PHYSICAL REVIEW C VOLUME 57, NUMBER 2 FEBRUARY 1998

Phase transition of a finite quark-gluon plasma
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The deconfinement transition region between hadronic matter and quark-gluon (@&Mas studied for
finite volumes. Assuming simple model equations of state and a first order phase transition, we find that
fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature,
leading to arounding of the phase transition. For reaction volumes expected in heavy ion experiments, the
softening of the equation of state is reduced considerably. This is especially true when the requirement of exact
color singletness is included in the QGP equation of s{&8556-28138)01102-9

PACS numbeps): 25.75~-q, 12.38.Mh

l. MOTIVATION ter in volumes of about 10-50 firat fixed target energies
[3]. Similar values of typical QGP cluster sizes are found
A primary goal of relativistic nuclear collisions is the ob- within a microscopic approach in combination with a perco-
servation of a phase transition of confined, hadronic mattelation model[10]. At collider energies the relevant reaction
to a deconfined quark-gluon plasi@GP. One of the pro- volumes for heavy systems are estimated to be much larger:
posed signatures, namely, hydrodynamic flow, is based oAssuming an initial interaction volume of Vg
the presumed softening of the equation of state due to the 7(1.15AY3)?7, with a formation timery~ 1fm/c and sub-
rapid increase of the entropy density. It has been investigatesequent expansion one may expétthe onset of confine-
in the framework of relativistic hydrodynamic modé¢ls2]. meny V~750fn? for Au+Au collisions at Relativistic
The expansion of once compressed matter is predicted to heeavy lon Collider(RHIC) energies (/s=200A GeV) and
delayed in the case of a QGP, which in turn leads to a rev~1350 fn? for Pb+Pb at CERN Large Hadron Collider
duction of the transversédirected flow [3,4l" This is  (LHC) energies (/s~5.5A TeV) [11].
mainly due to the fact that the sound velocity vanishes for However, the longitudinal flow velocities exceed the ther-
energy densities in the mixed phase. A smooth crossovehal motion by far. Thus, only subsystems of smaller volume
transition within an assumed interval AfT=0.1T¢, on the  can be regarded as being in approximate “global” thermal
other hand, results in drastically reduced time delays as conequilibrium. Only the latter are suitable for the study of finite
pared to a sharp transitids]. size effects. Therefore, if we require the local thermal motion
As is well known, a rounding of sharp first order phaseto be of the same order as the relative flow velocity, one
transitions is expected due to explicit finite size effd®s  must restrict the study of finite size effects to regions of
The importance of fluctuations of the coexisting phases imbout one unit of rapidity(cf. [12]). The volume of such
small volumes of strongly interacting matter has already(possibly multiplé subsystems would thus only b¥
been pointed out i8] for the case of a liquid-gas phase <100 fn? for both the RHIC and LHC.
transition and in9] for the deconfinement phase transition.  Another motivation for the study of finite size effects is
As a consequence, it was claimed that the observation of twgyttice QCD calculations, which have to be extrapolated from
separate phases in heavy ion collisions might be hindered. I3 finite lattice(although with periodic boundary conditions
this work we explore this behavior in more detail, startingto infinite matter{13,14. Depending on the number of grid
from rather simple model equations of state. We put specighoints in the spatial direction, the presently accesssible vol-
emphasis on the question as to how the requirement of colqimes are in the range &f~50—100 fni. The extrapolation
singletness of the QGP phase affects the phase transition @ infinity is not cleaf14]. Our investigation can yield some
top of the fluctuation effect. insight into what can be phenomenologically expected when

The limited reaction size of a heavy ion collision is a going from finite volumes to the infinite volume limit.
generally ignored problem of the experimental search for a
quark-gluon p_Iasma. According to one-fluid dy_namical Il PHASE COEXISTENCE AND FLUCTUATIONS
model calculations, one expects to produce deconfined mat-

Let us consider a finite volume of strongly interacting
matter in the grand canonical ensemble with vanishing net
'However, in a three-fluid hydrodynamical modB] the directed ~ baryon density. The model equation of state is constructed
nucleon flow is already lowered as compared to the usual one-fluithy matching a low energy density phasehadron gasand a
models(which assume instantaneous local thermalization betweehigh energy density phagthe quark-gluon plasmaFor in-
projectile and target It will be exciting to learn whether the soft- finite matter the system undergoes a first order phase transi-

ening of the equation of stat€OS is also signaled in this model. tion at a critical temperaturé.. However, when we assume
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a finite volumeV of the system, statisticathermodynami- are well-established nonstrange hadrons up to masses of 2
cal) fluctuations are not negligible; they do not allow for a GeV. The system is treated as a mixture of relativistic, non-
sharp transition between the two phases in this case. In geimteracting Bose-Einstein and Fermi-Dirac gases. As the net
eral, the probabilityp of finding the system in a stateis  baryon number is zero, the free energy reads
given byp(x)~exd — BF(x) ], whereF(x) is the free energy
of the systen(15,9] (see also the AppendixLet us intro- gV (= p*

. . 1
duce an “order” paramete¢ for the quantitative character- F(T,V)= —2 —zf —
ization of the macroscopic state of the total system, such that I 6m"Jo pT+m” e
&=1 corresponds to the pure hadron phase &n@ corre- )
sponds to the pure quark-gluon phase. For the mixed phadihere the+ stands for fermions, the- for bosons, andy;
the fractional volumes are defined ¥§=¢V and Vo= (1 _denotes thg spin and isospin (_deg(_aneracn_es of particle species
—&V. i. To take into account repulsive interactions, all thermody-

It is now assumed that the partition function of the totalN@mic quantities are corrected by the Hagedorn factor 1/(1
system factorizes into the partition functions of the two in- T €/4B) [16], where e is the energy density of the point
dividual phases for fixed (see the Appendix Then there Particles andB is the bag constant. The bag constant is cho-
are no correlations between the possible microscopic energien @sB=200 MeV/f? for all calculations presented here.
eigenstates of the two subsysteftiee two phases The free For the equation of state of the high energy density phase
energy of the total system can thus be expressed in terms ghe quark-gluon plasmave take a simple bag model EOS
the free energy densities of the individual phaggand f, for massless quarks, their antiquarks, and gluons in a MIT

1
M+q

dp, (9

and the volume fraction of the hadron phase Eagigf infinite volume, where the number of quark flavors is
FATV)=[fy(T,EV)EHT(T.(1-HV)(1-H]V. (D) v
The normalized probability density is a function of the order F(T,V)=BV- WZ(@Nq‘F 435 T4V. (6)
parameter:
ex — BF (T, V)] In t_his case t_he integration in E@3) can be carried out
p(g):fédgexp[—BFg(T,V)]' (2)  easily, rendering

The expectation value of any intensive thermodynamic quan- 1 /) el A= T(MIVIf — g (T) — fo(T)]V-1}+1

tity A(T,V) is then calculated as [el =AM~ fa(MIVi_ 1~ BLn(T) = fo(T)IV}
X[AK(T) = Ag(T) ]+ Aq(T). 0

1
A(T,V)= fo dép(&;T,V)[An(T,EV)€

Note thatf,(Tc)="fy(Tc). The expectation value of an in-
+A(T,(1-HV)(1-¢)]. (3)  tensive thermodynamic quantity like pressure, entropy den-
) sity, or energy density at a temperatdre T can be calcu-
A reminder of a thermodynamic derivation of Ed®) and  |ated with this formula.
(3) can be found in the Appendix. Figure 1 (top) shows the expectation value of the order
As long as explicit finite size effects in the equations of parameter(£), the average hadronic volume fraction, as a

state of the individual phases are ignofed., the free ener-  fynction of the temperature for different system sizes. This
giesF; are linear functions o), the free energy densities quantity is calculated as

equal the negative pressure within the two phases:

1
Fi Fi _ : _
Pi(T)z—ﬁ—:—_‘:_fi_ 4) (&(TV) Jodgp(g,T,V)g (®)

When inserting this into Eqg1) and (2), respectively, one For volumesV=100 fir or less, (£)(T) deviates clearly
sees immediately that for large volumé®f the total system from a simple step function. Even beldly;, the system is
and a given temperatuf® the occurrence of the phase with Notpurely hadronic. The quark phase has a finite probability
the |Ower pressure is Strong'y Suppressed_\y:e,roc the co- (See alSd:l?]) On the other hand, the hadronic phase con-
existence of both phases requir@%: PQ! which is the tributes, with similar prObab|I|ty, even abO\TQ:. Note that
Gibbs condition for mechanical two-phase equilibrium. Thisthe order parameter in our model is simply the volume frac-
holds also for the case of explicit finite size modifications oftion of the hadronic phase. Thus, for a volume of 25 fmd

the equation of state, because the correction terms vanish &/temperature of 10 MeV abovi: one can read off Fig. 1
definition in the limitV— oo, that the system is composed of about 10% hadron gas and

90% QGP(this admixture foffinite sizes is different from the

predicted persistence of clusters in iafinite plasma[18)).

The unfavorable phase is suppressed, according tadZg.
For illustration let us consider first the case of infinite due to the differences of the free energy. However, any com-

matter equations of state, i.e., without explicit finite size cor-position of the total systerfany value of¢) must correspond

rections. The constituents of the low energy density phasto a finite total free energy content, because the volume is

Ill. EQUATIONS OF STATE FOR INFINITE MATTER
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FIG. 1. The order parametéexpectation value of the volume
fraction of the hadron gag¢)) vs the temperature for systems of
different sizegqtop). The energy density, divided by the tempera-
tureT to the power of 4middle), and the entropy density divided
by the temperature to the power off3ottom), are also shown. The
bag constant i8“=200 MeV. Equations of state for infinite mat-
ter (hadronic and QGPare used.

finite. Thus, the suppression relative to the state with mini-
mum free energy content is finite; i.e., the probability is non-

zero.
Figure 1 also shows the energy densifil* and the en-

FIG. 2. Pressur® divided by the energy density vs the en-
ergy density for systems of different sizes. The bag constant is
BY4=200 MeV. Equations of state for infinite matigradronic and
QGP are used.

average values of ands, leading to the expecteunding
of the phase transition. A functional form of thermodynamic
guantities has been parametrizE&|19|; this was used to
model the assumedsmooth crossover transition and for
studying the resulting physics. In any case, for finite size
systems such a crossover has to be expected. Here we calcu-
late such a behavior for strongly interacting, finite systems
on the basis of a very simple model without free parameters.

Figure 2 now shows thénydrodynamically relevantratio
P(e)/e vs e for various system sizes. Here the ‘“softest
points” of the equation of state v¥ are the respective
minima of the curves. The thermodynamics of the system
exhibits a very distinct volume dependence with respect to
this quantity. Observe the strong influencevobver a wide
range of energy densities. This could not be clearly seen in
Fig. 1, where the transition appears within a rather narrow
region of temperature.

It has been suggestét], 2] that a clear peak of the lifetime
of the mixed phase as a function of the collision energy
could signal the QCD phase transition in heavy ion reactions.
This peak should be observable in a particular window of the
initial energy density, around the softest point of the equa-
tion of state. The comparatively small pressure prevents a
fast expansion of the system around that well-located point.
However, as can be seen in Fig. 2, the minimum of
P(e€)/ e is much less pronounced for finite volumes than for
an infinite volume. At low temperatures — which correspond

to low energy densities — the influence of a small admixture

tropy densitys/T® as a function of temperature for different of quark matter ofP ande is particularly strong, because the
volumes of the system. In the case of an infinite volume, theabsolute values dP ande are very large in the quark phase
first order phase transition is reflected by the sharp discontin the simple MIT bag description{ P=¢=B for T=0) as
nuity of both quantities af =143 MeV. Because of the compared to the values in the hadron phaBe=€=0 for
finite probability of fluctuations, the average values of theT=0). In Fig. 2 solid circles on the curves indicate the val-

energy density and the entropy density at a temperdtanme

ues of the energy density, where the pressure of the pure

different for finite systems. BeloW, the presence of the quark phase would become zero according to the simple bag
quark phase, although a small fraction of the total volumemodel equation of state, Eq6). Whether the concept of
increases the energy density and the entropy density. Abowermodynamic fluctuation theory is adequate for lower en-
Tc, the contribution of the hadronic phase still lowers theergy densities and how the equation of state for the super-
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cooled quark matter phase might look like at temperatures 60
considerably lower thaiic remain to be investigated. 20 S
IV. QUARK MATTER EQUATION OF STATE 2 e TN
WITH COLOR SINGLET CONSTRAINT 0 AT T TR

=

In the following we consider a phenomenological model >~~~
equation of state for the plasma phase including explicit fi- ,
nite size effects: A grand canonical partition function for a § L ":‘ \
guark-gluon plasma droplet with theecessaryequirement = :
of color singletness was proposed [@0]. The internal -
SU(3): symmetry is accounted for by applying a group- .
theoretical projection techniqy1] on color singlet states to -100
the grand canonical partition function of a noninteracting

3
guantum gas of massless quarks and gluons. The authors finc igﬁ ]
that, due to the color confinement, the internal degrees of 0 \\\ A
: - : 10, 1 v 7
freedom in a finite plasma droplet are effectively reduced as 13_2 NS, /!
compared to the infinite matter equation of state. Also, the 103 AN \i‘5~\;... A
finite level density(in a finite systemfor the single-particle 105 AN A
eigenstates leads to an additional effective reduction. This is igﬁ AN \\C:~1;';;-;: .............. ,/' / i
explicitly accounted for. In summary, these finite size cor- Q. 103 AN TN T S
rections can be interpreted as surfécervature effects. We 1o AN The--T
use the corresponding free energy as the equation of state for }giﬁ N l’
the high density phase. It reafi20] 102 N /
ig'ls ------ V=25 fm; \\ /
3 1078 | —— V=501fm" S //
F(T,V)=BV—T(X—Y)-I—ET["](D)—|n(7T)] igié - xzigg(:r;!ma S~
10

-0.0 01 02 03 04 05 06 07 08 09 1.0
+T[4In(C)+In(2y3m)],

X=772(1N " E T3V FIG. 3. Free energy densiyas a function of the hadron frac-
60 9 45 ’ tion for systems of different sizes &i. (top) and the resulting
probability densitiesp(£) (bottom). The bag constant iBY4=200
1 32 MeV. The color singlet constraint is taken into account for the QGP
Y= ’7T<§Nq+ ) RT, equation of state.

both phases contribute with equal probability to the state of
T3V, the total system. In Sec. lll the critical temperature was
found to be independent of the volume — only thilth of
the transition was affected by the fluctuations.

For the finite-size-corrected equation of state, however,
the critical temperature shifts to higher values at finite vol-
umes(see below. As one expects, the finite size modifica-
where R=(3V/4m)'? is the radius of the spherical plasma tions of the equation of state affect the free energy density
drop andNy=2 denotes the number ¢fmasslessquarks.  most strongly for small systems. The infinite volume limit
This equation of statéfor the quark-gluon plasmancorpo-  converges to a constant free energy density. Figutbo®-
rates an explicit volume dependence of the pressure at fixe@m) shows the resulting probability densities as functions of
T. In this case,P(T)=—dFq/dVy# —F4/V4. Therefore, the order parameter. A “two-hump” structure is observed,
Egs.(2) and(3) have to be evaluated numerically. The par-thus favoring the dominance of one of the phases against a
tition function was derived in a saddle-point approximationtwo-phase composition with equal volume fractions for both
which breaks down foRT— 0. It agrees withir=30% with  phases. Such a two-hump structure is generally expected to
the exact value foRT~1 [20]. Therefore, we approximate occur for first order phase transitiofig].
the free energy density by R) =f(1/T) for plasma volumes One should emphasize that the peakgat) andé=1
(1— &)V, Which correspond to spherical droplets of sizesare most pronounced for thiargestvolume. This is because
less tharR<<1/T. The hadronic equation of state of Sec. Ill is the free energy, and not the free energy density, enters Eq.
used, without any explicit finite size modifications. (2) for the calculation of the probability density. The physics

Figure 3(top) shows the free energy density as a functionof large systems is therefore extremely sensitive to small
of the order parametef (the hadron volume fractiorusing  variations of the free energy density. Because of this very
the color singlet equation of state for the quark phase. Thelistinct hump structure, either one phase or the other is
temperature is chosen to Be=T., where wedefinethe present aff-. This basically reflects the barrier in the free
critical temperature at the point wherg(Tc)=[¢€4(Tc) energy density functional due to the explicit surface effects
+en(Tc)]/2. Thus, T¢ denotes the temperature for which between the two seperate phases. Then, a first order phase

C= 12N 8|RT+ 1|\|+2
- gl37 3

1
D=—m §Nq+—
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T A
S "" two pressures would be reached for temperatiigs Tg.
0 p p c
______ V=25 fm® Here T¢ stands for the critical temperature of tiinite
18 | —— V=50 fm’
- - V=100fm® system. .
—= V=1000 fm e
16 2 oo Important consequences follow for.the b_ulk guantities
1] V=2 Il [ e/T* ands/T3: The latent heat and the jump in the entropy
12 | ! | density are considerably reduced for small systems. First, the
°"|_ 0 { ! .’ effective number of degrees of freedom in the hadron phase
o [ b i increases with temperature: The rest masses become more
8 : N and more negligible as compared to the kinetic energies.
6 [ " { Secondly, as mentioned before, the effective number of de-
4 : b grees of freedom in the quark phase is reduced for finite
) [——; volumes due to the requirement of color singletness. As
) stated in[19], the active degrees of freedom, which are
100 110 120 130 140 150 160 170 180 190 200 “quantified” ass(T), determine completely the gross behav-

T (MeV) ior of the thermodynamics near the phase transition. Figure 4
also shows that the smearing due to the fluctuations is less
FIG. 4. The order parametéexpectation value of the volume pronounced than for the infinite matter equation of state in
fraction of the hadron gag¢)) vs the temperature for systems of gSec. |11, The rounding effect of a fluctuating phase compo-
different sizegtop). The energy density, divided by the tempera-  sjtion of the system appears to be counteracted by the effect
tureT to the power of 4middle), and the entropy density divided  f the volume-dependent reduction of the quark-gluon de-
by the temper_atiJ/ze to the power o(lﬁbttonj, are also sh_ow_n. The grees of freedom.
i?]atlg :EZZLaan'OBr thzzgggi\éh;::sncglfosrtsa';glet constraintis taken Figure 5 depicts the volume dependence of the shift of the
' critical temperature ATc=Tc—T¢&. The temperature shift
transition occurs dynamically in a way that the high tempera€xhibits an approximate power lad&Tc~1NV* with «
ture phase(or the low temperature phase, respectiyayy ~0.7. The analysis of Binder and Landgy14], who exam-
supercooled(or superheated, respectivglyup to a point ined the first order phase transition of a finite system in the
where bubble nucleation starts to convert the now unstabltsing ferromagnet model, advocates a coefficiertl [14].
phase to the more stable phdge]. As in Fig. 2, Fig. 6 shows the ratiB(€)/ e vs € within the
Figure 4 shows the temperature dependence of the ord@resent scenario. Again, those values of the energy density
parameter, the energy density, and the entropy density, as &re marked which correspond to zero pressure of the pure
Fig. 1, but now for the quark matter equation of state withquark phase. In clear contrast to Fig. 2, the “softest point” is
the color singlet constraint. The main difference is the shiftnow characterized by less pronounced minim# 6¢)/ e for
of the critical temperature to higher values for smaller vol-reasonably small system sizes. For volumes/ef25 fn,
umes. For systems of finite size the modified equation ofhe minimum of the curve vanishes completely. Hence, the
state yields a lower pressure at a given temperature, becaulifetime signal[1,2], which is based on hydrodynamic con-
the internal degrees of freedom are gradually “frozen” with siderations and infinite matter equations of state, will be con-
decreasing volumg20]. Thus, even when flucuations are siderably damped in a more realistic scenario of heavy ion
neglected, the mechanical Gibbs equilibrium between theollisions.
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0.35 | V25 fm? ] Neglecting the color singlet constrai_ﬁlu_t including the ef-
e V=50 fm® fect of thermodynamic fluctuations in finite volumdsads
03| = V=100 fm33 | to a strong reduction of the speed of sound in the transition
- zig(mfm region. Thus, one still might expect a moderatively long-
0.25 — ] lived fireball of the mixed phase. However, the speed of
sound does not vanish in a sharp region of energy density.
o 02} Rather, it is smoothly damped in the largelomain between
= 20 MeV/fm® and 200 MeV/fmi. This effect would vastly

smear out the lifetime signal if one scans the flow excitation
function over a wide range of collision energies.

After the requirement of color singletness is includeﬁi,
is much less reduced. The dip is shifted to higkiector
~2) energy densities. Although the rather sharp breakdown
of the speed of sound in a well-located energy density do-
0.0 5— o o main is recovered, the hydrodynamical expansion solutions
100 2 s 100 2 . 10 2 will now look much different from the infinite matter sce-

e(MeV/fm’) nario: The rather high values of must lead to a much more

rapid expansion than for infinite matter equations of state.

FIG. 6. Pressuré divided by the energy density vs the en- .The implementation of the present results, based on finite

ergy density for systems of different sizes. The bag constant is - . .
BY4=200 MeV. The color singlet constraint is taken into account Volumes and global equilibrium and also supercooling, into

for the QGP equation of state. hydrodynamical calculations, remains a difficult enterprise
for future investigations.

0.15

0.1

0.05 ¢

Figure 7 shows the speed of soufsduared, c2=p/ Je,

as a function of the energy density for three different cases.

For infinite volume, the phase transition is truly first order. V. CONCLUSION

This can be seen from the vanishing speed of sound in the \ye have discussed the thermodynamic bulk properties for

mixed phase. This is the cause of the pronounced time delayite systems at the phase transition and the detailed behav-

in hydrodynamical simulations: Even if there are strong gray, of the free energy density as a function of the tempera-

dients in the energy density, the mixed phase cannot perfor,.e |n our investigations we have employed rather simple

mechanical work. Therefore, it does not expand on its oWn o del equations of state. For finite volumas< 100 f?

account. Deflagration fronts with small velocities convert thecorresponding to the exp.ected plasma volurr,1es theré is a

mixeq préase into hadrons, leading to slow cooling and exE:onsiderable rounding in the variable§* ands/T3 élround

ansion[6]. o

P A finiEe]system of volumeé/= 100 fn? is also depicted in Te. A_S aconsequence, the speed of soun_d does not van_|sh n

Fig. 7 for the two different equations of state of the QGp.tn€ mixed phase. This is inferred, under simple assumptions,
from basic thermodynamic considerations. Fluctuations of
the two phases in a finite system lead to a smooth transition

0.4 Ve between the low temperature regime — where the hadronic
0.35 | V=100 fm> phase dominates the system — and the high temperature
--=- V=100 fm’ (color singlet e.0.s.) — regime — where the pure quark phase is most probable.

In one scenario we have investigated the implications of a
model equation of state including explicit finite size effects
and the requirement of exact color singletness within the
quark phase. This model exhibits a barrier in the free energy
between the two phases near the phase transition. The exis-
tence of a barrier results in a double-hump structure of the
probability distribution for the actual phase composition at
; the critical point. In addition, it leads to a shift of the critical
iL/ temperature to higher temperatures for finite volumes. The
speed of sound is considerably increased in the mixed phase.

03¢}

e AN

0.05 The significance of the time delay sigrial 2] for the experi-
00 p—— ' mental detection of a QGP phase in heavy ion collisions
100 s 100 2 s 100 o 5 becomes questionable.

We expect that othgimore realisti¢ models with a simi-
lar barrier between the two stable phases in a first order

FIG. 7. Speed of Soun(Squarem Cg as a function of energy phase transition W|” genera”y y|e|d qualitatively the same
densitye for three different cases1) infinite volume of the system and quantitatively similar results in small systems. In addi-
(solid ling), (2) V=100 fn? using the infinite matter EO%lotted  tion, our investigations also show intuitively that the extrapo-
line), and (3) V=100 fn? using the EOS with color singlet con- lation from the behavior of a finite system to its infinite
straint(dashed ling volume limit may, in fact, be rather model dependent.



914 C. SPIELES, H. STGKER, AND C. GREINER 57

ACKNOWLEDGMENTS Z(¢)
. . : . P(&)= 15z (A6)
We thank D. Rischke and A. Dumitru for fruitful discus- JoZ(é)dé

sions. C.G. also would like to thank L. Csernai and T. Biro
for helpful remarks in the early stage of the work. This work We now evaluate the free energy of the total systfhas
was supported by the Gesellschafir fSchwerionenfor- well as the other thermodynamic quantiti€8’, P*, and
schung, Darmstadt, Germany, the Bundesministeritim fuE'. In the discretized case we have
Forschung und Technologie, Bonn, Deutsche Forschungsge-

meinschaft, and the Graduiertenkolleg Schwerionenphysik ! o Fe)_ — gptot
(Frankfurt/Giessen Z:; Z(gi):izl e Frifl=e A" (A7)
APPENDIX: THERMODYNAMIC DERIVATION Differentiating with regard to 8 (as an independent
OF THE MODEL paramtey yields
For a canonical ensemble all thermodynamic quantities N oo BF(E)
like the free energy, the entropyS, the pressur®, and the Flot— 2 )_)j p(&)F(£)dE. (A8)
energyE are determined by the partition functiah i 2 o BF(E)

Z=Tr{e fM= e & F=-Thz. (A1) _ _ _
n The entropy is readily obtained as

Once F(T,V) is fixed, S, P, and E follow from standard

relations. _ g o _(3_1‘"‘_“) lv=1nz+%(g_i) IV
The main assumption for the case of two coexisting or '
phases is theeparability of the energy spectrEE{i) of the = lnZ+ = Z(E X_: (Q-Zl—l) Iv
single phases. It is assumed that the energy eigenvalues of - = F(&) sree (OF (&)
the total systent;, factorize: = lnZ+ 7 (1)2;[8 O T? —feE ( aT ) V]
J- i=

AR L eTPFE) 6F(€.~)>
— @ (2 =
En(§)=E, /(&) +E (&) (A2) = lnZ+ T; ’,‘_12( ])F(é.) X:: ) ( sl"
Here ¢ is a not yet specified order parameter which charac 3F(§)
terizes the configuration of the total system, i.e., the relative - / P(¢) ( ) vde = / POSEME
importance of the individual phases. The partition function (A9)
for a given¢ of the two-phase system then reads and similarly for the pressure,
A tot
Z(&) =Tr;{e‘5H}= 2 e—BEnlz e PEn,= Z(l)(f)Z(z)(f), ptot— _ JF :I E
ny ny Vv Z\ oV -
F(O)=-TINZ(§)=FD(O+F?(¢). (A3 E ( & ) B
. . T z =
Equation (A2) guarantees that the simple factorization in =1 (§1 T
Egs. (A3) holds. Sincef is a (continuou$ order parameter, N e BF(E) / IF(&)
any value of¢ corresponds to a different state of the two- E ' )
phase system. As in our intuitive choice férin the main = Z(§J \ N Tl
text, we now assume that, without loss of generalitycan F(&)
take any number in the range between 0 and 1. The total f (5)( ) dé= j p(é)P(&)d¢,
partition function of the system for a discretized spectrum of T
the order parameter and a given total voluwi® reads (A10)
i—1
Z=Z(&)+Z(&)+ - +Z(&,) with §i=¥- and the energy,
(A4) n IE(E&
Etot— Ftot+TtotStot:2 Ap(fi)[F(fi)—T( (_fl))

The probability for the system being in the staeis then i=1 J %

given by
HJ p(&)[F(i) T( (5)

dé= f P(&)E(§)dE.

ap(e) =221 2 p(&)=1. (A5) ! A0

From this we infer the probability density of the continuous EquationgA8)—(A11) do correspond to the prescription, Eq.
case: (3), stated within the main text.
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We now choose the order paramegeas the volume frac- wheres() denotes the entropy densities
tion of one of the two phases. The free energy of the system

as a function of the order parameter thus becofmefer to IF (&)
Eq. (1)] P(&)= —( )
A
F — f(l) VtOt + f(2) 1— VtO 1— VtOt,
(f) { (f )f (( é:) t)( f)} (A]_Z) ={P(1)(§Vt0t)§+ P(Z)((l_ f)Vtm)(l— g)}

wheref() is the free energy density of phaiseNote that the (Al4)

individual free energy densities can depend on the volume
explicitly. For infinite matter equations of state, however,@"
this is not the case. We now get, for the other quantities,

f?F(%))

E()=F(&)+T(§)S(®)
aa=—(aT

={eP(EVNE+eD(1- V- IV,
(A15)

\%
={s PV E+SP(1-HVY(L- IV,
(A13)  wheree!” are the energy densities.
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