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Structure analysis of the virtual Compton scattering amplitude at low energies
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We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent
formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been
subtracted in a gauge-invariant fashion, is free of poles and kinematical zeros. The covariant treatment natu-
rally allows one to implement the constraints due to Lorentz and gauge invariance, crossing symmetry, and the
discrete symmetries. In particular, when applied toelpe~e’p’ y reaction, charge-conjugation symmetry in
combination with nucleon crossing generates four relations among the ten originally proposed generalized
polarizabilities of the nucleoS0556-28188)04502-9

PACS numbd(s): 13.60.Fz, 14.20.Dh

[. INTRODUCTION few theoretical activities. Model-independent aspects of VCS
have been studied in Ref&-9]. The various predictions for
The derivation of the structure of the general virtual model-dependent quantities related to VCS comprise the
Compton scatteringVCS) amplitude from the nucleon has constituent quark modé¢b,10], an effective Lagrangian ap-
been a problem with a long histof—3]. The most sophis- proach[11], calculations[12] in a coupled-channel unitary
ticated treatment of the general Compton process with botmodel [13], field-theoretical models like the linear sigma
the initial and final state photons off shejy N—y*N, was  model[14,15, and heavy baryon chiral perturbation theory
presented by Tarrach in R¢B]. We will use this work as a (HBChPT) [16,17 as well as the Skyrme modgl8]. An
starting point for our investigation of the low-energy VCS gyerview of recent work on VCS may be found in REf9].
amplitude. . . The formalism applied most frequently to VCS at small
Whether one analyzes Compton scattering within th&jna| photon energy and large momentum transfer has been
framework of a given theoretical model or experimentally, 'tdeveloped in Ref[6]. In that work the regular part of the

is in any case desirable to perform the analysis in terms of dcs amplitude has been parametrized in terms of ten gen-
set of amplitudes which is solely determined by the dynam-

) . ; ) . ralized polarizabilities of the nucleon—three in th in-
ics of the VCS process with the kinematics being factoreqide endznt and seven in the spin-dependent part 0?&?2 am-
out. In the case of VCS with one or even two virtual photons P P P P

it is by no means trivial to find an adequate set of amplitude litude. Recently, a general_proof ha§ be_e.n g|_ﬂﬁ]ﬁthat .
which fulfills this requiremen{2,3]. In particular, as will pnly two of the three gen_erahzed polarizabilities in th_e spin-
become obvious in the following, it is a central issue to con-NdePendent sector are independent of each other if charge
struct tensor structures and corresponding amplitudes whicfoniugation and nucleon crossing are applied. In the present
are free of poles or other kinematical constraints. This probWork we will analyze the spin-dependent amplitudes on the
lem must be addressed on a model-independent level by ta@rounds of a covariant treatment. The central result of our
ing into account genera' Symmetry principles ||ke gauge and‘nvestigation will be that due to gauge inVariance, Lorentz
Lorentz invariance and discrete symmetries like parity, timdnvariance, and invariance under parity, time reversal and
reversal, and charge conjugation. We will discuss an encharge conjugation in combination with nucleon crossing the
semble of tensor structures and amplitudes with the desiresggular part of the VCS amplitude can be written in terms of
properties for the case of* N— y*N which then can be only six independent generalized polarizabilities instead of
applied to the case* N— yN with a real photon in the final ten if one performs the same kinematical approximations as
state. In particular, our results for the regular part of the VC3n Ref. [6].
amplitude can be expressed in terms of even fewer functions Our paper is organized as follows: In Sec. Il we briefly
than suggested in Ref3]. review the formalism of Ref.3], adapting the notation to our
The processy* N— yN will be analyzed at the electron conventions, and simplify the results according to our needs.
laboratories MAMI(Mainz), Jefferson LaliNewport News, Part of the derivation is contained in Appendix A. In this
and MIT-Bates by means of electron scattering off a protorsection we will also specify the set of amplitudes we will
target,ep—e’p’ v [4]. In the electron scattering process the work with. In Sec. Il we investigate the number of indepen-
genuine VCS amplitude interferes with the electron bremsdent generalized polarizabilities of the nucleon if one im-
strahlung amplitude also known as the Bethe-Heitler procesgoses the same kinematical and symmetry constraints as in
which is completely determined by quantum electrodynamRef. [6] but in addition requires the VCS amplitude to be
ics and the electromagnetic form factors of the nucleon. Wénvariant under the simultaneous transformation of charge
will not discuss the Bethe-Heitler mechanism in this paper.conjugation and nucleon crossing. Finally, we give a brief
The scheduled VCS experiments have stimulated quite aummary in Sec. IV.
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Il. GENERAL STRUCTURE OF THE VCS AMPLITUDE

In this section we discuss the general form of the ampli-

tude M”"? for the VCS reactiony* + N— y+ N. Before go-
ing into detail let us briefly explain our notation: The initial
(final) photon is characterized by the four-momentuph
=(w,9) [q'*=(w',q")] and the polarization vectog*
=(%¢) [¢'#=(&'%¢")]. The four-momenta of the nucle-
ons readp?=(E;,p;), p*=(E;,p;). For convenience, we
introduce abbreviations for the sum of the photon and th
nucleon momenta,

P=pi+p;, Q=q+q" . ()

The covariant result fo””? turns out to be a powerful
tool for three reasons: First of all, it can be used to investi

gate the number of independent observables characterizirwit
different kinematical approximations. We study the conse-
guences of the restriction to the lowest-order term in the®

real-photon energw’ in order to determine the number of

independent generalized polarizabilities. Second, startin
from the VCS results the transition to real Compton scatter
ing is simple and one is able to connect observables definel

in real Compton scatteringRCS with those in VCS. In

particular, the relation between the third-order spin polariz

abilities, as defined by Ragu§20] for RCS, and the gener-
alized polarizabilities of Guichoet al. [6] can be obtained
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yag
v

F2(g%), q=p’—p,
4

whereF,; andF, are the Dirac and Pauli form factors of the
proton, respectively. The explicit result fM4"” is given in

Eqg. (18 of Ref.[3]. As a consequence of Low’'s theorem
[23], any calculation of pole terms involving on-shell equiva-
lent forms of the nucleon electromagnetic current yields the

’ 2 .0
“(p',p)=y"F1(q°) +i

®ame irregular contribution to the VCS matrix eleméot a

proof of this claim in the context of VCS, see Sec. IV B of
Ref.[7]). It is advantageous to use the particular form of Eq.
(4), since the resultindM4” separately satisfies all the sym-
metry requirements, in particular gauge invariance. Even
though this terminology is not quite precise, we will adhere
practice of referring to tt4” evaluated
h the vertices of Eq(4) as the “Born terms.” The corre-
pondingMg” will variously be denoted as the regular or
structure-dependent or residual or non-Born contribution.
gor a complete discussion of the ambiguity concerning what
xactly is meant by “Born terms,” the interested reader is
deferred to Sec. IV of Ref[7]. In the following, we are

to the common

mainly interested in the non-Born contribution to the Comp-

ton tensor, as this pably definitioninvolves the generalized

polarizabilities of6] and the low-energy constants to be de-
fined below.
Using gauge invariance

[21]. Finally, our covariant result is appropriate to determine
the general form of the VCS amplitude in any specific frame.
In this paper, we only deal with the c.m. frame.

We start our analysis of the VCS amplitude considering i .
the most general case with two virtual photons. The ampli2 System of independent tensors serving as a basha*6f
tude can be regarded as the contraction of the VCS tensdfas derived by Tarracf8]. OnceM3” andMg" are chosen
M#¥ with the polarization vectors of the photons, evaluated® be gauge invariant, we can construct both of them by use

between the nucleon spinors in the initial and final states, Of the same basis1”. _ _
Since the work of Tarrach3] plays an important role in

u(p;,S). (2) our further analysis, we have summarized its results in Ap-
' pendix A, in particular the representation of the Compton

Throughout this paper we use the conventions of Bjorkeri€nsor in terms of 18 basis elemefts”:

and Drell[22], whereM”" 7" is the invariant matrix element
of the VCS reaction. The normalization of the nucleon spinor
readsu(p,S)u(p,S)=1, and we adopt Heaviside-Lorentz
units where the square of the elementary charge is given by
e’/4m~1/137.

In order to disentangle new information from the VCS
tensor, it is useful to separate froM*” the contribution
which is irregular in the limitg—0 or q’—0. For that pur-
pose we divideM#” into a pole pieceM4” and a residual
partMg”,

qM#"=q,M*"=0, (5)

%

M‘y* 7= _iezu_(pf !Sf)S,uMMVSV

M’é”=iEJ Bi(a%.9'%,9-9',q-P)T*",
- (6)

J={1,...,23\{5,15,18.

At this point we stress that the number of independent func-

tions required for parametrizing the structure-dependent part

is actually 18 instead of 21 as suggested in R8f. (see

Appendix A). The independent amplitudés are functions

of four invariantsg?, q'2, q-q’, andg- P. The kinematics of

(3)  the general VCS process with on-shell nucleons is com-
pletely specified by this set, and all other invariants can be

In fact, such a splitting is not unique and we will follow the expressed in terms of these variables.

conventionof Refs.[3] and [6] of evaluating thes- and So far we have considered both photons to be virtual. We

u-channel pole terms using electromagnetic vertices of thevill now discuss the amplitude“/l“/*y of the VCS process

form v*+N—y+N, with real photons in the final state, i.e.,

q'?=0 and €'-q’=0. In this specific case the tensors

T4Y, T§", andT{y do not contribute to the amplitude. If we

multiply the tensorsT#*=T/(q'2=0) by the polarization

vectors of both photons, we end up with 12 different struc-

MAY=MEY+ ME”

We note that the definitions in E¢l) differ by a factor of 2 from
those used in Ref3] but agree with Refd.8] and[9].
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tures which is the correct number of terfits-7]. As a con- e Mo=g'* -ETA1+§’

ST‘MT:
sequence, the invariant VCS matrix eleme‘vﬂg*y can be oL . L.
written as +io-(q'Xq)e"* - etAgtio- (e Xq)er q'As

*.Qer- Q' Ay tic (e XeT)Ag

M§*7= —iezu_(pf s) +io-(e"*Xq')er-q'Ag—io-(e1XqQ')e'*-qA;
—ig-(e7XQ)e'* - gAg, (13
XE eple s 1i(a%,9-9',9-P)u(p;.S) -
M,=&'*-QAg+io-(q'Xq)e'* QA +io- (' X QA
7
" +io-(e"*Xq")Ap. (14)
Equation(7), together with the explicit results for the quan-
tities €,pf*"€,* in Eq. (A10) of Appendix A, defines the
general structure of the VCS amplitude wqﬁq&o andq’?
=0. Since Eq(7) is Lorentz invariant, it is frame indepen- ~ We now apply the general result of E), in order to
dent, and it allows one to incorporate the constraints from theletermine the number of independent polarizabilities emerg-
discrete symmetries in a rather simple way. ing from the leading-order term of a consistent expansion of
In the following we will work in the c.m. frame, i.e., the residual amplitudé1Z" ” in the energyw’ of the outgo-
ing, real photori6]. For completeness we include the results
pi=—q, pi=—¢', (80  of Ref. [9] for the spin-independent polarizabilities in our
presentation.
and will use an orthonormal basis defined by the momenta of The definition of the generalized polarizabilities in VCS is

Ill. GENERALIZED POLARIZABILITIES

the photons, based upon the multipole representation\dt;” ” [6,24]. In
o Ref. [6] the multipolesH®'"*YS(w' q) were introduced,

~ o~ ~ aXq . . . wherep (p’) denotes the type of the initidfinal) photon

€.=Q, &= sing ex=eyxXez, (9 (p=0, chargeC; p=1, magnetioV; p=2, electricE). The

initial (final) orbital angular momentum is characterized by
L (L"), and the quantum numbe distinguishes between

with ¢ denoting the scattering angle betwapandq’. non-spin-flip 8=0) and spin-flip §=1) transitions.
The matrix element can be decomposed into a transverse According to the low-energy theorem for VCE,7),
and a longitudinal part, which is an extension of the famous low-energy theorem for

RCS derived by Low25], and Gell-Mann and Goldberger

[26], Mg*“/ is at least linear in the energy of the real photon.
If one restricts oneself to the lowest-order termaih, only
electric and magnetic dipole radiation of the outgoing photon
contributes to the amplitude. In that case selection rules for
parity and angular momentum allow for three scalar multi-
poles 5=0) and seven vector multipoleS€ 1), leading to
the same number of generalized polarizabilitiese Ref[6]

for more details concerning the definition of the generalized
at the leptonic and the hadronic vertices, respectively. Not@olarizabilities.

that in the VCS process discussed in this paper the polariza- It turns out that multipoles containing an electric transi-
tion vector of the initial photon is generated by the tion can be replaced by more appropriate definitions. In the
electromagnetic transition current of the electrost case of the outgoing photon only the leading termaih

=e U, y*U./q?. Current conservation allows one to perform =| a'| is considered. Therefore, Siegert’s theorg], to-

the gauge transformatior”—a*=e*+{q”. Then the gether with the continuity equation, offers the possibility to

choice{=—¢ - q/w? leads to the polarization vector express the electric transitions in terms of the charge transi-
tions. In contrast to the final state kinematics, one is inter-

ested in considering an arbitrary three-momentgnof the
(12 virtual photon in the initial state, which allows for investi-
gating the momentum dependence of the polarizabilities. Ac-
cordingly, one has to be careful when replacing the electric
and thereby results in the specific formMV 7 in Eq. (10). multipoles in the initial state with charge multipoles, because
For the following discussion it is useful to decompose thethe difference between electric and charge multipoles must
VCS matrix element in Pauli space. We choose the paran{JOt be neglected. This leads to so-called mixed multipoles
etrization and the corresponding amplitudes defined in Ref ('L LS [6], which are no longer characterized by a well-
[16]. The transverse and longitudinal matrix elements candefined multipole type of the incoming photon.
respectively, be parametrized in terms of eight and four Bearing these considerations in mind, the generalized po-
structures, larizabilities can be defined through

MY 7=ie?x] xi, (10

T MT"F _ZSZMZ
w

where current conservation has been used,

q,.e"=0, q,Mg"=0, (11

2

.9 .

Oert — &
1)
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p'L’ pL)S(qZ) { H'L pL)S(w q)]

o'tqt w0

(p,p'=0,1), (159
IS(p’L/,L)S(?): ILl_LHl:'(p/L’,L)s(w/'a]

w'~q W' =0

(p'=01), (15b)

as functions of? [6]. Contrary to multipoles containing an

electric transition in the initial state, the multipoles in Egs.

(159 and(15b) have a path-independent limit aﬁTw'HO.
In particular, in thew’—q_plane the limits along the RCS line
(q=w’') and along the VCS lineq’ =0) coincide. This
behavior of the multipoles makes it possible to relateq_at

DRECHSEL, KNGCHLEIN, KORCHIN, METZ, AND SCHERER

—200P (%) + 297 P12 (g?)

. |E3
A3=(1) MZ

—3POM(g?)]+

3 — — 5 .. —
+ \/;woqp(ll,oal(q2)+ \/;qSP(ll,Z)l(qZ))CO$

(180

_a:)(ll,ll)l(?)

+0(w'?),

\/%Z{ _63(11,11)1(?) _ \/gwoa:)(ll,oal(?)

A4=w’

=0, some of the corresponding generalized polarizabilities

to the polarizabilities defined in RCS. An extended discus-
sion of the low-energy behavior of the multipoles and of the

generalized polarizabilities can be found in R

Two of the three scalar polarizabilities can be understood A,=

as generalizations of the well-known electrie)(and mag-
netic (B) polarizabilities in RCS,

. e? \/5 .
2y — _ _P(Ol,OJ)O 2 ,
a(q) - V32 (99
_ 2 \F _
2y — _ Zp(11,100 42y
B(q°) - Vs (99)

To apply Egs.(168 and(16b) in Gaussian units one has to
replace the factoe?/4m by agep= e2..ss This replacement
ensures that the numerical numbers @fand g8 in the

(168

(16b

Heaviside-Lorentz system and in the Gauss system are the
same. Note that by definition the generalized polarizabilities

of Ref.[6] do not depend on the value of.
Since we perform an expansion @1, we will introduce

two variables

M2+q2,

w0=w|wr:0=M—Ei=M— (17@

Q3=Q%,—0=—0%u—0=—2Mwy.  (17h

Following Guichonret al.[6], the leading terms of the ampli-
tudesA; from Egs.(13) and(14) read

A]_:a) 3[ \/gw P(Ol 0])0(q2) 3 2P (01, 10(q2)
3— (11,190, 2 12
- gqcosﬁP =2(q9) |+ O(w'?), (18a
/ Ei 3— (11,100, 2 ’2
A=w M ng =2°(q9) |+ O(w'?), (18b

—Vg?ﬂﬂm@%+ow*x (18d
As=—A,, (18¢
As=0(w'?) , (18f)

E 3] — _ 3 _
w/ \/%Z[ q P(ll,l])l(qZ)_ \/;woqp(ll’()al(qz)

5 .. —
- \[Eqsp(n,zu(qz) +0(w'?), (189
E; 3 .
Ag= o' M'_qup(omal(qz) +O(0'?),
(18h
E; 3 —
Ag=w' MI _wo\/;P(Ol’oDo(qz) +0(w'?),
(18i)
E;; 3V3 — _
A= o’ MI Zi\/;woqp(ll'oal(qz) +0(w'?),
(18))
Ei| 3 _
A= w _! _Ewop(omm(qz)
3y3 — _
+2i\/;woqcoa9P(“*°31(q2) +0(w'?),
(18Kk)
\/—wo (11,001, ~2 (11,021, ~2
A= o' vl ——IP (9%)—2q°P (9]
+0(w'?). (18l)

In the derivation we made use of the transformat{&d)
(see Appendix Bbetween the\; and the amplitudes defined
in Ref. [6]. We note that the relation between the matrix

elementTVCS in Ref. [6] and MY 7 is given by



57 STRUCTURE ANALYSIS OF THE VIRTUAL COMPT . .. 945

MY 7=—ie2TVCS2m . (19) [E+M] o} weq. 2
Ajp=o’ 2weqf,— =fg— —f;,—2—=*
10 oM 0dT4 24 57, 17 10
Another low-energy expansion of the amplitud@s is 5
obtained if the covariant result of E(/) is evaluated in the — Wy 2
c.m. frame. Restricting ourselves to terms lineawih the —2w00f~ —="f1p| + O(0"), (20)
expansion reads
[Ei+M — , Ei+M — wg (2)
A]_:(.U, IZM _(Dofl_ZM q2f3+2w0f10 Al].:w —M 2q 4_?1:5__1:7 Zwoflo
I N (.U(z) 2 2 — wg woq_
+| gf;+2Mwgqfz—2—=F0|cost |+ O(w'?), —2w5f11—2M wgf o+ —2woqf4+2—q_f5+7f7
q
(20a wg _ ng
+2—=F 10t 2woqf1;+ —f1p|COF |+ O(w'?),
Ty 5 q q
e _ — w
A=’ \[— —qf1—2Mwoqfat2—1f 1, (20k)
2M q
12
+0(0'?), (20b) N E,+M _Mwof ) qu__zﬂwg f
12 oM — !5 0 q— 12
o= A oM M aofe+ Mw2fs— 200t 10— Mot +O(0'? 20l
3= oM wols+MawgTg—2welf 10~ Mwpty, (0'%). (200)

I\/Iw(z) — — ng
— f5_Mquf8+2qflo+ p— f12 0039
q

+
q
+0(w'?), (200
E|+M M(l)o 2
A4:(l), _4Tflo +O((l), ), (20d)
2M q
As=—Ay, (209
A6=(’)(w’2), (20f)
A Eit M ngf +Mwgqfs—2qf
=W I w -
7 oM q 04Ts—2qQTyo
wg 12
_:flz +O((1) ), (20g)

Ei+M ) 5
A8:(1), W[_SM wofG_Mwof7_M(1}0f8

_4M2w0fg+ 2(1)01:10_4'\/' a)of11+ M wgfli] + O(w’z),
(20h)

/ Ei+M 52 2 2
A9=w oM [—w0f1+2Mq f2+4Mw0f6+2Mwofg

—2Mwif ]+ O(w'?), (20i)

Because of the expansion in’, the functions in Eqs(20)
must have the arguments=";|, _o="f;(—Q3,0,0).

Until now we have not used the transformation properties
of the functionsf; with respect to photon crossing and the
combination of charge conjugation and nucleon crossing,
which can be obtained from Eg@\6) and(A11). In particu-
lar, the behavior with respect to charge conjugation leads to
the conclusion that,, f,, fg, andf,gare odd functions of
g- P [see Eq(A6d)]. Consequently, they are at least linear in
o' and, therefore, do not contribute to the leading-order
terms in Egs.(209—(20l). Hence we can omit these four
functions and derive relations between the polarizabilities by
comparing the amplitude; of the two different low-energy
expansions(183—(18l) and (209—(20I) of Mg*y. To be
specific,A, in Eqg. (20d) vanishes to lowest order ia’, thus
relating the polarizabilitieP(*1191 p(1L02L gng p(11.2)1,
Two further relations arise because the terms with and with-
out co9 in the amplitude#\; andA; are, respectively, given
by the same linear combinations of the An inspection of
A, and A, yields a fourth relation: While Eqg20k) and
(201) contain only two independent linear combinations of
thef;, A;; andA;, in Egs.(18k) and (18l) depend on three

polarizabilities. Note that the identity3=g%+2M w, en-
ters into the derivation of the last relation. Altogether, we
obtain four relations between the ten original generalized po-
larizabilities,

3 — 3 —
0= \[Ep(m,obo(qz)Jr \/%Pm,mo(qz)

~2

(0]

(219
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_ 3 o The relations between the generalized polarizabilities also
0=pPUIL11(g2) + EwOP(“'Ozl(qz) imply that several multipoles are connected at small values

of w’. Making use of Egs(219 and (21b) we list the two
most striking examples,

5 . _
+ \@qZP“m(qzx (21D
H(21,21)O(wr ,_)
2 _ 01,000, 2 2H(01,0, ~2 2
0=20oP(02001(g?) + 2 P g7 = o'[20oP®%(a%) + V6P H0(q%)]+ O(w'?)
wo

B B — _ wrwop(ll,lDO(?)_i_ O((A),Z)
—\29%PO12Y(g?)+\6q?P?(g?), (219

— — ALy )+ O(w'?), (243
— q
O:3q_ P(Ol,O])l(?)_ \/§P(11,001(?) o o o
wq H(ll,l])l(w/,q):w/qp(ll,lj)l(q2)+o(w12)
3— _
_ \/;qu(ll,oal(qZ). (210 —o'| - \[gwoag(n,oal(?)
As is evident from the definition of the generalized polariz- _ \/§_3|5(11~2‘1(_2) L O(0'?)
abilities in Egs.(15a and (15b) the relations(213—(21d) 24 q

can only be applied along the VCS ling =0. The relation o

between the scalar polarizabilities in E@1a has already =H®1221(," q)+O(w'?). (24b)

been derived in Ref9]. It is an important consequence of

Egs. (21a—(21d that six independent functions af> are ~ These equations are based upon the low-energy expansion of

sufficient to parameterize the structure-dependent VCS anthe multipoles given in Ref6]. Obviously, charge conjuga-

plitude to lowest order inv’. tion leads, at least in VCS, to unexpected constraints be-
We want to emphasize again that the four relations between the multipoles, which go beyond the conditions due to

tween the ten generalized polarizabilities are ultimatelyparity and angular momentum conservation. Whether these

caused by charge conjugation in connection with nucleorgonstraints are limited to the lowest orderdr is beyond

crossing. If we drop the assumption that this symmetrythe scope of our present investigation. An answer to this

holds, the functiongs, f,, fg,andf,give a contribution to question would require both a multipole analysis including

the leading-order terms in Eq0a—(20I), and none of our angular momentd."=2 and an extension of Eq$209-

four relations between the polarizabilities is valid any longer.(201) to higher orders inv’.

In this sense we find complete agreement with the analysis of In Ref.[9] it has been argued that the relation between the

Ref. [6], because the constraint due to charge conjugatiofcalar electric and magnetic multip¢keqg. (243 ] vanishes in

and nucleon crossing has not been taken care of in that rethe static limitM — o, which is obvious from the definition

erence. of wy. However, the second equati¢@4b) is not affected by
At q=0, particular relations between the polarizabilities this limit. Accordingly, while Eq.(248 may belllnltgrlpreted
and their derivatives can be found by expanding Esa—  as_a recoil effect, the connection betweet™'Y! and

(21d). We only discuss the most interesting cases: Three dfi**??*seems to indicate an intrinsic property of the target.
the seven vector polarizabilities vanishaizo From a practical p0|_nt of view, the rgsglts in E¢81a-
' (21d are very appropriate to test predictions for the gener-

alized polarizabilities of models incorporating the required
plOLOL(0) = pUHL1YL(0) = PUL0%(0) = . (22 symmetries. Moreover, they can serve as constraints for ex-
perimental analyses.
These resullts follow, in part, from Eqe21b) and (21d), if With the exception of the electric polarizability(q?),
one exploits the expansiany= — q%/2M + O(q*). Equation  the measurement of individual polarizabilities requires polar-
(21d only contains the information that a certain linear com-ization experiments. In the unpolarized case it has been pro-
bination of P(°10DY0) andP(1.09Y0) disappears. The fact posed[6] to extract four linear combinations of the polariz-
that both polarizabilities vanish separately becomes obviouabilities by measuring the structure functions
by comparing the angular-independent part of the amplitude

All in Eqs(18k) and (20k) P ") — —-2./6MG 2 P(Ol,O])O "2 25
Combining Eqs(21b) and (21¢ enables us to eliminate (@) \/_ e(Qo) (a9, (253

P(LIDI This leads to a relation between the remaining four
vector polarizabilities, PTT(6= §GM(Q3){2%P<01,031(?)
2
P(OL123(0) + 3P(1102%(0) - y3P(*2(0) +\207[POH23(q?) + V3P (g?) ]}

—2\5MP(1121(0) =0, (23) (25b)
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— 3Mq o valuable for the analysis of VCS within the framework of the
Pur(q)= \/;—ZGE(Q?))P“l’lDO(qZ) linear sigma modef14,15 and HBChPT[16,17. All con-
\/Q—o straints on the generalized polarizabilities derived in this pa-
\/5\/? per were conﬁrmed on the Ievel of model calcula_tions with
+ _OGM(QS) these two effective Lagrangians, because they incorporate

the relevant symmetries, gauge invariance, and Lorentz in-
variance as well as the discrete symmetries. We consider this

2

— q — as an important check for both the model calculations and
0 2 0 2
x| PH%(q HEP(H CRIF our general results.
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3 5 2\ (01,001, 22 APPENDIX A: GENERAL FORM OF THE COMPTON
— 5VQEGM(Q) P (g?), (250) TENSOR

. . : . A construction of the Compton tens#” of the most
with Gg and Gy, denoting the electric and magnetic SaCtheneraI VCS reaction* + N— y*+N has been given by

form factors, respectlvgly; Thesp structure functions de=I'arrach[3]. Here, we sketch the main features of his deriva-
scribe, to lowest order iw’, the interference between the

non-Born and the Born plus Bethe-Heitler amplitude. By usetlon and extend it with respect to our considerations. The list

. v
of Egs. (218 and (21d) the structure function®,; and P{ ; of all possible te_nsor_ structurds!” of the_ most general

. . Compton tensor is built up from the four independent Lor-
turn out to be mutually dependent via the relation

entz vectorgy#, q'#, P#, and y*. Each structur&/” must
- be even with respect to parity transformations, because we
PLr(q)+ iPLT@=0. (26)  consider only parity-conserving interactions. Furthermore, it
o is useful to choose th&{” with a well-defined behavior

L . . . under photon crossingqé—q’, w<—wv) and under the
This indicates that in an unpolarized experiment there are nination of nucleon crossing and charge conjugaion

only three independent structure functions containing fiveWith these assumptions one obtains 4’ [see Eq.8) of
generalized polarizabilities. Ref. [3] for the complete ligt ! '

IV. SUMMARY Kir=g*, ...,
We analyzed VCS off the nucleon in a covariant, model-
’ Y __ N % —
independent formalism, which allowed us to include con- K ="y =v"v*)Q- v+ Q- y(¥*v" = ¥"¥*),
straints from discrete symmetries in a natural way. We re- (A1)

stricted our investigation to the so-called structure-dependent Y Y . .
S . . .~ 'Where the structurds/{”—K1y would also appear in the deri-
part which is obtained from the full amplitude by subtracting_ .. : . o
a separately gauge-invariant Born part involving the verte ation for a spin-0 particle. Note our definition BfandQ O.f
of Eg. (4). We demonstrated that it is possible to parametriz g.(1) and the reversed order af and v as c_ompared W'th,
the VCS invariant matrix element in such a fashion that the ef. [.3]' .U?"”g fogr-momentum conservation and Dlracs
tensor structures as well as the corresponding amplitudes aﬁ?uat'ozy't is possible to Express each qther tensor in terms
free of kinematical singularities. Consequently, the ampli-0! the K" Moreover, two nontrivial relations between sev-
tudes only contain information on the dynamics of the pro-eral of theK{*" hold[3], reducing the number of independent
cess to be explored by the experiment. We then focused ggnsors to 32. Even if there is some freedom in the choice of
Compton scattering with a virtual, spacelike photon in thethe independent tensors, it is convenient to elimiriafg
initial and a real photon in the final state, because this proandK5g [3], which will not appear in the following deriva-
cess will be investigated in future experiments. Applying ourtion any more. Counting the helicities of the four particles
covariant approach to particular kinematical scenarios wénvolved in the reaction one ends up with the same number
critically reviewed the formalism presently used in the analy-32=(2X2Xx4X4)/2, where the division by 2 is due to par-
sis of VCS experiments below pion thresh&]. We found ity conservation in boson-fermion scatterif2g]. Since each
that charge-conjugation symmetry in connection withphoton is considered off shell, it has components of spin 1
nucleon crossing generates four relations among the teand spin O and thus enters with four degrees of freedom into
originally proposed generalized polarizabilities of thethe counting 28].
nucleon. We further derived relations between the general- In order to incorporate current conservation at both pho-
ized polarizabilities at particular kinematical points. We ton verticedsee Eq(5)], one derives linear combinations of
hope that our results will facilitate future theoretical and ex-the K{*”, which then form the basis vectors bf*”. For the
perimental analysis. These results have already been quispin-independent amplitude this procedure has been ex-
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plained in more detail in Ref$8] and[9]. In the construc- 1
tion of such gauge-invariant linear combinations it usually T4}=——[(q?—q’?) T4} —2(q?+q'?) T4 +2q- P T4 ]
happens that poles in the independent invariarftsq’?, 4q9-q’

g-q’, andq-P of the VCS reaction arise, leading to un- s 42

physical zeros or constraints in the corresponding amplitudes  _ _ a -4 KAy — EK“’HL M 9°-q'? K
of the basis vectors. A general solution developed by 2 ® 2 0 2t
Bardeen and Tungl] avoids this problem, which one en-
counters in different physical reactions. The application of a’+q’? ., L R
this method to VCS results in 18 gauge-invariant and pole- M K22 —MQq-PKa+ TKN
free tensor$3],
2 12 2 12
~Pkgap T Tk T Ty,
TH'=—q-q'KE'+KE", ..., (A2a) 4
(Adb)
MY __ L MV uv qq’ y7a
Tig=Ki{7—2q9-PK5+ K%, . (A2b) 1
Thr=—[(a*+q')Ti5 - 2(q*~q')Tiy +29- PTig
49-9’

The spin-independent tensor$”, . .. T£” are the same as 2, o2 p 24 g2
in Eg. (5) of Ref. [9], whereas the basis elements __aTa KLY+ q'_ng+M ara K4
T&Y, ... Tig correspond to the tensorg”, ... 745 in Eq. 2 2
(12 of Ref.[3], rewritten for our choice oP andQ in Eq. 5 o .
(1). Note that the number of these tensors also results from M a —q KA — M w797

. i 5 g-PKS+ K&
counting one longitudinal and two transverse degrees of po-
larization of the virtual photons, E8(2X2X3X 3)/2.

The above considerations determine the general form of q-P q°+q’? q%+q'?
M#¥_In particular, the gauge-invariant residual pdg” —TKg‘OV—q.P Kgs+M K3y -
[see Eq.(3)] of the Compton tensor can be expressed in
terms of the basis vectors in Eq&2a) and(A2b) according (Adc)
to

The nonminimality of the basis in E4A2) is reflected by
18 the fact that in the casg-q'=0 the set of tensors in Eq.
M&"=> B/(0%,9'%9-q',q-P)T+". (A3)  (A2) does not form a tensor basis anymore, because some
=1

elements of the original basis become linearly dependint
Unfortunately, the two kinematical scenarios we investigate

However, the above basis has one drawback. Though tHg" the analysis of VCS at small final photon enexgy both

[—
tensorsT{” are free of poles, the corresponding amplitudeém?zly qthq =0. h tructing the t basis for th
B/ still contain kinematical constraints. Such a basis is called or this reason, when constructing the tensor basis for the

“nonminimal” [3]. The nonminimality is due to the fact that (rje;idualt ?arﬂ\/lt‘:, we Wif"é]ax\ez o start with a tensor basis
it is impossible to make a transformation into an equivalent®' ¢ ot 'TOM e One O a. B _)' v u
It turns out that if we usd&/y instead ofT£", T4y instead

pole-free basis without introducing any kinematical pole in un v o ) _
the transformation matrik3]. As a consequence, three fur- of Tis, and T3, instead ofTjg’, we obtain a tensor basis
ther gauge-invariant and pole-free tensors exist, which caWhich is free of poles and zeros and, thus, can also be used in

be obtained fronT%”, ... T#¥ only with factors carrying a the caseq-q’=0. However, this new basis is not minimal
single pole inq-q’: either, because poles in the invariantP can create linear

dependences among the basis elements in the Born part of
the Compton tensor. However, this is not the case for the

1 q’+q'2 residual part, which we are interested in in this paper. The
TT;:W —q%q'?T4"+(q-P)?T4"—q-P T4 residual part of the Compton tensor reads
qz_q,Z jiag v 2 ~12 ’ v
+q-P T4 Mg"=2 Bi(a®.a'%,a-a",a-P) T,
le
v g2z g p 0
=(q-P)’K5"+0°q'?KE"—q-P K§ J={1,...,23\{5,15,16. (A5)
qZ_q/Z i i 2 2 ,
—q-P K&y, (Ada) The corresponding amplitudeB;(g<,q'<,q-q’,q-P) are

free of kinematical constraints, in particular free of poles.
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This can be proved by means of considering their symmetrk~”, it follows that the functionsB;(9%,9'2%,9-q',9-P),
properties: The tensdvig” is invariant under photon cross- ieJ, are free of poles. Furthermore, it can be shown that
ing and the combination of charge conjugation with nucleongauge invariance does not generate any additional kinemati-
crossing[3]. Since theT/” exhibit definite transformation cal constraints on these functions. Thus, B&p) contains a
properties with respect to photon crossing and charge conjuepresentation foM§” which satisfies all requirements—not
gation combined with nucleon crossing, the amplituBledo  only for our particular casg-q’=0, but for any choice of

as well. By means of the identities kinematical variables iny* N— y*N. In particular, it is not
S . 2 o , necessary to use three additional functions as in Rf.
Bi(9%,9'%,9-9',9-P)=+Bi(9'%,9%9-9',—q-P) Reexpressing this parametrization in the form of E43),

(i=12358101315181981  (Agg o notonsd; read

(a2a'2a.4 A.PY=—-R.(a’'202Aa4.4" —A.
Bi(a%9"%.a-9".-P)=-Bi(a".9%4-9",~q-P) B/'=B, for ie{1,678971112131718

(i=4,6,7,9,11,12,14,16,17,20 (ABb) (A9a)
Bi(9%a'%d-9’,9-P)=+B;(9%q'%,d-q’,—q-P) -
, q°q’
(i=1,2,3,8,9,10,11,14,18,19,20)21  (A6c) B,=B2— aq B1o, (A9Db)
Bi(9%a'%,9-9',9-P)=—B;(9%q'%,d-q’,—q-P)
i=4,5,6,7,12,13,15,16,17 A6d -P)?
(i } (A6d) BB+ ) By, (A90)
the functionsB; can be divided into four classes, where in q
Egs. (A6a) and (A6b) use has been made of the identity
g-P=q’-P. We emphasize that Eq4A6c) and (A6d),
which are crucial for the derivation of the relations between - q°+q'?
the generalized polarizabilities in Sec. Ill, may alternatively B,=B,—q-P 2q-q’' B1o, (A9d)
be derived by means of time reversal together with photon
crossing[3].
For the definition of low-energy constants we need a gen- —
eral expansion of thB; up to the orded(k®) (ke{q.q'}), B/ -Pq —-q B (A%)
which immediately follows from the transformation proper- 5= 4 2q9-q’ 19
ties of Egs.(A6a)—(A6d):
Bi=bi o+ bi 220 0" +b; 5(a%+q'?) + b »(q- P)2+O(k*) s o S
' ay [OTAy (A9F)
i= B10=Biot —Bao —Ba1,
(i=1,2,3,8,10,18,19,21 (A7a) 4q-q 4q9-q
Bi=bis(q’~q'%)q-P+O(k%) (i=51315,
(A7b)
" 5 q2+q/ZB q2_q/2B (Ag )
_ 2_ 412 4 - = — - ,
Bi=b; xq?—q'?)+O(k% (i=9,11,14,20, (A7c) WP T 0P g 2 9
Bi=bji10-P+b; 50 Pg-q’ +b; 3,9- P(q°+q’'?)
+b; 3(q-P)*+O(k*)  (i=4,6,7,12,16,1F. g o OGP Aoh
(A?d) 15— qu, 20> ( )
Such an expansion of the amplitudes in terms of the four-
momenta of the photons has already been performed in Ref.
[8] in connection with VCS from the pion. g o P B (A9)
From the above Taylor expansion, the fact that in the 16 2q-q’' 2t
original representation
M= > C,(9%,0'%9-q',q-P)KH, These equations follow from the definitions oy, T,
reRr (A8) and T4} in Egs. (Ad4a)—(A4c).? We stress that the tensors
T4, ... Tig still form a basis of the Compton tensor ac-

R={1,...,34\{13,24,

the functionsC, by definition are free of poles in the kine-
matical variables and the symmetry properties of @heand Note thatB,4 is equivalent to the functioBg in Ref. [9].
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cording to Eq.(A3). The nonminimality of this basis is ex-

pressed in a specific kinematical behavior of the amplitudess .p% e’ =¢,Ti7e'} = ze-Pe’™-a-

B/ ; namely, some amplitudes contain polesgirg’. How-
ever,M§" is free of poles, despite the behavior of #B¢.
This is due to the fact that both the amplitudgsand the
tensorsT#”, ieJ, do not carry any pole in the relativistic
invariants.

For the discussion oM ” we change the numbering by
introducing tensorg!” in the following way:

V 1% 14 /*_ ! % I %
e phle' =g, Th"e' s =e-q'e'*-q—q-q'e-&'*,

(A10a
MP;ZLV ’*—8 T/.LV r:
:q.P(S.PSI*.q—i—S,*.Ps.q')
—q-q'e-Pe'*-P—(q-P)%-¢'*,
(A10b)
Mp,LSLV /*_8 T,U.V /:
=q-Pg?c-e'*—q-Pe-qe'*-q
—q%'*-Pe-q'+q-q'e'*-Pe-q,
(A10c)
Slupfiws =g T/LV /*

=g-Pe'* - PQ-y—q-P(e-Pe'* -y
+e'*-Pe-y)
+iq-Py58“”“ﬁ8M8’

: Qa’)/ﬁ ’ (AlOd)

1
eupk’e =6, T4 L= e, 4" L= 7o' Pe-aQ-y

2

+qz(s-P£'*-y—s'*-P8~'y)

.P i
——q e-qe'*- y+ q ys”“”“ﬁs e’

2 Qayﬂl

(Al10e

e phle' v =, The'*=—2q-q'e-Pe'* - P
+q-P(e-Pe’'*.q+&'*-Pe-q')
+2Mq-q'(g-Pe'*-y+e&'*-Pe-y)
—2Mq-P(s-q'&"* 7+8’*'qe-7)
+ig-P(e-q'0"e';Q,—&"* -qo"*e,Q,)

+2iq-q'q-Po*’e "}

+2iMq'q’yse’”“ﬁsﬁs’,’anyﬁ, (A10f)

e'*Pe-q)Q-y
_34 (e-Pe'*.y—g'*-Pg-vy)
q-P
+t—-(e-q'e™ y=e'"-qe-y),  (Al0Q
E#pgvs,::&‘#'ffze =g T'i‘;s’* 5 e-qe’'*-q
9
——(e-Pe'*.q—&'*-Pe-q’)
_q'_q/ & _M r%
> e'*-Pe-q 28'q8 qQ-y
+M-’.’*.—M2 Pk
q-gq'e-ge q(e-q’e
*-qe-y)

i
+20%(eq' 0" Q8" 190" ,Q,)

i
+ Eq-q'qzo"“’s#s’,’j , (A10h)
Bve 1% MY 1k g X3 o l* ’
e.pg e =¢ T148 —T(S'PS -q—¢e'*-Pe-q")
—Mqg-q'(g-Pe'*-y—¢&'*-Pg-y)
+Mqg-P(e-q'e'* - y—¢e'*-qe-vy)

i
+§q-q’(s~Pa”“ e'3Q,te'* Pot? «Qo)

[
—EC]'P(&"C]’O'W I*Q +8I* O_,LLQSMQD[)’
(A10i)
e pige' s =g, Tie' Y =—2q-Pe-e'*+e-Pe'* .q

+&'* . Pe-q'+2Me-&'*Q-y
—2M(e-q'e"* - y+e'*-qe-y)
—ie-q' "5 Q,tie'* -qote 1Qa
—2iq-q’0"’“”8#8’v, (A10j)
e pive t=¢,Thide' s =(e-Pe'* -q+e'* Pe-q')Q-y
—-2q-P(e-q'e'*-y+&'*-qe-y)

+2iq~q'y58‘”“ﬁ8#8’tQa7ﬁ, (A10k)
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euptye t =, et =e, The"] Av=al
q° : t
_—?E'PE,*-P-F—S'*'PS'Q A=a’,
+Mqg%e-Pe'* - y—Mq-Pe-qe'* -y As=—sind b} +sindcos b —sing b} —sirfe by ,
i
A . va_ 1k 1% a
4q (e-Po"e'7Q,+e"*-Po*%e,Q,) A 1 bt
4= 7 Sog P2
sing

14

[ i

+50-Pe-qo"e"} Q.+ 5090 Pote e}
2 2 Mme v 1
: As= g (—Cos bl +b! —cosd by),
|

+ Equ'y58”mBsM8'tQa'yﬁ. (A10I)

The sign of the Levi-Civitasymbol is fixed byeg;,5= Ao sing
—&%%=1, ando,,=i[7,,7,]/2 is the usual abbreviation
for the commutator of the Dirac matrices. Because of parity 1
conservation EqsiA10a—(A10l) do not contain any pseu-  A7= 5 (—cosf b}+cog6 by —cos by +sind by
doscalar structures.

In analogy with the tensors, one can replace the —sinfcosy bg’),
Bi(9%04-0’,q- P) by 12 amplitudes;=f;(q°,q-q',q- P),

(b} —cos# b} +b}),

1
f1=B;, =By, f3=By, Agzm(w&? b} —cosd bY’ + b} —sindcoss bl
f4:B7, f5:Bg—Bg, fGZBIO! (All) -I—sinH bg),

f;=B1;, fg=Bio+Bis, fo=Bya,

7 11 8 12 13 9 14 Agz aI,

f10=B17, f11=Big, f12=Bogt By 1
Aso= g5 (COSH b} —bh—sing b}),
APPENDIX B: AMPLITUDE SETS IN VIRTUAL
COMPTON SCATTERING
. _ . Aj;=sind b} +cossby,
Throughout this work we have applied the set of ampli-

tudes defined in Eq$13) and (14). The relation to the con- |
vention of Ref.[6] is given by A= —Dbs. (B1)
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