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Phase transition of a finite quark-gluon plasma
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The deconfinement transition region between hadronic matter and quark-gluon plasma~QGP! is studied for
finite volumes. Assuming simple model equations of state and a first order phase transition, we find that
fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature,
leading to arounding of the phase transition. For reaction volumes expected in heavy ion experiments, the
softening of the equation of state is reduced considerably. This is especially true when the requirement of exact
color singletness is included in the QGP equation of state.@S0556-2813~98!01102-9#

PACS number~s!: 25.75.2q, 12.38.Mh
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I. MOTIVATION

A primary goal of relativistic nuclear collisions is the ob
servation of a phase transition of confined, hadronic ma
to a deconfined quark-gluon plasma~QGP!. One of the pro-
posed signatures, namely, hydrodynamic flow, is based
the presumed softening of the equation of state due to
rapid increase of the entropy density. It has been investig
in the framework of relativistic hydrodynamic models@1,2#.
The expansion of once compressed matter is predicted t
delayed in the case of a QGP, which in turn leads to a
duction of the transverse~directed! flow @3,4#.1 This is
mainly due to the fact that the sound velocity vanishes
energy densities in the mixed phase. A smooth crosso
transition within an assumed interval ofDT50.1TC , on the
other hand, results in drastically reduced time delays as c
pared to a sharp transition@6#.

As is well known, a rounding of sharp first order pha
transitions is expected due to explicit finite size effects@7#.
The importance of fluctuations of the coexisting phases
small volumes of strongly interacting matter has alrea
been pointed out in@8# for the case of a liquid-gas phas
transition and in@9# for the deconfinement phase transitio
As a consequence, it was claimed that the observation of
separate phases in heavy ion collisions might be hindered
this work we explore this behavior in more detail, starti
from rather simple model equations of state. We put spe
emphasis on the question as to how the requirement of c
singletness of the QGP phase affects the phase transitio
top of the fluctuation effect.

The limited reaction size of a heavy ion collision is
generally ignored problem of the experimental search fo
quark-gluon plasma. According to one-fluid dynamic
model calculations, one expects to produce deconfined m

1However, in a three-fluid hydrodynamical model@5# the directed
nucleon flow is already lowered as compared to the usual one-
models~which assume instantaneous local thermalization betw
projectile and target!. It will be exciting to learn whether the soft
ening of the equation of state~EOS! is also signaled in this model
570556-2813/98/57~2!/908~8!/$15.00
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ter in volumes of about 10–50 fm3 at fixed target energies
@3#. Similar values of typical QGP cluster sizes are fou
within a microscopic approach in combination with a perc
lation model@10#. At collider energies the relevant reactio
volumes for heavy systems are estimated to be much lar
Assuming an initial interaction volume of V0
5p(1.15A1/3)2t0 with a formation timet0'1fm/c and sub-
sequent expansion one may expect~at the onset of confine
ment! V'750 fm3 for Au1Au collisions at Relativistic
Heavy Ion Collider~RHIC! energies (As5200A GeV! and
V'1350 fm3 for Pb1Pb at CERN Large Hadron Collide
~LHC! energies (As'5.5A TeV) @11#.

However, the longitudinal flow velocities exceed the the
mal motion by far. Thus, only subsystems of smaller volu
can be regarded as being in approximate ‘‘global’’ therm
equilibrium. Only the latter are suitable for the study of fini
size effects. Therefore, if we require the local thermal mot
to be of the same order as the relative flow velocity, o
must restrict the study of finite size effects to regions
about one unit of rapidity~cf. @12#!. The volume of such
~possibly multiple! subsystems would thus only beV
,100 fm3 for both the RHIC and LHC.

Another motivation for the study of finite size effects
lattice QCD calculations, which have to be extrapolated fr
a finite lattice~although with periodic boundary conditions!
to infinite matter@13,14#. Depending on the number of gri
points in the spatial direction, the presently accesssible
umes are in the range ofV'50–100 fm3. The extrapolation
to infinity is not clear@14#. Our investigation can yield som
insight into what can be phenomenologically expected wh
going from finite volumes to the infinite volume limit.

II. PHASE COEXISTENCE AND FLUCTUATIONS

Let us consider a finite volume of strongly interactin
matter in the grand canonical ensemble with vanishing
baryon density. The model equation of state is construc
by matching a low energy density phase~a hadron gas! and a
high energy density phase~the quark-gluon plasma!: For in-
finite matter the system undergoes a first order phase tra
tion at a critical temperatureTC. However, when we assum
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57 909PHASE TRANSITION OF A FINITE QUARK-GLUON PLASMA
a finite volumeV of the system, statistical~thermodynami-
cal! fluctuations are not negligible; they do not allow for
sharp transition between the two phases in this case. In
eral, the probabilityp of finding the system in a statex is
given byp(x);exp@2bF(x)#, whereF(x) is the free energy
of the system@15,9# ~see also the Appendix!. Let us intro-
duce an ‘‘order’’ parameterj for the quantitative character
ization of the macroscopic state of the total system, such
j51 corresponds to the pure hadron phase andj50 corre-
sponds to the pure quark-gluon phase. For the mixed ph
the fractional volumes are defined asVh5jV and Vq5(1
2j)V.

It is now assumed that the partition function of the to
system factorizes into the partition functions of the two
dividual phases for fixedj ~see the Appendix!. Then there
are no correlations between the possible microscopic en
eigenstates of the two subsystems~the two phases!. The free
energy of the total system can thus be expressed in term
the free energy densities of the individual phasesf q and f h
and the volume fraction of the hadron phasej:

Fj~T,V!5@ f h~T,jV!j1 f q„T,~12j!V…~12j!#V. ~1!

The normalized probability density is a function of the ord
parameter:

p~j!5
exp@2bFj~T,V!#

*0
1djexp@2bFj~T,V!#

. ~2!

The expectation value of any intensive thermodynamic qu
tity A(T,V) is then calculated as

A~T,V!5E
0

1

djp~j;T,V!@Ah~T,jV!j

1Aq„T,~12j!V…~12j!#. ~3!

A reminder of a thermodynamic derivation of Eqs.~2! and
~3! can be found in the Appendix.

As long as explicit finite size effects in the equations
state of the individual phases are ignored~i.e., the free ener-
giesFi are linear functions ofVi), the free energy densitie
equal the negative pressure within the two phases:

Pi~T!52
]Fi

]Vi
52

Fi

Vi
52 f i . ~4!

When inserting this into Eqs.~1! and ~2!, respectively, one
sees immediately that for large volumesV of the total system
and a given temperatureT the occurrence of the phase wi
the lower pressure is strongly suppressed. ForV→` the co-
existence of both phases requiresPh5Pq , which is the
Gibbs condition for mechanical two-phase equilibrium. Th
holds also for the case of explicit finite size modifications
the equation of state, because the correction terms vanis
definition in the limitV→`.

III. EQUATIONS OF STATE FOR INFINITE MATTER

For illustration let us consider first the case of infin
matter equations of state, i.e., without explicit finite size c
rections. The constituents of the low energy density ph
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are well-established nonstrange hadrons up to masses
GeV. The system is treated as a mixture of relativistic, n
interacting Bose-Einstein and Fermi-Dirac gases. As the
baryon number is zero, the free energy reads

F~T,V!52(
i

giV

6p2E0

` p4

Ap21m2

1

eEi /T61
dp, ~5!

where the1 stands for fermions, the2 for bosons, andgi
denotes the spin and isospin degeneracies of particle sp
i . To take into account repulsive interactions, all thermod
namic quantities are corrected by the Hagedorn factor 1
1e/4B) @16#, where e is the energy density of the poin
particles andB is the bag constant. The bag constant is ch
sen asB5200 MeV/fm3 for all calculations presented here

For the equation of state of the high energy density ph
~the quark-gluon plasma! we take a simple bag model EO
for massless quarks, their antiquarks, and gluons in a M
bag of infinite volume, where the number of quark flavors
Nq52:

F~T,V!5BV2p2S 7

60
Nq1

8

45DT4V. ~6!

In this case the integration in Eq.~3! can be carried out
easily, rendering

A~T,V!5
e$2b@ f h~T!2 f q~T!#V%$2b@ f h~T!2 f q~T!#V21%11

@e$2b@ f h~T!2 f q~T!#V%21#$2b@ f h~T!2 f q~T!#V%

3@Ah~T!2Aq~T!#1Aq~T!. ~7!

Note that f h(TC)5 f q(TC). The expectation value of an in
tensive thermodynamic quantity like pressure, entropy d
sity, or energy density at a temperatureTÞTC can be calcu-
lated with this formula.

Figure 1 ~top! shows the expectation value of the ord
parameter̂ j&, the average hadronic volume fraction, as
function of the temperature for different system sizes. T
quantity is calculated as

^j&~T,V!5E
0

1

djp~j;T,V!j. ~8!

For volumesV5100 fm3 or less, ^j&(T) deviates clearly
from a simple step function. Even belowTC, the system is
not purely hadronic. The quark phase has a finite probabi
~see also@17#!. On the other hand, the hadronic phase co
tributes, with similar probability, even aboveTC. Note that
the order parameter in our model is simply the volume fr
tion of the hadronic phase. Thus, for a volume of 25 fm3 and
a temperature of 10 MeV aboveTC one can read off Fig. 1
that the system is composed of about 10% hadron gas
90% QGP~this admixture forfinite sizes is different from the
predicted persistence of clusters in aninfinite plasma@18#!.
The unfavorable phase is suppressed, according to Eq.~2!,
due to the differences of the free energy. However, any co
position of the total system~any value ofj) must correspond
to a finite total free energy content, because the volum
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910 57C. SPIELES, H. STO¨ CKER, AND C. GREINER
finite. Thus, the suppression relative to the state with m
mum free energy content is finite; i.e., the probability is no
zero.

Figure 1 also shows the energy densitye/T4 and the en-
tropy densitys/T3 as a function of temperature for differen
volumes of the system. In the case of an infinite volume,
first order phase transition is reflected by the sharp disco
nuity of both quantities atTC5143 MeV. Because of the
finite probability of fluctuations, the average values of t
energy density and the entropy density at a temperatureT are
different for finite systems. BelowTC, the presence of the
quark phase, although a small fraction of the total volum
increases the energy density and the entropy density. Ab
TC, the contribution of the hadronic phase still lowers t

FIG. 1. The order parameter~expectation value of the volum
fraction of the hadron gas,^j&) vs the temperature for systems
different sizes~top!. The energy densitye, divided by the tempera-
tureT to the power of 4~middle!, and the entropy densitys, divided
by the temperature to the power of 3~bottom!, are also shown. The
bag constant isB1/45200 MeV. Equations of state for infinite ma
ter ~hadronic and QGP! are used.
i-
-

e
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,
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average values ofe ands, leading to the expectedrounding
of the phase transition. A functional form of thermodynam
quantities has been parametrized@6,19#; this was used to
model the assumedsmooth crossover transition and fo
studying the resulting physics. In any case, for finite s
systems such a crossover has to be expected. Here we c
late such a behavior for strongly interacting, finite syste
on the basis of a very simple model without free paramet

Figure 2 now shows the~hydrodynamically relevant! ratio
P(e)/e vs e for various system sizes. Here the ‘‘softe
points’’ of the equation of state vsV are the respective
minima of the curves. The thermodynamics of the syst
exhibits a very distinct volume dependence with respec
this quantity. Observe the strong influence ofV over a wide
range of energy densities. This could not be clearly see
Fig. 1, where the transition appears within a rather narr
region of temperature.

It has been suggested@1,2# that a clear peak of the lifetime
of the mixed phase as a function of the collision ener
could signal the QCD phase transition in heavy ion reactio
This peak should be observable in a particular window of
initial energy density, around the softest point of the eq
tion of state. The comparatively small pressure prevent
fast expansion of the system around that well-located po

However, as can be seen in Fig. 2, the minimum
P(e)/e is much less pronounced for finite volumes than
an infinite volume. At low temperatures — which correspo
to low energy densities — the influence of a small admixtu
of quark matter onP ande is particularly strong, because th
absolute values ofP ande are very large in the quark phas
in the simple MIT bag description (2P5e5B for T50) as
compared to the values in the hadron phase (P5e50 for
T50). In Fig. 2 solid circles on the curves indicate the v
ues of the energy density, where the pressure of the p
quark phase would become zero according to the simple
model equation of state, Eq.~6!. Whether the concept o
thermodynamic fluctuation theory is adequate for lower
ergy densities and how the equation of state for the su

FIG. 2. PressureP divided by the energy densitye vs the en-
ergy density for systems of different sizes. The bag constan
B1/45200 MeV. Equations of state for infinite matter~hadronic and
QGP! are used.
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57 911PHASE TRANSITION OF A FINITE QUARK-GLUON PLASMA
cooled quark matter phase might look like at temperatu
considerably lower thanTC remain to be investigated.

IV. QUARK MATTER EQUATION OF STATE
WITH COLOR SINGLET CONSTRAINT

In the following we consider a phenomenological mod
equation of state for the plasma phase including explicit
nite size effects: A grand canonical partition function for
quark-gluon plasma droplet with thenecessaryrequirement
of color singletness was proposed in@20#. The internal
SU(3)C symmetry is accounted for by applying a grou
theoretical projection technique@21# on color singlet states to
the grand canonical partition function of a noninteracti
quantum gas of massless quarks and gluons. The authors
that, due to the color confinement, the internal degrees
freedom in a finite plasma droplet are effectively reduced
compared to the infinite matter equation of state. Also,
finite level density~in a finite system! for the single-particle
eigenstates leads to an additional effective reduction. Th
explicitly accounted for. In summary, these finite size c
rections can be interpreted as surface~curvature! effects. We
use the corresponding free energy as the equation of stat
the high density phase. It reads@20#

F~T,V!5BV2T~X2Y!1
3

2
T@ ln~D !2 ln~p!#

1T@4ln~C!1 ln~2A3p!#,

X5p2S 7

60
Nq1

8

45DT3V,

Y5pS 1

3
Nq1

32

9 DRT,

C52
1

pS 2

3
Nq28DRT1S 1

3
Nq12DT3V,

D52pS 1

9
Nq1

32

27DRT1p2S 7

30
Nq1

16

45DT3V, ~9!

whereR5(3V/4p)1/3 is the radius of the spherical plasm
drop andNq52 denotes the number of~massless! quarks.
This equation of state~for the quark-gluon plasma! incorpo-
rates an explicit volume dependence of the pressure at fi
T. In this case,Pq(T)52]Fq /]VqÞ2Fq /Vq . Therefore,
Eqs.~2! and ~3! have to be evaluated numerically. The pa
tition function was derived in a saddle-point approximati
which breaks down forRT→0. It agrees within'30% with
the exact value forRT'1 @20#. Therefore, we approximat
the free energy density byf (R)5 f (1/T) for plasma volumes
(12j)Vtot , which correspond to spherical droplets of siz
less thanR,1/T. The hadronic equation of state of Sec. III
used, without any explicit finite size modifications.

Figure 3~top! shows the free energy density as a functi
of the order parameterj ~the hadron volume fraction! using
the color singlet equation of state for the quark phase.
temperature is chosen to beT5TC, where wedefine the
critical temperature at the point wheree(TC)5@eq(TC)
1eh(TC)#/2. Thus, TC denotes the temperature for whic
s
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both phases contribute with equal probability to the state
the total system. In Sec. III the critical temperature w
found to be independent of the volume — only thewidth of
the transition was affected by the fluctuations.

For the finite-size-corrected equation of state, howev
the critical temperature shifts to higher values at finite v
umes~see below!. As one expects, the finite size modific
tions of the equation of state affect the free energy den
most strongly for small systems. The infinite volume lim
converges to a constant free energy density. Figure 3~bot-
tom! shows the resulting probability densities as functions
the order parameterj. A ‘‘two-hump’’ structure is observed,
thus favoring the dominance of one of the phases again
two-phase composition with equal volume fractions for bo
phases. Such a two-hump structure is generally expecte
occur for first order phase transitions@7#.

One should emphasize that the peaks atj50 andj51
are most pronounced for thelargestvolume. This is because
the free energy, and not the free energy density, enters
~2! for the calculation of the probability density. The physi
of large systems is therefore extremely sensitive to sm
variations of the free energy density. Because of this v
distinct hump structure, either one phase or the othe
present atTC. This basically reflects the barrier in the fre
energy density functional due to the explicit surface effe
between the two seperate phases. Then, a first order p

FIG. 3. Free energy densityf as a function of the hadron frac
tion for systems of different sizes atTC ~top! and the resulting
probability densitiesp(j) ~bottom!. The bag constant isB1/45200
MeV. The color singlet constraint is taken into account for the Q
equation of state.
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912 57C. SPIELES, H. STO¨ CKER, AND C. GREINER
transition occurs dynamically in a way that the high tempe
ture phase~or the low temperature phase, respectively! is
supercooled~or superheated, respectively!, up to a point
where bubble nucleation starts to convert the now unsta
phase to the more stable phase@22#.

Figure 4 shows the temperature dependence of the o
parameter, the energy density, and the entropy density, a
Fig. 1, but now for the quark matter equation of state w
the color singlet constraint. The main difference is the s
of the critical temperature to higher values for smaller v
umes. For systems of finite size the modified equation
state yields a lower pressure at a given temperature, bec
the internal degrees of freedom are gradually ‘‘frozen’’ w
decreasing volume@20#. Thus, even when flucuations a
neglected, the mechanical Gibbs equilibrium between

FIG. 4. The order parameter~expectation value of the volum
fraction of the hadron gas,^j&) vs the temperature for systems
different sizes~top!. The energy densitye, divided by the tempera-
tureT to the power of 4~middle!, and the entropy densitys, divided
by the temperature to the power of 3~bottom!, are also shown. The
bag constant isB1/45200 MeV. The color singlet constraint is take
into account for the QGP equation of state.
-
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two pressures would be reached for temperaturesTC.TC
` .

Here TC
` stands for the critical temperature of theinfinite

system.
Important consequences follow for the bulk quantiti

e/T4 ands/T3: The latent heat and the jump in the entro
density are considerably reduced for small systems. First,
effective number of degrees of freedom in the hadron ph
increases with temperature: The rest masses become
and more negligible as compared to the kinetic energ
Secondly, as mentioned before, the effective number of
grees of freedom in the quark phase is reduced for fin
volumes due to the requirement of color singletness.
stated in @19#, the active degrees of freedom, which a
‘‘quantified’’ ass(T), determine completely the gross beha
ior of the thermodynamics near the phase transition. Figu
also shows that the smearing due to the fluctuations is
pronounced than for the infinite matter equation of state
Sec. III. The rounding effect of a fluctuating phase comp
sition of the system appears to be counteracted by the e
of the volume-dependent reduction of the quark-gluon
grees of freedom.

Figure 5 depicts the volume dependence of the shift of
critical temperature,DTC5TC2TC

` . The temperature shif
exhibits an approximate power lawDTC;1/Va with a
'0.7. The analysis of Binder and Landau@7,14#, who exam-
ined the first order phase transition of a finite system in
Ising ferromagnet model, advocates a coefficienta51 @14#.

As in Fig. 2, Fig. 6 shows the ratioP(e)/e vs e within the
present scenario. Again, those values of the energy den
are marked which correspond to zero pressure of the p
quark phase. In clear contrast to Fig. 2, the ‘‘softest point’
now characterized by less pronounced minima ofP(e)/e for
reasonably small system sizes. For volumes ofV,25 fm3,
the minimum of the curve vanishes completely. Hence,
lifetime signal@1,2#, which is based on hydrodynamic con
siderations and infinite matter equations of state, will be c
siderably damped in a more realistic scenario of heavy
collisions.

FIG. 5. Shift of the critical temperatureDTC vs the systems size
V. The bag constant isB1/45200 MeV. The color singlet constrain
is taken into account for the QGP equation of state.
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57 913PHASE TRANSITION OF A FINITE QUARK-GLUON PLASMA
Figure 7 shows the speed of sound~squared!, cs
25]p/]e,

as a function of the energy density for three different cas
For infinite volume, the phase transition is truly first ord
This can be seen from the vanishing speed of sound in
mixed phase. This is the cause of the pronounced time d
in hydrodynamical simulations: Even if there are strong g
dients in the energy density, the mixed phase cannot perf
mechanical work. Therefore, it does not expand on its o
account. Deflagration fronts with small velocities convert t
mixed phase into hadrons, leading to slow cooling and
pansion@6#.

A finite system of volumeV5100 fm3 is also depicted in
Fig. 7 for the two different equations of state of the QG

FIG. 6. PressureP divided by the energy densitye vs the en-
ergy density for systems of different sizes. The bag constan
B1/45200 MeV. The color singlet constraint is taken into accou
for the QGP equation of state.

FIG. 7. Speed of sound~squared! cs
2 as a function of energy

densitye for three different cases:~1! infinite volume of the system
~solid line!, ~2! V5100 fm3 using the infinite matter EOS~dotted
line!, and ~3! V5100 fm3 using the EOS with color singlet con
straint ~dashed line!.
s.
.
e

ay
-
m
n
e
-

.

Neglecting the color singlet constraint~but including the ef-
fect of thermodynamic fluctuations in finite volumes! leads
to a strong reduction of the speed of sound in the transi
region. Thus, one still might expect a moderatively lon
lived fireball of the mixed phase. However, the speed
sound does not vanish in a sharp region of energy den
Rather, it is smoothly damped in the largee domain between
20 MeV/fm3 and 200 MeV/fm3. This effect would vastly
smear out the lifetime signal if one scans the flow excitat
function over a wide range of collision energies.

After the requirement of color singletness is included,cs
2

is much less reduced. The dip is shifted to higher~factor
;2) energy densities. Although the rather sharp breakdo
of the speed of sound in a well-located energy density
main is recovered, the hydrodynamical expansion soluti
will now look much different from the infinite matter sce
nario: The rather high values ofcs

2 must lead to a much more
rapid expansion than for infinite matter equations of sta
The implementation of the present results, based on fi
volumes and global equilibrium and also supercooling, in
hydrodynamical calculations, remains a difficult enterpr
for future investigations.

V. CONCLUSION

We have discussed the thermodynamic bulk properties
finite systems at the phase transition and the detailed be
ior of the free energy density as a function of the tempe
ture. In our investigations we have employed rather sim
model equations of state. For finite volumes,V,100 fm3,
corresponding to the expected plasma volumes, there
considerable rounding in the variablese/T4 ands/T3 around
TC. As a consequence, the speed of sound does not vani
the mixed phase. This is inferred, under simple assumptio
from basic thermodynamic considerations. Fluctuations
the two phases in a finite system lead to a smooth transi
between the low temperature regime — where the hadro
phase dominates the system — and the high tempera
regime — where the pure quark phase is most probable

In one scenario we have investigated the implications o
model equation of state including explicit finite size effec
and the requirement of exact color singletness within
quark phase. This model exhibits a barrier in the free ene
between the two phases near the phase transition. The
tence of a barrier results in a double-hump structure of
probability distribution for the actual phase composition
the critical point. In addition, it leads to a shift of the critic
temperature to higher temperatures for finite volumes. T
speed of sound is considerably increased in the mixed ph
The significance of the time delay signal@1,2# for the experi-
mental detection of a QGP phase in heavy ion collisio
becomes questionable.

We expect that other~more realistic! models with a simi-
lar barrier between the two stable phases in a first or
phase transition will generally yield qualitatively the sam
and quantitatively similar results in small systems. In ad
tion, our investigations also show intuitively that the extrap
lation from the behavior of a finite system to its infini
volume limit may, in fact, be rather model dependent.
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APPENDIX: THERMODYNAMIC DERIVATION
OF THE MODEL

For a canonical ensemble all thermodynamic quanti
like the free energyF, the entropyS, the pressureP, and the
energyE are determined by the partition functionZ:

Z5Tr$e2bĤ%5(
n

e2bEn, F52TlnZ. ~A1!

Once F(T,V) is fixed, S, P, and E follow from standard
relations.

The main assumption for the case of two coexist
phases is theseparabilityof the energy spectraEni

( i ) of the

single phasesi . It is assumed that the energy eigenvalues
the total systemEn̄ factorize:

En̄~j!5En1

~1!~j !1En2

~2!~j !. ~A2!

Herej is a not yet specified order parameter which char
terizes the configuration of the total system, i.e., the rela
importance of the individual phases. The partition functi
for a givenj of the two-phase system then reads

Z~j!5Trn̄$e2bĤ%5(
n1

e2bEn1(
n2

e2bEn25Z~1!~j !Z~2!~j !,

F~j!52TlnZ~j!5F ~1!~j !1F ~2!~j !. ~A3!

Equation ~A2! guarantees that the simple factorization
Eqs. ~A3! holds. Sincej is a ~continuous! order parameter
any value ofj corresponds to a different state of the tw
phase system. As in our intuitive choice forj in the main
text, we now assume that, without loss of generality,j can
take any number in the range between 0 and 1. The t
partition function of the system for a discretized spectrum
the order parameter and a given total volumeVtot reads

Z[Z~j1!1Z~j2!1•••1Z~jn! with j i5
~ i 21!

n
.

~A4!

The probability for the system being in the statej i is then
given by

Dp~j i !5
Z~j i !

Z
, (

i 51

n

Dp~j i ![1. ~A5!

From this we infer the probability density of the continuo
case:
e-
ik

s

f

-
e

al
f

p~j!5
Z~j!

*0
1Z~j!dj

. ~A6!

We now evaluate the free energy of the total systemF tot as
well as the other thermodynamic quantitiesStot, Ptot, and
Etot. In the discretized case we have

Z5(
i 51

n

Z~j i !5(
i 51

n

e2bF~j i ![e2bF tot
. ~A7!

Differentiating with regard to b ~as an independen
paramter! yields

F tot5(
i 51

n
e2bF~j i !

(
j 51

n

e2bF~j j !

F~j i !→E
0

1

p~j!F~j!dj. ~A8!

The entropy is readily obtained as

~A9!

and similarly for the pressure,

Ptot52S ]F tot

]V D U
T

5
T

ZS ]Z

]VD U
T

5
T

( j 51
n Z~j j !

(
i 51

n S 2b
]F~j i !

]V D U
T

e2bF~j i !

5(
i 51

n
e2bF~j i !

( j 51
n Z~j j !

S 2
]F~j i !

]V D U
T

→E
0

1

p~j!S 2
]F~j!

]V D U
T

dj[E
0

1

p~j!P~j!dj,

~A10!

and the energy,

Etot5F tot1TtotStot5(
i 51

n

Dp~j i !FF~j i !2TS ]F~j i !

]T D U
V
G

→E
0

1

p~j!FF~j!2TS ]F~j!

]T D U
V
Gdj[E

0

1

p~j!E~j!dj.

~A11!

Equations~A8!–~A11! do correspond to the prescription, E
~3!, stated within the main text.
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We now choose the order parameterj as the volume frac-
tion of one of the two phases. The free energy of the sys
as a function of the order parameter thus becomes@refer to
Eq. ~1!#

F~j!5$ f ~1!~jVtot!j1 f ~2!
„~12j!Vtot

…~12j!%Vtot,
~A12!

wheref ( i ) is the free energy density of phasei . Note that the
individual free energy densities can depend on the volu
explicitly. For infinite matter equations of state, howev
this is not the case. We now get, for the other quantities

S~j!52S ]F~j!

]T D U
V

5$s~1!~jVtot!j1s~2!
„~12j!Vtot

…~12j!%Vtot,

~A13!
.

m

e
,

wheres( i ) denotes the entropy densities

P~j!52S ]F~j!

]V D U
T

5$P~1!~jVtot!j1P~2!
„~12j!Vtot

…~12j!%

~A14!

and

E~j!5F~j!1T~j!S~j!

5$e~1!~jVtot!j1e~2!
„~12j!Vtot

…~12j!%Vtot,

~A15!

wheree( i ) are the energy densities.
ys.
@1# C.M. Hung and E.V. Shuryak, Phys. Rev. Lett.75, 4003
~1995!.

@2# D.H. Rischke, S. Bernard, and J.A. Maruhn, Nucl. Phys.A595,
346 ~1995!; D.H. Rischke and M. Gyulassy,ibid. A597, 701
~1996!.

@3# L.V. Bravina, N.S. Amelin, L.P. Csernai, P. Levai, and D
Strottman, Nucl. Phys.A566, 461c~1994!.

@4# D.H. Rischke, Y. Pu¨rsün, J.A. Maruhn, H. Sto¨cker, and W.
Greiner, Heavy Ion Physics1, 309 ~1995!.

@5# J. Brachmann, A. Dumitru, J.A. Maruhn, H. Sto¨cker, W.
Greiner, and D.H. Rischke, Nucl. Phys.A619, 391 ~1997!.

@6# D.H. Rischke and M. Gyulassy, Nucl. Phys.A608, 479~1996!.
@7# K. Binder and D.P. Landau, Phys. Rev. B30, 1477~1984!.
@8# L.P. Csernai and J.I. Kapusta, Phys. Rep.131, 223 ~1986!.
@9# L.P. Csernai and Z. Ne´da, Phys. Lett. B337, 25 ~1994!.

@10# K. Werner, Phys. Rev. Lett.73, 1594~1994!.
@11# H. Satz, Nucl. Phys.A544, 371c~1992!.
@12# C. Spieles, L. Gerland, H. Sto¨cker, C. Greiner, C. Kuhn, and

J.P. Coffin, Phys. Rev. Lett.76, 1776~1996!.
@13# E. Laermann, Nucl. Phys.A610, 1c ~1996!.
@14# H. Meyer-Ortmanns, Rev. Mod. Phys.68, 473 ~1996!.
@15# L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskiy,Statistical

Physics, Theoretical Physics, Vol. 5 ~Nauka, Moscow, 1976!,
Sec. 146.

@16# R. Hagedorn and J. Rafelski, Phys. Lett.97B, 136 ~1980!.
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