~B21!
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OVT,SQPD85S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!H 20$h•~h81k!2~Q̂•h!@Q̂•~h81k!#%@3g̃821~ k̂•k8̂ !2h̃8212g̃8h̃8#1~3ms
212mv

2!

3$4Q2g̃821@Q3~k3k8!#2h̃821@Q21~Q•k8̂ !2#g̃8~k!h̃8~k8!1@Q21~Q• k̂!2#g̃8~k8!h̃8~k!%

2~3ms12mv!h̃82
2

Q2
~ k̂•k8̂ !$~ k̂•Q!@k8̂–~h1h81k!#2~k8̂–Q!@ k̂–~h1h81k8!#%J ~B22!

and

OVT,SQQ3D85S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!H 20$h8•~h2k!2~Q̂•h8!@Q̂–~h2k!#%@3g̃821~ k̂–k8̂ !2h̃8212g̃8h̃8#1~3ms
212mv

2!

3$4Q2g̃821@Q3~k3k8!#2h̃821@Q21~Q–k8̂ !2#g̃8~k!h̃8~k8!1@Q21~Q–k̂!2#g̃8~k8!h̃8~k!%

2~3ms12mv!h̃82
2

Q2
~ k̂–k8̂ !$~ k̂–Q!@k8̂–~h1h82k!#2~k8̂–Q!@ k̂–~h1h82k8!#%J . ~B23!

GraphSQQ1E of Fig. 3:

@SSQQ1E~Q,n!#L,T52
A

~2p!5S f p
2

4p\cD
2 9~mc2!3

4~\cmp!4E d3pE d3kE d3k8OV~L,T!,SQQ1Eu~ upu21!u~12up1ku!

3u~ up1Qu21!u~ up1k1k8u21!
1

~k•k8!2S 21

p
ImD F 1

n2~Q2/21Q•p1k8•k!1 ih
G . ~B24!

Finally, graphSQQ2E of Fig. 3:

@SSQQ2E~Q,n!#L,T52
A

~2p!5S f p
2

4p\cD
2 9~mc2!3

4~\cmp!4E d3hE d3kE d3k8OV~L,T!,SQQ2Eu~12uhu!u~ uh2ku21!

3u~ uh2k8u21!u~12uh2Qu!u~12uh2k2k8u!
1

~k–k8!2S 21

p
ImD F 1

n2~Q2/21Q•h2k8•k!1 ih
G ,

~B25!

where

OVL,SQQ1E5OVL,SQQ2E5OVL,SE2E , ~B26!

OVT,SQQ1E5S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!$@p22~Q̂–p!2#1Q2~ms
21mv

2!/4%$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8%, ~B27!

and

OVT,SQQ2E5S \ckF

2mc2D 2

Gp
2 ~k!Gp

2 ~k8!$@h22~Q̂•h!2#1Q2~ms
21mv

2!/4%$3g̃822@2~ k̂–k8̂ !221#h̃8212g̃8h̃8%. ~B28!
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@15# S. Drożdż, S. Nishizaki, J. Speth, and J. Wambach, Phys. R
197, 1 ~1990!.

@16# A. Fabrocini and S. Fantoni, Nucl. Phys.A503, 375~1989!; A.
Fabrocini, Phys. Rev. C55, 338 ~1997!.

@17# Y. Horikawa, F. Lenz, and Nimai C. Mukhopadhyay, Phy
Rev. C22, 1680~1980!.

@18# C. R. Chinn, A. Picklesimer, and J. W. Van Orden, Phys. R
C 40, 790 ~1989!.

@19# A. Picklesimer, J. W. Van Orden, and S. J. Wallace, Ph
Rev. C32, 1312 ~1985!; C. R. Chinn, A. Picklesimer, and J
W. Van Orden,ibid. 40, 1159~1989!.

@20# F. Capuzzi, C. Giusti, and F. D. Pacati, Nucl. Phys.A524, 681
~1991!.

@21# F. Capuzzi, Nucl. Phys.A554, 362 ~1993!.
@22# P. M. Boucher, B. Castel, and Y. Okuhara, Ann. Phys.~N.Y.!

196, 150 ~1989!.
@23# W. M. Alberico, M. Ericson, and A. Molinari, Ann. Phys

~N.Y.! 154, 356 ~1984!.
.

.

.

.

@24# W. M. Alberico, A. De Pace, A. Drago, and A. Molinari, Riv
Nuovo Cimento14, 1 ~1991!.

@25# K. Takayanagi, K. Shimizu, and A. Arima, Nucl. Phys.A477,
205 ~1988!.

@26# K. Takayanagi, Nucl. Phys.A522, 523 ~1991!.
@27# K. Takayanagi, Phys. Lett. B230, 11 ~1989!; Nucl. Phys.

A510, 162 ~1990!; A522, 494 ~1991!; A556, 14 ~1993!.
@28# E. Bauer, Phys. Rev. C43, 2438~1991!.
@29# A. De Pace and M. Viviani, Phys. Rev. C48, 2931~1993!.
@30# E. Bauer, Nucl. Phys.A589, 669 ~1995!.
@31# E. Bauer, A. Ramos, and A. Polls, Phys. Rev. C54, 2959

~1996!.
@32# A. Polls, A. Ramos, and W. H. Dickhoff, inTwo Nucleon

Emission Reactions, edited by O. Benhar and A. Fabrocin
~ETS, Pisa, 1990!, p. 374.

@33# C. C. Gearhart, W. H. Dickhoff, A. Polls, and A. Ramos, Int.
Mod. Phys. E5, 461 ~1996!.

@34# A. Gil, J. Nieves, and E. Oset, Nucl. Phys.A627, 543 ~1997!.
@35# J. E. Amaro and A. M. Lallena, Nucl. Phys.A537, 585~1992!;

J. E. Amaro, G. Co’, and A. M. Lallena, Ann. Phys.~N.Y.!
221, 306 ~1993!.

@36# Y. Jin, D. S. Onley, and L. E. Wright, Phys. Rev. C45, 1333
~1992!.

@37# T. Shigehara, K. Shimizu, and A. Arima, Nucl. Phys.A492,
388 ~1989!.
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