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Structure analysis of the virtual Compton scattering amplitude at low energies
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We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent
formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been
subtracted in a gauge-invariant fashion, is free of poles and kinematical zeros. The covariant treatment natu-
rally allows one to implement the constraints due to Lorentz and gauge invariance, crossing symmetry, and the
discrete symmetries. In particular, when applied to theep→e8p8g reaction, charge-conjugation symmetry in
combination with nucleon crossing generates four relations among the ten originally proposed generalized
polarizabilities of the nucleon.@S0556-2813~98!04502-6#

PACS number~s!: 13.60.Fz, 14.20.Dh
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I. INTRODUCTION

The derivation of the structure of the general virtu
Compton scattering~VCS! amplitude from the nucleon ha
been a problem with a long history@1–3#. The most sophis-
ticated treatment of the general Compton process with b
the initial and final state photons off shell,g* N→g* N, was
presented by Tarrach in Ref.@3#. We will use this work as a
starting point for our investigation of the low-energy VC
amplitude.

Whether one analyzes Compton scattering within
framework of a given theoretical model or experimentally
is in any case desirable to perform the analysis in terms
set of amplitudes which is solely determined by the dyna
ics of the VCS process with the kinematics being facto
out. In the case of VCS with one or even two virtual photo
it is by no means trivial to find an adequate set of amplitu
which fulfills this requirement@2,3#. In particular, as will
become obvious in the following, it is a central issue to co
struct tensor structures and corresponding amplitudes w
are free of poles or other kinematical constraints. This pr
lem must be addressed on a model-independent level by
ing into account general symmetry principles like gauge a
Lorentz invariance and discrete symmetries like parity, ti
reversal, and charge conjugation. We will discuss an
semble of tensor structures and amplitudes with the des
properties for the case ofg* N→g* N which then can be
applied to the caseg* N→gN with a real photon in the fina
state. In particular, our results for the regular part of the V
amplitude can be expressed in terms of even fewer funct
than suggested in Ref.@3#.

The processg* N→gN will be analyzed at the electro
laboratories MAMI~Mainz!, Jefferson Lab~Newport News!,
and MIT-Bates by means of electron scattering off a pro
target,ep→e8p8g @4#. In the electron scattering process t
genuine VCS amplitude interferes with the electron brem
strahlung amplitude also known as the Bethe-Heitler proc
which is completely determined by quantum electrodyna
ics and the electromagnetic form factors of the nucleon.
will not discuss the Bethe-Heitler mechanism in this pap

The scheduled VCS experiments have stimulated qui
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few theoretical activities. Model-independent aspects of V
have been studied in Refs.@5–9#. The various predictions for
model-dependent quantities related to VCS comprise
constituent quark model@6,10#, an effective Lagrangian ap
proach@11#, calculations@12# in a coupled-channel unitary
model @13#, field-theoretical models like the linear sigm
model @14,15#, and heavy baryon chiral perturbation theo
~HBChPT! @16,17# as well as the Skyrme model@18#. An
overview of recent work on VCS may be found in Ref.@19#.

The formalism applied most frequently to VCS at sm
final photon energy and large momentum transfer has b
developed in Ref.@6#. In that work the regular part of the
VCS amplitude has been parametrized in terms of ten g
eralized polarizabilities of the nucleon—three in the sp
independent and seven in the spin-dependent part of the
plitude. Recently, a general proof has been given@9# that
only two of the three generalized polarizabilities in the sp
independent sector are independent of each other if ch
conjugation and nucleon crossing are applied. In the pre
work we will analyze the spin-dependent amplitudes on
grounds of a covariant treatment. The central result of
investigation will be that due to gauge invariance, Loren
invariance, and invariance under parity, time reversal a
charge conjugation in combination with nucleon crossing
regular part of the VCS amplitude can be written in terms
only six independent generalized polarizabilities instead
ten if one performs the same kinematical approximations
in Ref. @6#.

Our paper is organized as follows: In Sec. II we brie
review the formalism of Ref.@3#, adapting the notation to ou
conventions, and simplify the results according to our nee
Part of the derivation is contained in Appendix A. In th
section we will also specify the set of amplitudes we w
work with. In Sec. III we investigate the number of indepe
dent generalized polarizabilities of the nucleon if one i
poses the same kinematical and symmetry constraints a
Ref. @6# but in addition requires the VCS amplitude to b
invariant under the simultaneous transformation of cha
conjugation and nucleon crossing. Finally, we give a br
summary in Sec. IV.
941 © 1998 The American Physical Society
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II. GENERAL STRUCTURE OF THE VCS AMPLITUDE

In this section we discuss the general form of the am
tudeMg* g for the VCS reactiong* 1N→g1N. Before go-
ing into detail let us briefly explain our notation: The initi
~final! photon is characterized by the four-momentumqm

5(v,qW ) @q8m5(v8,qW 8)# and the polarization vector«m

5(«0,«W ) @«8m5(«80,«W 8)#. The four-momenta of the nucle
ons readpi

m5(Ei ,pW i), pf
m5(Ef ,pW f). For convenience, we

introduce abbreviations for the sum of the photon and
nucleon momenta,1

P5pi1pf , Q5q1q8 . ~1!

The covariant result forMg* g turns out to be a powerfu
tool for three reasons: First of all, it can be used to inve
gate the number of independent observables character
different kinematical approximations. We study the con
quences of the restriction to the lowest-order term in
real-photon energyv8 in order to determine the number o
independent generalized polarizabilities. Second, star
from the VCS results the transition to real Compton scat
ing is simple and one is able to connect observables defi
in real Compton scattering~RCS! with those in VCS. In
particular, the relation between the third-order spin pola
abilities, as defined by Ragusa@20# for RCS, and the gener
alized polarizabilities of Guichonet al. @6# can be obtained
@21#. Finally, our covariant result is appropriate to determ
the general form of the VCS amplitude in any specific fram
In this paper, we only deal with the c.m. frame.

We start our analysis of the VCS amplitude consider
the most general case with two virtual photons. The am
tude can be regarded as the contraction of the VCS te
Mmn with the polarization vectors of the photons, evalua
between the nucleon spinors in the initial and final states

Mg* g* 52 ie2 ū~pf ,Sf !«mMmn«n8* u~pi ,Si !. ~2!

Throughout this paper we use the conventions of Bjork
and Drell@22#, whereMg* g* is the invariant matrix elemen
of the VCS reaction. The normalization of the nucleon spin
reads ū (p,S)u(p,S)51, and we adopt Heaviside-Loren
units where the square of the elementary charge is given
e2/4p'1/137.

In order to disentangle new information from the VC
tensor, it is useful to separate fromMmn the contribution
which is irregular in the limitq→0 or q8→0. For that pur-
pose we divideMmn into a pole pieceMA

mn and a residual
part MB

mn ,

Mmn5MA
mn1MB

mn . ~3!

In fact, such a splitting is not unique and we will follow th
conventionof Refs. @3# and @6# of evaluating thes- and
u-channel pole terms using electromagnetic vertices of
form

1We note that the definitions in Eq.~1! differ by a factor of 2 from
those used in Ref.@3# but agree with Refs.@8# and @9#.
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Gm~p8,p!5gmF1~q2!1 i
smnqn

2M
F2~q2!, q5p82p,

~4!

whereF1 andF2 are the Dirac and Pauli form factors of th
proton, respectively. The explicit result forMA

mn is given in
Eq. ~18! of Ref. @3#. As a consequence of Low’s theore
@23#, any calculation of pole terms involving on-shell equiv
lent forms of the nucleon electromagnetic current yields
same irregular contribution to the VCS matrix element~for a
proof of this claim in the context of VCS, see Sec. IV B
Ref. @7#!. It is advantageous to use the particular form of E
~4!, since the resultingMA

mn separately satisfies all the sym
metry requirements, in particular gauge invariance. Ev
though this terminology is not quite precise, we will adhe
to the common practice of referring to theMA

mn evaluated
with the vertices of Eq.~4! as the ‘‘Born terms.’’ The corre-
spondingMB

mn will variously be denoted as the regular o
structure-dependent or residual or non-Born contributi
For a complete discussion of the ambiguity concerning w
exactly is meant by ‘‘Born terms,’’ the interested reader
referred to Sec. IV of Ref.@7#. In the following, we are
mainly interested in the non-Born contribution to the Com
ton tensor, as this partby definitioninvolves the generalized
polarizabilities of@6# and the low-energy constants to be d
fined below.

Using gauge invariance

qmMmn5qn8Mmn50 , ~5!

a system of independent tensors serving as a basis ofMmn

was derived by Tarrach@3#. OnceMA
mn andMB

mn are chosen
to be gauge invariant, we can construct both of them by
of the same basisMmn.

Since the work of Tarrach@3# plays an important role in
our further analysis, we have summarized its results in A
pendix A, in particular the representation of the Compt
tensor in terms of 18 basis elementsTi

mn :

MB
mn5(

i PJ
Bi~q2,q82,q•q8,q•P!Ti

mn ,

~6!

J5$1, . . . ,21%\$5,15,16%.

At this point we stress that the number of independent fu
tions required for parametrizing the structure-dependent
is actually 18 instead of 21 as suggested in Ref.@3# ~see
Appendix A!. The independent amplitudesBi are functions
of four invariantsq2, q82, q•q8, andq•P. The kinematics of
the general VCS process with on-shell nucleons is co
pletely specified by this set, and all other invariants can
expressed in terms of these variables.

So far we have considered both photons to be virtual.
will now discuss the amplitudeMg* g of the VCS process
g* 1N→g1N, with real photons in the final state, i.e
q8250 and e8•q850. In this specific case the tenso
T3

mn , T6
mn , andT19

mn do not contribute to the amplitude. If w

multiply the tensorsT̃i
mn[Ti

mn(q8250) by the polarization
vectors of both photons, we end up with 12 different stru
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tures which is the correct number of terms@5–7#. As a con-

sequence, the invariant VCS matrix elementMB
g* g can be

written as

MB
g* g52 ie2 ū~pf ,Sf !

3(
i 51

12

«mr i
mn«8n* f i~q2,q•q8,q•P!u~pi ,Si ! .

~7!

Equation~7!, together with the explicit results for the qua
tities emr i

mnen8* in Eq. ~A10! of Appendix A, defines the
general structure of the VCS amplitude withq2Þ0 andq82

50. Since Eq.~7! is Lorentz invariant, it is frame indepen
dent, and it allows one to incorporate the constraints from
discrete symmetries in a rather simple way.

In the following we will work in the c.m. frame, i.e.,

pW i52qW , pW f52qW 8, ~8!

and will use an orthonormal basis defined by the moment
the photons,

êz5q̂, êy5
q̂3q̂8

sinu
, êx5êy3êz , ~9!

with u denoting the scattering angle betweenq̂ and q̂8.
The matrix element can be decomposed into a transv

and a longitudinal part,

MB
g* g5 ie2x f

†S «W T•MW T1
q2

v2
«zMzD x i , ~10!

where current conservation has been used,

qm«m50, qmMB
mn50 , ~11!

at the leptonic and the hadronic vertices, respectively. N
that in the VCS process discussed in this paper the pola
tion vector of the initial photon is generated by th
electromagnetic transition current of the electron,«m

5e ūe8g
mue /q2. Current conservation allows one to perfor

the gauge transformation«m→am5«m1zqm. Then the
choicez52«W •qW /v2 leads to the polarization vector

am5S 0,«W T1
q2

v2
«zq̂D ~12!

and thereby results in the specific form ofMB
g* g in Eq. ~10!.

For the following discussion it is useful to decompose
VCS matrix element in Pauli space. We choose the par
etrization and the corresponding amplitudes defined in R
@16#. The transverse and longitudinal matrix elements c
respectively, be parametrized in terms of eight and f
structures,
e

of

se

te
a-

e
-

f.
,
r

«W T•MW T5«W 8* •«W TA11«W 8* •q̂«W T•q̂8A21 isW •~«W 8* 3«W T!A3

1 isW •~ q̂83q̂!«W 8* •«W TA41 isW •~«W 8* 3q̂!«W T•q̂8A5

1 isW •~«W 8* 3q̂8!«W T•q̂8A62 isW •~«W T3q̂8!«W 8* •q̂A7

2 isW •~«W T3q̂!«W 8* •q̂A8 , ~13!

Mz5«W 8* •q̂A91 isW •~ q̂83q̂!«W 8* •q̂A101 isW •~«W 8* 3q̂!A11

1 isW •~«W 8* 3q̂8!A12. ~14!

III. GENERALIZED POLARIZABILITIES

We now apply the general result of Eq.~7!, in order to
determine the number of independent polarizabilities eme
ing from the leading-order term of a consistent expansion

the residual amplitudeMB
g* g in the energyv8 of the outgo-

ing, real photon@6#. For completeness we include the resu
of Ref. @9# for the spin-independent polarizabilities in ou
presentation.

The definition of the generalized polarizabilities in VCS

based upon the multipole representation ofMB
g* g @6,24#. In

Ref. @6# the multipolesH (r8L8,rL)S(v8, q̄ ) were introduced,
where r (r8) denotes the type of the initial~final! photon
(r50, chargeC; r51, magneticM ; r52, electricE). The
initial ~final! orbital angular momentum is characterized
L (L8), and the quantum numberS distinguishes between
non-spin-flip (S50) and spin-flip (S51) transitions.

According to the low-energy theorem for VCS@6,7#,
which is an extension of the famous low-energy theorem
RCS derived by Low@25#, and Gell-Mann and Goldberge

@26#,MB
g* g is at least linear in the energy of the real photo

If one restricts oneself to the lowest-order term inv8, only
electric and magnetic dipole radiation of the outgoing pho
contributes to the amplitude. In that case selection rules
parity and angular momentum allow for three scalar mu
poles (S50) and seven vector multipoles (S51), leading to
the same number of generalized polarizabilities~see Ref.@6#
for more details concerning the definition of the generaliz
polarizabilities!.

It turns out that multipoles containing an electric tran
tion can be replaced by more appropriate definitions. In
case of the outgoing photon only the leading term inv8

5u qW 8u is considered. Therefore, Siegert’s theorem@27#, to-
gether with the continuity equation, offers the possibility
express the electric transitions in terms of the charge tra
tions. In contrast to the final state kinematics, one is int
ested in considering an arbitrary three-momentumq̄ of the
virtual photon in the initial state, which allows for invest
gating the momentum dependence of the polarizabilities.
cordingly, one has to be careful when replacing the elec
multipoles in the initial state with charge multipoles, becau
the difference between electric and charge multipoles m
not be neglected. This leads to so-called mixed multipo
Ĥ (r8L8,L)S @6#, which are no longer characterized by a we
defined multipole type of the incoming photon.

Bearing these considerations in mind, the generalized
larizabilities can be defined through
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P~r8L8,rL !S~ q̄2!5F 1

v8L q̄L
H ~r8L8,rL !S~v8, q̄ !G

v850

~r,r850,1!, ~15a!

P̂~r8L8,L !S~ q̄2!5F 1

v8L q̄L11
Ĥ ~r8L8,L !S~v8, q̄ !G

v850

~r850,1!, ~15b!

as functions ofq̄2 @6#. Contrary to multipoles containing a
electric transition in the initial state, the multipoles in Eq
~15a! and ~15b! have a path-independent limit asq̄ ,v8→0.
In particular, in thev8-q̄ plane the limits along the RCS lin
( q̄5v8) and along the VCS line (v850) coincide. This
behavior of the multipoles makes it possible to relate, aq̄
50, some of the corresponding generalized polarizabili
to the polarizabilities defined in RCS. An extended disc
sion of the low-energy behavior of the multipoles and of t
generalized polarizabilities can be found in Ref.@6#.

Two of the three scalar polarizabilities can be understo
as generalizations of the well-known electric (a) and mag-
netic (b) polarizabilities in RCS,

a~ q̄2!52
e2

4p
A3

2
P~01,01!0~ q̄2!, ~16a!

b~ q̄2!52
e2

4p
A3

8
P~11,11!0~ q̄2!. ~16b!

To apply Eqs.~16a! and ~16b! in Gaussian units one has t
replace the factore2/4p by aQED5eGauss

2 . This replacement
ensures that the numerical numbers ofa and b in the
Heaviside-Lorentz system and in the Gauss system are
same. Note that by definition the generalized polarizabilit
of Ref. @6# do not depend on the value ofe2.

Since we perform an expansion inv8, we will introduce
two variables

v05vuv8505M2Ei5M2AM21 q̄2 , ~17a!

Q0
25Q2uv85052q2uv850522Mv0 . ~17b!

Following Guichonet al. @6#, the leading terms of the ampli
tudesAi from Eqs.~13! and ~14! read

A15v8AEi

M
F2A3

2
v0P~01,01!0~ q̄2!2

3

2
q̄2P̂~01,1!0~ q̄2!

2A3

8
q̄cosuP~11,11!0~ q̄2!G1O~v82!, ~18a!

A25v8AEi

M
FA3

8
q̄P~11,11!0~ q̄2!G1O~v82!, ~18b!
.

s
-

d

he
s

A35v8AEi

M

3

4F22v0P~01,01!1~ q̄2!1A2 q̄2@P~01,12!1~ q̄2!

2A3P̂~01,1!1~ q̄2!#1S 2 q̄P~11,11!1~ q̄2!

1A3

2
v0 q̄P~11,02!1~ q̄2!1A5

2
q̄3P̂~11,2!1~ q̄2! D cosuG

1O~v82!, ~18c!

A45v8AEi

M

3

4F2 q̄P~11,11!1~ q̄2!2A3

2
v0 q̄P~11,02!1~ q̄2!

2A5

2
q̄3P̂~11,2!1~ q̄2!G1O~v82!, ~18d!

A552A4 , ~18e!

A65O~v82! , ~18f!

A75v8AEi

M

3

4F q̄P~11,11!1~ q̄2!2A3

2
v0 q̄P~11,02!1~ q̄2!

2A5

2
q̄3P̂~11,2!1~ q̄2!G1O~v82!, ~18g!

A85v8AEi

M
F2

3

A2
q̄2P~01,12!1~ q̄2!G1O~v82!,

~18h!

A95v8AEi

M
F2v0A3

2
P~01,01!0~ q̄2!G1O~v82!,

~18i!

A105v8AEi

M
F2

3A3

2A2
v0 q̄P~11,02!1~ q̄2!G1O~v82!,

~18j!

A115v8AEi

M
F2

3

2
v0P~01,01!1~ q̄2!

1
3A3

2A2
v0 q̄cosuP~11,02!1~ q̄2!G1O~v82!,

~18k!

A125v8AEi

M
FA3v0

2 q̄
@P~11,00!1~ q̄2!2A2 q̄2P~11,02!1~ q̄2!#G

1O~v82!. ~18l!

In the derivation we made use of the transformation~B1!
~see Appendix B! between theAi and the amplitudes define
in Ref. @6#. We note that the relation between the mat

elementTVCS in Ref. @6# andMB
g* g is given by
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MB
g* g52 ie2TVCS/2M . ~19!

Another low-energy expansion of the amplitudesAi is
obtained if the covariant result of Eq.~7! is evaluated in the
c.m. frame. Restricting ourselves to terms linear inv8, the
expansion reads

A15v8AEi1M

2M
F2v0f 122M q̄2f 312v0f 10

1S q̄ f 112Mv0 q̄ f 322
v0

2

q̄
f 10D cosuG1O~v82!,

~20a!

A25v8AEi1M

2M
F2 q̄ f 122Mv0 q̄ f 312

v0
2

q̄
f 10G

1O~v82!, ~20b!

A35v8AEi1M

2M
F2Mv0f 51Mv0

2f 822v0f 102Mv0
2f 12

1S Mv0
2

q̄
f 52Mv0 q̄ f 812 q̄ f 101

Mv0
3

q̄
f 12D cosuG

1O~v82!, ~20c!

A45v8AEi1M

2M
F24

Mv0

q̄
f 10G1O~v82!, ~20d!

A552A4 , ~20e!

A65O~v82!, ~20f!

A75v8AEi1M

2M
F2

Mv0
2

q̄
f 51Mv0 q̄ f 822 q̄ f 10

2
Mv0

3

q̄
f 12G1O~v82!, ~20g!

A85v8AEi1M

2M
@28M2v0f 62Mv0f 72Mv0

2f 8

24M2v0f 912v0f 1024Mv0f 111Mv0
2f 12#1O~v82!,

~20h!

A95v8AEi1M

2M
@2v0f 112M q̄2f 214Mv0

2f 612Mv0
2f 9

22Mv0
2f 12#1O~v82!, ~20i!
A105v8AEi1M

2M
F2v0 q̄ f 42

v0
3

2 q̄
f 52

v0 q̄

2
f 722

v0
2

q̄
f 10

22v0 q̄ f 112
Mv0

3

q̄
f 12G1O~v82!, ~20j!

A115v8AEi1M

2M
F2 q̄2f 42

v0
2

2
f 52

v0
2

2
f 722v0f 10

22v0
2f 1122Mv0

2f 121S 22v0 q̄ f 41
v0

3

2 q̄
f 51

v0 q̄

2
f 7

12
v0

2

q̄
f 1012v0 q̄ f 111

Mv0
3

q̄
f 12D cosuG1O~v82!,

~20k!

A125v8AEi1M

2M
F2

Mv0
2

q̄
f 51S Mv0 q̄22

M2v0
2

q̄
D f 12G

1O~v82!. ~20l!

Because of the expansion inv8, the functions in Eqs.~20!
must have the argumentsf i5 f i uv8505 f i(2Q0

2 ,0,0).
Until now we have not used the transformation propert

of the functionsf i with respect to photon crossing and th
combination of charge conjugation and nucleon crossi
which can be obtained from Eqs.~A6! and~A11!. In particu-
lar, the behavior with respect to charge conjugation lead
the conclusion thatf 3 , f 4 , f 8 , and f 10 are odd functions of
q•P @see Eq.~A6d!#. Consequently, they are at least linear
v8 and, therefore, do not contribute to the leading-ord
terms in Eqs.~20a!–~20l!. Hence we can omit these fou
functions and derive relations between the polarizabilities
comparing the amplitudesAi of the two different low-energy

expansions~18a!–~18l! and ~20a!–~20l! of MB
g* g . To be

specific,A4 in Eq. ~20d! vanishes to lowest order inv8, thus
relating the polarizabilitiesP(11,11)1, P(11,02)1, and P̂(11,2)1.
Two further relations arise because the terms with and w
out cosu in the amplitudesA1 andA3 are, respectively, given
by the same linear combinations of thef i . An inspection of
A11 and A12 yields a fourth relation: While Eqs.~20k! and
~20l! contain only two independent linear combinations
the f i , A11 andA12 in Eqs.~18k! and ~18l! depend on three
polarizabilities. Note that the identityv0

25 q̄212Mv0 en-
ters into the derivation of the last relation. Altogether, w
obtain four relations between the ten original generalized
larizabilities,

05A3

2
P~01,01!0~ q̄2!1A3

8
P~11,11!0~ q̄2!

1
3 q̄2

2v0

P̂~01,1!0~ q̄2!, ~21a!
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05P~11,11!1~ q̄2!1A3

2
v0P~11,02!1~ q̄2!

1A5

2
q̄2P̂~11,2!1~ q̄2!, ~21b!

052v0P~01,01!1~ q̄2!12
q̄2

v0

P~11,11!1~ q̄2!

2A2 q̄2P~01,12!1~ q̄2!1A6 q̄2P̂~01,1!1~ q̄2!, ~21c!

053
q̄2

v0

P~01,01!1~ q̄2!2A3P~11,00!1~ q̄2!

2A3

2
q̄2P~11,02!1~ q̄2!. ~21d!

As is evident from the definition of the generalized polar
abilities in Eqs.~15a! and ~15b! the relations~21a!–~21d!
can only be applied along the VCS linev850. The relation
between the scalar polarizabilities in Eq.~21a! has already
been derived in Ref.@9#. It is an important consequence o
Eqs. ~21a!–~21d! that six independent functions ofq̄2 are
sufficient to parameterize the structure-dependent VCS
plitude to lowest order inv8.

We want to emphasize again that the four relations
tween the ten generalized polarizabilities are ultimat
caused by charge conjugation in connection with nucle
crossing. If we drop the assumption that this symme
holds, the functionsf 3 , f 4 , f 8 ,andf 10 give a contribution to
the leading-order terms in Eqs.~20a!–~20l!, and none of our
four relations between the polarizabilities is valid any long
In this sense we find complete agreement with the analys
Ref. @6#, because the constraint due to charge conjuga
and nucleon crossing has not been taken care of in that
erence.

At q̄50, particular relations between the polarizabiliti
and their derivatives can be found by expanding Eqs.~21a!–
~21d!. We only discuss the most interesting cases: Three
the seven vector polarizabilities vanish atq̄50,

P~01,01!1~0!5P~11,11!1~0!5P~11,00!1~0!50. ~22!

These results follow, in part, from Eqs.~21b! and ~21d!, if
one exploits the expansionv052 q̄2/2M1O( q̄4). Equation
~21d! only contains the information that a certain linear co
bination ofP(01,01)1(0) andP(11,00)1(0) disappears. The fac
that both polarizabilities vanish separately becomes obv
by comparing the angular-independent part of the amplit
A11 in Eqs.~18k! and ~20k!.

Combining Eqs.~21b! and ~21c! enables us to eliminate
P(11,11)1. This leads to a relation between the remaining fo
vector polarizabilities,

P~01,12!1~0!1A3P~11,02!1~0!2A3P̂~01,1!1~0!

22A5M P̂~11,2!1~0!50. ~23!
-
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.
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The relations between the generalized polarizabilities a
imply that several multipoles are connected at small val
of v8. Making use of Eqs.~21a! and ~21b! we list the two
most striking examples,

H ~21,21!0~v8, q̄ !

5v8@2v0P~01,01!0~ q̄2!1A6 q̄2P̂~01,1!0~ q̄2!#1O~v82!

52v8v0P~11,11!0~ q̄2!1O~v82!

52
v0

q̄
H ~11,11!0~v8, q̄ !1O~v82!, ~24a!

H ~11,11!1~v8, q̄ !5v8 q̄P~11,11!1~ q̄2!1O~v82!

5v8F2A3

2
v0 q̄P~11,02!1~ q̄2!

2A5

2
q̄3P̂~11,2!1~ q̄2!G1O~v82!

5H ~11,22!1~v8, q̄ !1O~v82!. ~24b!

These equations are based upon the low-energy expansi
the multipoles given in Ref.@6#. Obviously, charge conjuga
tion leads, at least in VCS, to unexpected constraints
tween the multipoles, which go beyond the conditions due
parity and angular momentum conservation. Whether th
constraints are limited to the lowest order inv8 is beyond
the scope of our present investigation. An answer to t
question would require both a multipole analysis includi
angular momentaL8>2 and an extension of Eqs.~20a!–
~20l! to higher orders inv8.

In Ref. @9# it has been argued that the relation between
scalar electric and magnetic multipole@Eq. ~24a!# vanishes in
the static limitM→`, which is obvious from the definition
of v0. However, the second equation~24b! is not affected by
this limit. Accordingly, while Eq.~24a! may be interpreted
as a recoil effect, the connection betweenH (11,11)1 and
H (11,22)1 seems to indicate an intrinsic property of the targ

From a practical point of view, the results in Eqs.~21a!–
~21d! are very appropriate to test predictions for the gen
alized polarizabilities of models incorporating the requir
symmetries. Moreover, they can serve as constraints for
perimental analyses.

With the exception of the electric polarizabilitya( q̄2),
the measurement of individual polarizabilities requires pol
ization experiments. In the unpolarized case it has been
posed@6# to extract four linear combinations of the polari
abilities by measuring the structure functions

PLL~ q̄ !522A6MGE~Q0
2!P~01,01!0~ q̄2!, ~25a!

PTT~ q̄ !5
3

2
GM~Q0

2!$2v0P~01,01!1~ q̄2!

1A2 q̄2@P~01,12!1~ q̄2!1A3P̂~01,1!1~ q̄2!#%,

~25b!
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PLT~ q̄ !5A3

2

M q̄

AQ0
2

GE~Q0
2!P~11,11!0~ q̄2!

1
A3AQ0

2

2 q̄
GM~Q0

2!

3S P~11,00!1~ q̄2!1
q̄2

A2
P~11,02!1~ q̄2!D ,

~25c!

PLT8 ~ q̄ !5A3

2

M

AQ0
2

GE~Q0
2!

3@2v0P~01,01!0~ q̄2!1A6 q̄2P̂~01,1!0~ q̄2!#

2
3

2
AQ0

2GM~Q0
2!P~01,01!1~ q̄2!, ~25d!

with GE and GM denoting the electric and magnetic Sac
form factors, respectively. These structure functions
scribe, to lowest order inv8, the interference between th
non-Born and the Born plus Bethe-Heitler amplitude. By u
of Eqs.~21a! and~21d! the structure functionsPLT andPLT8
turn out to be mutually dependent via the relation

PLT~ q̄ !1
q̄

v0

PLT8 ~ q̄ !50. ~26!

This indicates that in an unpolarized experiment there
only three independent structure functions containing fi
generalized polarizabilities.

IV. SUMMARY

We analyzed VCS off the nucleon in a covariant, mod
independent formalism, which allowed us to include co
straints from discrete symmetries in a natural way. We
stricted our investigation to the so-called structure-depend
part which is obtained from the full amplitude by subtracti
a separately gauge-invariant Born part involving the ver
of Eq. ~4!. We demonstrated that it is possible to parametr
the VCS invariant matrix element in such a fashion that
tensor structures as well as the corresponding amplitude
free of kinematical singularities. Consequently, the am
tudes only contain information on the dynamics of the p
cess to be explored by the experiment. We then focused
Compton scattering with a virtual, spacelike photon in t
initial and a real photon in the final state, because this p
cess will be investigated in future experiments. Applying o
covariant approach to particular kinematical scenarios
critically reviewed the formalism presently used in the ana
sis of VCS experiments below pion threshold@6#. We found
that charge-conjugation symmetry in connection w
nucleon crossing generates four relations among the
originally proposed generalized polarizabilities of t
nucleon. We further derived relations between the gene
ized polarizabilities at particular kinematical points. W
hope that our results will facilitate future theoretical and e
perimental analysis. These results have already been q
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valuable for the analysis of VCS within the framework of th
linear sigma model@14,15# and HBChPT@16,17#. All con-
straints on the generalized polarizabilities derived in this
per were confirmed on the level of model calculations w
these two effective Lagrangians, because they incorpo
the relevant symmetries, gauge invariance, and Lorentz
variance as well as the discrete symmetries. We consider
as an important check for both the model calculations a
our general results.
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APPENDIX A: GENERAL FORM OF THE COMPTON
TENSOR

A construction of the Compton tensorMmn of the most
general VCS reactiong* 1N→g* 1N has been given by
Tarrach@3#. Here, we sketch the main features of his deriv
tion and extend it with respect to our considerations. The
of all possible tensor structuresKi

mn of the most genera
Compton tensor is built up from the four independent Lo
entz vectorsqm, q8m, Pm, andgm. Each structureKi

mn must
be even with respect to parity transformations, because
consider only parity-conserving interactions. Furthermore
is useful to choose theKi

mn with a well-defined behavior
under photon crossing (q↔2q8, m↔n) and under the
combination of nucleon crossing and charge conjugationC.
With these assumptions one obtains 34Ki

mn @see Eq.~8! of
Ref. @3# for the complete list#,

K1
mn5gmn, . . . ,

K34
mn5~gmgn2gngm!Q•g1Q•g~gmgn2gngm!,

~A1!

where the structuresK1
mn –K10

mn would also appear in the deri
vation for a spin-0 particle. Note our definition ofP andQ of
Eq. ~1! and the reversed order ofm andn as compared with
Ref. @3#. Using four-momentum conservation and Dirac
equation it is possible to express each other tensor in te
of theKi

mn . Moreover, two nontrivial relations between se
eral of theKi

mn hold @3#, reducing the number of independe
tensors to 32. Even if there is some freedom in the choice
the independent tensors, it is convenient to eliminateK13

mn

andK28
mn @3#, which will not appear in the following deriva

tion any more. Counting the helicities of the four particl
involved in the reaction one ends up with the same num
325(2323434)/2, where the division by 2 is due to pa
ity conservation in boson-fermion scattering@28#. Since each
photon is considered off shell, it has components of spi
and spin 0 and thus enters with four degrees of freedom
the counting@28#.

In order to incorporate current conservation at both p
ton vertices@see Eq.~5!#, one derives linear combinations o
the Ki

mn , which then form the basis vectors ofMmn. For the
spin-independent amplitude this procedure has been
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plained in more detail in Refs.@8# and @9#. In the construc-
tion of such gauge-invariant linear combinations it usua
happens that poles in the independent invariantsq2, q82,
q•q8, and q•P of the VCS reaction arise, leading to un
physical zeros or constraints in the corresponding amplitu
of the basis vectors. A general solution developed
Bardeen and Tung@1# avoids this problem, which one en
counters in different physical reactions. The application
this method to VCS results in 18 gauge-invariant and po
free tensors@3#,

T1
mn52q•q8K1

mn1K3
mn , . . . , ~A2a!

T18
mn5K17

mn22q•PK25
mn1

q•q8

2
K34

mn . ~A2b!

The spin-independent tensorsT1
mn , . . . ,T5

mn are the same a
in Eq. ~5! of Ref. @9#, whereas the basis elemen
T6

mn , . . . ,T18
mn correspond to the tensorst6

mn , . . . ,t18
mn in Eq.

~12! of Ref. @3#, rewritten for our choice ofP andQ in Eq.
~1!. Note that the number of these tensors also results f
counting one longitudinal and two transverse degrees of
larization of the virtual photons, 185(2323333)/2.

The above considerations determine the general form
Mmn. In particular, the gauge-invariant residual partMB

mn

@see Eq.~3!# of the Compton tensor can be expressed
terms of the basis vectors in Eqs.~A2a! and~A2b! according
to

MB
mn5(

i 51

18

Bi8~q2,q82,q•q8,q•P!Ti
mn . ~A3!

However, the above basis has one drawback. Though
tensorsTi

mn are free of poles, the corresponding amplitud
Bi8 still contain kinematical constraints. Such a basis is ca
‘‘nonminimal’’ @3#. The nonminimality is due to the fact tha
it is impossible to make a transformation into an equivale
pole-free basis without introducing any kinematical pole
the transformation matrix@3#. As a consequence, three fu
ther gauge-invariant and pole-free tensors exist, which
be obtained fromT1

mn , . . . ,T18
mn only with factors carrying a

single pole inq•q8:

T19
mn5

1

q•q8
F2q2q82T2

mn1~q•P!2T3
mn2q•P

q21q82

2
T4

mn

1q•P
q22q82

2
T5

mnG
5~q•P!2K2

mn1q2q82K6
mn2q•P

q21q82

2
K9

mn

2q•P
q22q82

2
K10

mn , ~A4a!
es
y

f
-

m
o-

of

n

he
s
d

t,

n

T20
mn5

1

4q•q8
@~q22q82!T10

mn22~q21q82!T14
mn12q•PT15

mn#

52
q22q82

2
K6

mn2
q•P

2
K10

mn1M
q22q82

2
K21

mn

1M
q21q82

2
K22

mn2Mq•PK24
mn1

q21q82

8
K27

mn

2
q•P

4
K29

mn2q•P
q22q82

4
K33

mn1M
q22q82

8
K34

mn ,

~A4b!

T21
mn5

1

4q•q8
@~q21q82!T10

mn22~q22q82!T14
mn12q•PT16

mn#

52
q21q82

2
K6

mn1
q•P

2
K9

mn1M
q21q82

2
K21

mn

1M
q22q82

2
K22

mn2Mq•PK23
mn1

q22q82

8
K27

mn

2
q•P

4
K30

mn2q•P
q21q82

4
K33

mn1M
q21q82

8
K34

mn .

~A4c!

The nonminimality of the basis in Eq.~A2! is reflected by
the fact that in the caseq•q850 the set of tensors in Eq
~A2! does not form a tensor basis anymore, because s
elements of the original basis become linearly dependent@3#.
Unfortunately, the two kinematical scenarios we investig
for the analysis of VCS at small final photon energyv8 both
imply q•q850.

For this reason, when constructing the tensor basis for
residual partMB

mn , we will have to start with a tensor bas
different from the one of Eq.~A2!.

It turns out that if we useT19
mn instead ofT5

mn , T20
mn instead

of T15
mn , and T21

mn instead ofT16
mn , we obtain a tensor basi

which is free of poles and zeros and, thus, can also be use
the caseq•q850. However, this new basis is not minima
either, because poles in the invariantq•P can create linear
dependences among the basis elements in the Born pa
the Compton tensor. However, this is not the case for
residual part, which we are interested in in this paper. T
residual part of the Compton tensor reads

MB
mn5(

i PJ
Bi~q2,q82,q•q8,q•P!Ti

mn ,

J5$1, . . . ,21%\$5,15,16%. ~A5!

The corresponding amplitudesBi(q
2,q82,q•q8,q•P) are

free of kinematical constraints, in particular free of poles



et
-
o

nj

in
ity

e
ly

to

en

r-

u
R

th

-

hat
ati-

t

s
c-

57 949STRUCTURE ANALYSIS OF THE VIRTUAL COMPTON . . .
This can be proved by means of considering their symm
properties: The tensorMB

mn is invariant under photon cross
ing and the combination of charge conjugation with nucle
crossing@3#. Since theTi

mn exhibit definite transformation
properties with respect to photon crossing and charge co
gation combined with nucleon crossing, the amplitudesBi do
as well. By means of the identities

Bi~q2,q82,q•q8,q•P!51Bi~q82,q2,q•q8,2q•P!

~ i 51,2,3,5,8,10,13,15,18,19,21!, ~A6a!

Bi~q2,q82,q•q8,q•P!52Bi~q82,q2,q•q8,2q•P!

~ i 54,6,7,9,11,12,14,16,17,20!, ~A6b!

Bi~q2,q82,q•q8,q•P!51Bi~q2,q82,q•q8,2q•P!

~ i 51,2,3,8,9,10,11,14,18,19,20,21!, ~A6c!

Bi~q2,q82,q•q8,q•P!52Bi~q2,q82,q•q8,2q•P!

~ i 54,5,6,7,12,13,15,16,17!, ~A6d!

the functionsBi can be divided into four classes, where
Eqs. ~A6a! and ~A6b! use has been made of the ident
q•P5q8•P. We emphasize that Eqs.~A6c! and ~A6d!,
which are crucial for the derivation of the relations betwe
the generalized polarizabilities in Sec. III, may alternative
be derived by means of time reversal together with pho
crossing@3#.

For the definition of low-energy constants we need a g
eral expansion of theBi up to the orderO(k3) (kP$q,q8%),
which immediately follows from the transformation prope
ties of Eqs.~A6a!–~A6d!:

Bi5bi ,01bi ,2aq•q81bi ,2b~q21q82!1bi ,2c~q•P!21O~k4!

~ i 51,2,3,8,10,18,19,21!, ~A7a!

Bi5bi ,3~q22q82!q•P1O~k4! ~ i 55,13,15!,
~A7b!

Bi5bi ,2~q22q82!1O~k4! ~ i 59,11,14,20!, ~A7c!

Bi5bi ,1q•P1bi ,3aq•Pq•q81bi ,3bq•P~q21q82!

1bi ,3c~q•P!31O~k4! ~ i 54,6,7,12,16,17!.

~A7d!

Such an expansion of the amplitudes in terms of the fo
momenta of the photons has already been performed in
@8# in connection with VCS from the pion.

From the above Taylor expansion, the fact that in
original representation

MB
mn5 (

r PR
Cr~q2,q82,q•q8,q•P!Kr

mn ,

~A8!

R5$1, . . . ,34%\$13,28%,

the functionsCr by definition are free of poles in the kine
matical variables and the symmetry properties of theCr and
ry

n

u-

n

n

-

r-
ef.

e

Kr
mn , it follows that the functionsBi(q

2,q82,q•q8,q•P),
i PJ, are free of poles. Furthermore, it can be shown t
gauge invariance does not generate any additional kinem
cal constraints on these functions. Thus, Eq.~A5! contains a
representation forMB

mn which satisfies all requirements—no
only for our particular caseq•q850, but for any choice of
kinematical variables ing* N→g* N. In particular, it is not
necessary to use three additional functions as in Ref.@3#.
Reexpressing this parametrization in the form of Eq.~A3!,
the functionsBi8 read

Bi85Bi for i P $1,6,7,8,9,11,12,13,17,18%,
~A9a!

B285B22
q2q82

q•q8
B19, ~A9b!

B385B31
~q•P!2

q•q8
B19, ~A9c!

B485B42q•P
q21q82

2q•q8
B19, ~A9d!

B585q•P
q22q82

2q•q8
B19, ~A9e!

B108 5B101
q22q82

4q•q8
B201

q21q82

4q•q8
B21, ~A9f!

B148 5B142
q21q82

2q•q8
B202

q22q82

2q•q8
B21, ~A9g!

B158 5
q•P

2q•q8
B20, ~A9h!

B168 5
q•P

2q•q8
B21. ~A9i!

These equations follow from the definitions ofT19
mn , T20

mn ,
and T21

mn in Eqs. ~A4a!–~A4c!.2 We stress that the tensor
T1

mn , . . . ,T18
mn still form a basis of the Compton tensor a

2Note thatB19 is equivalent to the functionB6 in Ref. @9#.
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cording to Eq.~A3!. The nonminimality of this basis is ex
pressed in a specific kinematical behavior of the amplitu
Bi8 ; namely, some amplitudes contain poles inq•q8. How-
ever, MB

mn is free of poles, despite the behavior of theBi8 .
This is due to the fact that both the amplitudesBi and the
tensorsTi

mn , i PJ, do not carry any pole in the relativisti
invariants.

For the discussion ofMg* g we change the numbering b
introducing tensorsr i

mn in the following way:

«mr1
mn«8n* 5«mT̃1

mn«8n* 5«•q8«8* •q2q•q8«•«8* ,
~A10a!

«mr2
mn«8n* 5«mT̃2

mn«8n*

5q•P~«•P«8* •q1«8* •P«•q8!

2q•q8«•P«8* •P2~q•P!2«•«8* ,

~A10b!

«mr3
mn«8n* 5«mT̃4

mn«8n*

5q•Pq2«•«8* 2q•P«•q«8* •q

2q2«8* •P«•q81q•q8«8* •P«•q,

~A10c!

«mr4
mn«8n* 5«mT̃7

mn«8n*

5«•P«8* •PQ•g2q•P~«•P«8* •g

1«8* •P«•g!

1 iq•Pg5«mnab«m«8n* Qagb , ~A10d!

«mr5
mn«8n* 5«mT̃8

mn«8n* 52«mT̃9
mn«8n* 5

1

4
«8* •P«•qQ•g

1
q2

4
~«•P«8* •g2«8* •P«•g!

2
q•P

2
«•q«8* •g1

i

4
q2g5«mnab«m«8n* Qagb ,

~A10e!

«mr6
mn«8n* 5«mT̃10

mn«8n* 522q•q8«•P«8* •P

1q•P~«•P«8* •q1«8* •P«•q8!

12Mq•q8~«•P«8* •g1«8* •P«•g!

22Mq•P~«•q8«8* •g1«8* •q«•g!

1 iq•P~«•q8sna«8n* Qa2«8* •qsma«mQa!

12iq•q8q•Psmn«m«8n*

12iMq•q8g5«mnab«m«8n* Qagb , ~A10f!
s«mr7
mn«8n* 5«mT̃11

mn«8n* 5
1

4
~«•P«8* •q2«8* •P«•q8!Q•g

2
q•q8

2
~«•P«8* •g2«8* •P«•g!

1
q•P

2
~«•q8«8* •g2«8* •q«•g!, ~A10g!

«mr8
mn«8n* 5«mT̃12

mn«8n* 5«mT̃13
mn«8n* 5

q•P

2
«•q«8* •q

2
q2

4
~«•P«8* •q2«8* •P«•q8!

2
q•q8

2
«8* •P«•q2

M

2
«•q«8* •qQ•g

1Mq•q8«•q«8* •g2
M

2
q2~«•q8«8* •g

2«8* •q«•g!

1
i

4
q2~«•q8sna«8n* Qa2«8* •qsma«mQa!

1
i

2
q•q8q2smn«m«8n* , ~A10h!

«mr9
mn«8n* 5«mT̃14

mn«8n* 5
q•P

2
~«•P«8* •q2«8* •P«•q8!

2Mq•q8~«•P«8* •g2«8* •P«•g!

1Mq•P~«•q8«8* •g2«8* •q«•g!

1
i

2
q•q8~«•Psna«8n* Qa1«8* •Psma«mQa!

2
i

2
q•P~«•q8sna«8n* Qa1«8* •qsma«mQa!,

~A10i!

«mr10
mn«8n* 5«mT̃17

mn«8n* 522q•P«•«8* 1«•P«8* •q

1«8* •P«•q812M«•«8* Q•g

22M ~«•q8«8* •g1«8* •q«•g!

2 i«•q8sna«8n* Qa1 i«8* •qsma«mQa

22iq•q8smn«m«8n* , ~A10j!

«mr11
mn«8n* 5«mT̃18

mn«8n* 5~«•P«8* •q1«8* •P«•q8!Q•g

22q•P~«•q8«8* •g1«8* •q«•g!

12iq•q8g5«mnab«m«8n* Qagb , ~A10k!
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«mr12
mn«8n* 5«mT̃20

mn«8n* 5«mT̃21
mn«8n*

52
q2

2
«•P«8* •P1

q•P

2
«8* •P«•q

1Mq2«•P«8* •g2Mq•P«•q«8* •g

2
i

4
q2~«•Psna«8n* Qa1«8* •Psma«mQa!

1
i

2
q•P«•qsna«8n* Qa1

i

2
q2q•Psmn«m«8n*

1
i

2
Mq2g5«mnab«m«8n* Qagb . ~A10l!

The sign of the Levi-Civita` symbol is fixed by«01235
2«012351, andsmn5 i @gm ,gn#/2 is the usual abbreviation
for the commutator of the Dirac matrices. Because of pa
conservation Eqs.~A10a!–~A10l! do not contain any pseu
doscalar structures.

In analogy with the tensors, one can replace
Bi(q

2,0,q•q8,q•P) by 12 amplitudesf i5 f i(q
2,q•q8,q•P),

f 15B1 , f 25B2 , f 35B4 ,

f 45B7 , f 55B82B9 , f 65B10,
~A11!

f 75B11, f 85B121B13, f 95B14,

f 105B17, f 115B18, f 125B201B21.

APPENDIX B: AMPLITUDE SETS IN VIRTUAL
COMPTON SCATTERING

Throughout this work we have applied the set of amp
tudes defined in Eqs.~13! and ~14!. The relation to the con-
vention of Ref.@6# is given by
J.
.

o-

s.

P
6,

s.
y

e

-

A15at,

A25at8,

A352sinu b1
t 1sinucosu b1

t82sinu b2
t82sin2u b3

t8 ,

A452
1

sinu
b2

t ,

A55
1

sinu
~2cosu b1

t 1b1
t82cosu b2

t8!,

A65
1

sinu
~b1

t 2cosu b1
t81b2

t8!,

A75
1

sinu
~2cosu b1

t 1cos2u b1
t82cosu b2

t81sinu b3
t

2sinucosu b3
t8!,

A85
1

sinu
~cos2u b1

t 2cosu b1
t81b2

t82sinucosu b3
t

1sinu b3
t8!,

A95al ,

A105
1

sinu
~cosu b1

l 2b2
l 2sinu b3

l !,

A115sinu b1
l 1cosub3

l ,

A1252b3
l . ~B1!
J.

ck,

the
d,

,

,

.
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