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Dimensional effects in a relativistic mean-field approach

A. Delfino, Lizardo H. C. M. Nunes, and J. S. Sa´ Martins
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n, 24210 340, Nitero´i, Rio de Janeiro, Brazil

~Received 15 October 1997!

We study the Walecka model in one and two spatial dimensions within a mean-field approach. Inspired by
infinite nuclear matter, where this model is usually applied, we compare how the observables behave when
their phase space is reduced. We find a closed and unified relativistic expression for the compression modulus
as well as the relativistic expansion of the model, both dependent on dimension only. This relativistic expan-
sion is analyzed regarding the saturation and/or collapse of the system.@S0556-2813~98!05302-3#

PACS number~s!: 24.10.Jv, 24.10.Nz, 21.65.1f, 25.75.2q
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I. INTRODUCTION

There is a large amount of literature showing that
reduction of the spatial dimension~three to one, for instance!
may cause some many-body problems to have analytica
lutions. The most classic example is the one-dimensionaN
body ~boson! system interacting pairwise via a2gd(x) at-
tractive potential, where an exact analytical bound-state
lution can be found through the many-body wave funct
given by the Bethe ansatz, showing that the binding ene
of the system ~in units of \5m5c51! is
EN52N(N22 1)g2/24 @1#. A mean-field approximation for
the same system has been found givi
EN52N(N21)2g2/24 @2#. Both solutions agree to leadin
order in N, exhibiting the expected behavior for the mea
field approximation, which turns out to be improved as t
density of the system increases.

Another feature of this one-dimensional system is that
bound-state energy per particle does not saturate, asN→`.
Idealized one-dimensional systems are rich in provid
many simplified results for bound and scattering states,
for instance Refs.@2–4#.

The underlying physics coming from phase space of
ferent dimensionalities starts to appear already in
quantum-mechanical two-body problem. If there is any
tractive interaction, at least one bound state exists for a t
body system in one dimension. For two and three dimens
the possibility of two-body binding depends on the stren
and/or range of the interaction. Some typical nonrelativis
three-body effects also depend on the dimension of ph
space. This is the situation in the Thomas and Efimov effe
@5,6#. The first one shows the following. Suppose one ha
system of three bosons interacting via a short-range (r 0)
two-body interactionlV(r ). If r 0 approaches zero whilel is
increased such that the two-body binding energy is k
fixed, then the three-body binding energy diverges. On
other hand, the Efimov effect shows that if three nonrela
istic identical bosons interact via a short-range two-part
interactionlV(r ), characterized by a range parameterr 0 ,
then in the limitl→l0 , wherel0 is the strength needed t
support the first zero-energy two-particle bound state,
number of three-particles-wave bound states approaches
finity. These two apparently distinct effects are essentia
related to the same mechanism~divergence of the trace of th
kernel of the three-particle system scattering equation!, and
570556-2813/98/57~2!/857~9!/$15.00
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do not exist in one and two dimensions@7#.
Relativistic corrections and/or the assumption of ferm

onic character of the particles in the system may subs
tially alter the results obtained for nonrelativistic boson
systems. For example, if one treats relativistically the thr
body problem with zero-range interactions, the Thomas
fect does not arise@8#. It is also reasonable to expect tha
even in a nonrelativistic approach, the Pauli principle wou
help to prevent collapsing systems. Dimensionality effe
on hadronic matter calculations regarding correlation fu
tions @9# and dibaryon condensates in nuclear matter@10#
have recently been reported.

Ground-state properties in a model quantum field the
have been calculated in one spatial dimension@11#, looking
for stochastic solutions. The model consisted of nonrela
istic nucleons coupled to vector and scalar mesons. The
of that work was to open the way for more involved re
calculations in three spatial dimensions. Here, we intend
exploit the model in its relativistic context for one and tw
spatial dimensions, studying ground-state properties and
necting these to the three-dimensional case. Motivated
current applications of the Walecka model@12# to nuclear
matter, we assume each spatial case to saturate the in
nuclear matter at the same values as its three-dimensi
counterpart. We have obtained a relativistic closed unifi
expression for the compression modulus in one, two,
three spatial dimensions.

After having compared the model in different spacial d
mensions in the full relativistic calculation, we perform
relativistic expansion in powers of the Fermi momenta,
order to study the impact of relativistic corrections. A clos
and unified expansion depending only on the dimensiona
is achieved. As a particular case, we have taken the non
ativistic limit to conclude that, in one dimension, this mod
saturates the infinite nuclear matter~in accordance with Ref.
@11#!, whereas in two and three spatial dimensions it pred
the system’s collapse. Following the relativistic expansi
we have verified that, for all dimensionalities, the first ord
of relativistic correction can avoid collapse.

The outline of this paper is as follows. In Sec. II w
present the model and in Sec. III we discuss the relativi
expansion for the model, which is presented in more deta
the Appendix. In Sec. IV we present our results, and o
conclusions are given in Sec. V.
857 © 1998 The American Physical Society
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858 57DELFINO, NUNES, AND SÁMARTINS
II. THE MODEL

The model we deal with is presented in detail in Ref.@12#.
The degrees of freedom are baryon fields~c!, scalar meson
fields ~s!, and vector meson fields~v!. The Lagrangian den
sity is given by

LW5 c̄ igm]mc2 c̄Mc1
1

2
~]ms]ms2ms

2s2!1gssc̄c

2
1

4
FmnFmn1

1

2
mv

2vmvm2gvc̄gmcvm, ~1!

whereFmn5]mvn2]nvm , M is the bare nucleon mass, an
ms andmv are the scalar and vector mesonic masses res
tively. Since we intend to apply this Lagrangian to spa
dimensionalitiesD53 ~3D!, D52 ~2D! andD51 ~1D!, let
us establish the dimensions of the fields and coupling c
stants. In units of the baryonic massM , @c#[MD/2, @s#
[M (D21)/2, and @gs#[M (32D)/2. The vector field and the
vector-baryonic coupling constant have the same dimen
as the scalar one.

Now we pursue a common approach to the different
mensions, until phase space dimensionality manifests it
explicitly and separates the various cases. From the ab
Lagrangian we obtain, through the Euler-Lagrange form
ism, the equations of motion for the nucleon and mes
fields:

@ igm]m2~M2gss!2gvgmvm#c50, ~2!

]nFnm1mv
2vm5gvc̄gmc, ~3!

~]m]m1ms
2!s5gsc̄c. ~4!

When the meson fields are replaced by the constant clas
fieldss0 andv0 , we arrive at the mean-field approximatio
with the equations

v05
gv

mv
2 ^c1c&5

gv

mv
2 rb , ~5!

s05
gs

ms
2 ^ c̄c&, ~6!

The constant classical fieldss0 andv0 are thus directly re-
lated to the baryon sources. The source forv0 is simply the
baryon densityrb5N/V ~hereafter referred to asr! which is
a constant of the motion for a uniform system ofN baryons
in a volumeV. The source fors0 involves the expectation
value of the Lorentz scalar densityc̄c5rs .

Now we define the scalar (S) and the vector (V) poten-
tials. This can be done by looking at the Dirac equation
the models, Eq.~2!, and rewriting M* in the form
M* 5M2gss5M1S. Still from the analysis of the Dirac
equation,V can be defined as a quantity which shifts t
energy,V5gvv0 .

It is convenient to introduce the following dimensionle
quantities y5M* /M , Cs

25gs
2MD21/ms

2, and Cv
2

5gv
2MD21/mv

2 , as well as some auxiliary field densities:
c-
e

n-

n

i-
lf

ve
l-
s

cal

r

Ev5
Cv

2

2M ~D21! r2, ~7!

Es5
M ~D11!

2Cs
2 ~12y!2, ~8!

Eb5gLDE dDkE* ~k!~nk1 n̄ k!, ~9!

pb5
1

D
gLDE dDk

k2

E* ~k!
~nk1 n̄ k!, ~10!

r5gLDE dDkE* ~k!~nk2 n̄ k!. ~11!

In these expressions,g is the degeneracy factor~g54 for
nuclear matter andg52 for neutron matter!, nk and n̄ k stand
for the Fermi-Dirac distribution for baryons and antibaryon
respectively, with arguments (E* 2n)/T. E* (k) is given by
E* (k)5(k21M* 2)(1/2), whereas an effective chemical po
tential, which preserves the number of baryons and antib
ons in the ensemble, is defined byn5m2V, wherem is the
thermodynamic chemical potential.LD is the volume of the
elementary cell inD-dimensional phase space, (p)2D. In the
zero temperature limit, the ground state is obtained by fill
energy levels up to a Fermi surfacekf , and thusnk ap-
proachesQ(kf2k) and n̄ k vanishes.

The expressions for the energy density and pressure
be found, as usual, by averaging the energy-momentum
sor, and can be presented in terms of the above quantitie

E5Ev1Es1Eb , ~12!

and

p5Ev2Es1pb . ~13!

The solution for the equation of state is obtained exp
itly through the minimization ofE relative to the scalar field
or equivalentlyy. This equation~known as the gap equation!
has to be solved self-consistently and provides the basis
obtaining all thermodynamic quantities in the mean field a
proach we are using. In a general way, it reads

12y2
Cs

2

MD rs50. ~14!

Note thatrs5^ c̄c&, Eb , pb andr haveD as a parameter, in
a way to be made explicit in the following. Defining ne
dimensionless variablesx5k/M and e* (x)5(x21y2)(1/2),
the densities for different spatial dimensions are as follow

3D:

r5
gM3

6p2 xf
3, ~15!

rs5
gM3y

4p2 Fxfef2y2 ln
xf1ef

y G , ~16!
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Eb5
gM4

8p2 Fxfef
32

y2

2
xfef2

y4

2
ln

xf1ef

y G , ~17!

pb5
gM4

6p2 Fxf
3ef2

3

4
xfef

31
3

8
y2xfef1

3y4

8
ln

xf1ef

y G ,
~18!

2D:

r5
gM2

4p
xf

2, ~19!

rs5
gM2

2p
@ef2y#y, ~20!

Eb5
gM3

2p F1

3
ef

32
y3

3 G , ~21!

pb5
gM3

2p Fef
3

6
1

y3

3
2

1

2
y2ef G . ~22!

1D:

r5
gM

p
xf , ~23!

rs5
gM

p
y ln

xf1ef

y
, ~24!

Eb5
gM2

2p Fxfef1y2 ln
xf1ef

y G , ~25!

pb5
gM2

2p Fxfef2y2 ln
xf1ef

y G . ~26!

The free baryonic densities have to be added to the
sonic scalar densities@Eqs. ~7!, ~8!# in order to obtain the
equation of state~EOS! Eqs.~12!, ~13!. The baryonic scalar
densityrs has to be inserted into Eq.~14! to obtain the ef-
fective baryonic mass solutions. Having completely specifi
the model, we are in a position to calculate the EOS for
cases. Once Eq.~14! is solved for anykf , the value ofy has
to be substituted into Eqs.~12!, ~13!. The dimensionless cou
pling constantsCs

25gs
2MD21/ms

2 andCv
25gv

2MD21/mv
2 can

be eliminated in favor of the experimental valu
E/r02M5216 MeV, wherer0 is fixed by kf51.3 fm21.
Note that the mean field approach reduces the number of
parameters we have started with in our Lagrangian, Eq.~1!,
for all spatial dimensions. Instead of four, they are only tw
Cs

2 andCv
2 , uniquely determined by the above-imposed co

straint.
Now, we present two interesting features of our stu

First, the compression modulus can be put into a unifi
closed form. The compression modulusK is defined@15# by

K5kf
2 ]2

]kf
2 S Er D U

kf5k
f
0
. ~27!
e-

d
ll

ee

,
-

.
d

Using the relations betweenkf andr for the different dimen-
sionalities above,K can be rewritten as

K5D2
]

]r
pur5r0

, ~28!

or equivalently, in a way more suitable for our purposes,

K5D2F2
E1p

r
1

]

]r
~E1p!GU

r5r0

. ~29!

After a trivial but tedious rearranging of terms, we end
with

K5S D2Cv
2

MD21D r01DM S xf
2

ef
D 2S Cs

2D2

MD21D
3S y2

ef
2D r

11 ~Cs
2D/MD!~rs /y2 r/ef !

, ~30!

which in 3D agrees with previous results@14#. Second, the
two-dimensional case reduces the gap equation@Eq. ~14!# to
a cubic one iny:

12y2a@~xf
21y2!1/22y#y50, ~31!

where we have defineda5gCs
2/2p. This equation allows an

algebraic solution fory instead of the transcendental equ
tions for the 3D and 1D cases. However, the complete de
mination ofy, with the elimination ofCs

2 andCv
2 by impos-

ing B05E/r02M for a given equilibrium densityr0 , leads
to a sixth-order algebraic equation fory, without a visible
practical advantage relative to a direct standard numer
solution. Nonetheless this 2D case exhibits the interes
aspect of having an analytic solution for the model.

III. RELATIVISTIC EXPANSIONS

In this section, we analyze the relativistic expansion
the models. We start performing aM* expansion in powers
of kf iteratively in Eq.~14! and substituting these values in
Eqs. ~12!, ~13!. By so doing, we intend to see whether th
nonrelativistic limit of the model ensures saturation, as w
as how sizable the first relativistic correction is.

The relativistic expansion is based on the series deve
ment of (kf

21M* 2)1/2, where the expansion paramet
kf

2/M* 2 is assumed to be smaller than one. It turns out t
the expansion for the equation of state can be presented
unified form:

M* 5M2
rCs

2

M ~D21! (
n50

`
D

D12n
Bn

kf
2n

M* ~2n! , ~32!

E5
Cv

2

2M ~D21! r21
Cs

2

2M ~D21! r2F (
n50

`
D

D12n
Bn

kf
2n

M* ~2n!G2

1r (
n50

`
D

D12n
Cn

kf
2n

M* ~2n21! , ~33!
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p5
Cv

2

2M ~D21! r22
Cs

2

2M ~D21! r2F (
n50

`
D

D12n
Bn

kf
2n

M* ~2n!G2

1
rkf

2

M* (
n50

`
Bn

D12~n11!

kf
2n

M* ~2n! , ~34!

where

Bn5S 21/2
n D , Cn5S 1/2

n D ~35!

andD is the dimensional case 1, 2, or 3. By using the re
tionshipCn115Bn/2(n11) it is easy to show that the abov
expansions satisfy the relation (E1p)/r5m, showing the
consistency of the relativistic expansion with th
Hugenholtz–van Hove theorem@16# at each order ofkf . In
fact, Boguta @17# found it surprising that this theorem
proved for the exact solution of the many-body problem, w
still valid in the Hartree approximation. Here we verified th
this result is also valid in the mean field approach, at e
order of its relativistic expansion.

Equations~32!–~34! are still functions ofM* , which is
the solution to be sought from Eq.~32!. In order to proceed
to a more palatable expansion, one needs the expansio
M* iteratively in terms ofM at the desirable power ofkf to
expand the Eqs.~33!, ~34! also in terms ofM . This proce-
dure leads to more insight on aspects of the expansion it
We illustrate this in the Appendix. Following the interpret
tion of Forest and Pandharipande@13#, the first row of Eqs.
~A2!, ~A5!, and~A8!, without the last grouped term, are no
relativistic contributions to the binding energy. The seco
row gives the relativistic correction to the kinetic energy o
Fermi gas and all the subsequent terms in those expans
are relativistic corrections to the interaction energy.

To begin with, let us keep only the lower order nonre
tivistic terms ~nonrelativistic Fermi kinetic energy plus th
interacting mesonic term!,
3D:

E
r

2M5S 3

10M D S 6p2r

g D 2/3

1S Cv
22Cs

2

2M2 D r; ~36!

2D:

E
r

2M5S p

gM D r1S Cv
22Cs

2

2M D r; ~37!

1D:

E
r

2M5S p2

6g2M D r21S Cv
22Cs

2

2 D r. ~38!

It is easy to conclude from these expressions that, in
nonrelativistic limit, 1D allows saturation, sinceCs

2.Cv
2 ~in

agreement with Ref.@11#!, whereas 3D and 2D predict co
lapsing systems asr increases.

The 1D nonrelativistic saturation deserves a comment.
can be seen from Eq.~38!, differently from the relativistic
cases presented before, there are now no longer two
parameters. The difference (Cv

22Cs
2) works as the only free

parameter in the model and we cannot specify them se
-

s
t
h

of

lf.

d

ns

-

e

s

ee

a-

rately in a unique way. Suppose we have to adjust the b
ing energy per particleB0 at a certain densityr0 . Minimiz-
ing E/r relative tor in Eq. ~38!, we obtain

r05
3g2M

2p2 ~Cs
22Cv

2!; ~39!

by plugging back this value ofr0 into Eq. ~38!, we have

Cs
22Cv

25S 8B0p2

3g2M D 1/2

, ~40!

and therefore both constants are determined in terms of
one observabler0 or B0 . If we then choose to eliminate
these parameters in favor ofB0 , for example, the density
becomes completely determined by the binding energy

r05S 6g2MB0

p2 D 1/2

. ~41!

It is interesting to see that in this way, the compress
modulus is also given by the fixed binding energy

K52B0 . ~42!

As a last remark on this nonrelativistic case, we point o
that Eq.~38! is equivalent to the first-order energy expansi
~direct term, without exchange! for an infinite Fermi gas in-
teracting via a pairwise2gd(x) potential, withg directly
related to (Cv

22Cs
2). It is also clear from this equation tha

the system is allowed to saturate due only to kinetic ener
without any need for the repulsive interaction.

The simple inclusion of nonrelativistic higher-order term
from Eqs. ~A2!, ~A5!, and ~A8!, without inclusion of the
corresponding order from the relativistic contribution~sec-
ond row of those equations!, may be misleading, and there
fore we proceed to take consistently the lowest order rela
istic correction to the model,
3D:

E
r

2M5S Cv
22Cs

2

2M2 D r1
3

10

kf
2

M
2

3

56

kf
4

M3 1Cs
2 r

M

3

10

kf
2

M
,

~43!

p5S Cv
22Cs

2

2M2 D r21
1

5

kf
2

M
r2

1

14

kf
4

M3 r1Cs
2 r2

M2

3

10

kf
2

4M2 ,

~44!

M* 5M2Cs
2 r

M2 S 12
3

10

kf
2

M2D , ~45!

2D:

E
r

2M5S Cv
22Cs

2

2M2 D r1
1

4

kf
2

M
2

1

24

kf
4

M3 1Cs
2 r

M

1

4

kf
2

M
,

~46!

p5S Cv
22Cs

2

2M2 D r21
1

4

kf
2

M
r2

1

12

kf
4

M3 r1Cs
2 r2

M2

1

2

kf
2

M2 ,

~47!



e
li

al
o

i
l
D
f

e
a
gy

s

i-
th
vi
tt
nt

th
hi

o
be

m

of

ff
i

ur
s of
, in
set
ith

57 861DIMENSIONAL EFFECTS IN A RELATIVISTIC MEAN- . . .
M* 5M2Cs
2 r

M S 12
1

4

kf
2

M2D , ~48!

1D:

E
r

2M5S Cv
22Cs

2

2M2 D r1
1

6

kf
2

M
2

1

40

kf
4

M3 1Cs
2 r

M

1

6

kf
2

M
,

~49!

p5S Cv
22Cs

2

2M2 D r21
1

3

kf
2

M
r2

1

10

kf
4

M3 r1Cs
2 r2

M2

1

2

kf
2

M2 ,

~50!

M* 5M2Cs
2rS 12

1

6

kf
2

M2D . ~51!

This set of equations can be easily solved forCs
2 andCv

2

by minimizing the binding energy forr5r0 and imposing
that B05E/r02M andp(r0)50, wherer0 is a given equi-
librium density. What is important here is that the first ord
relativistic correction prevents collapse for all dimensiona
ties. This occurs because the last term in Eqs.~43!, ~46!, and
~49! ensures the positivity of the high density behavior for
cases. However, the saturation point now is restricted t
certain region ofB0 and r0 , as we will show in the next
section.

IV. RESULTS AND DISCUSSION

Infinite nuclear matter saturates for a binding energy~the
negative of the per-particle energy! B0516 MeV at the equi-
librium density r050.15 fm23, corresponding to a Ferm
momentumkf

051.3 fm21. Motivated by this experimenta
situation, in our applications for the idealized 2D and 1
cases, we will impose that such idealized models saturate
B0516 MeV at kf

051.3 fm21. Hereafter, unless otherwis
specified, all tables and figures present the model comp
tively for 3D, 2D, and 1D. In Fig. 1 we present the ener
per particleE/r2M versuskf /kf

0 . In Table I, the dimen-
sionless constantsCs

2 andCv
2 are given, as well as the value

for the effective baryonic massy5M* /M , the compression
modulusK, vector potentialV, and scalar potentialS.

Analyzing the relativistic content of the model as ind
cated by the effective mass, we are led to the conclusion
as dimension decreases, the model becomes less relati
and softer at the saturation point. In order to have a be
description of this statement in a broader range of mome
we show in Fig. 2 the effective massy versuskf /kf

0 . Note
that at low momenta, the lower the dimension, the lower
effective mass. It is easy to infer from this figure where t
behavior changes and where crossovers take place. M
conclusive indications of how relativistic the model is can
extracted fromrs /r versuskf /kf

0 , presented in Fig. 3.
In order to see how the model approaches the causal li

we calculated the sound velocity defined byvs5]p/]E plot-
ted againstkf /kf

0 in Fig. 4. To clarify whether or not the
dimensionality of the EOS affects the high density limit
E/r, we have calculated this quantity, obtainingE/r→1,
which shows that the phase space constraint does not a
this limit, meaning that the vector repulsive interaction dom
r
-

l
a

or

ra-

at,
stic
er
a,

e
s
re

it,

ect
-

nates at high density for all dimensionalities. Following o
analysis, we present in the Appendix expansions in term
kf for the effective mass, density energy, and pressure
which we can identify the nonrelativistic terms and the on
of the relativistic effect corrections, appearing gradually w

FIG. 1. The energy per particleE/r2M versuskf /kf
0 . The

spatial dimensions are specified besides each curve.

FIG. 2. The effective massy versuskf /kf
0 . The spatial dimen-

tions are specified beside each curve.
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862 57DELFINO, NUNES, AND SÁMARTINS
the many-body force terms, in powers ofr.
The nonrelativistic limit shows that the 1D case satura

This is consistent with the fact that, from our previous d
cussion, this is indeed the case where one least needs
tivistic effects to bind the system. However, Eq.~41!, here
rewritten askf5(6MB0)1/2, demonstrates the direct relatio
between the density and the binding energy: once one
them is fixed the other can no longer be freely determin
So, as an example, if we chooseB0516 MeV we obtain
kf51.52 fm21. On the other hand, if we choose to fi
kf51.3 fm21 thenB0511.7 MeV.

The first-order relativistic correction, see Eqs.~43!, ~46!,
and ~49!, is already enough to change this scenario in
dimensionalities, since now saturation is possible. This s
ration, however, becomes restricted to a region in
(B0 ,kf) plane as we show in Fig. 5. The crucial reason
restrict the space of solutions is that large values ofCs

2 and
Cv

2 are needed to saturate the system, compared to the
relativistic case. When this happens, Eqs.~45!, ~48!, and~51!
start leading to negative unphysical solutions forM* /M ,
which obviously have to be discarded, thus restricting
region of physically acceptable saturation. In particular,
stress that the 3D case does not allow saturation at the
order of relativistic expansion forB0516 MeV and
kf51.3 fm21. From Fig. 5 we see that only the 1D case c
obtain saturation at that point. More important here than
saturation point itself is the fact that the first order relativis
correction is enough to avoid the nonrelativistic collapse
3D and 2D cases.

Still regarding the expansion analysis, and to see how

FIG. 3. The ratio between scalar and baryonic densitiesrs /r
versuskf /kf

0 . The spatial dimensions are specified beside e
curve.
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FIG. 4. The sound velocityvs5]p/]E versuskf /kf
0 in units of

the light velocity. The spatial dimensions are specified beside e
curve.

FIG. 5. The (B0 ,kf) plane of saturation solutions for Eqs.~43!–
~51!. The allowed space of solutions lie within the dashed cur
for 1D, the dotted curves for 2D, and the solid curves for 3D. T
point X has as coordinates the values for nuclear matter satura

h
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various relativistic orders contribute to the saturation, we
Cs

2 andCv
2 , given in Table I, obtained in the fully relativisti

calculation, to build up higher relativistic orders. Such a
sult is given in Table II.

V. CONCLUSIONS

We have presented the relativistic Walecka model in
mean field approach for one, two, and three spatial dim
sions. Our main conclusions are as follows.

~1! A unified and closed expression for the compress
modulus is obtained, as a function only of the dimensionD,
Eq. ~30!.

~2! We have shown that the two-dimensional case p
sents the interesting aspect of having an algebraic analy
solution for the relativistic equation of state. Although t
expression is not a simple one, as given fundamentally
Eq. ~31!, the model may be thought of as exactly solvable
all densities. This fact is auspicious in itself, since it is a
solutely not usual for relativistic many-body systems to d
play analytical solutions, even in the apparently simpler o
dimension models.

~3! Motivated by the 3D case of the model, which sim
lates well the bulk properties of nuclear matter, we ha

TABLE I. Dimensionless constants from fits of nuclear mat
equilibrium properties (B0516 MeV, kf51.3 fm21!. Values are
given for the effective baryonic massM* /M , the compression
modulusK ~MeV!, vector potentialV ~MeV!, and scalar potentialS
~MeV!.

Model 3D 2D 1D

Cs
2 359.348 17.259 0.483

Cv
2 275.116 13.289 0.301

M* /M 0.539 0.609 0.835
K 554.322 182.302 36.380
V 355.798 296.444 98.192
S 2433.123 2367.366 2155.099
e

-

e
n-

n

-
al

y
r
-
-
-

e

extended the applications to the idealized 2D and 1D ca
We illustrate in our figures the impact on several quantiti
such as energy per particle, compression modulus, pres
sound velocity, and causal limit, provoked when spa
phase space is restricted. From our results it turns out tha
lower the dimensionality, the smaller the relativistic conte
of the model is~see Fig. 3!.

~4! A closed and unified relativistic expansion for th
model has been achieved@Eqs.~32!–~34!#. From this expan-
sion we have shown that the relation (E1p)/r5m holds,
ensuring the consistency of the relativistic expansion w
the Hugenholtz-van Hove theorem at each order.

~5! A relativistic expansion of the model showed that~a!
the nonrelativistic limit of the model allows saturation sol
tion only in the 1D case but with the impossibility of simu
taneously fitting binding energy and equilibrium density@see
Eq. ~37!#. ~b! the first-order relativistic correction restrict
the (B0 ,kf) plane solution of the model~see Fig. 5! and in
the 3D case, aB0516 MeV for a value ofkf51.3 fm21 is
not possible.

~6! We have depicted the isolated contributions to t
binding energy for many orders of the relativistic correcti
~see Table II!. Our results indicate that it is necessary to ha
very highkf powers to get the same saturation result as w
calculated from the fully relativistic model.

~7! Finally, let us clarify the reason why we hav
throughout this paper, always discussed saturation relate
the collapse of the system. We are aware that usually
collapse is connected to the zero range of the model~the
range limit where the Thomas effect takes place!. The ques-
tion of the collapse of nuclear matter in different space
mensions is important in itself. Notice that the Thomas eff
is supposed to occur only for bosons and in 3D. Here we
adding two different elements to the discussion:~a! We have
dealt with fermions, and~b! we have treated the system full
relativistically. In what respect can our study be seen as a
representing the zero range limit? Let us recall that the W
lecka model, when applied to infinite systems~nuclear mat-
ter! through the mean-field approach~MFA!, reduces the ini-

r

D,
TABLE II. Isolated nonrelativistic~NR! and relativistic~R! contributions for the binding energy, in MeV, from the expansions for 3
2D, and 1D cases withCs

2 andCv
2 given by Table I. Each row identifies thekf order of the term. Values smaller than 1023 are represented

by 0. Gaps identify when the particular order is not present. The total contribution is also indicated.

Model 3D 2D 1D
NR R NR R NR R

O(kf
1) 229.798

O(kf
2) 21.025 226.765 11.680

O(kf
3) 254.467 1.963

O(kf
4) 20.280 20.218 7.184 20.131 0.330

O(kf
5) 10.406 20.023

O(kf
6) 0.008 0.006 2.610 0.003 0.040

O(kf
7) 20.533 0

O(kf
8) 0 5.150 0 0.543 0 0

O(kf
9) 0.029 0

O(kf
10) 0 20.642 0 20.145 0 0

O(kf
11) 2.547 0

Partials 233.715 16.957 226.977 10.192 218.245 2.310
Totals 216.758 216.784 215.935
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tial number of four free parameters~scalar and vector masse
and coupling constants! to only two, Cs

25gs
2MD21/ms

2 and
Cv

25gv
2MD21/mv

2 . This means that, in principle, the me
sonic masses could be thought of as being as large as
sible, as long as the corresponding mesonic coupling c
stants were also large enough to keep the values ofCs

2 and
Cv

2 fixed. Now let us stress the fact that the MFA itself a
quires validity as the system’s density increases, which
precisely where collapse takes place. Based on the ab
arguments we conclude this work by conjecturing for sho
ranged many-body fermionic systems~in this point we are
abandoning the specific aspects of nuclear matter itself! the
following. ~a! Relativistic effects together with the Pau
principle tend to prevent collapse.~b! In the 1D case, the
Pauli principle by itself is enough to prevent the collap
since the Fermi kinetic energy ensures the saturation of
os-
n-

-
is
ve
-

,
e

system.~c! 2D and 3D cases need a relativistic description
attain saturation of the many-body system.
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APPENDIX

In this appendix, we present the relativistic expansion
the models. We start by performing aM* expansion in pow-
ers ofkf iteratively in Eq.~32!. Afterwards we use this ex
pansion in Eqs.~33!, ~34!. The results are given, specifyin
each dimensional case.
3D:

M* 5M2S gs

ms
D 2

rH 12
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10 S kf

M D 2

1
9

56 S kf

M D 4

2
5

48 S kf

M D 6

1
105

1408 S kf

M D 8

2S gs

ms
D 2 r

M F3
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M D 4G
2S gs

ms
D 4

r2
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r
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2S gs

ms
D 2Gr1F2
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D 2
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2D:
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1D:
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