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Low-energy Compton scattering of polarized photons on polarized nucleons
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The general structure of the cross sectionydf scattering with polarized photon and/or nucleon in initial
and/or final state is systematically described and exposed through invariant amplitudes. A low-energy expan-
sion of the cross section up to and including the o@é®*) is given that involves ten structure parameters of
the nucleon(dipole, quadrupole, dispersion, and spin polarizabilitid#eir physical meaning is discussed in
detail. Using fixedt dispersion relations, predictions for these parameters are obtained and compared with
results of chiral perturbation theory. It is emphasized that Compton scattering experiments at large angles can
fix the most uncertain of these structure parameters. Predictions for the cross section and double-polarization
asymmetries are given and the convergence of the expansion is investigated. The feasibility of the experimental
determination of some of the structure parameters is discugS8856-28138)02407-§

PACS numbsgs): 25.20.Dc, 13.60.Fz, 11.80.Cr, 13.8&

I. INTRODUCTION for all these polarizabilities by using fixeddispersion rela-
tions and compare them with available predictions of chiral
Compton scattering on the proton at low and intermediatgerturbation theory. We then investigate the range of validity
energies has thus far been studied mainly with unpolarize@f our low-energy expansion and show that it is generally
photons. Many recent data are available on the unpolarize¥glid below the pion threshold. Finally, we investigate quan-
differential cross section both in the region below piontitatively the dependence of different observables on the po-
threshold1-3] and in the delta regiof—8]. They have led larizabilities and recommend particularly sensitive experi-
to a determination of the dipole electric and magnetic polarments to perform. Some of the details related to the
izabilities of the proton, have given useful constraints ondefinitions and physical meaning of the polarizabilities are
pion photoproduction amplitudes near the delta peak, angontained in the appendixes.
have provided sensitive tests for different models of Comp-

ton scattering, such as those based on resonance saturation 1. INVARIANT AMPLITUDES

[9-12], chiral perturbation theory13,14], and dispersion re-

lations[15—19. The amplitudery; for Compton scattering on the nucleon,
With the advent of new experimental tools such as highly

polarized photon beams, polarized targets, and recoil polar- Y(KN(p)—y'(K")N"(p"), (2.9

imetry [20], it becomes possible to study the very rich spin

structure of Compton scattering. In particular, many addiis defined by

tional structure parameters of the nucleon, such as the spin

[21-24 and quadrupol¢25] polarizabilities, could be mea- (fls—1li)y=i(2m)*6*k+p—k'—p)Ts. (2.2
sured in such new-generation experiments and used for test-

ing hadron models at low energies. The first attempt to de€onstrained byP and T invariance, it can be expressed in
termine the “backward” spin polarizability from terms of six invariant amplitudes; as[27,28,15,17,1B
unpolarized experiments has recently been repof2a].
Therefore, it is timely to give a detailed description of the

appropriate polarization observables and their relationship to Tfizﬁ(p')e’*ﬂ{ R
the low-energy parameters that might be measured in such P2
experiments. That is the main purpose of the present report.

This paper is organized as follows. In Sec. I, we intro- _ NN
duce the invariant Compton scattering amplitudes. In Sec. llI N2
we develop a general structure for thé\ scattering cross
section with polarized photons and/or polarized nucleons in ) P;LNV+ PN,
the initial and/or final state. In Sec. IV we do a low-energy +l ez VY KTe(e"u(p), 2.3
expansion of the invariant amplitudes and develop formulas
for the low-energy expansion of the cross section and spin , L ,
observables. In the process, we introduce and discuss ti{eree ande’ are the photon polarization vectorsandu
physical meaning of the parametdolarizabilities which  are the bi-spinors of the nucleonsy=2m, mis the nucleon
are required to describe the cross section up to and includingass, andy5=(2 3). The orthogonal four-vecto®’, K, N,
the orderO(w*). In Sec. V we give theoretical predictions andQ are defined as

! !
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4 PK L ' L P LI
P.=P.—K, K2 PZE(pWLD ) K=§(k +k), 3=, T Ts 4—V( 2= Ta) |
1 1 A 1[2 Tom (T T)} 2.7
= — m [ — — , i
N, = €uapyP “QPK, Q=2 (p=p")= 3 (K —K), TP g T T

29 A= (Ty+Te) Agmae(Tp=Ta)
= + ) = - )
where the antisymmetric tensey, 4, is fixed by the condi- S 4y 2 4y 2 e
tion €0123— 1. with
Unfortunately, there is no accepted standard for the defi-
nitions of the invariant amplitudes in nucleon Compton scat- 1 t2
tering. The definitions we use here may differ from those 7= E(m4—su)=4v2+t— i (2.8

used in other works. We follow the conventions of Refs.

[17-19, which are related to the so-called Hearn-Leaderrhe amplitudes\(v,t) are even functions of, they have no
amplitudesA'- used in Refs[15,2§ by kinematical singularities or constraints, and they have di-
mensionm 3.

In the lab systenithe nucleonN at resj the kinematic

invariantsv, t and » read

T,=ATY, Ta=AY", Ts=-A",
T,=—A, T,=-A Te=—-Af". (25

1
The amplitudesT; are functions of the two variables »=3(wto'), t=-2we0'(1-2), =200 (1+2),
v=(s—u)/4m andt, where 2.9

s=(k+p)?, u=(k-p")? t=(k—k)* (2.0 wherew=ko w'=k} are the photon energies=cos® is

are the usual Mandelstam variables as¢u+t=2m?. the photon scattering angle, and

These functions have no kinematical singularities but they , t

are subject to kinematical constraints arising from the van- o =0+t om ¢
ishing of the denominators in the decompositi¢h3) in

cases of forward or backward scattering. Therefore, it is useéwe will reserve the symbols, ', andz for these lab-frame

-1

(2.10

1+ 201
m( )

ful to define the following linear combinatiorj48,19,29: variables. Note that in the lab framl*=(0,N), whereN
1 1 =(m/2)k’ Xk is orthogonal to the reaction plane.
_ _ In terms of theA; , the Compton scattering amplitude;
A=—[Ty+ T+ u(To+T A, =—[2Ts+ v(To+T : i , '
1=t Tt v(Tot Tl Ap=gl2Tstv(Tot Tl 0 0o frame assumes the following form:

2

1 v
(—A1=Ag)— —As—As
m

t
= /%, 4 -
Tfi N(t){Zme eww{(l e

1 t
4m?

—2io-€*Xevow' (As+Ag) +2i0-5* Xsvow' (As—Ag)

V2

+2msl*'s(1)(1), (Al_A3)+ EAS_AG

!

~ w 14
+io-ks* e wlo'|Ay+|1— —|As+ —As+Ag
m m

—io-k €% sww'?
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2 a 455 6
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, (2.1
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whereN(t) = (1—t/4m?)'? and the two magnetic vectoss  or c.m. frame. We will use the prime to distinguish the

s’ are defined as Stokes parameters for initial or final photdh,and &; .
~ R Note that the above-defined Stokes parameters transform
s=kxe, §=k'xe. (212 under parity as
P P P
Ill. CROSS SECTIONS AND ASYMMETRIES E1o—&1, &, E3—&, (3.5

A. General structure of the cross section . . N ~ .
) ) ~under time inversionk— —k e—~—¢€*) as
We will consider the general structure of the cross section

and double-polarization observables in four related reactions: T T T

P fro—b, Gk, £k, (3.6
yN—y'N’, (3.1a U
Y Y and under crossingk(~k’ e—¢e'*) as
»),N)_) ’;I N, 1 (31b) Cross , cross , Ccross ,
. . §1— &, &— —&, &3 &3 (3.7
yN—y'N’, (3.109 o _ o B

The nucleon polarization density matrix is specified by a

yN—'N’. (3.1  Polarization four-vecto which is orthogonal to the nucleon

four-momentunmp [31]:
We start by introducing the polarization variables. L
Photon polarization properties are conveniently described N T )
in terms of the Stokes parametefs(i =1,2,3) [30] which {u(p)u(p)) 2(7 p+mM)(1+y5y-S).
define the photon polarization matrix density as folld@%]:

(3.8

Introducing also the polarization three-vectdr in the

o1 1f 1+& &-ié nucleon rest frame, one can reld@tandS through the boost
(€afp) =5 (140" §ap=75 Etig, 1-¢ : transformation,
1H1és 3 ) ap -
. S=¢+ %=LS= pe (3.9
Here the photon polarization vectey, is taken in the radia- Po+ mp' Po m’ '

tion gaugee k=0 and «,8=1,2 denote either of two or- ) )
thogonal directions., ,y., which are in turn orthogonal to the Where y—S°=|¢[<1 gives the degree of nucleon polariza-

photon momentum direction,= k. Such a definition of; is tion. We apply the notation§, £ ands’, {" for the initial

manifestly frame dependent; nevertheless, the quantities and final nucleons, respectively.
y P g Note that the vectorg, {' are frame dependent and un-

&= m (3.3 dergo Wigner rotation around theaxis when a boost in the
reaction plane is applied. Neverthelegss the same in the
and &, are Lorentz invariant. They give the degree of linearlab and c.m. frames, although that is not the casefor
and circular po|arization, respective|y_ Moreovep=*+1 In both the lab and c.m. frames, the differential cross
corresponds to the riglfleft) helicity state, provided theyz ~ Section of the reaction@.1) reads
frame is right handed. The total degree of photon polariza-

tion is given byé= \/§Zl+ 522+ ggsl. The valuest; and &5 L w_, lab frame
separately are frame dependent, although they are still invari-  _ 8mm o’ '
ant with respect to boosts or rotations in tkez,-plane. =0Ty with &=
They define the angle that the electric field makes with the dQ 1
x,z,-plane: ;\/g c.m. frame.
(3.10
cos 2p=§, sin 2go=é. (3.9
& & Here the square of the Lorentz-invariant matrix elemint

appropriately averaged and summed over polarizations, has

To fix the azimuthal freedom ig; and &3, we first choose a the same generic form in all four cas@sd),

frame in which all the momenta, p, k' andp’ are coplanar.

This choice is not too restrictive and includes both the lab 3
and c.m. frames. In such a frame and for any polarized pho- |Tfi|2:E [Woi+ K-SW;;+Q-SWy+N-SW 14,
ton, eithery or y’, we take they, axis in Eq.(3.2) to lie i=0

along the direction okx k’. Then the appropriate, axis is (313

given byk or k', and thex, axis is directed alongk(<k’)  where we set,=1, and for the moment we disregard op-
xk or (kxk')xk', respectively. The angle in Eq. (3.4)  tional primes distinguishing polarization variables for initial
gives the angle between the electric field and the reactioand final particles. Sincg andN are axial vectors ang;, &,
plane. Thus defined, the Stokes parameters do not depend bave oddP parity, some of the invariant functio’;; must
further specification of the frame and are the same in the lalvanish:
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Wo1=Wpo=Wy0=W;3=Wpro=Wo3=W3;=W3,= (()3 12 ITi(yN— 7' N")|2=Woo+ Woats+ N- S (Wagt Wiaés)

’ + &1 + &1
In terms of the remaininyV;; , the generic expressiaB.11) +K-S(=Wiiéi +Wipt))

gets the following specific form for the individual cases e y
given in Eq.(3.1): Q- S'(Wa1é1 — Waots).
(3.139

Th(YN—7'N")|2=Wgo+ Woaéz+ N S(Wag+ Wy,
ITily VNI oo Wosts (Waot Wast's) Note that the same functioWs;; determine the cross section

+K - S(WiE, +Whey) in Egs.(3.133 and (3.13d [as well as in Eqs(3.13h and
1 12 (3.139] which are related through invariance; the negative
+Q- S(WE +Wihey), signs in Eqs(3.13h), (3.139 are easily found from E(3.6).

(3.133 The relationship between the cas@&133 and (3.13h is
determined by the crossing symmetry of the amplitdde

| Tei(YN—¥'N")|2=Woo+ Woaés+ N+ S(Wag+ Wazéh) and Eq.(3.7):

+ K- S(—Wpyéi +Wiyép) Wog(#,1) =Wog( = 1), Woa(#,1) =Wos( = »,1),

+ Q- S(Wyy &l — Winé)), Wag(#,1)=—Wsg(— 1,1),  Way(,t)=—Way(—1,1),
(3.13b (3.19
I Ti(YN— y'N")|2=Wog+ Woaéz+ N- S (Wag+ Wasés) Wii(v,t)=Wyy(— 1),  Wi(n,t)=W;(—»,t),
+ K-S/ (Wppés + Wopty) Way(7,) =Way( = 1,t),  Wo(w,t) =W —1,1).
+Q- S (W€ +W,85), In terms of the invariant amplitudel or A;, the func-

(3.139  tionsW;; read(cf. Ref.[32]):

w =1(4m2—t)(|T |2+|T |2)—1(s—m2)(u—m2)(|T |24 |T4l?) + m(s—u) Re(T T3 +T3TS)
00 2 1 3 2 2 4 112 314
—t|Ts|*+(m"—su)[Te|?

1 1 1
= 7(Am* = O (A4 7% Agl®) = 7 (C]Ag|® = 7| Ayl %) = v2t(t+80%) | Ag|?+ 5 (12 + 2m? 1) | Ag|®

1
+ Re 2v2t2(A1+A2)A’5‘+§772(4m2A3+tA4)A* , (3.153

1 1
Woa= (4m?—1)(| 1|2 |T3f2) = 5 (s=m?)(u=m?)(|T,|>~| T,/ + m(s—u) Re(T;T5 ~T5T})

t
- % Re{[(4m?—t)A, + 412Ag]A% + 4mPAAL), (3.15h

W30: _4 Im (Tng + T3TZ)
= —8v Im (tAAL + 7AAY), (3.150

Waa=4 Im[—T,T5+TsT; +2T5TE]
2
= Im { —8Y[[tA,— (t+4v?)As]AL + nA3A§]iE(tA2—4v2A5)(7;AZ{ +tA’g)], (3.150
Wi= Im[(4m?—t)(Ty+ To) TE+m(s—u)(To+ T)TE Ft(T,— Ty TE]

t
= Im {%[(4m2—t)A1+4v2A5]( ALY +1AY) + 2ut(tA,— 4v°Ag) Af ] , (3.15¢
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Wi,=Re[(4m?—t)(— T+ T Te+m(s—u)(—To+ T Te =t(To+ Ty TE]
- Re{ - %[(4m2—t)A3+ AMPAg]( pA% +EAL) £ 2ut(tAy— 407Ag) AL |, (3.15h

Wo=Im[4m(T,;—Ta) TE+(s—u)(To—TA)TE T MU(To+ T)TE +(s—u)(Ty+ T3 TE]

=2Im{— m(tA,— 41v2As)[ nA% + (t+4v?) AL ]+ V[tA — (t+ 41 As](nAL +1AY)}, (3.159
Wo=Re —4m(T1+ T3) TE — (s—u)(To+ T TE =mt(To— T TE F(s—u)(T1— T3 TE]

=2Rd — Mt(tA,— 4v%A5) AY T vpAg( nA% +tAL)}. (3.15h

Below the pion photoproduction threshold, the amplitudes Single-polarization observablesi€£1), of which there

T;, A; are real, and therefore only the six structufdgy, are two for each of the reactior3.1):
W3, Wi,, andW,,, are different from zero. (i) The beam asymmetry for photons which are linearly
_ polarized either parallel or perpendicular to the scattering
B. Asymmetries plane ¢;==1) and unpolarized nucleongarget and re-

The thirteen invariant quantitie§V;; standing in Eq. coil). The same quantity gives the degree of linear polariza-
(3.13 intervene directly in the definition of polarization ob- tion (¢3) of the photon scattered from unpolarized nucleons:
servables which can be measured experimentally. Not all of
them are independent, since with six complex invariant am- | T ,
plitudes there are only 11 independent observables. In thezgzzs; ol—o" o —at ) ~ Wos

{=¢'=0

following we shall classify them according to the number of od+at] ol + ot ~ Woo

polarization degrees of freedom involved in the process. We (=gr=o0 (3.17)

shall define soma-index asymmetrieg;, = ,, andy,,, '

wherei=(1,2,3) or (1,2',3") refers to the photon Stokes

parameters; or &, anda=(Xy,Yn,Zxn) OF (X.Yn.2y) Fe-  (the primed polarization$’ or L' refer to the final photon

fers to the right-handed axes along which the nucleon &pin statg. This asymmetry is often designated%s

or ¢’ may be aligned. At this point we have to relate the (i) The target asymmetry or recoil polarization for unpo-

products such a&-S, Q-S, andN-S in Eq. (3.13 to the larized photons, whereby eith&r or N’ is polarized ¢, or

spin vector¢ (or ¢'), and eventually fix a frame. We choose {,=*1) along thexy=*y' directions:

the lab frame for practical reasons; for any other frame only

the coeﬁicientsc)'i}?x,'z, introduced below have to be recal-

culated. We will indicate all necessary changes to be done y _¥ /:(UV_C’Y) _

for the c.m. frame. P Naytoy/,
Directing theyy andyy, axes alondXx k', we choose the

zy axis along the photon beam directién Note that since _ Nvﬁ)

L. m={ap, all the asymmetries obtained in this way in the Y Woo'
lab frame for the reaction€3.19,(3.1b with the polarized

nucleonN are the same in the c.m. frame. In the case of th(?_| -

: : L . ere the coefficient
polarized final nucleon, we choose thg axis to lie along
the nucleon recoil momentup'. Such an axis depends on
whether we use the lab or c.m. frame so that we get different,
though related, asymmetries.

We can further simplify the notation. The axes
(x,,Y,,2,) and Ky ,yn,2y) are identical and we will denote
them in the following by simplyX,y,z). For (xy,Yx,2Zy) We
will use (x’,y’,z"). Note that, despite the fact that tiieand
y' axes are the same, we will keep the prime when uging
because it identifies which nucleoN (or N’) we are refer-
ring to. All these axes are shown in Fig. 1.

The set of observables is defined as follows.

Polarization-independent observable=(0), or simply
the unpolarized cross section,

— FIG. 1. Axes to project out polarizations in the lab frame. The

dO' : ' ’ .
2 _d2 variousy axes /., Yn, Y, andyy) all point out of the plane of
dQ " Woo- (316 the figure.

O'yr_O'y/)
(Tyr+0'_yr E=¢'=0

=¢'=0

(3.18
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m m R'_ L' K\v— — ~Qw—
Cy=§ww’ sin 6= Z -t (319 EZ’XZ O-X, UX, = CXW12 CX\NZZ
)Ff +0'>IZ Woo
(as given through both lab and invariant quantjtidster- ) , _ _
i N o ; o} —os  Clwp,—c2w
mines the scalar produdt- S=C/{, . Itis just the negative- s, =2 z _ zz"127 ~z2 VW22 (3.24)
y component ofN#. The asymmetry.,, =3, is often des- 2'z UZR’+UIZ-’ Woo ' '

ignated asP, the recoil nucleon polarization.
Double-polarization observables€2), of which there
are five for each of the reactior(3.1):
(i) The beam-target asymmetry for incoming linearly po-
larized photons, either parallel or perpendicular to the scat-
tering plane €;=*+1), and target nucleon polarized perpen-In terms of lab or invariant quantities, they read
dicular to the scattering plane. The same quantity can be

Here the coefficientﬁ:)’f"ZQ determine the scalar products

K-S=CK¢,+CX¢,, Q-S=CQL+C2,. (3.29

measured as the correlation of polarizations of the outgoing K Qe _ 1 o — my/ — gt
particlesy’ andN’: xTX T T g@ Sine= 2(s—m?)’
S0y Sy (dl—at),—(dl—ct)_, o E(w—l—w’ cos6)= s—m*  t(s+m?
(ol+ o)+ (al+at)_, 2 2m - 4m(s—m?)’
! ’ ’ ! 3-2
:(UH _Ui)y,_(all _(TL)—y’:CNW_?Ts (3.26
(o' +ot )+ (ol +0t )y Y Woo' o 1 , t(s+m?)
Cr=5(w—w' cosf)=———.
(3.20 2 4m(s—m?)

Another independent quantity is the correlation of the beanNumerically, Cx'f'zQ are the same in the lab and c.m. frames.

polarization and the polarization of recoil nucleon, or the

Another four asymmetries, which are depend linearly on

correlation of the target polarization with the final photonthose in Eqs(3.23 and (3.24), describe the correlations of

polarization: the recoil polarization with the polarization of the photaons
(dl=at)y—(al=at)_, R L«
= ry— _ — Q _
E3yr 23 y (0-H_|_0—l) ,+(0-H+(TL) , E Oy = Oy . CX’W12+C>(’W22
y -y 2x! R L Y, ’
’ ! ! ' — O-X' + 0-X’ 00
(o= )yl =0ty (Wa
(@ 4o )+ (ol +o ), ¥ Woo . oR—ok Ciwg+Cdwg,
(3.2 R ol Woo ’
3.2
(i) The asymmetries with circular photon polarizations (3.27
(& or £&,==1). The general expression for the asymmetry oR — ot clwi,—cOws,
with circularly polarized photons follows from E¢3.13. S o= e = — W <=
For example, for the reactiof3.13 Oy T 0oy 00
oR—ob K SW,+Q-SW, 322 . oy —0y  CuWi—CIWg,
oR+olt  Woot N-SWy, R ol Woo '

Such a quantity survives when the nucleon spin lies in thq—hey are given by the coefficienckQ

reaction plane. Considering the cases with the target &pin
aligned in=x or +z directions, we can introduce the beam-

x',z'

expansions

appearing in the

target asymmetries K~S’=Cf,§;,+CZK,§;,, Q.S,:CXQ[;,JFCSQ”
R L Kya s+ Qv+ (3.28)
s :Ux_o-x:CxW12+CxW22 hich in the lab d
2x U§+U; Woo ' which in the lab frame rea
R_ L Kw™ 4+ cQw CK=——\/; c2=0, CcX= N
_0y—0;  CEWptCiWa, XTU2N(Y) X Y7 2mN(Y)
30,= R L W (3.23
o,t o, 00
V—t
Q: —
and the scattered photon-target asymmetries Cz 2 N (lab), 329
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where N(t)=(1—t/4m?)*2, Since thez’ axis in the c.m.
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and similarly for the primed cross sectiofwith the polar-

frame is different from that in the lab frame, the correspond-ized final photon These relations are due to parity conser-

ing C';<,

cide with R in Eq. (3.26):

cl=-cl=ck=c?, cK=-ck,

2

cd=c? (cm). (3.30

(i) The asymmetries with photons linearly polarized at

o= * /4 with respect to the scattering plang € =1). For
example, in the case.13,

o™ g B K- S\Nfl-l- Q- S\l\lj1
Wyt N-SW,

(3.3)

0_77/4+ o w4

With the same considerations discussed for BR3, one
can define the asymmetries

w4 _—wl4 Kypas+ Q\p/+
S, = Ty Ty _ Cx W11+ Cx W21
Ix— — -
oy gy ™ Woo
w4 _ _—wld Kypa/+ Q\/+
2 _ gz gz _ Cz Wll+ Cz W21
1z— — - ’
0';’/4—# o, i Woo
(3.32
w4’ — a4’ Kyas— Q\/—
S, = Oy — 0y T CxWyyt Gy Wy
1'x— 7 _ r 3
oy " oy 4 Woo
a4 _—al4 _ K A\~
2 _ 0z 0z _ Cz W11+ Cz W21
1'z— i — T ,
0_;’/4 +O_Z 4 WOO
and a similar linearly dependent set
w4 —ml4 Kyp/— Q\pa/—

o o™ cwp+cowy,
X' ql4 — a4~ J
o, Woo

14 —mld Kyp/— -
Sy, = o oy CuWit CoWy,
12/ = 74 — a4 ’
oy +o,” Woo
(3.33
14 —ml4’ K+ +
. ol —o ™ —clwy+cdwg,
1/x! = ’ _ T 3
)7(1',/4 +0_x’17/4 W00
4’ —arl4’ K + Qy\p/+
s Oy T Oy _ —C, Wy, +C Wy
1'z' — 7 — T .
0_77/4 +o w4 WOO

z’ z’

One can get another representatiaith x— —x, etc) for

are different too. Except for the signs, they coin- vation.

Introducing the generic quantities

0_71'/4_ 0_771'/4
Fi=———=2 0t 2124,
20
O'R_O'L
F,= — 222x§x+EZZ§Za (3.39
20
oot

F3: p— :23+23y€y,
20

one can write the differential cross section in the following
compact form:

do do

mz m{l‘f'zygy'i‘lz'g},

(3.36

which, being supplied with appropriated primes, is valid for
any combination of ingoing or outgoing polarized particles.
Thus, with unpolarized and linearly polarized initial or

final photons, one can access two observaldegd() and
3.4, respectively. When the nucledtarget or recojl polar-
ization is added, four more asymmetries app2grand=.,,,
217, 23y (and their primed companiopsall of which vanish
below the pion threshold. When circularly polarized photons
are used with polarized nucleons, two more asymmetries ap-
pear,X,, andX,,, both of which survive below the pion
threshold.

It is important to emphasize that the formulas such as
(3.10 and (3.36), being used for polarized parti¢i in the
final state, give the total yield of the particles and their po-
larization density matrix. To get a partial cross section of a
particle produced with specific final polarizatigh one must
use an average instead of a sum over polarizations. That is
equivalent to inserting the statistical factorglihto these
formulas, whereg=1,2,2,4 for the case§.13—(3.1d, re-
spectively.

IV. LOW-ENERGY EXPANSIONS
A. Invariant amplitudes and polarizabilities

A very general method for obtaining low-energy expan-
sions of physical amplitudes for different reactions consists
in introducing invariant amplitudes free from kinematical
singularities and constraints and expanding them in a power
series[33,34]. Following this method, we first decompose
the invariant amplitudeg,; into Born and non-Born contri-
butions,

A(v,t)=AP(v,)+ANB(vt) (i=1,...6. (4.1

the above asymmetries by using the following re|ation5The_Born gontribution is associated _vvith pole diagrams in-
among the cross sections that have opposite in-plane nucled®!ving a single nucleon exchangedsnor u-channels and

(target or recoil polarizations:

R_ L -
oi=0_;, of=d_f,

vNN vertices taken in the on-shell regime,

P D=0~ 7 [7,07 (P =Pl (42
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It is completely specified by the massg the electric charge

eq, and the anomalous magnetic moment/2m of the &T—mTfTihomson:—foqze'*'e- (4.9
nucleon:
) The non-Born contribution td;; is determined by the
AB(1.t)= mér, __ & (4.3 Stucture constants introduced in the expansiére). Its
e (s—m?)(u—m?) Amoo'’ ' spin-independent part starts withesio” term,

wheree is the elementary charge?=4/137, andq=1,0 1 o NBnospin . . 5 12
for the proton and neutron, respectively. The pole residyes 8zm ' ' Soo'(ag€ e+ fysT s )+ O(w w’™).
read (4.10

t t Here the constantag and By,
— 2 — 2
r{=-—2q Tr3—s, r,=2qx+2q“+r;—;,
4m 4m Arag=—az—ag—a,, 4mBy=—az—asta,,

(4.1

are identified as the dipole electric and magnetic polarizabil-
The Born contribution td'y; possesses all the symmetries of jties of the nucleon, just in accordance with @w?) effec-
the total amplitudeTy;, including gauge invariance, and tive dipole interaction
takes all singularities of ;; at low energies.

The non-Born partsAM® of the invariant amplitudes,
which contain all the structure-dependent information, are
regular functions of? andt and can be expanded as a power
series iny? andt. Since of the nucleon with external electric and magnetic fields,
leading to the amplitudé4.10). Due to its interference with
, ) , the Thomson amplitudé4.9), the contribution of the polar-

t=-200'(1-2), »r=oo'+ 16m2’ (4.9 jzabilities, Eq.(4.10, results in a)(w?) effect in the differ-
ential cross sectiomo/d() in the case of the protong(
such an expansion can be recast as a power series in thel) and in aO(w*) effect in the case of the neutrom (

r3=rs=x’+2qk, r,=k> [rg=—20°—r;3. (4.4

L1
HE "o — S4m(aeE?+ ByH?) (4.12

t2

cross-even parametero’: =0).
\E The O(w*) terms in Eq.(4.10 are also easily read out
AT(v)=atwew'(a,—2(1-2)a;)+---. (46  from Egs.(2.11) and(4.6). They are determined by the di-
pole polarizabilities and the following combinations of
Here the low-energy constants andt-derivative constants; , anda; ; of the amplitudes\,,
JANB Az and Ag:
_ aANB _ !
ai_'A‘i (0!0)! ai,V_ 2 ’
Jdv L as
v=t=0 47TaV:_a3,v_a6,v_al,v__21
m
AANB .
=) Chy) N
v=t= 47Tﬂ1/=_a3,v_a6,v+al,v+_21
parametrize the structure of the nucleon as seen in its two- m
photon interactions. (4.13
The expansion(4.6) directly leads to a corresponding
low-energy expansion of the total amplitudg, in the lab Ama,=—ag,—ag;— s+ E'
frame. We first consider the spin-independent part of Eq. ’ ’ ’ m?

(2.11). The spin-independent part of the Born tefijy fol-
lows from Eq.(2.11): as
47Tﬁt: - a3’t_ a6‘t+ a.]_’t'f‘ _2 .

N(O g oo 4m
T ,nospin

fi
Bmwm These polarizability-like quantities are constant coefficients

0o’ of energy- and angle-dependent corrections to the dipole in-

=rpe’*-e{ —g’°+ —[«k%2+29xk—q%(1—2)] teraction(4.12 that enter to next order in photon energy.

4m? The recoil correction~1/m? in Egs. (4.13 is explained in
Appendix C.

4.9 We now introduce linear combinations of the parameters
(4.13 which have a more direct physical meaning. If we
consider the partial-wave structure of the amplitdde(see

Herer,=e?/47m. The leading term in Eq4.8) reproduces Appendix A), we can relate the-derivative constants in Eq.

the Thomson limit, (4.13 to the quadrupole polarizabilites of the nucld@%]:

+ros'* s—ww,[ 2—72(k+09)?]
0 : 4m2 q K q .



PRC 58 LOW-ENERGY COMPTON SCATTERING OF POLARIZED ... 1021

ap=120;, Bm2=128;. (4.14  where y; are structure parametefsften called the “spin
polarizabilities”) which are linear combinations of the con-
A nonrelativistic example is given in Appendix B. The quan- stantsa; (see Appendix A In the following we consider a
tities linear combination of these parameters:

aEV:aV_Zat+Bt’ IBMV:BV_ZBtJ’_at' (415)

YE1= — V1™ 73:%(36_344'2354' az),
which we call “dispersion polarizabilities,” describe the
dependence of the dynamic dipole polarizabilities. In terms
of the parameterag,, Bu2, ag,, andBg,, the correspond- 1 A —2a.—
ing effective interaction of)(w*) has the form Y1=Ya=g o, (BT 4™ 285 8y),
(4),nospin__ ) 02 (4.20
Hef’ —_§4W(CYEVE +Bm,HS) L
1 Ye2= Y2t 74:_%(a4+a6+az),
- 1—247T(aE2Ei2J- +BwaHD), (416
where the dots mean a time derivative and YM2= ¥3= — %(aﬁ ag—ay),
1 1 ) . .
Eijzi(ViEﬁ—VjEi), Hijzi(ViHjJerHi) which have a more transparent physical meaning, as ex-

417 plained in'Appendix'es A and B. The parametejs; anq
vm1 describe the spin dependence of the dipole electric and

are the quadrupole strengths of the electric and magneti@agnetic photon scatteringf1—~E1 and M1—-M1,
fields. whereasyg, and yy, describe the dipole-quadrupole ampli-

We next consider the spin-dependent part of &q11). tudesM 1—-E2 and El—-M2, respectively. _The amplitude
The spin-dependent part df; starts withO(w) terms that (4.19 implies an effective spin-dependent interaction of or-
come from the Born contribution. To leading order one hagler O(w°)
[35]

) 1 . .

. , Hei "= — 47 (yg10- EXE+ yy10w HXH
———TRsPn —iroﬁ(qzme’* Xe+(k+Qq)?0-5*Xs)
_27E2EijO-iHj+27M2Hij0-iEj)' (421)

K+

qu(w’(rR’ s*.e—wo-ke*-s)

+ireq To summarize, we have obtained a low-energy expansion

of the amplitudes for nucleon Compton scattering. To
+0(0?). (418  O(w?), the cross section and polarization observables are
] ] determined by 10 polarizability paramete(s: Two dipole
The omitted higher-order terms can be read out from Edspolarizabilities: e and By, (i) two dispersion corrections
(2.1D and(4.3). 4 to the dipole polarizabilitiesag, and By, (iii) two quad-

As shown in Eq(2.11), the non-Born part off i’ starts  yypole polarizabilitiesag, and By, and(iv) four spin po-
with O(w®) terms. They are determined by the four con-iarizabilities: yei, Ym1, Year Yma- These polarizabilities
stantsa,, a4, as, andag. Due to their interference with the have a simple physical interpretation in terms of the interac-
spin-dependend(w) terms of Eq.(4.18), they give rise to a  tion of the nucleon with an external electromagnetic field.
O(w*) correction to the unpolarized cross section. In theEquivalently, these ten parameters are linear combinations of
case of a polarized proton and a circularly polarized photonthe low-energy constants, E(4.7), representing the zero-

these terms appear at the ordefw°). energy limit of the six invariant amplitude§ plus two com-
The O(w®) terms inT{>*"" were considered in several binations of both thes andt derivatives of these amplitudes.
papers[21-23. In the most recentand best knownwork To illustrate the interplay among all these polarizabilities,
[23] they are parametrized as we consider the two limiting cases of forward and backward
scattering.

TNB.SPIN_ | )35, o €% X (i) The amplitude for forward scattering,
8mm i

wz /%

E —e'*-e(A3+Ap)

PN 1
—I—iw?’yz(o-k’xk e*.e—o-e*xXek k) %[Tfi]f):O:
+iw3y3(0-sé*~R—a-S’ ek') o
o . . +—ia~e’*><eA4), (4.22
+iody(o-e* Xk ek —o-exk' e*.k m

—20-€*xe kK -k)+0O(wh, (4.19  has the following low-energy decomposition:
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1
87T_m[Tfi]0:0:el* e[ —ro0’+ w’(ag+ Bu)

+o*(a,+B,)+0(w]

2

roK

H Lal* _ 2 4
+iwo-€'*Xe >m +wy+O(w") |,
(4.23
where

YT YELT YM1T YE2 T YmM2T 5 o (4.24

is the “forward-angle spin polarizability,” and

1
_ 1 1 _
aV+BV_aEV+BMV+ ﬁaE2+ TZBMZ_ - Z(a3,v+a6,v)'

(4.25
(ii) The amplitude for backward scattering,
1 T B o’ » 1 t
87Tm[ filo=n= 27N(t) €€ Am?
X Al_mAs
v ! % t
+|E¢r-e Xe|Ax+ l—m As
(4.26
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has the following low-energy decomposition:

1
%[Tfi]azw

=N(t)e'* e {—ro9°+ 0w’ (ac— Bu)
+ 0?0 (a,— B,—dai+4B)+O(03w'3)}

r
+tiJoo'o-€*Xe :%(K2+4QK+2C{2)

(4.29

—I—ww"yw-l-(’)(wzw'z)],

where
a,tas
27m

(4.28

Y==—Yert Ym1t YE2— YM2=—

is the “backward-angle spin polarizability,” and
a,~ B,~4a+4B=ag,~ Bu,~ 522t 15 Bu2
1 as
:E 4alyt—aly,,— E . (429}

B. Cross sections

A decomposition analogous to E¢t.1) can be applied
also to the invariant functiong/;; :

Wi =W +WHE. (4.30

The Born contribution is given by

r2 '
o= q4(1+22)+%[4q3(q+2;<)(1—2)2+2q2(9—102+22)K2+4q(3—22—22)K3+(3—22)K4] ,
m

(87Tm)2W00_
(4.313
B rs ol 4 w0 )
(87Tm)2W03:_E(1—Z) q +m(K +2qk)°|, (4.31b
+B_ I’S , wo ) ,
B2V | (112|077 (172 2q0) [k (1= 2) (G )]
t%(l—Z)(K2+2qx)[K2+2q;<+q(1—z)(q+K)]], (4.319
W:‘B:ﬁ (1=-2) q2+w_w,(1_z)('<2+2qk) [k*+2qx+q(1-2)(q+x)]
(87Tm)2 22 2m 4m2

I%(l‘f’Z)(KZ‘f’ZQK)[K2+Q(1—Z)(Q+K)]]_ (4.319

The non-Born contributions are more conveniently written by separating the terms of different osgdet.ifn particular, for

Wy andWyz we have
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Woe=U oo’ +Uiw?e?+0(0’0’®)  (k=0,3), (4.32
where
s m)zug%;:—roqz[(1+z2)aE+2zﬁM], (4.333
w
1 (2) 2 2
(87Tm)2U03 =roq°(1-2z%ae, (4.330
1 (4) 1 2y 2 1 p2 "o 2 2 2
(8Wm)2Uoo:§(1+Z )(agt By) +2zagpu+ m(l_z)[(:H'Z)(K +20k)(ag+zBw) +29°(2zag+ (1+2°) fw)]
) 5 z3 322-1 ro
_roq (l+Z )aEV—"_ZZﬁMV—"— ECYE2+ T[)’Mz +ﬁP(Z), (433O
D U—(1- )] - (a2 82— O (k2 2au) (et 2Bu) + 100 anst - o = Bua| + ALR1.
(87Tm)2 03 2 E M 4m2 E M 0 Ev 6 E2 12 M2 m

(4.330

HereP(z) andR are polynomials ire of the third and zero and
order, respectively, which are determined by the spin polar-
izabilities as follows: R=0%(ve1~ ym2) — (k+ D) *(ym1— ve2)- (4.39
—Tn2 2 2 2
P2)=la(1+22=32) ~2qk(1=2)"+ 272 ] 7es For the invariantd&V,, andW,, we can stop the expansion at
+[(9?+2qk)(3—22—2%)+ k23— 2%) | ym1 O(w®), since they appear in the squared amplitude multi-

2 2 3 2| 3 plied by terms ofO(w). Therefore we have
+[—09(1-32°+22°)—2q«(1+z—3z°+2°)
+k%(32°— 1) ]y WféNB: U(kzz)ww’ + U&gz)vww’ +0(0?w'?)  (k=1,2),
2 2 2 2 (436)
+[—09(1—2)°+4qk(z—2°) +2k°Z] ym2,

(4.39  where

r
ug=- ﬁ(l"‘z)[Kz‘F A(1-2)(k+ ) 1(ag+Bum) +1od*(1+2)[ yer1 + Ymi+Z(ve2+ ymz2)], (4.373

(8mwm)2 2
r
(87rm)? b= ﬁ(l_Z)[K2+2qK+q(1_Z)(K+Q)](aE_BM)_roqz(l_z)[?’El_ M1t 2Z(ve2— Ym2)1s
(4.370
r
U= (L 22 A (L= 2) (k)]s )
+[(k*+2qK)(1+2)+q(1—2)(k+ Q)] (ve2— Ym2)}s (4.379

1 r

+
GrmUR = am (12 [k +Q(L-2) s+ q)]

m

+(k+P[26+9(1—2)](Ye1+ Ym1)

—[(x+D)*(1-2)—qr(1+2)](ve2+ Ym2) | - (4.379
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In order to illustrate the interplay between polarizabilities w'\2

and the cross sectiorii the lab framég we consider below —) q°

the case of polarized photon beam and polarized targét at @

=0, 7/2, and. ,
(i)lorwardwscattering: X[r3g2—2rqww’ (ag—Bu)]

do
a0

o=

o'
+15— (kK*+4Kq+20%)?
do 2 4am

_ =1 02— 02 et 2,,2% 4
[dﬂ}a_o [ od o (aE BM)] 04m2K +wzw,z(aE_BM)z_zroqzwzw,z
X(a v v_L +l
—2ro0f0* (g, + Bu,+ 15 2E2+ 15 Buz) (ae,~Buy~ 2 ezt 12Pu2)
2 12
ot +rg (K2+4Kq+2q2)’y,n. +O(w®)
—roﬁkz’y+0(w6) (4.39 m
(4.40
and and
d; (1), 2 ro
_ = = | 10 2 2
4o o 3 EZZdQL V( w) [m(K +4kq+299)
22z@ :_roqzaf‘z"'roEKz(aE‘*’ﬂM)
" X[1 o0 — 00’ (ag— Bu) 1+ 210?00’ ¥,
+2r00%wiy+ O(w®), (4.39
+O(w®), (4.41
wherey is the forward-angle spin polarizability.24). where vy, is the backward-angle spin polarizabilits.28).
(i) Backward scattering: (iii) At 90°:

!

) ) 0w ) 2w12
—roww’ ag|q —W(K +2kQ)

Frot B

d;} (w')z{ ra 4, 00
1 =l 159 5Bkt a)*-4xg’+q*)
|:dQ 0=m/2 w 2 4m2

1 1
+ szw'z(aé*”ﬁﬁ)_roqzwzw/z( ag,~ 1_2BM2)

+O(wh), (4.42

r
+ ﬁwzw’z[_(ZKq_q2)751+(K+Q)2(37M1_ Ye2) — A% Yzl

do w'\? I’(Z) o' o' 1
-~ (@) _9 4, 2Y o 2 , 2_ 2 _ T2 42, 2 2
[Esdg o (w) { 21 d +4m2(K +2kQ)*|+rowe’ ag q 4m2(;< +2k0Q) 50w (ag—By)
1 ro
+r0q2w2w’2(aEV_l_2BM2 +ﬁwzw,z[qz('yEl_YMZ)_(K+q)2(7M1_7E2)] +0(0%), (4.43
do w'\? ro '
{EZZE =<;) Ifowlﬁ kG = 7 (k*+2kQ)(k+0)?
0=m/2

!

ww 2 v 12 2 2
+ 5 [kt Q)"Bu—kqae]— —— wo'(k*+ kq+ %) (aet fu) ~ 0 0o’ e
4m

+0(0°), (4.44)

14
+ ﬁww,[Kq(')’El_ Ym2) = (2% + 4kq+ ) ypa+ (k+ )% yea]
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r\ 2
:(w_) row,[_f_o
O=ml2 w 2m

!

w® 2 v 12 2 2,
*om [(k+a)ag—kqBu]+ —Fwo'(k“+kq+ ) (aet Bw) —q 0w’ ym1
4m

do
szd—Q

2 2, 9 > 2
9°(x+0a)"+ gk (kq+2q )}

+O(wd). (4.45

14
- ﬁww’[KQ(VMl_ Ye2) — (2624 4xq+G?) yer + (5 + Q)% yu2]

For the low-energy expansion of the amplitudes and strucand is determined by the pion photo-production threshold
ture functions, two further remarks must be considered. Firstwhere the amplitudes have a singularity and acquire an
as is evident from E¢(2.3), thet-channelr® exchange con- imaginary part. Another close singularity is due to the
tributes only toT 5 (and thus only td\,). Owing to the small t-channel exchange of two pions, which gives the same re-
pion massam,o, this diagram is a rapidly varying function of striction (4.57).

t and therefore it is profitable to keep its expression unex- The second remark is that the low-energy expansions of

panded. This can be achieved with the following replacemernthe structure functionsV;;, when used within the radius of

in the non-Born part of the amplitudé,: convergence, give an accurate account of the dependence of
the cross sections on the dipole polarizabilitigs, 8),, and

AN, ) =AT’ ()~ AT(0)+ANB(1t),  (4.46  the spin polarizabilitiesyg:, ym1, Ye2, Ym2. In the expres-
2 ' 2 2 2 [ + + . X v

sions forWy, andW,,, the spin polarizabilities enter to lead-

where ing orderO(ww") as an interference with the Thomson am-
plitude (4.9. The subleading terms of orda®(vww’)

o 0 U nnF 70y appear due to interference with the amplitudel8. Nu-
Az (O=1Ts ()=—""—7"13, (440  merically the latter terms are enhanced by the anomalous
g0 magnetic momen{for example, k>+4qx+29?=12.4 in

) ) Eq. (4.27 for the proton) and are as important as the leading
with 73=1 or —1 for the proton and neutron, respectively, tarms. On the other hand, in the expansions Wiy, the
and where leading order contribution of the quadrupole and dispersion
polarizabilities agy, Bm2, @e,, Bm, are already of order
O(w?w'?), which is the highest order included in the expan-
sion. Therefore the subleading terms which describe the in-
terference of these polarizabilities with the amplitdel8
is the 7° two-photon decay width. The relative sign of the are not included, although they may be comparable in mag-
NN couplingg,ny and them®yy couplingF 0., is nega- nitude to the leading terms. For this reason, it is generally
tive. In Eq. (4.46), KIZ\IB is a smoother function of,t than  More accurate to use low-energy expansions for the invariant

AYB and is better approximated by a polynomial dno’ amplitudesA,(v,t), including all ten polarizabilities that ap-
(V\2/hich is just the constard, to the order we considgrin pear to the order considered, and then to calculate the struc-
2

terms of the spin polarizabilities, this means that the foIIow-ture functionsw; through Eqs.(3.13. This more accurate

ing substitutions have to be done in all the expansions: procedure .Wi” be used when we discuss the low-energy ob-
servables in Sec. V.

In principle, all the polarizabilities we have defined can be
determined from experiment. For example, in the proton case
once the dipole polarizabilitieag and 8y, have been deter-
Y1 Y Xaal (O, ywe— ymat X2l (0, (449 e rom low-energy experiments that are sensitive only

to terms of ordei®(w?)], the angular behavior of the coef-
ficients Wy, and W,, (from the measurements &,, and
” 2.,,) enables a determination of all the spin polarizabilities
X2a:A2 (0), f(t)= t _ (4.50 YEL YM1: YE2: YM2- Th_en the angular dependen_ce of the
8mm m2.—t unpolarized cross section allows one to determine the re-
maining polarizabilitiesag,, Bum2, @g,, Bum,- IN the next
Generally, after the separation of th@-exchange contribu- Section, we investigate the feasibility of this approach.
tion, all the low-energy expansions discussed in this section
become valid providedow’/me is a small parameter. The
radius of convergence of thew’ series is, up to a small  |n this section we summarize some theoretical predictions
correction of ordelO(m,/m), equal to for the polarizabilities, examine the question of convergence
of the low-energy expansion, and discuss the sensitivity of
lo|<m, (4.5)  various observables to these polarizabilities.

mio 2
r F (4.48

w7y B 07y

Yei— Yert Xaaf (1), ve2a— ve2— Xaaf (1),

where

0

V. DISCUSSION
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A. Theoretical predictions for polarizabilities scribe thew® exchange(4.47 with couplings fixed by the
We now consider various theoretical predictions for theChiral anomaly (Wess-Zumino-Wittep and by the

polarizabilities in order to establish the accuracy that should0ldberger-Treiman relation:
be achieved in experiments to make them useful for resolv-

ing theoretical ambiguities. We restrict ourselves to esti- &N, m
mates based on chiral perturbation theory and dispersion re- Faoyy=— 7= ngN:gAf_- (5.3
lations, since these have proved to be successful in 127t w

applications to strong and electromagnetic interactions of ) )
hadrons at low energies. where N.=3. Accordingly, we use the neutral pion mass

— 1
In its standard form, chiral perturbation theory givesM=0=134.97 MeV to evaluat¥s,.
leading-order(LO) predictions for the polarizabilities en-  Calculation to the next ordes) involves new parameters

tirely in terms of the pion mass._., the axial coupling con- (pounterterm}sthat are usually estimated via an approxima-
stant of the nucleorg,=1.2573+0.0028, and the pion de- tion that takes into account the nearest resonances and/or

loops with strange particles. Such a procedure may lead to

cay constantf_=92.4-0.3 MeV. The nucleon masm . . .
y g dather different results for polarizabilities, depending on fur-

which describes recoil corrections does not enter into the L .
predictions but appears in the next-to-leading order togethdf'®" details(for example, compare Ref13] and Ref.[14];

with some additional parameters. The LO-contributionsS€€ @IS0 beloy Among the nucleon resonances, the
dominate in the chiral limitn,_—0 and are expected to pro- A(1232) is special because it is separated from the nucleon
vide semiquantitative estimates in the real world. All results
qguoted here were obtained by Bernaitdal., as summarized

in Ref. [13]. Using explicit formulas from that work, we
have

by a relatively small energy gap=my 1232~ m=2m,_ and
has a large coupling to theN channel. Therefore this reso-
nance is particularly important for low-energy phenomena
such as the polarizabilities. In Refgl4,36], the A(1232)
was considered as a partner of the nucleon in the chiral ex-
pansion, which was reformulated in terms of a generic small
energy scale=O(m,,A). In the following we invoke only
one component of such an approach, A@232)-pole con-
(o) 3 (Lo) 7 tribution. We ignore the contribution of pion loops with an

g, :szi My =5X3' intermediateA (1232). These terms are relatively small for

the spin polarizabilities, although large fag and 8,, . We

take into account botM1 andE2 couplings of theA. Al-
aD=7X;, BLY=-3X, (5.)  though the quadrupole contribution is of higher orderejn
numerically it is not negligible for the spin polarizability
veo. FOr theA-pole contribution we have

ag®=10X;, B”=X,

Lo Lo
Y = —5Xo+ Xoa,  YMD = — X2~ Xoa,

2 2 2
YO =X Xoa, YD =Xyt Xog. 47TB<MA>:2’ZNA, 477,3<MA3:2§—§A, 4W<EA2>=%,
Here the quantitieX; are proportional tath powers of the
inverse pion mass: 5
- 4m(@>=%, 4wygg>:%% (5.4
Xy =5 =1.23¢ 1074 fmd,
" (and nothing for the other polarizabilities, as discussed in
detail in Appendix D. Here uy, andQya are the magnetic
E2 4 e and quadrupole transition moments, respectively. Depending
Xa= 127m2 1.11x10°7 fm*, on how theM 1-coupling is extracted from the experimental
m radiative width of theA (with relativistic or nonrelativistic
phase spagethe A-pole contribution tg3y, was evaluated in
E2r, [14,36 as
Xpa=—5-=*+11.3x10"* fm*,
TgaMm o
BM=12.0[14] or 7.2[36] (5.5
EZ
Xg=——7 =2.96X 1074 fmd, (5.2)
20mc Uin principle, the difference between the massesrof and 7°

) ) runs beyond the accuracy of leading-order predictions. Its consis-
Wher9E=egA\/§/(87Tf x) is the threshold photoproduction ient treatment has to involve radiative correctionggg?). How-
amplitude for charged pions in the chiral limit. Since the ever, we assume that the use of the experimental masses of the
valuesXy, X,, X3 are determined by pion loops with charged pions in the present context still makes sense because this is ex-
pions, we use the charged pion mass=139.57 MeV for  pected to reduce the size of the counterterm contributions that come
obtaining numbers for thes¥’s. The terms withX,, de-  from the full treatment.
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TABLE I. Polarizabilities of the nucleon given by chiral perturbation theory to leading order_ithe
columns labeledr® and “loop” [13,24)). Also the A-pole contribution is given with the larger strength of
Eqg. (5.5 (see discussion in textOther predictions are based on dispersion relat{[d®s42. Separately
given are ther®-exchange contributionA3Y) and the contribution of excitations. The set HPR] uses pion
photoproduction multipoles of Hanste#t al.[43]. The sesAID is the result of the present work based on the
solution SP97K41]. In the columnsm® and A5®, the proton or neutron case correspondsde 1 or —1,

respectively.
CHPT A pole Dispersion relations
(leading order A% excitationst A3®
proton neutron
0 loop HDT SAID HDT SAID

ag 12.3 11.8° 13.3¢
Bu 1.2 12.0 1.9¢ 1.8¢
(1074 fm3)
ag, 2.2 -3.8 —24
By 35 5.3 9.1 9.2
@Eo 20.7 0.2 27.5 27.2
Bwm2 —-8.9 —-224 —-23.5
(1074 fm®)
Ye1 11.3r; 5.5 11.2;, —-45 -34  -55 -56
Y1 -11.3r; -1.1 40  —11.27, 3.4 2.7 3.4 3.8
Ye2 —11.3r, 1.1 0.75 —11.2r, 2.3 1.9 2.6 2.9
Yz 11.3r, 1.1 11.2; —06 0.3 -06  -0.7
b% 4.4 —-4.8 —-0.6 -15 -0.2 -04

—45.3r3 4.4 4.8 —45.0r3 10.8 7.8 12.1 13.0

Var
(1074 fm%)

3 xperimental values for the proton asg=12.1+1, 8,=2.1x1 [3].

bExperimental values for the neutron asg=12.6+ 2.5 [44] and 05 [45]. See also the criticism of the
former result in Ref[46].

Cag—Bnm=10.0 and 11.5 is used as input for the proton and neutron, respectively. This guarantees that
AjY0) is the same for the proton and neutron.

dExperimental value reported for the nai-part of y_, for the proton is 17.3 3.4 [26].

(units are 10* fm®).2 With the generally accepted phenom- Here the dispersion integral is taken from the pion photopro-
enological magnitude of.y, (see, for exampld37]), B{»)  duction threshold to some large energgctually, it is 1.5
=(12—13) [29,38. In the Skyrme mode]39] or largeN,  GeV). The remaining so-called asymptotic contributiort is
QCD [40], the transition magnetic moment is related to thedependent but only weakly energy dependent. From unitar-
isovector magnetic moment of the nucleonag,=2uy, ity the imaginary part of the amplitudé§ and the integral
=3.33(e/2m), so thatB{l)=12.0. All these contributions are N EQ. (5.6) can be calculated by using experimental infor-
summarized in Table |, where the larger magnitude of EqMation on single- and double-pion photoproduction which is
(5.5 has been assumed. With the fixed ra@gq /uys= available at energies belowna_x. In th_e present context we
—0.25 fm (see Appendix D) the use of the other value US€ the Iatest.versmn of the S|_ngle—p|on photoproductlon am-
would reduce all the\-pole contributions by 40%. plitudes provided by the partla_ll wave analysis of the VPI
Another way to calculate the polarizabilities is provided 9r°UP[41] (the codesap, solution SP97KK Also, double-

by dispersion relations for the amplitudds(,t). In the pion photoproduction is taken into account in the framework
following we give results of the fixet-dispersion relations of a model which includes both resonance mechanisms and

which have the fornj19] nonresonant production of theA andpN states. Details of
this procedure are given in Rgfl9].
The quantitiesA™{t) take into account contributions of

2 Vi "dy’ high energies into the dispersion relations. According to
ReA(v,t)=AP(v,t)+ —PJ ImA((v', 1) ——— Regge phenomenology, only the amplitudesand A, can
T Sy vo—v have a nonvanishing part at high energies and thus have a

large asymptotic contribution. For the other amplitudes
(As 459, the dispersion integrals provide a very good esti-
mate of the corresponding non-Born parts. Thus, we can re-
liably find through Eq.(5.6) the constantsi; 45 and asy,
2This difference also illustrates how estimates of countertermsig,, a3, , ag, . Moreover, the constarmt; , can be found as
may depend on assumptions. well, since it is not affected by the asymptotic contribution.

+AXN). (5.6
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Uncertainties appear only for the constaats a,, anda,, TABLE Il. Combinations of polarizabilities of the nucleon
which get a sizable contribution from the asymptotic part ofwhich do not depend on the asymptotic contributi@$(t). No-
the amplitude. tation is the same as in Table I.

Following the arguments of Refl19], we relate the
asymptotic contributionAfz(t) to thet-channel exchange of
the o and 7° mesons, respectively. The couplings of th&

CHPT (LO) A pole DR (SAID)
proton neutron

are well known, and we include this contribution by virtue of ag+ g8y? 13.6 12.0 13.8 15.1
Eq. (4.47, in which we use experimental values for cou- (10" * fm®)

plings and introduce a monopole form factor with, — , g 57 53 53 6.8
=700 MeV. The experimental magnitude of the product,_ g 11.8 0.2 51 37
J-nnF0,,=—0.33 GeV ! is =3% higher than that given g, + ag 7.4 0.05 31 4.4
by the anomaly equatiof5.3). However, the form factor Bt LBus 1.2 53 35 3.4

reduces ther® strength by (/A )*=4% and makes the ;4 m®)
resulting contribution at=0 very close to that given by the
anomaly(see Table)l Nevertheless, beyond the’, the am-
. oo . Yeot+ Yua2 2.2 0.75 2.2 2.2
plitude A, can have contributions from other heavier ex-
" : et Ve —4.4 075 —15 -2.6
changes and thus have an additional piece that weakly de’
3 ! . - . YM1T VM2 0 4.0 3.0 3.0
pends ont.” Therefore the fixed- dispersion relation for 10-* fm?)
A,(v,t) should not be considered as a reliable source of
information onay. . _ ®Experimental value for the proton isg+ By=15.2+2.6 [3]. A
~ The amplitudeA,(v,t) gets a large asymptotic contribu- recent evaluation of this quantity in terms of the Baldin sum rule
tion from o exchange, which contributes to the constapt yields 13.69-0.14 (stap for the proton and 14.400.66 (stap for
and therefore to the difference of the dipole polarizabilitiesthe neutror{48].
ag— Bum - Since this difference is experimentally known for .
the proton to bexe— By = (10+2)x 104 fm? [3], as deter- from near-threshold energies where #reD and HDT mul-

mined by low-energy Compton scattering data, the constarfiPoles Eo. are rather differentsee Ref.[42] for details.
a, is known too. However, the quantity , is not fixed by For some otheftgenerally similay dispersion estimates, see

these data and cannot be unambiguously predicted from tt%etfﬁé[zfgézbﬁg'sﬁgafgggﬁ tlaxpnecrlln:jg:ta:ndee;tg ?;?nzlﬁtos?'}/en
dispersion relationg5.6). Using data onyp scattering at ! , Including u P

: . and By, for the proton(see Ref[3], and references thergjn
higher energiegabove 400 MeY, thet dependence of the
. o .~ measurements akg for the neutron44,45 (see alsd46
asymptotic contributiomA3{t) at —t~0.5 Ge\* was esti- E 44,49 ( d46]

; . for critical discussiojy and a recent estimate of, for the
mated in[19]. It corresponds to a monopole form factor with proton[26]. It is apparent from Table I that it is necessary to
the cutoff parameteM ,=600 MeV (“mass” of the ¢).  measure the spin polarizabilities to an accuraeyx 104
However, thet dependence oA{{t) at smallert might be  fm* in order to obtain constraints valuable for the theory.
somewhat steeper as suggested from independent estimatesSimilarly to Ref.[42], we can isolate quantities that can
Therefore, the fixed-dispersion relation foA;(v,t) should be reliably predicted by the dispersion relatidbss) (up to
not be considered as a reliable source of informatioagn  small uncertainties coming from the photoproduction ampli-
With these precautions, we put into Table | the results oftudes, namely those that do not depend ap a,, anday;
saturating the dispersion integrals by known photoproductiorisee Table i In the absence of precise data on double-
amplitudes and by the asymptotic contributions discusse@olarized Compton scattering at low energies, these predic-
above. We assume thaé® is the same for the proton and tions can be used to diminish the number of unknown pa-
neutron. Depending on which photoproduction input is usedf@meters during fits and to help in determination of
the integrals are slightly different. We give both our results,unconstrained combinations. These latter combinations are
which use thesaib solution SP97K as an input and a model @~ Bw_(Which has already been measuregl,, and ag,
for double-pion photoproduction, and the results by Drechsel” Bu2. Therefore, the most interesting and informative ex-
steinet al. (HDT) [43] (and ignore the double-pion chanhel o the parametery, and ag;— By, Which mainly contrib-

The main difference between these two evaluations comedfe to the backward scattering amplitude. Below we discuss
which observables are the best suitable to this aim. The

above remarks apply principally to the proton. The case of

3 ) ) ] the neutron can considered in a similar manner. However,

A recent analysig26] of unpolarized Compton scattering data gince 4 free neutron target is not available, neutron polariz-
suggests the existence of such an additional contribution, since t ilities are studied through elastic or inelastioclear

spin polarizabilityy,. found there deviates considerably from that Compton scattering, thereby introducing additional uncer-

Ereti'gt:gazy?iggiiﬂiﬁg&;gﬁg?;glret)rz\?;p:ft:::?é fv?: tainites due to Fermi motion, meson exchange currents,
y ymp 9 final-state interactions, et¢see, e.g., Ref§49,50).

for an uncertainty of~=*2 in the integral contribution given in
Table |, as suggested by a sizable integrand at energies above 1
GeV where calculations of ImA; are very model dependent, such a
strong deviation is difficult to understand theoretically and needs to In order to investigate the convergence of the low-energy
be confirmed by additional experimental measurements. expansion, we use the same fixedispersion relations de-

Yert Ym1 —-6.7 4.0 -0.7 -1.8

B. Convergence of the low-energy expansion
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unpolarized cross section at Qleft) and 180°(right). The lower two panels are the unpolarized cross segtaft) and . 5 (right) at 90°.
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scribed in the preceding section to make an exact predictioflV suggest that these measurements are primarily sensitive to
for the invariant amplitudes at any energy. From these they,; and yg;, respectively, at least to the lowest order. In
W;; can be calculated exactly and predictions for the varioussigs. 6 and 7 we show these observables as a function of
observables can be made. These can be compared with pignergy, as calculated using our low-energy expansion with
dictions calculated by truncating the to O(w’w’®), as  polarizabilities fixed by thesaip dispersion relation values
described in Sec. IV. Such a comparison is shown in Figs. given in Table I. In order to evaluate the sensitivity of the
and 3 for the proton and Figs. 4 and 5 for the neutron. Foppservable to the polarizability, we have adjusted various
the proton, the expansion works very well for energies up tQantities by 4104 fm* relative to the value in Table I.
the pion threshold. For the neutron, it appears to work 1es§his amount is comparable to the pion loop contribution to

well due to the fact that the Born contributions are conS|der—eaCh of the polarizabilities but is somewhat larger than the

ably smaller than for the proton. The full calculation devia'[estypical discrepancy among the competing theories

rapidly from the expansion once the pion threshold is We conclude that in the energy regime below pion thresh-

crossed. old where the low-energy expansion is valid, it will be very
C. Sensitivity of ob bles 1o nolarizabilit difficult to measure the spin polarizabilities to an accuracy
- Sensitivity of observables to polarizabiiities that can discriminate among the theories, at least at the ex-

We now address the question of the measurement of theeeme forward and backward angles. In particular, the back-
polarizabilities we have defined, with the principal focus be-ward spin asymmetr{.,, is almost completely insensitive to
ing on the spin polarizabilities. To the order of our expan-theoretically motivated changes {g., whereas the forward
sion, the double polarization observables are not sensitive tepin asymmetry is only moderately sensitive to changes in
the quadrupole and dispersion polarizabilities, whereas th8omewhat more sensitive are the asymmetries at 90°, which
unpolarized cross section at are sensitive to all of the might provide some useful constraints gg, andy,,;. Most
polarizabilities. Therefore it seems reasonable to use doubleromising is2 ,, for the neutron, which is remarkably sensi-
polarization measurements to constrain #hethen unpolar-  tive to changes inyy;.
ized measurements to measure the remaining polarizabilities. At higher energy, the spin asymmetries are more sensitive
At extreme forward and backward angles, the obsenable to the spin polarizabilities, but of course the low-energy ex-
is sensitive to they; in the combinations that giver [Eq.  pansion is no longer valid. Dispersion theory provides a con-
(4.29] and vy, [Eq. (4.28], respectively. Two other linear venient formalism for interpreting Compton scattering data
combinations can be obtained from measurement& gf beyond the low-energy approximation, but only for those
and3,, at 90°. Indeed, the formulas given at the end of Secpolarizabilties not already constrained by the same disper-
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sion relations. As discussed aboye, andag,— By, are not At the moment, these uncertainties are not negligible.

well constrained by the dispersion relations due to poten-

tially unknown asymptotic contributions @, anda,;, re- VI. SUMMARY

spectively. We therefore investigate whether Compton scat- . .
The general structure of the Compton scattering ampli-

tering in the so-called dip region between thé1232) and . )
higher resonances might usefully constrain these two paran%yde from the _nucleo_n .V.V'th polarlz_ed photons and/or polar-
ized nucleons in the initial and/or final state has been devel-

eters. In Figs. 8 and 9 we present calculations of the unpo- d | . f th litud 4
larized cross section and the spin observablgs2.,,, and oped. A ow-energy expansion of the ampiitu e )

: 2x . __has been given in terms of ten polarizabilities: two dipole
3., in the energy range 200—-500 MeV. In these calculations

) ) ) polarizabilitiesag and By, , two dispersion corrections to the
the parametea, ; was adjusted by changing themass in  gihole polarizabilitieseg, and 8y, two quadrupole polar-

the asymptotic ~contribution Af(t) =A3(0)/(1-t/M?),  izabilities ag, and By, and four spin polarizabilitiesg;,

where AT{0) was already fixed by experimental data ony,,., yg,, andyy,. The physical significance of the param-
ag— Bnm. The parametern, was adjusted by adding to the eters has been discussed, and the relationship between these
asymptotic contribution from the® exchange a contribution and the cross section and spin observables below the pion
of heavier exchanges, i.e., by using in the dispersion relathreshold has been established. We have also presented the-
tions the ansatAgs(t):(A;O(t)+C)F(t), whereC was an  oretical predictions of these parameters based both on fixed-

adjusted constant arfé(t) was a monopole form factor with t dispersion relations and chiral perturbation theory. We have
the cutoff parameter\ ,~700 MeV. In the unpolarized established that the range of validity of our expansion ex-
cross section for the proton, a changejof from —37 to tends to the pion threshold. We have shown that low-energy
—41 is indistinguishable from a change in themass from  experiments will have to be very precise to resolve the the-
500 to 700 MeV(which changesg,— By, from 49 to 38. oretical ambiguities in the polarlzab_|l|t|es. However, we have_
However, these possibilities are easily distinguished witlSuggested that measurements at higher energy might help fix
S.,,, SO that a combination of unpolarized and polarizedthe most theoretically uncertain of them, particulary the
measurements in this energy range offers the possibility of

placing strong constraints on botp. and ag,— By,. Of

course, any practical determination of the polarizabilities “For example, see Ref§8,26] for arguments against the latest
from Compton scattering data, especially at energies abovélution SP97K of Ref[41] regarding the strength of th#, .
the A peak, has to take into account uncertainties in the phomultipole and Refs[42,43 for possible problems with th&,,
topion multipoles used to evaluate the dispersion integralsnultipole.
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backward spin polarizabilitiyy,, and the difference of quad-
rupole polarizabilitiesyg, — Byo-
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APPENDIX A: MULTIPOLE CONTENT
OF POLARIZABILITIES

1. Center-of-mass amplitudes

In the c.m. frame, the amplitudg;; of nucleon Compton
scattering can be represented by six functiBn®of the en-
ergy o and the c.m. angl#* as[51,53

6

Th=87W2, piRi(w,0%), (A1)
whereW= /s and the spin basig; reads
p1=€*.-e, p,=5*-s, pz=ioc-€*Xe,
ps=io-s'*Xs,
ps=i(o-ks*-e—o-k &*-s),
pe=i(o-k' s*.e—a-ke*-s). (A2)

In the particular cases of forward or backward scattering,

— —CoAs— —C3A
m25 m36

the following identities provide links with the notation of
those works:

e*.kek =xp—py, io-KXxke* e=xps+ps—ps,

i(o-e*xkek —oexk e* k)=2xps—ps,
(Ad)

i(o-s€* k-0 ek )=2p3—pe,
wherex=Kk’-k and where we have usedk=¢'*-k'=05
In particular, the amplituded; from [36] (we denote them
here byA") read
A=c(R;+xRy), AY=-cR,,
Af=c(R3+xR,+2xRs+ 2Rg),
Al'=cR,, Al=-c(R,;+Rs), Al=-cR;s, (A5)
wherec=47W/m.

The c.m. amplitude®,; are related to the invariant ampli-
tudes(2.7) by

W? v
R]_:C Cl _Al__2A3

m

2 w
R2:C Cl Al_EAg +EC2A5_EC3A6 y

(W—m)?

W2
(X= DA+ (1+X) — Az
m

2
(W— m)2< (L1=X)A1+(1+%) —Ag
m

VA WA
— —CsAs— —C
m 3% m2e

(AB)

+VA WA
—C3As— —¢C
m 3% m2e

2 3 2
2 2 2 W w
Rs=C{ (W=m)?| —A;— —Ag| +(W=m?)| Ayt — Ay | +2(W—m)| —vAs+ —Ag| {,
m m m
2 W3 W2
Re=C{ (W—m)?| Aj— — Az | +(W?—m?)| —Ayt —Ay| +2(W—m)| vAs+ —Ag| |-
m m m

5A few other relations can be obtained from E44) by doing a dual transformatioe— s=kx e, s— —e=kx s (and the same for primed
vectors which is just an/2 rotation of the polarizations. Under such a transformatiqrs p», p3< ps, and ps« pg.
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Herex=cos¢* and In the important case of low energie®r very heavy
nucleon), one has
(s=m?)” AMW-+ (W—m)2(1—x)
=—————, C¢1=4m -m —X),
64ars? '

Rl:_C(A3+AG+A1), RZZ_C(A3+A6_A1),
C,=4W(W—m)— (W—m)?(1—x),

C3:4W2_(W_m)2(1_X). (A?) R3:_C,(A6+A5), R4:_CI(A6_A5), (Ag)

Note also that the invariants, t, » are
sty 2Rs=C'(As+Ag+A,), 2Rg=C'(As+Ag—A,)

s—m?+t/2 (s— mz)2
v= , t= (x—1),
2m up to higher orders inw/m. Here c=w?%4m and c’
2.2 = w3/4mm.
n= w(ﬁ 1). (A8) A multipole expansion of the amplitudé} has the form
[52-54

Rl—z [+ D) FEe+HE](IP] + Pl ) —[(1+ 1) iy + 1w TP,

Ro= 2 {1+ 1)fiy 1Ty (P +P{y) —[(1+ D +Ifecl P,

R3_|Zl {[fEe—fEel(P{_1—12P) = [fyim— Fum]Pl + 2f g Py 1 — 2f )P,

(A10)
_ |+ |— " 2D/ |+ " " "
R4—|Zl {[fm— Fam](P{_y—12P)) = [ fEe—fEEl Py + 2f Py, s — 2y P},

Rs= > {[fee—fEcl(IP]+ Py ) —[fif—fim]Pl + el (31 + )P+ 2P 1= 2f} [ (1 + 1)P], , +2P"]},
=1

=|§1{[fuM—f'M‘M]<IPf’+Pf”_1>—[f'E+E feelP + fael (31 + 1) P) + 2P 1—2fE [ (1+ 1)P[, 1+ 2P]"]}.

HereP,=P,(x) are Legendre polynomials af=cos#*. The 2. Polarizabilities to order O(w®)
multipole amplitudesf 7, with T,T'=E,M correspond to Low-energy expansions of the amplitudRsare obtained
transitionsTI—T'l" and the superscript indicates the angu-from Egs.(A6) and (4.6) [22]. Leading nonvanishing terms
lar momentuml of the initial photon and the total angular of R, are given by the Born term, in accordance with the
momentumj =1+ 3. Due toT invariance, low-energy theorem by Gell-Mann—Goldberger—Low:
f|+ =f(|+1)*, f|+ =f(|+l)*. (All)
EM ME ME EM +0(w2),

w
R?=r0q2(—1+(1+x)a
Keeping only dipole-dipole and dipole-quadrupole transi-
tions in these formulas, we obtain

RE= —r o0 + O(w?)
=2fge+fge, =2fym+ fum 2 8 ),
Rnggg fec+6fgh, R4=f§,, —fym+6fye,

Al2 w
(A12) Rg:—roqzﬁ'*'@(wz),

R5: 6f%/|+E’ R6:_6f]|é?(/|

(plus higher multipoles, which introduce an angular depen- B_ _ 2 @ 2
dence to the amplitudeR,). Ri=rolxtq) O, (A13)
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5 ) 5 ) ) which describe a spin dependence of the dipole transitions
Re=0(w%), Rg=roq(x+0a)5—+0(w), E1—E1 andM1—M1, and to the quantities

where ro=e?/47m and eq is the electric charge of the 31t NB
nucleon. Structure-dependefite., non-Born contributions Ye2= Y2t ¥a= ~ g~ (st astay)=6w “(fye) ™,
to R; start with the terms

RNB: 2 +*9 3 , RNB: 2 +«9 3 , 1
1= @hagt O 2 = @ Put O 7M2=73=——swm(a4+a6—a2):6w73(féD)NB,
RY®=w%(y11273)+ 0(0*), RP=w’y,+0(w?), (A18)
(A14)
which describe transitions to quadrupole statels —E?2

REB=—w3(y,+ y4) + O(0*), REP=—0wly;+0O(0?), andE1—M2. In terms of these quantitities, the structure-
dependent parts of the amplitud®g to Rg read

where coefficients are directly read out from E49): B 3 .
R =0 (= yg1+ ym2) T O(07),

1 1
aE:_E(a3+as+al)’ BM:_E(33+36_3-1)1 RI®=03(= ymt ve2) + O(0?), (A19)

RE®=— 0 yg,+ O(0%),

71=4ﬂ_m(a4_as_az), 72=m(a5_36), RV _ 301 ().
6 M2
(A15)
The quantitiesygq, vm1, Ye2, andyy, are related to the spin
1 1 polarizabilities s, «, §; and x; of Levchuk and MoroZ22]
v3=g (827217 8), va=g_-(8—a;~2,728s).  (they call them gyrationsby
Here the constants; are those that appeared in E4.19. 0=—veat ymz, K=~ vyt Ve2,

The physical meaning of these polarizabilities can be un-
derstood by using the multipole expansighl2). Compar-
ing with Eq.(4.10, we identify the polarizabilities as leading
terms in the structure-dependent multipoles:

01= = YE2, K1=~ Ym2, (A20)
to the spin polarizabilities; of Ragusd 23] by

B Y1= " YELT YM2,  Y2= —¥Ym1it YE2,
wlag=(2fLE+ L)\,
Y3=YM2:  Y4= YM1 (A21)
2 1+ 1- \NB
=(2fy+f , ) . .
" Bu=(2fum* ) to the spin polarizabilitiesy;, 81, a5, B, of Babusciet al.
24] b
Wy~ (T~ T~ 6L, 24y
(A16) a1=4ymz, B1=—4ve2, @=—2¥e1—2Ym2,

w3y,=(fl —fLt 1 BfLE)NB, B2=2ym1t+ 2ve2, (A22)

. and to the forward- and backward-angle spin polarizabilities
o3y3=(6fg\)"®, by

w3y4:(fh+M_fb*M)NB_ Y= 7"YE1™ YM1T YE2T YM2)

It is seen that some of thesg describe mixed effects of V==~ Yert Ymat Y2~ Ymz: (A23)

spyn-dependent dipole scattenng and dlpo_le—quadrupole traqc-jhe parametes in [24] is 6= — ..

sitions. A more transparent physical meaning can be ascribe

to the quantities 3. Quadrupole and dispersion polarizabilities

1 Effects described by the constants, «;, B8,, and B;
YELT T Y17 V3<T S—(ae— ast2as+ay) correspond to the following contributions of ord@(w?) to
m . .
the spin-independent amplitudBs andRj:
=w*3(fl+_fl*)NB
EEEED ¢ SR =Y a,+(2x—2)a], SRY=w[B,+(2x—2)B]
1 (A24)

e e (o o o N, 3l 1
MM1= V4= g (86— 4= 285~ )= (T~ i [these are not all terms of ordéXw*) in Ry ,, as is dis-
(A17) cussed in Appendix € The constants in EqA24) are re-

e,
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lated to O(w?*) terms in dipole-dipole and quadrupole- 1. Quadrupole polarizability ag,

quadrupole transitions. Introducing weighted sums over | et uys consider a charged particle in the bowdave
projections of the total angular momentym state|0) affected by an external electric potentig(r). Ex-
panding the interactiomAy(r) in powers ofr, we get the

_ |+ |- _ 1+ |-
fo=(I+ D)+ 1fle,  fu=(+ D +1fhy . quadrupole interaction with the external field,

(A25)

1 1
we have V:Eeril’jViVjAo(O):_gQijEij. (Bl)

Ri=fert2xfee =iz, Ro=fuat 2Tz fEZ('AZG) Here Q;;=e(3r;r;—r?8;) is the quadrupole moment of the
system and

Comparing with Eq(A24), we conclude that the constants

a; and B, are proportional to the electric and magnetic quad-

1 )
= -— . . = — . . . . 4I:
rupole polarizabilities of the nucledi25], Bij=—ViVifo=3(VEj+V;B), B =0, (B2

agy=12a= 12w‘4(sz)NB, is the quadrupole strength of the field. The energy shift of the
particle caused by the quadrupole interact{i®1) is given
Bea=12B,=12w " 4(fy;,)\E. (A27) by second-order perturbation theory,
The normalization coefficient here is explained in Appendix 1 (QiiEij)on(QpgEpg)no
B. It is chosen to conform to the definitions used in atomic AE=~ 352, E_E, =~ 3gXEiiEi -
physics where, for example, dynamic electric polarizabilities (B3)
of the hydrogen reaf25,55
1 Here n numerates excited statfs) and their energieg, .
Arag(w)=62, <— The quantityX is defined as a coefficient in the expression
n#0 En_ EO_ w
1
—[(Qj; +H.c.
* En_ Eo+a) |[rIPI(COS 0)]n0|2- nzo En_ EO[(Q”)on(qu)nO H C]
2
(A28) =X| ip8ja-+ Biqdip= 5 3 Opa - (B4)
The factor 47 arises because we use units in whieh
=47/137. The right-hand sid¢RHS) of Eq. (B4) is the most general
The combinations tensorT;jpq Which has vanishing traceg',,=T;;, P=0 and

is symmetric undei<j, p<q, orij—pg.

ag,= @y 2t B Takingi,j,p,q=2z, we relateX to the quadrupole polar-

Buv=B. 2Bt a (p2g)  12AONY crea
2
are identified ag)(w?) terms in the dipole amplitudefs; X=12wag,, Amag,= EE M_ (B5)
and fy,,; that is, dispersion effects in the dynamic dipole 2770 En—Eo
polarizabilities . ) .
) Finally, the energy shiftB3) takes the form of an effective
api(w)=agtwag,+- -, quadrupole potential
Bui(@)=Bu+ By, +- - (A30) 2 oson. 1
Heff P E47TaE2Eij Eij . (86)
For the hydrogen atom,
D,)nol? D,)nol? 2. Quadrupole spin polarizabilit
4'n'aE=22 |( z)n0| , 47TCYEV:22 |( z)n0| ’ Q .p p p' y YE2
nz0 En—Eq 170 (E,—Eg)3 Now let us consider a particle moving around a heavy
nucleus. We assume that both the particle and the nucleus
D=er. (A31) have spin and that the total spin of the system in the ground

state|0) is 1/2. In the presence of both an electric quadru-

APPENDIX B: NORMALIZATION pole and magnetic dipole interaction,

OF THE POLARIZABILITIES

1
In this appendix we explain the normalizations of the po- V=g QB ~MiH;, (B7)

larizabilities and effective interactions, which are defined in

Sec. IV, by using a simple nonrelativistic model. We discusswhereM; is the magnetic moment operator, the correspond-
the quadrupole polarizabilityrg, and the spin polarizabil- ing energy shift of the system,,.oVonViho/(Eo— Ey), has a
ities ygo, and yy 1. mixed E2-M 1 term,
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1 4. Compton scattering amplitude

AE=-2> [(QijEi)on(MiHino*+ H.c]

nzo En—Eg Now we give a summary of interactions and scattering

amplitudes based on the above normalizations. Note that the

1 corresponding electric and magnetic effective interactions
=~ g YEilaiHj+ojH). B8 are related through the duality transformati@—H;, H;
. . — Ei .
HereY is defined as With the effective quadrupole interaction
i 1
r;o En_ EO [(QI] )On(M k)n0+ HC] H(eIEfZ'Mz)'nO SPI 1_247T(C¥E2Eij E” +ﬁM2Hij Hij)!
) (B16)
=Y| 0idj+ 0}k §C’k5ij : (B9) whereH;;=3(V;H;+V;H;) andH;'=0, the Compton scat-
tering amplitude reads
The RHS of Eq(B9) is the most general tensd¥;, which 1 1
. P . . < T ,
haﬁ_vqnlshlpg Eac@i_k—o and is symmetric undelz—q_. T(E2M2)n0spin_ = )40 (22p1— py)
akingi,j,k=z, we relateY to the quadrupole spin po- 8mm 12
larizability yg,: 1
Bl _
Y:_127T’)’E2, + 12‘” BEZ(ZZPZ pl)l
(B17)

1 1
4myer0=~ 72 E—g [(Quon(Manot Hel,
n

) wherep; are given in Eq(A2). The spin-dependent dipole-

(B10)  quadrupole interaction

where the last equation explicitly shows the normalization HU M2 P=4r(ye EjjoiH; — ywmoHijoiE))  (B18)
and physical meaning ofg,. Such a polarizability can exist

if there are tensor forces inside the system. Finally, the enresults in the Compton scattering amplitude

ergy shift(B3) takes the form of an effective potential

1 T?FZ,MZ),spin

E2,spin_ L 87m = 0*yea(pa—ps) + ©> ymz(p3— pe)-
Heff’ pn:§4777E2Eij(0-iHj+UjHi):47T’yE2EijUiHj . (Blg)

B1l
(B1D The spin-dependent dipole interaction

3. Dipole spin polarizability yy1

) 1 . .
(EIM1),spin_ _ —, . E. H.
Now, let us assume that the above spin-1/2 system scat- Hefi pAmei o el BB+ ymiHiH))

ters a photon through a magnetic dipole interactioM (B20)
-H(t). The corresponding Compton scattering amplitude . )
through excited intermediate states reads gives the Compton scattering amplitude
1 (M)on(Mi)no  (Mj)on(Mj)no 1 Eimyspn_ 3
o TMi_ 2ork g 1700t i/n 170n /N o T = — 0 (yg1pst ymipa).  (B2D)
2mTfI W°S; S'r;o S p— E Byt | 87m i E1P3T YM1P4
(B12)

. L APPENDIX C: QUADRUPOLE POLARIZABILITIES
Its spin dependent part at low energies is AND RELATIVISTIC CORRECTIONS

TO THE DIPOLE INTERACTION

M1spin_ _ ; 3 .. ol* . H
Sam 1 Ym107 0 ST XS, (B13) The polarizabilities of the nucleon can only be given an
exact meaning through definition. The simplest definition of

where the parameteyy; is defined as a coefficient in the the multipole polarizabilitiesyg; and 8y is that they are the

equation appropriately normalized coefficients of th8' terms in the
partial-wave amplitudes of Compton scatteringg \® and
> 1 CM o (M g H.c]=4 o (fm)B [25,56. However, we do not follow this approach
20 (B, — g2 1/om im0 LT TYML €ijk Tk for the quadrupole polarizabilities because it leads to some

(B14) unwanted features when relativistic effects are taken into ac-
count. Considering(w?) terms in the amplitudes, we want
The scattering amplitudéB13) can be associated with an to exclude contributions that arise merely as relativistic re-
effective spin-dependent interaction coil corrections to the dipole polarizabilities.
We would like to associate with the polarizabilitieg,
and By those nucleon-structure effects in the amplitdde

) 1 .
M1spin_ _ — .
Heri 24777'\"10 HXH. (819 that are even functions of the photon energy or momentum
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and do not depend on the nucleon spin. However, both th8ince the nucleon spin in the lab or Breit frame is the s&me,
energy and the spin depend on the reference frame. If thine amplitude in the lab frame will be spin independent also.
frame is changed, the energy undergoes a Lorentz transfoevertheless, we do not wish to directly relate individual
mation and the Pauli spinors of the nucleon undergo &pin-independent terms in E€.11) of different orders in
Wigner rotation. If the amplitud@;; associated with the po- ww’ with appropriate polarizabilities. That is partly because
larizabilities g, By, is chosen to be spin independent in the amplitude(2.11) is not symmetric with respect to the
the c.m. frame, it would be spin dependent in other framesinitial and final nucleon. The factorsvw’e’*-e and
including the lab and Breit frames. Moreover, since the elecww’s'* -s in Eq. (2.11) represent the electric and magnetic
tric and magnetic fields are not invariant under Lorentz transfields taken in the rest frame of the initial nucleon, whereas a
formations, the splitting of structure effects into electric andsound definition should use the fields in the frame in which
magnetic parts,~ ag and ~ By, may also depend on the the nucleon is at rest, at least on average. Some of the
frame. Giving a relativistically sound definition, we have to O(w?w’?) terms in Eq.(2.11) are actually the result of a
be cautious when choosing a frame and using correspon-orentz transformation o®(w?) terms in the Breit frame.
dence with notions of classical physics. For the above reasons, we choose as a definition of the
The c.m. frame is not good in this respect. The c.m. am-Compton scattering amplitude related with the dipole polar-
plitudesR; do not possess all the symmetries that the ampliizabilities the expression
tudeTy; itself has. The crossing transformation,

Tie AW =4mwlu’ u(ey - egag+ sy SsBu), (C4)
'k __ !
ekoe™, k. €Y where both the energwg and all polarizations are taken in

bri h | f K ¢ the Breit frame. Neithe©(w?) terms nor recoil corrections
fings the total momenturn of thel systemyk+ p, out o ~t/m? are explicitly included here. The factou’u

rest, so that the amplitudéy are neither odd nor even func- _ ~"——_ ; o . )
tions of the energy. Therefore, an effective covariant inter-_ 4m"—t=2mN(t) is spin independent in the Breit frame

action (i.e., an effective Lagrangianwhich describes the and serves only for a covariant normalizatioNote also that
polarizabilities and possesses the symmetries of the total an:i’é‘?_lzs’ég lzltgr)ih S'Qﬁqe If?ued?i):]n;Lnecj%egirtlcmifan%epe::a%fsthe Comp-
plitude Ty;, would result in c.m. amplitudeR; that contain g amp
terms of mixed order inv, both even and odd. It would be L, )
difficult to rely on individual terms inR; when identifying Tho Sp"‘:U’( ersal "PV{T m-vT,
the polarizabilities, except for terms of lowest order. fi.B P p’2 \ Y m2—t/a

The amplitudes in the lab frame are also not good, be-

] e’u

cause of the lack of symmetry between the initial and final Nqu/ m?vT,
nucleon. In particular, the PT transformation, - N2 \T3+ —t/4

2

2my t
ek—e' k', op——op, (C2 — el A |1
N(D) e*.e|l—-A—|1 A’ Az
applied to theyN system, brings the initial nucleon out of 2
rest. That is why Eq(2.11) contains both even and odd _ Vs —Aq
powers of the photon energies. m?—t/4
The best choice is provided by the Breit frame, in which
the nucleon before and after photon scattering has the mo- PO N t Ant Vv2As _A
mentum 1 am?) 2 me2—t/a ol
1 (CH

pBZE(k,_k)B:QBa Pe=—Qs, (ox)
the invariant amplitude#,; corresponding to Eq.C4) are

respectively. In such a frame, bothinvariance and crossing

symmetry are fulfilled in the simplest way and, importantly,

the nucleon is at rest on averagp;Hp')g=0. That is why, That is because the Wigner angles for the nucleon-spin rotation

in the course of an analysis of elastibl scattering, the Breit petween the lab and Breit frames vanish for both the initial and final

frame rather than the c.m. frame is used to relate the ampliucleon. The Wigner angl#,,=V X v, depends on the velocity of

tude of the reactioreN—eN with physically meaningful the nucleon itself and the relative velocityof the frames. In the

structure functions of the nucleon, the electromagnetic forntase of the transformation between the lab and Breit frarligs,

factorsGg andGy, . For some deeper motivation in favor of =0 for the initial nucleonN, because it is at rest,=p=0. Also,

the Breit frame and its relation with the language of waveéy=0 for the final nucleomM’, becaus&/«p’+p=p’ is parallel to

packets, see Ref57]. the nucleon velocitwep’. The similar Wigner angles for photons
Therefore in constructing our definitions, we choose toare generally not zero, so that the photon polarizations are different

postulate that the polarizability interaction and the relatedn the lab and Breit frames.

Compton scattering amplitude are spin independent in the’Cf. the definition of the electromagnetic form factors of the

Breit frame. It will be spin dependent in the c.m. frame. nucleon[57].
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3 27(ag+ By)
1—t/4m?
(Co)

and OtherAi(aE,BM) are zero. Using Eq2.1, we find the HereM and Q;; are the magnetic dipole and electric quad-

| . ) ) rupole transition operators and are characterized by the ma-
corresponding scattering amplitude in the lab frame: tri>F<) elements P y

1
Ag_aE’ﬁM):_ZW(aE_IBM)y A(SaEvﬁM): Heﬁ:_M’H_gQijViEj' (Dl)

STMmow’

(EYE,,BNO_ ! % ! %
T = e*.-eag+s*-s
fi N(t) ag EM

(A, = 3MIN, £ )= pyy, <A,i%|sz|N,t%>=iQ(%A2-)

——(e*-e—=s"-s)(ag—Bu) [, (C7) _ _ , , N
Since the interactioiD1) involves M1 andE2 transitions
into the j=3/2 state, it contributes to the multipole§§+ ,

where a recoil correction-t/m* appears as a result of the fEE' f%/rE and therefore to the polarizabilitiedy, , Y1, @,

no-recoil ansatz in the Breit frame, E(4).

With the above definition of the contribution of the dipole yEZL:ls'n these matrix elements and EB4) from Append
polarizabilities, we write the remaining terms of the non- Ing X B¢ PpeNdix

Born amplitudeT 810 spin ag B, we find 4mag,=Q2%,/(24). From Eq. (B9) we get
fi A ye,=— unaQna/(24). Using the same matrix elements,

T;\liB,no spin_ T(fiaEvﬂM)ZSmew/{e/* ‘e (VPa,+tay) the gNignzer—E.ckart theorem, aqd E@®14), we fig\d A ym1
=una/A%. Finally, the equations #By=2uy,/A and
+8* .5 (2B, +tB)}+ O(wd). Ay, =2ub,/ A% are magnetic analogs of EGA31).
(C8) In terms of the ratidR=E;, /M, of the resonance mul-

tipoles of pion photoproduction taken at the resonance en-
They are given by the parameters, «;, 8,, andB,in Eq.  ergy (E, =340 MeV),
(4.13, which determine quadrupole and dispersion polariz-
abilities, as discussed in Appendix A.

Qna 12
——=—R=-0.25 fm, (D3)
APPENDIX D: POLE CONTRIBUTION OF THE A(1232 MNA k

TO POLARIZABILITIES

To calculate the contribution of thA-isobar excitation wherek is the photon energy of the decAy— yN in the rest
into the polarizabilities, we write an effectivéNA interac- frame of theA and R=—2.75% (we take an average of

tion in the form similar to Eq(B7): —2.5%[58] and —3.0% [8]).
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