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Dimensional effects in a relativistic mean-field approach
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We study the Walecka model in one and two spatial dimensions within a mean-field approach. Inspired by
infinite nuclear matter, where this model is usually applied, we compare how the observables behave when
their phase space is reduced. We find a closed and unified relativistic expression for the compression modulus
as well as the relativistic expansion of the model, both dependent on dimension only. This relativistic expan-
sion is analyzed regarding the saturation and/or collapse of the s)[€6666-28188)05302-3

PACS numbses): 24.10.Jv, 24.10.Nz, 21.65f, 25.75—q

I. INTRODUCTION do not exist in one and two dimensiofid.
Relativistic corrections and/or the assumption of fermi-
There is a large amount of literature showing that theonic character of the particles in the system may substan-
reduction of the spatial dimensidthree to one, for instange tially alter the results obtained for nonrelativistic bosonic
may cause some many-body problems to have analytical sgystems. For example, if one treats relativistically the three-
lutions. The most classic example is the one-dimensibhal hody problem with zero-range interactions, the Thomas ef-
body (boson system interacting pairwise via-agd(x) at-  fect does not aris¢8]. It is also reasonable to expect that,
tractive potential, where an exact analytical bound-state SQsyen in a nonrelativistic approach, the Pauli principle would
lution can be found through the many-body wave functionhe|p to prevent collapsing systems. Dimensionality effects
given by the Bethe ansatz, showing that the binding energyn hadronic matter calculations regarding correlation func-
of the system (in units of #=m=c=1) S {ons[9] and dibaryon condensates in nuclear maf]
En=—N(N?-— 1)g?/24[1]. A mean-field approximation for | .. recently been reported.
the_ same Zs%/stem has bgen found 9VING  Ground-state properties in a model quantum field theory
S MO 1T 2 oo stors e 1 807 v s o st e oo
' for stochastic solutions. The model consisted of nonrelativ-

field approximation, which turns out to be improved as theistic nucleons coupled to vector and scalar mesons. The aim
density of the system increases. P '

Another feature of this one-dimensional system is that thé’f that yvork_was to open the_ way _for more mvolv_ed real
bound-state energy per particle does not saturatbl-ass. calcu[atlons in thrge .spatlal .dl.mfensmns. Here, we intend to
Idealized one-dimensional systems are rich in providingEXP!0it the model in its relativistic context for one and two
many simplified results for bound and scattering states, seePatial dimensions, studying ground-state properties and con-
for instance Refg.2—4]. necting thes_e to the three-dimensional case. Motivated by

The underlying physics coming from phase space of dif-current applications of the Walecka modéP] to nuclear
ferent dimensionalities starts to appear already in thénhatter, we assume each spatial case to saturate the infinite
quantum-mechanical two-body problem. If there is any athuclear matter at the same values as its three-dimensional
tractive interaction, at least one bound state exists for a twosounterpart. We have obtained a relativistic closed unified
body system in one dimension. For two and three dimensionexpression for the compression modulus in one, two, and
the possibility of two-body binding depends on the strengthithree spatial dimensions.
and/or range of the interaction. Some typical nonrelativistic ~After having compared the model in different spacial di-
three-body effects also depend on the dimension of phasmensions in the full relativistic calculation, we perform a
space. This is the situation in the Thomas and Efimov effectselativistic expansion in powers of the Fermi momenta, in
[5,6]. The first one shows the following. Suppose one has @rder to study the impact of relativistic corrections. A closed
system of three bosons interacting via a short-rangg ( and unified expansion depending only on the dimensionality
two-body interactionV(r). If ry approaches zero whikeis  is achieved. As a particular case, we have taken the nonrel-
increased such that the two-body binding energy is kepativistic limit to conclude that, in one dimension, this model
fixed, then the three-body binding energy diverges. On theaturates the infinite nuclear matter accordance with Ref.
other hand, the Efimov effect shows that if three nonrelativ{11]), whereas in two and three spatial dimensions it predicts
istic identical bosons interact via a short-range two-particlehe system’s collapse. Following the relativistic expansion,
interaction\V(r), characterized by a range parametgr  we have verified that, for all dimensionalities, the first order
then in the limitA — Xy, where\ is the strength needed to of relativistic correction can avoid collapse.
support the first zero-energy two-particle bound state, the The outline of this paper is as follows. In Sec. Il we
number of three-particls-wave bound states approaches in-present the model and in Sec. Il we discuss the relativistic
finity. These two apparently distinct effects are essentiallyexpansion for the model, which is presented in more detail in
related to the same mechanigdivergence of the trace of the the Appendix. In Sec. IV we present our results, and our
kernel of the three-particle system scattering equatiand  conclusions are given in Sec. V.
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Il. THE MODEL c?
o . . Eo= o= P° @)
The model we deal with is presented in detail in R&g)]. 2M(®~D
The degrees of freedom are baryon fie{@$, scalar meson
fields (o), and vector meson fields). The Lagrangian den- M(®+1
sity is given by &o= 52 (1-y)?, 8
S

_ T 22 —
Ly= i ‘y#&’“lﬁ UM+ 2((9,u0'a'u0' mgo®) +gso iy EbZYADf deE*(k)(nk+n_k), 9

1 _
= 7P Fut SMow, 0" —g, Py, o,

3 () 1 o K —
pb_B'yADf d=k E*—(k)(nk+ N, (10
whereF ,,=d,0,—d,»,, M is the bare nucleon mass, and
mg andm, are the scalar and vector mesonic masses respec- DL s —
tively. Since we intend to apply this Lagrangian to space PZVADJ d”KE* (K)(ng—ny). 1D

dimensionalitiedD =3 (3D), D=2 (2D) andD=1 (1D), let
us establish the dimensions of the fields and coupling conmn these expressions; is the degeneracy factdry=4 for

R H —npD/2 f—
stan;[g._ll?lzumts of the b(asr_yg)r/12|c mass, [y]=M"% [o]  nyclear matter ang=2 for neutron mattér n, andn, stand
=M , and[gs]=M - The vector field and the fqor the Fermi-Dirac distribution for baryons and antibaryons,
vector-baryonic coupling constant have the same d'mens'oﬂespectively, with argumentE&( — »)/T. E* (k) is given by
as the scalar one. , CE*(K)=(k2+M*2)(12) \whereas an effective chemical po-

Now we pursue a common approach to the different divgnja| which preserves the number of baryons and antibary-
mensions, until phase space dimensionality manifests itself,< in the ensemble. is defined by —V, whereu is the

explicitly and separates the various cases. From the abo‘fﬁermodynamic chemical potential,, is the volume of the
!_agrangian we obtain, thrqugh the Euler-Lagrange formal'elementary cell iD-dimensional phase spaces)"°. In the
ism, the equations of motion for the nucleon and mesonse, temperature limit, the ground state is obtained by filling
fields: energy levels up to a Fermi surfaég, and thusn, ap-

proache® (k;—k) and n, vanishes.

The expressions for the energy density and pressure can
be found, as usual, by averaging the energy-momentum ten-
sor, and can be presented in terms of the above quantities as

[iy,0*—(M—gso)—0,v,0"]¢y=0, 2

9, F i+ miot=g, Py y, &)

(9,0 +md)o=gsgy. @ E=E,+Et &, (12
When the meson fields are replaced by the constant classicahd
fields oy andwg, we arrive at the mean-field approximation
with the equations p=E,—E,tPp- (13

The solution for the equation of state is obtained explic-
itly through the minimization of relative to the scalar field,
or equivalentlyy. This equatiortknown as the gap equatipn
has to be solved self-consistently and provides the basis for

g
= ©)

Yo v
wo= 30" )= oy,

o0= 5 (0, ©

The constant classical fields, and g are thus directly re-
lated to the baryon sources. The sourcedgris simply the
baryon densityp,= N/V (hereafter referred to g9 which is
a constant of the motion for a uniform systemibfbaryons
in a volumeV. The source folwr, involves the expectation

value of the Lorentz scalar dens@zp: Ps-
Now we define the scalalSj and the vectorY) poten-

tials. This can be done by looking at the Dirac equation fo

the models, Eg.(2), and rewriting M* in the form
*=M-gso=M+S. Still from the analysis of the Dirac

equation,V can be defined as a quantity which shifts the

energy,V=g,wg.

It is convenient to introduce the following dimensionless

quantites y=M*/M, C2=¢g2MP~Y/m?  and C?
=g2MP~YmZ, as well as some auxiliary field densities:

r

obtaining all thermodynamic quantities in the mean field ap-
proach we are using. In a general way, it reads

2

1-y— M—SDpSI 0. (14)

Note thatps= (¥ #), &,, p, andp haveD as a parameter, in

a way to be made explicit in the following. Defining new

dimensionless variables=k/M and e* (x) = (x?+y?)(?),

the densities for different spatial dimensions are as follows.
3D:

ym3
p= Wxi (15)

yM3y X+ e
Ps= 2 xier—y? In ) (16)
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yM#4 5 y? y*  Xite Using the relations betwedq andp for the different dimen-
Ep=g 7 [Xi€ — X~ In : (170 sionalities aboveK can be rewritten as
’)/M4 3 3 3y4 Xf+ef K:DZ— -, 28)
Po="g = X7er— foefg+ gyzxfef+ 5N ; ap Plo=rg (
(19 . . .
or equivalently, in a way more suitable for our purposes,
2D:
’ E+p
YM2 K=D ——+a—(8+p) (29
=7 (19 P p=ro
) After a trivial but tedious rearranging of terms, we end up
Y with
ps=5—Ler—yly, (20
D2C? x?\ [ C2D?
v S
ML,y ] orom - [3%
O §ef‘§}’ @) ’ ,
X| = , (30
yM3[ed 3 1 (e? 1+ (CZD/IMP)(psly— pley)
Po="%— g+§—§y26f : (22
which in 3D agrees with previous results4]. Second, the
1D: two-dimensional case reduces the gap equdfian (14)] to
' a cubic one iry:
yM 2 \2\112
p= "X, (23 1-y—a[(xf+y9)"“~yly=0, (31)
M . where we have definea~ ’yCé/ZﬂT. This equation allows an
pS:7_y In Xt ef1 (24)  algebraic solution foy instead of the transcendental equa-
™ y tions for the 3D and 1D cases. However, the complete deter-
, mination ofy, with the elimination ofC2 andC? by impos-
£ = Y etv2 In Xt € (25) ing Bo=&/po—M for a given equilibrium density,, leads
b= o [ XY : to a sixth-order algebraic equation fgr without a visible
practical advantage relative to a direct standard numerical
yM?2 X;+ € solution. Nonetheless this 2D case exhibits the interesting
pbzﬁ X —y2 In . (26) aspect of having an analytic solution for the model.
The free baryonic densities have to be added to the me- 1. RELATIVISTIC EXPANSIONS

sonic scalar densitieEgs. (7), (8)] in order to obtain the
equation of statéEOS Egs.(12), (13). The baryonic scalar
densityps has to be inserted into E¢l4) to obtain the ef-
fective baryonic mass solutions. Having completely specifie
the model, we are in a position to calculate the EOS for aIIn
cases. Once E@14) is solved for any;, the value ofy has
to be substituted into Eq§12), (13). The dimensionless cou-
pling constant€C2=g2MP~1/m2 andC?=g?MP~Y/m? can

In this section, we analyze the relativistic expansion for
the models. We start performingM* expansion in powers
(%f k; iteratively in Eq.(14) and substituting these values into

gs.(12), (13). By so doing, we intend to see whether the
onrelativistic limit of the model ensures saturation, as well
as how sizable the first relativistic correction is.

The relativistic expansion is based on the series develop-
be eliminated “in ¥ £ / " values MeM of &K?+M*2)¥2 where the expansion parameter

e eliminated in favor of the experimental values k?/M*2 is assumed to be smaller than one. It turns out that

Elpo—M=—16 MeV, wherep, is fixed by k;=1.3 fm™ %, . , :
Note that the mean field approach reduces the number of freﬂée expansion for the equation of state can be presented in a

parameters we have started with in our Lagrangian,(Ex. unified form:
for all spatial dimensions. Instead of four, they are only two,

2 ® 2n
C§ andCﬁ, uniquely determined by the above-imposed con- M* =M — PCs D B K 32
straint. M@-1) “, D+2n LIVEICDR
Now, we present two interesting features of our study.
First, the compression modulus can be put into a unified c2 2 o D k2n 2
i i i — v 2 2

closed form. The compression modukiss defined 15] by E= ST P T ST P nzo 5Ton B, VEItd)

P (€ kS 2n

K=k?—— (—) : 27 D K
ki \p ke=K? +Pn§=:O D+2nC” M* (21 (33
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)

S D 5 k2"
i=o D+2n " "M*(

2 rately in a unique way. Suppose we have to adjust the bind-
ing energy per particl®, at a certain densitp,. Minimiz-
ing &/ p relative top in Eq. (38), we obtain

__c o, Cc
p= oM®P-DP T oD®-DP

p_k% % Bn kfzn (34) 3y°M
M* & D+2(n+1) M*@V po=— 2 (CZ=C)); (39)
where by plugging back this value @i, into Eq. (38), we have
-1/2 1/2 A
Bn: ( ) ) Cn: ( ) (35) 2 2 880772 .
n n 2
C:—C; 32 (40

andD is the dimensional case 1, 2, or 3. By using the rela-

tionshipC, . ;=B,/2(n+1) it is easy to show that the above and therefore both constants are determined in terms of only

expansions satisfy the relatiof{ p)/p=pu, showing the —0One observable, or By. If we then choose to eliminate

consistency of the relativistic expansion with the these parameters in favor &, for example, the density

Hugenholtz—van Hove theoreftt6] at each order ok;. In ~ becomes completely determined by the binding energy

fact, Boguta[17] found it surprising that this theorem, ) 2

proved for the exact solution of the many-body problem, was _ ( 6y°M BO) (41)

still valid in the Hartree approximation. Here we verified that Po 2 '

this result is also valid in the mean field approach, at each

order of its relativistic expansion. It is interesting to see that in this way, the compression
Equations(32)—(34) are still functions ofM*, which is  modulus is also given by the fixed binding energy

the solution to be sought from E€32). In order to proceed

to a more palatable expansion, one needs the expansion of K=2By. (42)

M* iteratively in terms ofM at the desirable power & to : L )

expand the Eqs(33), (34) also in terms oM. This proce- As a last re_mark on this nonrel_atlwstlc case, we point out

dure leads to more insight on aspects of the expansion itself. at Eq.(38) is _equwalent to the f|rst-(_)rd_e_r energy expansion

We illustrate this in the Appendix. Following the interpreta- dlrecf[ temf" W'thO.Ut gxchangéor an mfmlte Ferml gas in-

tion of Forest and Pandharipanfi3], the first row of Eqs.  t€racting via a psurww,_&ga(x) potential, withg directly

(A2), (A5), and(A8), without the last grouped term, are non- related to C_U—Cs). It is also clear from this equat!on that

relativistic contributions to the binding energy. The secondthe system is allowed to saturate due only to kinetic energy,

row gives the relativistic correction to the kinetic energy of aWithout any need for the repulsive interaction.

Fermi gas and all the subsequent terms in those expansions The simple inclusion of nonrelat_|V|st|c h|ghe(-order terms

are relativistic corrections to the interaction energy. from Egs. (A2), (A5), and (A8), without inclusion of the
To begin with, let us keep only the lower order nonrela-corresponding order fro_m the relat|V|§t|c cqntrlbutlarec—

tivistic terms (nonrelativistic Fermi kinetic energy plus the Ond row of those equationsmay be misleading, and there-

interacting mesonic term fore we proceed to take consistently the lowest order relativ-
3D: istic correction to the model,
. 3D:
£ 3 \(67%p\?® [C:—-C:
p :(10M)( y ) ( vz [P 9 e (C-C) 3k 3K Lp 3K
2M2 |PT10M  B56M3 " USM 10M’
2D: (43
é'—M=<i + Cg_cg) . (37) — ﬂ 2+£k_f2 _ik_? +C2p_zik_%
P M PT Tam P P=l2mZ [P T EMPT 1am3P T YsmZ 10am2
(44)
1D:
2
£ 2 c2-c? fo M 2L< _iﬁ)
2 :(GyZM)pz ( - s)p. @8 M*=M-CZrm | 1= 75072 (45)
It is easy to conclude from these expressions that, in tth'
nonrelativistic limit, 1D allows saturation, sin@¢>C? (in 2 2 2 4 2
. ) £ C;—Cg 1ki 1 ki p 1Kkf
agreement with Ref.11]), whereas 3D and 2D predict col- M :(”_2)p+ L —3+C§— S
lapsing systems as increases. p 2M 4M 24M M4M
The 1D nonrelativistic saturation deserves a comment. As (46)
can be seen from Eq38), differently from the relativistic 5 ) 4 ) 5
cases presented before, there are now no longer two free [ C,—Cs +}ﬁ 1k +C29_£k_f
parameters. The differencétﬁ—cg) works as the only free P= 2M2 P T AP T 12 M3P T T smz 2 M2

parameter in the model and we cannot specify them sepa- (47)
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o 1K 100
M*—M—Cim(l vl (48)
3D
1D: 80
Ci-cZ\ 1k 1 ki, p1kf
PR T L LS VIR IV ERR VIR Ve 60
(49
(ci-cd L, o1ki 1k L p? 1K = 40
TV A N VIR TAVELAR VI ViR L
(50 -~
M 20+
. ) 1 K
M*=M—-C%p 1_5W . (51 1 2D
0
This set of equations can be easily solved @rand C2 |
by minimizing the binding energy fop=p, and imposing 1D
thatBy=E&/pg—M andp(pg) =0, wherep, is a given equi- -20 1
librium density. What is important here is that the first order
relativistic correction prevents collapse for all dimensionali- 0 ' 1

ties. This occurs because the last term in E483), (46), and 0

(49) ensures the positivity of the high density behavior for all kf / kf

cases. However, the saturation point now is restricted to a

certain region ofBy and py, as we will show in the next FIG. 1. The energy per particlé/p—M versusk;/k?. The
section. spatial dimensions are specified besides each curve.

IV. RESULTS AND DISCUSSION nates at high density for all dimensionalities. Following our
analysis, we present in the Appendix expansions in terms of
Infinite nuclear matter saturates for a binding enelthg  k; for the effective mass, density energy, and pressure, in
negative of the per-particle enejg§,=16 MeV at the equi-  which we can identify the nonrelativistic terms and the onset
librium density p,=0.15 fm 3, corresponding to a Fermi of the relativistic effect corrections, appearing gradually with
momentumk?=1.3fm‘1. Motivated by this experimental

situation, in our applications for the idealized 2D and 1D 11

cases, we will impose that such idealized models saturate for -

Bo=16 MeV atk?=1.3 fm L. Hereafter, unless otherwise 1.0

specified, all tables and figures present the model compara-

tively for 3D, 2D, and 1D. In Fig. 1 we present the energy 0.9

per particle&/p—M versuskf/k?. In Table I, the dimen-

sionless constan8? andC? are given, as well as the values 0.8

for the effective baryonic mags=M*/M, the compression 1D

modulusK, vector potentialV, and scalar potentig. 0.7
Analyzing the relativistic content of the model as indi-

cated by the effective mass, we are led to the conclusion that, ¢

as dimension decreases, the model becomes less relativisti >

and softer at the saturation point. In order to have a better 0.5

description of this statement in a broader range of momenta,

we show in Fig. 2 the effective magsversuskf/k?. Note 04

that at low momenta, the lower the dimension, the lower the ' 2D

effective mass. It is easy to infer from this figure where this

behavior changes and where crossovers take place. More 03

conclusive indications of how relativistic the model is can be

extracted fromp,/p versusk;/k?, presented in Fig. 3. 0-2 3D
In order to see how the model approaches the causal limit,

we calculated the sound velocity definedduy= dp/J€ plot- 015 0'2 ' 0'4 ' ole ' ols ' 1'0 ' 1'2 ' 1'4 ! 1'6

ted againstk;/k? in Fig. 4. To clarify whether or not the ' ' ' ' ' ' ' ' '

dimensionality of the EOS affects the high density limit of ke / kf0

&lp, we have calculated this quantity, obtainidggp— 1,
which shows that the phase space constraint does not affect FIG. 2. The effective masg versusk; /k?. The spatial dimen-
this limit, meaning that the vector repulsive interaction domi-tions are specified beside each curve.
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1.1+
1.0 -
3D
1.0 1 D
2D
0.8
0.9 4
2D ] 1D
a 0.6
~ >¢/)
L 081
0.4
0.6- 0.2
' ) ' 1 ' ) ' ) ' 1
0 1 2 3 4 5
0.5 T T T T T 1 0
0.0 05 1.0 15 K / ks
k./ Kk 0 FIG. 4. The sound velocity = dp/J€ versusk; /k? in units of
f f the light velocity. The spatial dimensions are specified beside each

FIG. 3. The ratio between scalar and baryonic densjtigy ~ “UV€:

versusk; /k{. The spatial dimensions are specified beside each
curve.

the many-body force terms, in powers @f

The nonrelativistic limit shows that the 1D case saturates.
This is consistent with the fact that, from our previous dis-
cussion, this is indeed the case where one least needs rele
tivistic effects to bind the system. However, E¢l), here
rewritten ask;=(6M B)'?, demonstrates the direct relation
between the density and the binding energy: once one of
them is fixed the other can no longer be freely determined.
So, as an example, if we choofg=16 MeV we obtain
ki=1.52fm 1. On the other hand, if we choose to fix

ki=1.3 fm ! thenBy=11.7 MeV. —
The first-order relativistic correction, see E@43), (46), %

and (49), is already enough to change this scenario in all S

dimensionalities, since now saturation is possible. This satu-~g

ration, however, becomes restricted to a region in the 0O

(Bg,ks) plane as we show in Fig. 5. The crucial reason to

restrict the space of solutions is that large valueﬁg)fand

C,f are needed to saturate the system, compared to the fully

relativistic case. When this happens, E@&), (48), and(51)

start leading to negative unphysical solutions fdi/M,

which obviously have to be discarded, thus restricting the

region of physically acceptable saturation. In particular, we

stress that the 3D case does not allow saturation at the first

order of relativistic expansion forBy=16 MeV and

k;=1.3 fm L. From Fig. 5 we see that only the 1D case can kfo(fm'1)

obtain saturation at that point. More important here than the

saturation point itself is the fact that the first order relativistic  FIG. 5. The 8,,k;) plane of saturation solutions for Eqg:3)—

correction is enough to avoid the nonrelativistic collapse fors1). The allowed space of solutions lie within the dashed curves

3D and 2D cases. for 1D, the dotted curves for 2D, and the solid curves for 3D. The
Still regarding the expansion analysis, and to see how thpoint X has as coordinates the values for nuclear matter saturation.
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TABLE |. Dimensionless constants from fits of nuclear matter extended the applications to the idealized 2D and 1D cases.
equilibrium properties Bo=16 MeV, k;=1.3 fm™"). Values are \Ve illustrate in our figures the impact on several quantities,
: : : R : . _
given for the effective baryonic masél™/M, the compression gych as energy per particle, compression modulus, pressure,
modulusk (MeV), vector potentiaV (MeV), and scalar potenti& sound velocity, and causal limit, provoked when spatial

(Mev). phase space is restricted. From our results it turns out that the

Model 3D 2D 1D lower the dim_ensiona_lity, the smaller the relativistic content
of the model is(see Fig. 3.

c? 359.348 17.259 0.483 (4) A closed and unified relativistic expansion for the

c? 275.116 13.289 0.301 model has been achievglgs.(32)—(34)]. From this expan-

M* /M 0.539 0.609 0.835 sion we have shown that the relatio6p)/p=u« holds,

K 554.322 182.302 36.380 ensuring the consistency of the relativistic expansion with

\Y; 355.798 296.444 98.192 the Hugenholtz-van Hove theorem at each order.

s —433.123 —367.366 —155.099 (5) A relativistic expansion of the model showed tia

the nonrelativistic limit of the model allows saturation solu-
tion only in the 1D case but with the impossibility of simul-
various relativistic orders contribute to the saturation, we uséaneously fitting binding energy and equilibrium dentge
Cg andci, given in Table I, obtained in the fully relativistic EQq. (37)]. (b) the first-order relativistic correction restricts
calculation, to build up higher relativistic orders. Such a re-the (Bo,k;) plane solution of the moddkee Fig. % and in
sult is given in Table II. the 3D case, 8,=16 MeV for a value ok;=1.3 fmtis
not possible.

(6) We have depicted the isolated contributions to the
binding energy for many orders of the relativistic correction

We have presented the relativistic Walecka model in theésee Table ). Our results indicate that it is necessary to have
mean field approach for one, two, and three spatial dimenvery highk; powers to get the same saturation result as when
sions. Our main conclusions are as follows. calculated from the fully relativistic model.

(1) A unified and closed expression for the compression (7) Finally, let us clarify the reason why we have,
modulus is obtained, as a function only of the dimendign  throughout this paper, always discussed saturation related to
Eq. (30). the collapse of the system. We are aware that usually the

(2) We have shown that the two-dimensional case precollapse is connected to the zero range of the mdtied
sents the interesting aspect of having an algebraic analyticagnge limit where the Thomas effect takes p)adée ques-
solution for the relativistic equation of state. Although thetion of the collapse of nuclear matter in different space di-
expression is not a simple one, as given fundamentally bynensions is important in itself. Notice that the Thomas effect
Eg. (31), the model may be thought of as exactly solvable foris supposed to occur only for bosons and in 3D. Here we are
all densities. This fact is auspicious in itself, since it is ab-adding two different elements to the discussi@:We have
solutely not usual for relativistic many-body systems to dis-dealt with fermions, an¢b) we have treated the system fully
play analytical solutions, even in the apparently simpler onerelativistically. In what respect can our study be seen as also
dimension models. representing the zero range limit? Let us recall that the Wa-

(3) Motivated by the 3D case of the model, which simu-lecka model, when applied to infinite systefmsiclear mat-
lates well the bulk properties of nuclear matter, we haveter) through the mean-field approa@FA), reduces the ini-

V. CONCLUSIONS

TABLE II. Isolated nonrelativistidNR) and relativistic(R) contributions for the binding energy, in MeV, from the expansions for 3D,
2D, and 1D cases Withti andle given by Table I. Each row identifies ttke order of the term. Values smaller than Foare represented
by 0. Gaps identify when the particular order is not present. The total contribution is also indicated.

Model 3D 2D 1D

NR R NR R NR R
O(k}) —29.798
Ok?) 21.025 —26.765 11.680
OK3) —54.467 1.963
Ok} —0.280 -0.218 7.184 -0.131 0.330
O(k?) 10.406 —-0.023
Ok$) 0.008 0.006 2.610 0.003 0.040
O(k?) —0.533 0
O(K®) 0 5.150 0 0.543 0 0
O(k?) 0.029 0
Oki9 0 —0.642 0 —0.145 0 0
Ok 2.547 0
Partials —33.715 16.957 —26.977 10.192 —18.245 2.310

Totals —16.758 —16.784 —15.935
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tial number of four free parametefscalar and vector masses system(c) 2D and 3D cases need a relativistic description to
and coupling constantgo only two, C2 gSMD‘llm and attain saturation of the many-body system.

2=g?MP~Y/m?. This means that, in principle, the me-

s_omc masses couId be thought qf as belng_as Iargg as pos- ACKNOWLEDGMENTS
sible, as long as the corresponding mesonic coupling con-
stants were also large enough to keep the value@zodmd The authors would like to express their thanks to Con-

C? fixed. Now let us stress the fact that the MFA ftself ac-selho Nacional de Desenvolvimento Ciéib e Tecno-
quires validity as the system’s density increases, which i40gico (CNPq for partial financial support.
precisely where collapse takes place. Based on the above

arguments we conclude this work by conjecturing for short- APPENDIX
ranged many-body fermionic systerfia this point we are
abandoning the specific aspects of nuclear matter )tiedf In this appendix, we present the relativistic expansion for

following. (a) Relativistic effects together with the Pauli the models. We start by performingv* expansion in pow-

principle tend to prevent collapséb) In the 1D case, the ers ofk; iteratively in Eq.(32). Afterwards we use this ex-
Pauli principle by itself is enough to prevent the collapsepansion in Eqs(33), (34). The results are given, specifying
since the Fermi kinetic energy ensures the saturation of theach dimensional case.
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