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Randomly broken nuclei and disordered systems
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Similarities between models of fragmenting nuclei and disordered systems in condensed matter suggest
corresponding methods. Several theoretical models of fragmentation investigated in this fashion show marked
differences, indicating possible new methods for distinguishing models using yield data. Applying nuclear
methods to disordered systems also yields interesting ref80556-28188)03301-9

PACS numbes): 24.10.Pa, 05.46:j, 24.60.Ky, 64.60.Cn

I. INTRODUCTION total number of clustergin nuclear physics known as the
multiplicity) then is given bym=X,n, and the total number
The breakup of nuclei into clusters of various sizes inof nucleonsA=3kn,. The set oin,’s subject to=kn,=A
high-energy heavy-ion collisions is currently being studieddetermines the partitions &, with n=(n,,n,,...,n,) de-
both experimentally1-5] and theoreticallf6—8]. The rea-  scribing a particular partition or fragmentation. Alternately,
sons for undertaking such studies are many, but one is tgne can describe such a partition oyt (\1,....\ ), Where

determine whether a liquid-gas-like phase transition occurg, is the size of thekth cluster,A=3\,, and the clusters
at densities and temperatures away from the normal condisre ordered in some fashion e.g., according to size

tions of the nucleusachieved, albeit briefly, during the col- \ ) ~...=\ or for dynamical fragmentation by order
lision). By investigating the behavior of particular functions Ofl appzearance m
of the fragmentation pattern, the character of the transition Either n or )\ describes the clustering pattern, but we are

can be determined, and the various critical point exponentﬁ1 : . : . :
: ore interested in functions of the pattern which elucidate
can be measured. For example, the EOS Collaborafic the character of the fragmentation. The moments of a frag-

studied a set of moments introduced by Cal to deter- . . .
y Caigl mentation pattern are often examined for this reason, as they

mine the three critical exponeng; y, rand the critical mul- distill th Its of lox . :
tiplicity. Their results strongly suggest that nuclear fragmen-diStill the results of a complex fragmentation pattern into a

tation can be understood in terms of a liquid-gas or possiblfingle number which can be simply interpreted. We define
a percolative phase transition. the sth moment of a fragmentation pattennby
Many non-nuclear systems also exhibit clustering. For ex-
ample, in condensed matter physics the phase space of dis-
ordered systemisl 1,12 such as spin glassg$3,14] exhibits Y(n)=2> kn,. (1)
clustering of states of the system around energy minima. As k
in the nuclear case, the sizes and distributions of these clus-
ters are studied in an effort to better understand the charact .
of these systems and the nature of the disorder. As such or(:;i;i‘,e first two moments count the number of clusters and
is not surprised to discover a great degree of overlap in stud?PI€cts, i.e.Yo=m, Y;=A. The second momenf,=Y in-
ies of nuclear fragmentation and disordered systems. Differdicates the average size of the clusta4) a randomly
ences in the approaches are considerable, however. chosen object belongs to, and higher moments can be simi-
This paper investigates in detail the correspondences béarly understood. In spin glasses/A? is known as the par-
tween fragmenting nuclear and disordered systems, distirficipation ratio in Anderson localizatiofi8].
guishing the similarities and the differences in the ap- Sometimes we wish to reduce these momefiys elimi-
proaches. A similar investigation by Higd45] discussed nating any contribution to them from the largest cluster, i.e.,
such parallels between biological and disordered systemsve define the reducesth moment as
Our purpose is to enlarge the avenues of investigation in
nuclear fragmentation by examining areas where parallel s
methods of analysis are likely to be fruitful. Such approaches M(n)=Ys(n) = Kmax: @)
have been successful before, such as the application of per-

colation theory to nuclear fragmentatifit, 10 and our pre- wherek.x is the size of the largest cluster. Such a moment

liminary results presented here and elsewli& encourage seems natural if we consider the system as a liquid-gas sys-

such_a detailed look. Ou_r principal result, that all thg mOdelstem. Then the largest cluster can be considered the liquid
pon3|dered can be realized as a sequential prgak!ng of t%%ase, and such a reduction corresponds to considering the
|dn.te.rval, rec?]nqles the observation of these similarities to ontributions from the gas vapor only. Alternately, percola-
Istinct mechanism. tion theory would identify such a cluster with the incipient
infinite cluster, and the reduction would separate the system
into percolating and nonpercolating regions. In spin glasses,
A nucleus of A nucleons(or in general a system oA such a reduction removes the contribution of the extended
objects can be partitioned inta, clusters of sizek. The  state, the deepest valley in the rugged energy landscape.

Il. FRAGMENTATION OBSERVABLES
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Ill. FRAGMENTATION MODELS be to take the probability of a particular fragmentation pat-
. . . . tern to be given b
The discussion of observables considered only a single 9 y
fragmentation event. Physical systems produce such events 1 Xk
in great numbers, but not necessarily with a uniform distri- Pr(n)= — L 3)

" . . . |’
bution. For the observables discussed above, once the distri- Zp ko Ni!

bution of events is specified any question about the Observv'vhere the partition function or normalizing fact@ can be

able can in principle be answered. Clearly there is a phySic%btained using the recursiod,=(1/A)S kxZa , with

mechanism which leads to such a distribution, but it is pos-, _ 1 "5,,ch a model as applicable to nuclear fragmentation
sible that several mechanisms may vyield the same fragmew0 )

T X 9T as explored in[20,21], and took x,=xy* /B, where
distribution. Analyzing ensemble averages or d|str|but|onsx:w)\$ arises from the thermal motioy, describes effects

on fragme_nt observable; would then fail to distinguish .be'due to binding and internal energies, ghdallows different
tween various mechanisms. Therefore, one can specify g,eq clusters to contribute different amounts to the phase
model by its underlyln'g fragment dlstrlbutlor_1 Wlthout ré- space. Thermodynamic arguments discussd@2h allow y
course 'to the mechanism which gengrates it. This sectiopy pe expressed ag=explay/keT+(KsT/e)[ To/(T+T) T,
does thls for a n_umber of cases applicable to nuclear fragyhere ay is the binding energy per nucledie., it is as-
mentation and disordered systems, and shows that all theggmed thaEg(k)~ay(k—1) for a cluster of siz&], £, is
systems can be generated by a random breaking mechanisfRe energy spacing between excited levels, By a cutoff
temperature for internal excitations. The paramefgran
be taken a&” so as to reproduce the observed cluster distri-
A. Nuclear systems bution (n,)~k~", wherer is a critical exponent introduced
When two heavy ions collide at intermediate energies, thdy Fisher[23]. For nuclear fragmentation~2.2[5].
nuclei dissolve into a diverse mix of fragments. The frag- Several models wit},=k™ have been explored by us and
ment distribution is necessarily complex, but its general staothers. For exampleg,=1, called the linear chain model,
tistical features are determined by simple thermodynamicsvas extensively studied by Grosg al. [24—26. Another
For instance, the kinetic motion of each fragment limits theexample,3,=Kk, was the first model investigated by one of
available phase space, and so the probability of seging us(A.Z.M.) [27]. We have investigated,=k” with 7>2, in
fragments is proportional o™, wherex=V/\3, the ratio of  particular7=5/2 more recently20]. It has many features in
the available volume to the thermal volume. Internal excitaCommon with Bose-Einstein condensation and percolation
tions and other effects will also enter, but in the lafgkmit ~ theory; namely, below a certain value »f=x, a cluster
kinetic motion dominates, predicting a large numbers offorms containing a finite fraction of the mass of the system
fragments_ Low-temperature considerations likewise con€ven in the infiniteA limit. This “infinite” cluster can be
strains our fragment distribution. At loW a large fragment likened to the accumulation of particles in the ground state in
accompanied by some very small fragments is expected. TheBose gas belo=T,, or to the formation of the incipient
region between the two natural limits having several interinfinite cluster in percolating systems abqve p.. Related
mediate mass fragments is more difficult to describe and ieights including more factor&some dynamical in natuye
the subject of current research. have been studied by Grossal. [6] and Bondorfet al. [7]
One might believe that the distribution of fragments in thein describing more detailed models of nuclear fragmentation.
intermediate region is not dominated by thermal factors, but
rather by the available phase space associated with the num- B. Disordered systems
ber of possible patterns. Sobotka and Moré¢ti8] explored . . . .
. : ; o Disordered systems can also involve clustering, and in
the simplest such model in which every pattern is given

equal probability. Such a model shows an exponential falfhose cases the probability of seeing a particular clustering

off in the fragment yield, contrary to the experimentally ob- pattern is of i_nterest. In the case of nuclear fragmentation,
served power law One, can generalize this model in manthermodynamlc and phase space arguments were used to ar-

. e ; Yive at the pattern distribution, i.e., E). Here we arrive at
ways, the most obvious of which is to consider a model_ " _. . o : .
) . ) . a similar description by analyzing a simple but general
where different cluster sizes would contribute different . . ) i .
T . _mechanism which generates disorder: the random sequential
amounts to the fragment distribution phase space, €4 aaki fani L Thi del died vel
_ M oo thatx.— 1 reduces to Sobotka and reaking of an interval. This model was studied extensively
Pr(n) = (1/Z)x,* so Ak _ Dotra by Derrida and Flyvbjerg28,29 and more recently by
Moretto’s model. The partition functiofi,.= = II,x,* in this  Fronteraet al. [30]. Here we generalize their mechanism in
case can be calculated using the recursion relatiosuch a way as to encompass Eg).and many other models.
Zp=(LIA)Z = okZ i~ X Za—ix With Zg=1. The sequential breaking of an interval is simple to de-
Such models have many interesting properties, but neescribe. In the continuous case, the unit interval is sequen-
some modifications to avoid problems associated with th&ally broken into pieces of size®/;,W,,..., each chosen
indistinguishability of clusters of the same size. This indis-randomly in some fashion. Specifically, the sequence
tinguishability should reduce the size of the phase spac¥Vi=2z;, W,=(1-2)z,, W3=(1—2)(1—-2,)z3, etc., is
available to the fragments, or equivalently, reduce the probgenerated where each is chosen from some probability
ability for a particular fragment distribution by factors of distributionp,(z). In other words, at stepone breaks off a
1/n,! after the argument of Gibbs. With this consideration, arandomly chosen fractiom; of the remaining piece of size
simple and somewhat generic model of fragmentation would —W;—---W;_,. Typically the probability distribution on
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z; is independent of, though that need not be the case. Consider the quenched random map mo8,32,33.
Derrida and Flyvbjerg studied the case wherdz) The A* maps or functions oA points onto themselves are
=x(1-2)*"1[29]. chosen uniformly at random, and their cluster structure is
Let us consider an equivalent, but discrete model. In thigletermined by the number of points in each basin of attrac-
model, an interval of length is partitioned sequentially into tion, where a basin is defined as a limit cycle of the iterated
integral sized pieces. Suppose a piece of kilebroken off  action of the map. For example, the map-2, 2—1, 3—2,

from the interval of sizeA with probability 4—3 has a single limit cycle (&2—1---) which all the
points eventually enter, so that the cluster structure is just
POV =k A)= A—1) (1)g-1(X)a—k @) one single cluster of size four. Such a simple model has
1= k—=1) (x+1)p_; ' interesting properties, and its cluster pattern is given by Eq.

. (3) with x, == JkI ™/ jI ~e/2k. This can be inferred from
where ),=x(x+1)---(x+n—1) andx>0 is a free pa- the fact that the probability that the map is indecomposable
rameter. In the limitA— oo, k/A—W, this distribution con- s known and would be given b /Z, whereZ,=k"/k! by
verges to the continuous distribution mentioned above. simple counting. Interpreting Eq3) in terms of randomly

Applying this process repeatedly until the interval is ex-preaking an interval has already been accomplished, so we
hausted, the sequenke,\,,... Ay is generated. The overall see that the random map model is a special case of randomly
probability for this sequence appearing from this procesgyreaking the interval. The asymptotic limit can be seen by
is the product RAj;A)PrAz;A—Ng)PrNg;A—N1  considering the elements in the sum as terms in the Poisson
—Ng) P\ A=Ay —---—\p_3) and is given by distributione™*xJ/j! with x=k. The factore* does not af-
fect the cluster distributions, so that the model asymptoti-

—1\-1
pr()\l,___')\m)zxm(AJr: 1) cally converges to,=1/(2k), and hence is included in the
original distribution considered by Derrida and Flyvbjerg
1 [28] p(2) =x(1—2)*"* with x=1/2.
X . Secondly, consider what happens when the sequential
AA=Ny) (A=Ny— A1) y PP N

pieces are chosen from a changing distribution. For example,
(5) suppose thé+ 1st piece is chosen from the interval of size
] ] Ai=A—N{—---—\;, Ag=A with probability
By summing over all possible orders of such a sequence, the

probability Prq)=2=, _,Pr(A¢,...,A,) that a particular un- A-1 (V) k—q[x+i(1— 7)]Ai—k
g;dered clustering pattern appears is determined, and is given Pr(k; A;) =( k=1 x4 7+ 11=1)In s (7)
_q\ -1 N In this case the sequence of pieces is generated with prob-
(n)= A Lonalkl (6) ity
. o o X m-1:1-9

where we have applied E¢AL). This is in fact the distribu- Pr(Ag,....Ap)=Al X P)ay
tion given by Eq.(3) with x,=x/k. More generally, the se- Ya-1
guential breaking process where the probability of breaking 1
off a fragment of sizé& from an interval of sizé\ is given by XA AN AN —ra)---
Pr(k;A) = (kx/A)Za_/Z yields Eq.(3) as the fragmenta- (A=A (AN A
tion pattern. This gives a possible mechanism for obtaining (y)M(,l
such a fragment distribution, but it is not unique. Another XH =R 8
mechanism based on Markov chains was explored by us be- K K ’
fore [21]. . .

By modifying the random breaking mechanism we canWhereX(”;“) 's & generalized Pochhammer symbol
obtain the other model discussed in the previous se¢tian 1 for n=0,
equipartition model as well. Suppose one allows multiple X(n:a)=

clusters of the same size to be broken off instead of just one. X(x+a)--[x+(n=1)a] for n>0.

For example, take the probability thatclusters of sizé are Summing over all the possible orders of this, gives the

brokenr11 from an interval of lengthn as Prk,mA)  ropability for the unordered fragmentation pattern
=(kx/A)Y(Za—mK!Zp). Then the distribution of cluster

sizes can be shown to be given by e (1/Z,)ITx. .
This is in fact a generalization of a well-known method for
generating equiprobable partitions introduced by Nijenhuis
and Wilf [31]. This is clear since the only term that depends on the order of
Having obtained the models of the previous section ashe fragments is LA(A—\4)---]; the other terms are in-
cases of this disordered system mechanism, we are encowariant under permuting the order of thés, so that we can
aged to believe that other disordered systems can be likewispoply Eqg.(Al) directly.
described in the context of randomly breaking the interval. This distribution pattern has been studied in a statistics
Indeed, two other models considered by Derrida andtontext by Pitmaf34], but what we would like to emphasize
Flyvbjerg fit nicely into this mechanism. here is that in the limik+ y=1, this model reproduces as-

N

(V)k-1
k!

(X)(m-1:1-) i
(X+Ya-1 "k Ml

Pr(n)=A! 9)
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ymptotically all of the clustering features of a Sherrington-size k>A/2 is automatically the largest, one can show that

Kirkpatrick spin glass[35,36,29. Unlike the other disor- AZ,=xZs_k, SO that Prky.,=K =XZa_(X)/ZA(X) when

dered systems, we cannot prove this result, but the evidenge> A/2.

(discussed belonis compelling enough that we consider Eq.  For typical models such as=x/k” with 7> 2, the vari-

(9) with x+ y=1 as a model of a spin glass. Why the chang-ance ofm and the reduced momeM, should peak at the

ing distributions produces the patterns seen in a spin glass b°oint x./A=1/{(7—1). The finite size effects can be con-

perhaps unexpected and should be explored further. siderable, and th, peak is significantly shifted from its

infinite value in Fig. 1. At the same poitk,,,) tends to zero

IV. TRADITIONAL ANALYSIS OF MODELS in the infiniteA limit, and tends to be a better indicator of the

Now that we have a description of the fragment distripu-transition. All these facts are consistent with the interpreta-
tions we are in a position to make definitive predictions.ion of x=x. as a critical point of a phase transition charac-
Since nuclear and disordered systems have spawned separt@téized by the appearance of an “infinite” or percolating
methods of analysis, we begin by briefly considering soméluster.
features of these models from their traditional points of view.

A. Nuclear systems B. Disordered systems

Fragmenting nuclear systems are traditionally analyzed by Disordered systems are traditionally analyzed by consid-
studying expectation values of the various observables a&1"9 the distribution of an observable at a particular point in
functions of thermodynamic variables. Some of the impor-Parameter space. The important observables in disordered
tant observables are the multiplicity and its variance, the Systems aré/=Y; and kna,, and their distributions show
size of the largest clustét,,,, and the reduced momeht, . significant non-Gaussian behavior, and this feature is in
They are important because of their expected behavior in th8ome sense a characteristic of the disorder.
region of a critical point phase transition. For example, from  For the model given by Eq9), these can be obtained by
percolation theory we know that the reduced moments ar@ recursive procedure. Defing,=(y),_1/k!. Then the
functions of the critical exponents apd- p.. in the region of  probability for a pattern separates into a term such ag3q.

the critical point[9], i.e., times a term which depends only on the multiplicity. The
partition functionZ,=(x+ y)a_1/A! is then essentially a

(Mg)=(m)—1~[p—pc|*~*, sum of terms contributed by each multiplicity class, namely,

Za=2mXm-1:1-yZA - Each of these terms can be computed

(M1)=A—(Kmnao~[P—pcl”, (20 for any x, from the recursiormZl'=3,x.Z""L. Then the
B probability distributionIT(k,.0=AZA/Zs as in the previous

(M2)=(Y2) = (Kaad~Ip—pc| 7. section.
To determine the probability distributiold(Y), the par-

The EOS Collaboratiofb] has argued that both nuclear frag- tition function is broken into terms in whicl is fixed, i.e.,
mentation and percolation theory can be analyzed in a simiZAZEsz so thatll(Y)=2Z)/Z,. For computational pur-
lar faSh'O?]’ extendm% the _()bser:vakt;or?s e_md res#lts of Cam'%oses, it is convenient to continue to break these partition
[10,37). Thus from observing the behavior of the momentSynctions into components where the multiplicity is fixed,
the critical point and exponents can be deduced, and a num- that ZY== ZmY s defined
. : . T . 0 that Zy,=Z,(X)(m-11-yZa - Using x, as define

ber of papers in the literature have studied this in a variety o ove. we can comout@™ via the recursionmz™"
theoretical 37,38,26 and experimentdl1,5] systems. LYo k2 PUtEA A

In the model given by Eq(3), these quantities can be =2kXkZa—k’ : o _
computed from their definitions and by utilizing the follow- ~ For many values ok and y, these distributions are sig-

ing results: nificantly non-Gaussian, for instance as seen in Fig) 2
which shows the distributioRl (Y). First, one notes the large
Zp k finite-size fluctuations seen I(Y) whenY/A?>1/2. These
(N =X Zn 11 disappear in the infinite limit. The presence of cuspH{{Y)

at Y/A?=1,1/2 and 1/3 can be seen in FigaRand persists
Za i« in th_e infinite limit. These cusps are not strictly an ingicqtor
(nj(Ni—=8j1) ) = XX Z] ) (120  of disorder, but the non-Gaussian nature of the distributions
A accentuates their presence.

Figure Zb) which showslI (k) reveals that the distri-

t(;ortnpu'ﬁatlon of thte t_reduc?d momebnts datdd|t|9n51(;IyTrr]§qg|re%ution of sizes of the largest cluster varies widely for differ-
at various expectation valueslaf,, be determined. This is .ent models. All these cases are likely to have sizable largest

most easily done by expressing the expectation va_ll_ues 'Blusters, however, there is a nontrivial distribution about
terms of the probability distribution ok,,.x. The probability k..o /A=1/2 for these models, due in part to the large number
that a random fragmentation of nucleons has a cluster of Sizg?a;gatterns withk,.. =A/2. T’he cusps ak.,/A=1/2,1/3
Kmax @s its largest cluster is given by Rp)= etc., arise from singularities associated with breaking the sys-
AZaXe, o X JZa(Xa - Xn), WHETRAZA(Xq,... Xk )= tem into fragments of equal size. For example, below
Za(Xgyeeo Xk 50, )=Za(Xg, o Xk ~1,0,...). When Knaw k., /A=1/2, there is no contribution from binary fragmen-
>A/2 a simpler expression can be used. Since any cluster ¢&tion. The sudden cutoff of this contribution leads to a cusp.
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FIG. 3. The probability distribution ofa) the second momedi (Y) and(b) the size of the largest clusté(k,,,,) for the model given
by Eg. (3) with x,=x/k>? for variousx.

V. CORRESPONDING ANALYSIS OF MODELS tirely from binary fragmentation events.

In this section we reverse our methods of analysis, treat-
ing nuclear models as if they were disordered systems, and
vice versa. Such an approach is warranted since both descrip- The corresponding analysis of disordered systems exam-
tions can be described without reference to the fragmentinines the expectation values of the reduced moments as a
mechanisms, and therefore the methods should be insensitifienction of a changing parameter. We consider two cases
to the source of the data and sensitive instead to the undegiven by Eg. (9): the randomly broken interval with
lying property we are trying to isolate in the data., criti- ~ p(z2)=x(1—2)*"! with x>0 (y=1), and the spin-glass
cality and disorder Whether the methods are indeed selec-model with 0<x<1 (x+ y=1). To facilitate computing the
tive should be revealed by suchgotentially blind test. reduced moments for the models described by @g.we

have the following results for ensemble averages,af

B. Disordered systems

A. Nuclear systems
, , , , _ Al (X)a-k(Vk-1
The corresponding analysis of fragmenting nuclei consid- <nk>:< K| (Xt a1 (13
ers the distribution of the second moméhtnd the size of Va1
the largest clustek,,,x. ComputinglI(Y) andIl (k) iS not
complicated for models with fragmentation pattern given by Al
Eqg. (3). We have already discussed how to obthii(k,,) (n;(n— 5jk)>zxm(7)j—1(7)k—1
from the partition function in Sec. IV A. The distribution T :
I1(Y) is obtained by breaking the contributions to the parti- (X—y+D)ajk
tion functionZ, into classes with fixed, Z,=3yZ), and XT (14
applying H(Y)ZZX/ZA. As in Sec. IV B, these partition Va1
functions can be computed by recursion, i.e.,
AZ =3 kxZ K. With these we can comput&’s) and its variance. Before we
If we analyze the fragmentation distribution given by Eq.do so, it is interesting to note some propertiesmyj) itself.
(3) with a typicalx,=x/k” with 7>2 by plotting the distri- SinceZkn=A, k(n,)/A is properly a probability distri-

bution on the largest cluster size and the second moment, waution. In this case, the distribution has appeared before as a
find over most of the range that the distributions are esserdistribution for a replacement urn model introduced byyRo
tially Gaussian centered about their expectation values. Fig-39]. This correspondence was noted by us before in the
ure 3 shows this. When is small and the pattern is usually special case o=1 [40]. A central feature in that case was
dominated by a single large fragment, the atypical eventghe appearance of a power law in the fragment distribution
with smaller large fragments are distributed in a manneKn,)=1/k for x=1. Such a power law applies in this more
similar to a disordered system with a low valuexgfonly  general case, since in the largdimit, we can approximate
with a much diminished probability. This arises almost en-(n,) by
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T'(x+y) 1 k\*1/ k\r1 lack self-averaging properties. FricA the fluctuations are
<n">%m? ( - K) (A) (15  small andf(Y)~1/A as expected. This is true in general in
Y this model, and for the spin-glass case y=1 leads to the
_ o _ known result{Y2)=21/3(Y)(1+ 2(Y)) [41] in the infinite A
Settingx=1, {n,)~ yA'~’k?~? which shows a power law |imit.
falloff with exponentr=2—y. _ The self-averaging property is not difficult to understand.
If we now allowA—c, k/A—W, the discrete model be- At one extreme, the nucleus can be broken into individual
comes a continuum one. In this cab@yV) =lima_..A(Nwa) ~ nucleons so that/A2=1/A; thus,Y varies inversely as the
is the continuum distribution of fragment sizes, with gjze of the system. At the other extreme, when Aheucle-
oWF(W)dW=1 and limy_..(Ys)/A°=[gWF(W)dW. Us-  ons are in one clustef/A2=1. This behavior is analogous to

ing Eq.(15), we arrive at the two extreme limits for the participation ratio in Anderson
localization. For a localized stat/A2~1/A and for an ex-

F(x+1y) tended statef/A?~1. A localized state corresponds to the

f(W)= TOOT(y) (1-w)y* w2, (16)  |ocalization of the electron wave functions around many in-

dividual sites, while an extended state is the opposite case. A
] ) o ) ) percolation description of localized versus extended states
..e., Wi(W) is a g distribution. Derrida and Flyvbjerg can pe found in Zimafil2). Specifically, for site percolation
[11,29,33, extending results on spin glasses due twdd 5 extended state includes an incipient infinite cluster.
et al.[41] and other disordered systems, arrived at these dis- Applying these results, we plot the various expectation
tributions before. All the cases they considered are in fac5jyes in Fig. 4. From these graphs one can comment on the
special cases of the above expression. Specificallyl,  possibility of criticality in this model. It is well known that
x=1/2 reproduces the quenched random map,1, x>0  the x>0, y=1 case is not critical in the traditional sense.
reproduces the randomly broken interval gnd1—x repro-  The zeros of the partition function occur on the negative real
duces the Sherrington-Kirkpatrick spin-glass mddall. We =y axis, well isolated from the relevant parameter domain. For
have already seen why the first two models reduce to thig,e y + y=1, 0<x<1 model, the reduced moments appear
model. The spin-glass result, on the other hand, defies g peak neax=1/2, which suggests that=1/2 may be a

simple explanation. Distribut_ions on the Iargt_est and seconditical point for the model. However, var() peaks closer to
largest cluster also agree with the known spin-glass results,—q g ' At a true critical point one would expect this fluc-

and so it appears that this model does indeed capture thEaiion to be maximal at the critical point. Since for any
clustering properties of the spin glass. _model the various expectation values must peak somewhere,
_Returning now to the question of moments, we see that ife existence of a maximum is insufficient evidence for criti-
this case we can arrive at closed form solutions. Ensemblgg iy Further evidence is inferred from the fact that the
averages for the multiplicity and its variance can be de“"eq)artition function &+ v),_,/A! has zeros on the negative
by applying Eqs(13) and(14) and some combinatorial iden- o4y 1 , axis in a complexified parameter space. These ze-
tities [Egs. (B1) and(B2)] to arrive at roes are isolated from+ y=1 real space, and suggests that
a traditional critical point in which the zeros of the partition

X+y—1 (X)a function encroach the thermodynamically relevant parameter
(my=—-2 B - , (17 gomain is completely absent in this model.
y—1 (X+y—1) s completely abse o]
(X)a 1 (X)a VI. CONCLUSIONS AND OUTLOOK
var(m) = -

m) Y=1 (X+¥)a-1 Y=1 (X+¥)a-1 In this paper we have shown that the random breaking of
1 (x—y+1) an interval process when suitably generalized encompasses a

Y Al (18) wide range of physical models both in nuclear fragmentation
y=1 (X+1)a-1 and in disordered systems. The fact that all these models are

implicit to a particular process strongly recommends that the
Similarly, the mean and variance ¥fcan be determined: ~ analysis of their properties should be the same. Traditionally,
however, this has not been the case. The models have arisen
separately, motivated by particular features which theorists
1x ; ;
Z _), (19)  Wished to capture. In nuclear fragmentation, the feature to
reproduce is a specific criticality marked by the appearance
of an “infinite” cluster. Interest has therefore focussed on
2xy(A—1)(x+ y+A)(x+ y+A—1) reduced moments whose behavior changes with the appear-
(200  ance of such a cluster. In disordered systems the interest
instead has been on whether such systems lack self-
averaging properties, i.e., have significant non-Gaussian
From this the relative fluctuations i, f(Y)=(Y?)/(Y)?2—1 fluctuations. In this case, the focus is on probability distribu-
can be computed. They are important when determiningions of the measures which might express such non-
whether a system is self-averagiht@]. Consider the case Gaussian fluctuations, e.g., the largest cluster and the second
y=1, wheref(Y)~2x/[(x+2)(x+3)] in the largeA limit. moment.
For x~1, the fluctuations are large and the system is said to Given then this separate emphasis, it is understood why

VA= TR Py D 71 2)
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FIG. 4. The expected valu@ and variancdb) of the multiplicity and the expected values of the reduced second mairjeand the
largest clustefd) for the random broken intervasolid line) and spin-glas¢dashed ling models. Note that the spin glass is only defined
when 0<x<1.

the same variables in the models are studied in differenéxample, the permutatiom= (32325553 is usually written in

ways. The corresponding analysis taken here reinforces thgcle notation a$132)(45)(6)(78). If each cycle of lengttk
distinct approaches, as it shows that the general behavior @ associated with a cluster of the sizeand these clusters
the two classes of models differ considerably. Neverthelesgre ordered by the largest element in each cluster, then each
the convergence of their description within the randompermuytation can be mapped to a sequential partitioning. The

breaking of an interval mechanism makes such a distinction,oye example would correspond to the sequential partition
somewhat puzzling. This mechanism is unlikely to be phyS|—(2 12,3,

cal in the nucle_ar case, but this is not an explanation for t_he Suppose one chooses a permutaioaS, uniformly at
different behavior in the two cases. Indeed, the explanation, ., i o “\ith probability t. What is the probability
may have a great deal to do with criticality or its absence,[hat the first cluster in the sequence has size k? There

Models with exponent<<2 tend to look disordered;>2 _1 ; q & X

tend to have distinct critical points and Gaussian distribu2"® k1) ways of choosing thi—1 elements which are not
tions. Sincer=2+ 1/8, the two regions are characterized by &l€émentn but are inn’s cycle map. There arek(-1)! dif-

positive and negative. It would be interesting to confirm ferent cycles which permute theobjects andif—k)! ways
this observation as a general feature. of permuting the remaining elements which are not in this

cycle. So the probability isk—1)!(n—k)!(R-1)/n!=1/n.
What about the second cluster? The—(k)! ways of per-
muting the elements not in the first cluster is a permutation
This work was sponsored in part by U.S. DOE Grant No.P’ € Sy, chosen uniformly at random. In this permutation,
DE-F602-96ER40987. We would like to thank H. Neuberger\, is the first element, and by the above argument has size
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for some very useful discussions. No,=k with probability 1/(0n—\,). Iterating yields the prob-
ability of the whole sequence as being ®r(... \n)
APPENDIX A: A COMBINATORIAL IDENTITY =1n(n=Ay)(n=A;=Ap) - ]. Summing this over all pos-

sible orders one obtainsrl/times the number of permuta-
Recall that a permutation am elements can be described tions with this particular cycle class structure. It is well
by the cycles containing the elements which permute amongnown that this is given by Cauchy’'s formul§42]
themselves under the iterated action of the permutation. For!/IIn, 'k, so that
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1 1 (1\"
)\Zn n(n_)\l)(n_)\l_)\z)"': K n_kl(E) .
(A1)

APPENDIX B: SUM RULES
For systems satisfying Eq$13) and (14) one has the
following sum rules:

A

o % _ ('}’)pfl
ST A, ™y Y

(')’)p—l( 7)q—1

(x+ '}’)p+qfl ’
(B2)

[i1,[K]
qu=§ ﬁpm‘*mj(nk— Sik)) =X

where p,q>0, [k]o=1, [k],=k(k—1)---(k—p+1). No-

tice that the right-hand sides are independenfofThese
rules are helpful in determining expectation valuesm¥,

etc., and can be derived using a common combinatorial iden-
tity known as Norlund’s formula[43].
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