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Randomly broken nuclei and disordered systems

K. C. Chase, P. Bhattacharyya, and A. Z. Mekjian
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08855-0849

~Received 16 July 1997!

Similarities between models of fragmenting nuclei and disordered systems in condensed matter suggest
corresponding methods. Several theoretical models of fragmentation investigated in this fashion show marked
differences, indicating possible new methods for distinguishing models using yield data. Applying nuclear
methods to disordered systems also yields interesting results.@S0556-2813~98!03301-9#

PACS number~s!: 24.10.Pa, 05.40.1j, 24.60.Ky, 64.60.Cn
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I. INTRODUCTION

The breakup of nuclei into clusters of various sizes
high-energy heavy-ion collisions is currently being stud
both experimentally@1–5# and theoretically@6–8#. The rea-
sons for undertaking such studies are many, but one i
determine whether a liquid-gas-like phase transition occ
at densities and temperatures away from the normal co
tions of the nucleus~achieved, albeit briefly, during the co
lision!. By investigating the behavior of particular function
of the fragmentation pattern, the character of the transi
can be determined, and the various critical point expone
can be measured. For example, the EOS Collaboration@5,9#
studied a set of moments introduced by Campi@10# to deter-
mine the three critical exponentsb, g, t and the critical mul-
tiplicity. Their results strongly suggest that nuclear fragme
tation can be understood in terms of a liquid-gas or poss
a percolative phase transition.

Many non-nuclear systems also exhibit clustering. For
ample, in condensed matter physics the phase space o
ordered systems@11,12# such as spin glasses@13,14# exhibits
clustering of states of the system around energy minima
in the nuclear case, the sizes and distributions of these c
ters are studied in an effort to better understand the chara
of these systems and the nature of the disorder. As such
is not surprised to discover a great degree of overlap in s
ies of nuclear fragmentation and disordered systems. Dif
ences in the approaches are considerable, however.

This paper investigates in detail the correspondences
tween fragmenting nuclear and disordered systems, dis
guishing the similarities and the differences in the a
proaches. A similar investigation by Higgs@15# discussed
such parallels between biological and disordered syste
Our purpose is to enlarge the avenues of investigation
nuclear fragmentation by examining areas where para
methods of analysis are likely to be fruitful. Such approac
have been successful before, such as the application of
colation theory to nuclear fragmentation@16,10# and our pre-
liminary results presented here and elsewhere@17# encourage
such a detailed look. Our principal result, that all the mod
considered can be realized as a sequential breaking o
interval, reconciles the observation of these similarities t
distinct mechanism.

II. FRAGMENTATION OBSERVABLES

A nucleus ofA nucleons~or in general a system ofA
objects! can be partitioned intonk clusters of sizek. The
570556-2813/98/57~2!/822~9!/$15.00
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total number of clusters~in nuclear physics known as th
multiplicity! then is given bym5(knk and the total number
of nucleonsA5(kknk . The set ofnk’s subject to(kknk5A
determines the partitions ofA, with n5(n1 ,n2 ,...,nA) de-
scribing a particular partition or fragmentation. Alternate
one can describe such a partition byl5(l1 ,...,lm), where
lk is the size of thekth cluster,A5(klk , and the clusters
are ordered in some fashion, e.g., according to s
l1>l2>•••>lm or for dynamical fragmentation by orde
of appearance.

Either n or l describes the clustering pattern, but we a
more interested in functions of the pattern which elucid
the character of the fragmentation. The moments of a fr
mentation pattern are often examined for this reason, as
distill the results of a complex fragmentation pattern into
single number which can be simply interpreted. We defi
the sth moment of a fragmentation patternn by

Ys~n!5(
k

ksnk . ~1!

The first two moments count the number of clusters a
objects, i.e.,Y05m, Y15A. The second momentY25Y in-
dicates the average size of the cluster (Y/A) a randomly
chosen object belongs to, and higher moments can be s
larly understood. In spin glasses,Y/A2 is known as the par-
ticipation ratio in Anderson localization@18#.

Sometimes we wish to reduce these momentsYs , elimi-
nating any contribution to them from the largest cluster, i
we define the reducedsth moment as

Ms~n!5Ys~n!2kmax
s , ~2!

wherekmax is the size of the largest cluster. Such a mom
seems natural if we consider the system as a liquid-gas
tem. Then the largest cluster can be considered the liq
phase, and such a reduction corresponds to considering
contributions from the gas vapor only. Alternately, perco
tion theory would identify such a cluster with the incipie
infinite cluster, and the reduction would separate the sys
into percolating and nonpercolating regions. In spin glass
such a reduction removes the contribution of the exten
state, the deepest valley in the rugged energy landscape
822 © 1998 The American Physical Society
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57 823RANDOMLY BROKEN NUCLEI AND DISORDERED SYSTEMS
III. FRAGMENTATION MODELS

The discussion of observables considered only a sin
fragmentation event. Physical systems produce such ev
in great numbers, but not necessarily with a uniform dis
bution. For the observables discussed above, once the d
bution of events is specified any question about the obs
able can in principle be answered. Clearly there is a phys
mechanism which leads to such a distribution, but it is p
sible that several mechanisms may yield the same fragm
distribution. Analyzing ensemble averages or distributio
on fragment observables would then fail to distinguish
tween various mechanisms. Therefore, one can speci
model by its underlying fragment distribution without r
course to the mechanism which generates it. This sec
does this for a number of cases applicable to nuclear f
mentation and disordered systems, and shows that all t
systems can be generated by a random breaking mecha

A. Nuclear systems

When two heavy ions collide at intermediate energies,
nuclei dissolve into a diverse mix of fragments. The fra
ment distribution is necessarily complex, but its general s
tistical features are determined by simple thermodynam
For instance, the kinetic motion of each fragment limits t
available phase space, and so the probability of seeinm
fragments is proportional toxm, wherex5V/lT

3 , the ratio of
the available volume to the thermal volume. Internal exc
tions and other effects will also enter, but in the largeT limit
kinetic motion dominates, predicting a large numbers
fragments. Low-temperature considerations likewise c
strains our fragment distribution. At lowT a large fragment
accompanied by some very small fragments is expected.
region between the two natural limits having several int
mediate mass fragments is more difficult to describe an
the subject of current research.

One might believe that the distribution of fragments in t
intermediate region is not dominated by thermal factors,
rather by the available phase space associated with the n
ber of possible patterns. Sobotka and Moretto@19# explored
the simplest such model in which every pattern is giv
equal probability. Such a model shows an exponential
off in the fragment yield, contrary to the experimentally o
served power law. One can generalize this model in m
ways, the most obvious of which is to consider a mo
where different cluster sizes would contribute differe
amounts to the fragment distribution phase space,
Pr(n)5(1/ZA)Pkxk

nk so thatxk51 reduces to Sobotka an

Moretto’s model. The partition functionZA5(nPkxk
nk in this

case can be calculated using the recursion rela
ZA5(1/A)(k.0k( i .0xk

i ZA2 ik with Z051.
Such models have many interesting properties, but n

some modifications to avoid problems associated with
indistinguishability of clusters of the same size. This ind
tinguishability should reduce the size of the phase sp
available to the fragments, or equivalently, reduce the pr
ability for a particular fragment distribution by factors o
1/nk! after the argument of Gibbs. With this consideration
simple and somewhat generic model of fragmentation wo
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be to take the probability of a particular fragmentation p
tern to be given by

Pr~n!5
1

ZA
)
k.0

xk
nk

nk!
, ~3!

where the partition function or normalizing factorZA can be
obtained using the recursionZA5(1/A)(kkxkZA2k with
Z051. Such a model as applicable to nuclear fragmenta
was explored in@20,21#, and took xk5xyk21/bk where
x5V/lT

3 arises from the thermal motion,y describes effects
due to binding and internal energies, andbk allows different
sized clusters to contribute different amounts to the ph
space. Thermodynamic arguments discussed in@22# allow y
to be expressed asy5exp$aV /kBT1(kBT/«0)@T0 /(T1T0)#%,
where aV is the binding energy per nucleon@i.e., it is as-
sumed thatEB(k)'aV(k21) for a cluster of sizek#, «0 is
the energy spacing between excited levels, andT0 is a cutoff
temperature for internal excitations. The parametersbk can
be taken askt so as to reproduce the observed cluster dis
bution ^nk&;k2t, wheret is a critical exponent introduced
by Fisher@23#. For nuclear fragmentationt'2.2 @5#.

Several models withbk5kt have been explored by us an
others. For example,bk51, called the linear chain mode
was extensively studied by Grosset al. @24–26#. Another
example,bk5k, was the first model investigated by one
us ~A.Z.M.! @27#. We have investigatedbk5kt with t.2, in
particulart55/2 more recently@20#. It has many features in
common with Bose-Einstein condensation and percola
theory; namely, below a certain value ofx5xc , a cluster
forms containing a finite fraction of the mass of the syst
even in the infiniteA limit. This ‘‘infinite’’ cluster can be
likened to the accumulation of particles in the ground state
a Bose gas belowT5Tc , or to the formation of the incipien
infinite cluster in percolating systems abovep5pc . Related
weights including more factors~some dynamical in nature!
have been studied by Grosset al. @6# and Bondorfet al. @7#
in describing more detailed models of nuclear fragmentati

B. Disordered systems

Disordered systems can also involve clustering, and
those cases the probability of seeing a particular cluste
pattern is of interest. In the case of nuclear fragmentat
thermodynamic and phase space arguments were used
rive at the pattern distribution, i.e., Eq.~3!. Here we arrive at
a similar description by analyzing a simple but gene
mechanism which generates disorder: the random seque
breaking of an interval. This model was studied extensiv
by Derrida and Flyvbjerg@28,29# and more recently by
Fronteraet al. @30#. Here we generalize their mechanism
such a way as to encompass Eq.~3! and many other models

The sequential breaking of an interval is simple to d
scribe. In the continuous case, the unit interval is sequ
tially broken into pieces of sizesW1 ,W2 ,..., each chosen
randomly in some fashion. Specifically, the sequen
W15z1 , W25(12z1)z2 , W35(12z1)(12z2)z3 , etc., is
generated where eachzk is chosen from some probabilit
distributionrk(z). In other words, at stepi one breaks off a
randomly chosen fractionzi of the remaining piece of size
12W12•••Wi 21 . Typically the probability distribution on
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824 57K. C. CHASE, P. BHATTACHARYYA, AND A. Z. MEKJIAN
zi is independent ofi , though that need not be the cas
Derrida and Flyvbjerg studied the case wherer(z)
5x(12z)x21 @29#.

Let us consider an equivalent, but discrete model. In
model, an interval of lengthA is partitioned sequentially into
integral sized pieces. Suppose a piece of sizek is broken off
from the interval of sizeA with probability

Pr~l15k;A!5S A21
k21 D ~1!k21~x!A2k

~x11!A21
, ~4!

where (x)n5x(x11)•••(x1n21) and x.0 is a free pa-
rameter. In the limitA→`, k/A→W, this distribution con-
verges to the continuous distribution mentioned above.

Applying this process repeatedly until the interval is e
hausted, the sequencel1 ,l2 ,...,lm is generated. The overa
probability for this sequence appearing from this proc
is the product Pr~l1 ;A)Pr~l2 ;A2l1)Pr~l3 ;A2l1
2l2)•••Pr~lm ;A2l12•••2lm21) and is given by

Pr~l1 ,...,lm!5xmS A1x21
A D 21

3
1

A~A2l1!•••~A2l12•••2lm21!
.

~5!

By summing over all possible orders of such a sequence
probability Pr(n)5(l°nPr(l1 ,...,lm) that a particular un-
ordered clustering pattern appears is determined, and is g
by

Pr~n!5S A1x21
A D 21

)
k

1

nk!
S x

kD nk

, ~6!

where we have applied Eq.~A1!. This is in fact the distribu-
tion given by Eq.~3! with xk5x/k. More generally, the se
quential breaking process where the probability of break
off a fragment of sizek from an interval of sizeA is given by
Pr(k;A)5(kxk /A)ZA2k /ZA yields Eq.~3! as the fragmenta
tion pattern. This gives a possible mechanism for obtain
such a fragment distribution, but it is not unique. Anoth
mechanism based on Markov chains was explored by us
fore @21#.

By modifying the random breaking mechanism we c
obtain the other model discussed in the previous section~the
equipartition model! as well. Suppose one allows multip
clusters of the same size to be broken off instead of just o
For example, take the probability thatm clusters of sizek are
broken from an interval of lengthn as Pr(k,m;A)
5(kxk

m/A)(ZA2mk /ZA). Then the distribution of cluste
sizes can be shown to be given by Pr(n)5(1/ZA)Pkxk

nk .
This is in fact a generalization of a well-known method f
generating equiprobable partitions introduced by Nijenh
and Wilf @31#.

Having obtained the models of the previous section
cases of this disordered system mechanism, we are enc
aged to believe that other disordered systems can be like
described in the context of randomly breaking the interv
Indeed, two other models considered by Derrida a
Flyvbjerg fit nicely into this mechanism.
.
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Consider the quenched random map model@28,32,33#.
The AA maps or functions ofA points onto themselves ar
chosen uniformly at random, and their cluster structure
determined by the number of points in each basin of attr
tion, where a basin is defined as a limit cycle of the itera
action of the map. For example, the map 1°2, 2°1, 3°2,
4°3 has a single limit cycle (1°2°1•••) which all the
points eventually enter, so that the cluster structure is
one single cluster of size four. Such a simple model h
interesting properties, and its cluster pattern is given by
~3! with xk5( j 50

k21kj 21/ j !'ek/2k. This can be inferred from
the fact that the probability that the map is indecomposa
is known and would be given byxk /Zk whereZk5kk/k! by
simple counting. Interpreting Eq.~3! in terms of randomly
breaking an interval has already been accomplished, so
see that the random map model is a special case of rando
breaking the interval. The asymptotic limit can be seen
considering the elements in the sum as terms in the Pois
distribution e2xxj / j ! with x5k. The factorek does not af-
fect the cluster distributions, so that the model asympt
cally converges toxk51/(2k), and hence is included in th
original distribution considered by Derrida and Flyvbje
@28# r(z)5x(12z)x21 with x51/2.

Secondly, consider what happens when the seque
pieces are chosen from a changing distribution. For exam
suppose thei 11st piece is chosen from the interval of siz
Ai5A2l12•••2l i , A05A with probability

Pr~k;Ai !5S Ai21
k21 D ~g!k21@x1 i ~12g!#Ai2k

@x1g1 i ~12g!#Ai21
. ~7!

In this case the sequence of pieces is generated with p
ability

Pr~l1 ,...,lm!5A!
~x!~m21;12g!

~x1g!A21

3
1

A~A2l1!~A2l12l2!•••

3)
k

~g!lk21

~lk21!!
, ~8!

wherex(n;a) is a generalized Pochhammer symbol

x~n;a!5H 1 for n50,

x~x1a!•••@x1~n21!a# for n.0.

Summing over all the possible orders of thel’s, gives the
probability for the unordered fragmentation pattern

Pr~n!5A!
~x!~m21;12g!

~x1g!A21
)

k

1

nk!
S ~g!k21

k! D nk

. ~9!

This is clear since the only term that depends on the orde
the fragments is 1/@A(A2l1)•••#; the other terms are in
variant under permuting the order of thel’s, so that we can
apply Eq.~A1! directly.

This distribution pattern has been studied in a statis
context by Pitman@34#, but what we would like to emphasiz
here is that in the limitx1g51, this model reproduces as
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57 825RANDOMLY BROKEN NUCLEI AND DISORDERED SYSTEMS
ymptotically all of the clustering features of a Sherringto
Kirkpatrick spin glass@35,36,29#. Unlike the other disor-
dered systems, we cannot prove this result, but the evide
~discussed below! is compelling enough that we consider E
~9! with x1g51 as a model of a spin glass. Why the chan
ing distributions produces the patterns seen in a spin gla
perhaps unexpected and should be explored further.

IV. TRADITIONAL ANALYSIS OF MODELS

Now that we have a description of the fragment distrib
tions we are in a position to make definitive prediction
Since nuclear and disordered systems have spawned sep
methods of analysis, we begin by briefly considering so
features of these models from their traditional points of vie

A. Nuclear systems

Fragmenting nuclear systems are traditionally analyzed
studying expectation values of the various observables
functions of thermodynamic variables. Some of the imp
tant observables are the multiplicitym and its variance, the
size of the largest clusterkmax, and the reduced momentM2 .
They are important because of their expected behavior in
region of a critical point phase transition. For example, fro
percolation theory we know that the reduced moments
functions of the critical exponents andp2pc in the region of
the critical point@9#, i.e.,

^M0&5^m&21;up2pcu22a,

^M1&5A2^kmax&;up2pcub, ~10!

^M2&5^Y2&2^kmax
2 &;up2pcu2g.

The EOS Collaboration@5# has argued that both nuclear fra
mentation and percolation theory can be analyzed in a s
lar fashion, extending the observations and results of Ca
@10,37#. Thus from observing the behavior of the momen
the critical point and exponents can be deduced, and a n
ber of papers in the literature have studied this in a variety
theoretical@37,38,26# and experimental@1,5# systems.

In the model given by Eq.~3!, these quantities can b
computed from their definitions and by utilizing the follow
ing results:

^nk&5xk

ZA2k

ZA
, ~11!

^nj~nk2d jk!&5xjxk

ZA2 j 2k

ZA
. ~12!

Computation of the reduced moments additionally requ
that various expectation values ofkmax be determined. This is
most easily done by expressing the expectation value
terms of the probability distribution onkmax. The probability
that a random fragmentation of nucleons has a cluster of
kmax as its largest cluster is given by Pr(kmax)5
DZA(x1 ,...,xkmax

)/ZA(x1 ,...,xn), whereDZA(x1 ,...,xkmax
)5

ZA(x1 ,...,xkmax
,0,...)2ZA(x1 ,...,xkmax21,0,...). When kmax

.A/2 a simpler expression can be used. Since any cluste
-
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size k.A/2 is automatically the largest, one can show th
DZA5xkZA2k , so that Pr(kmax5k)5xkZA2k(x)/ZA(x) when
k.A/2.

For typical models such asxk5x/kt with t.2, the vari-
ance ofm and the reduced momentM2 should peak at the
point xc /A51/z(t21). The finite size effects can be con
siderable, and theM2 peak is significantly shifted from its
infinite value in Fig. 1. At the same point^kmax& tends to zero
in the infiniteA limit, and tends to be a better indicator of th
transition. All these facts are consistent with the interpre
tion of x5xc as a critical point of a phase transition chara
terized by the appearance of an ‘‘infinite’’ or percolatin
cluster.

B. Disordered systems

Disordered systems are traditionally analyzed by cons
ering the distribution of an observable at a particular poin
parameter space. The important observables in disord
systems areY5Y2 and kmax, and their distributions show
significant non-Gaussian behavior, and this feature is
some sense a characteristic of the disorder.

For the model given by Eq.~9!, these can be obtained b
a recursive procedure. Definexk5(g)k21 /k!. Then the
probability for a pattern separates into a term such as Eq~3!
times a term which depends only on the multiplicity. Th
partition functionZA5(x1g)A21 /A! is then essentially a
sum of terms contributed by each multiplicity class, name
ZA5(mx(m21;12g)ZA

m . Each of these terms can be comput
for any xk from the recursionmZA

m5(kxkZA2k
m21 . Then the

probability distributionP(kmax)5DZA /ZA as in the previous
section.

To determine the probability distributionP(Y), the par-
tition function is broken into terms in whichY is fixed, i.e.,
ZA5(YZA

Y , so thatP(Y)5ZA
Y/ZA . For computational pur-

poses, it is convenient to continue to break these parti
functions into components where the multiplicity is fixe
so that ZA

Y5(m(x)(m21,12g)ZA
m,Y . Using xk as defined

above, we can computeZA
m,Y via the recursionmZA

m,Y

5(kxkZA2k
m21,Y2k2

.
For many values ofx and g, these distributions are sig

nificantly non-Gaussian, for instance as seen in Fig. 2~a!
which shows the distributionP(Y). First, one notes the larg
finite-size fluctuations seen inP(Y) whenY/A2.1/2. These
disappear in the infinite limit. The presence of cusps inP(Y)
at Y/A251,1/2 and 1/3 can be seen in Fig. 2~a! and persists
in the infinite limit. These cusps are not strictly an indicat
of disorder, but the non-Gaussian nature of the distributi
accentuates their presence.

Figure 2~b! which showsP(kmax) reveals that the distri-
bution of sizes of the largest cluster varies widely for diffe
ent models. All these cases are likely to have sizable larg
clusters, however, there is a nontrivial distribution abo
kmax/A51/2 for these models, due in part to the large num
of patterns withkmax5A/2. The cusps atkmax/A51/2,1/3
etc., arise from singularities associated with breaking the s
tem into fragments of equal size. For example, bel
kmax/A51/2, there is no contribution from binary fragmen
tation. The sudden cutoff of this contribution leads to a cu
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FIG. 2. The probability distribution of~a! the second momentP(Y) and~b! the size of the largest clusterP(kmax) for several disordered
systems.

FIG. 1. The expected value~a! and variance~b! of the multiplicity and the expected values of the reduced second moment~c! and the
largest cluster~d! for the model given by Eq.~3! with xk5x/kt, t52.5 ~solid line!, t53.0 ~dashed line!.



57 827RANDOMLY BROKEN NUCLEI AND DISORDERED SYSTEMS
FIG. 3. The probability distribution of~a! the second momentP(Y) and~b! the size of the largest clusterP(kmax) for the model given
by Eq. ~3! with xk5x/k5/2 for variousx.
a
a
cr
tin
it
d

c

id

b

n
rti

e.

q

,
e

Fi
ly
n

ne

n

am-
s a

ses

as a

the
s
ion
e

V. CORRESPONDING ANALYSIS OF MODELS

In this section we reverse our methods of analysis, tre
ing nuclear models as if they were disordered systems,
vice versa. Such an approach is warranted since both des
tions can be described without reference to the fragmen
mechanisms, and therefore the methods should be insens
to the source of the data and sensitive instead to the un
lying property we are trying to isolate in the data~i.e., criti-
cality and disorder!. Whether the methods are indeed sele
tive should be revealed by such a~potentially! blind test.

A. Nuclear systems

The corresponding analysis of fragmenting nuclei cons
ers the distribution of the second momentY and the size of
the largest clusterkmax. ComputingP(Y) andP(kmax) is not
complicated for models with fragmentation pattern given
Eq. ~3!. We have already discussed how to obtainP(kmax)
from the partition function in Sec. IV A. The distributio
P(Y) is obtained by breaking the contributions to the pa
tion functionZA into classes with fixedY, ZA5(YZA

Y , and
applying P(Y)5ZA

Y/ZA . As in Sec. IV B, these partition
functions can be computed by recursion, i.

AZA
Y5(kkxkZA2k

Y2k2
.

If we analyze the fragmentation distribution given by E
~3! with a typicalxk5x/kt with t.2 by plotting the distri-
bution on the largest cluster size and the second moment
find over most of the range that the distributions are ess
tially Gaussian centered about their expectation values.
ure 3 shows this. Whenx is small and the pattern is usual
dominated by a single large fragment, the atypical eve
with smaller large fragments are distributed in a man
similar to a disordered system with a low value ofx, only
with a much diminished probability. This arises almost e
t-
nd
ip-
g
ive
er-

-

-

y

-

,

.

we
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tirely from binary fragmentation events.

B. Disordered systems

The corresponding analysis of disordered systems ex
ines the expectation values of the reduced moments a
function of a changing parameter. We consider two ca
given by Eq. ~9!: the randomly broken interval with
r(z)5x(12z)x21 with x.0 (g51), and the spin-glass
model with 0,x,1 (x1g51). To facilitate computing the
reduced moments for the models described by Eq.~9! we
have the following results for ensemble averages ofnk :

^nk&5S A
k D ~x!A2k~g!k21

~x1g!A21
, ~13!

^nj~nk2d jk!&5x
A!

j !k! ~A2 j 2k!!
~g! j 21~g!k21

3
~x2g11!A2 j 2k

~x1g!A21
. ~14!

With these we can compute^Ys& and its variance. Before we
do so, it is interesting to note some properties of^nk& itself.

Since(kknk5A, k^nk&/A is properly a probability distri-
bution. In this case, the distribution has appeared before
distribution for a replacement urn model introduced by Po´lya
@39#. This correspondence was noted by us before in
special case ofg51 @40#. A central feature in that case wa
the appearance of a power law in the fragment distribut
^nk&51/k for x51. Such a power law applies in this mor
general case, since in the largeA limit, we can approximate
^nk& by
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^nk&'
G~x1g!

G~x!G~g!

1

k S 12
k

AD x21S k

AD g21

. ~15!

Settingx51, ^nk&'gA12gkg22 which shows a power law
falloff with exponentt522g.

If we now allowA→`, k/A→W, the discrete model be
comes a continuum one. In this case,f (W)5 limA→`A^nWA&
is the continuum distribution of fragment sizes, wi
*0

1W f(W)dW51 and limA→`^Ys&/A
s5*0

1Wsf (W)dW. Us-
ing Eq. ~15!, we arrive at

f ~W!5
G~x1g!

G~x!G~g!
~12W!x21Wg22, ~16!

i.e., W f(W) is a b distribution. Derrida and Flyvbjerg
@11,29,33#, extending results on spin glasses due to Me´zard
et al. @41# and other disordered systems, arrived at these
tributions before. All the cases they considered are in f
special cases of the above expression. Specifically,g51,
x51/2 reproduces the quenched random map,g51, x.0
reproduces the randomly broken interval andg512x repro-
duces the Sherrington-Kirkpatrick spin-glass model@41#. We
have already seen why the first two models reduce to
model. The spin-glass result, on the other hand, defie
simple explanation. Distributions on the largest and sec
largest cluster also agree with the known spin-glass res
and so it appears that this model does indeed capture
clustering properties of the spin glass.

Returning now to the question of moments, we see tha
this case we can arrive at closed form solutions. Ensem
averages for the multiplicity and its variance can be deriv
by applying Eqs.~13! and~14! and some combinatorial iden
tities @Eqs.~B1! and ~B2!# to arrive at

^m&5
x1g21

g21 S 12
~x!A

~x1g21!A
D , ~17!

var~m!5
1

g21

~x!A

~x1g!A21
S 12

1

g21

~x!A

~x1g!A21

1
1

g21

~x2g11!A

~x11!A21
D . ~18!

Similarly, the mean and variance ofY can be determined:

^Y&5
g

x1g S 11
1

A

x

g D , ~19!

var~Y!5
2xg~A21!~x1g1A!~x1g1A21!

A3~x1g!2~x1g11!~x1g12!
. ~20!

From this the relative fluctuations inY, f (Y)5^Y2&/^Y&221
can be computed. They are important when determin
whether a system is self-averaging@13#. Consider the case
g51, wheref (Y)'2x/@(x12)(x13)# in the largeA limit.
For x'1, the fluctuations are large and the system is sai
s-
ct

is
a
d

ts,
he

in
le
d

g

to

lack self-averaging properties. Forx}A the fluctuations are
small andf (Y);1/A as expected. This is true in general
this model, and for the spin-glass casex1g51 leads to the
known result̂ Y2&51/3̂ Y&(112^Y&) @41# in the infiniteA
limit.

The self-averaging property is not difficult to understan
At one extreme, the nucleus can be broken into individ
nucleons so thatY/A251/A; thus,Y varies inversely as the
size of the system. At the other extreme, when theA nucle-
ons are in one clusterY/A251. This behavior is analogous t
the two extreme limits for the participation ratio in Anderso
localization. For a localized stateY/A2;1/A and for an ex-
tended stateY/A2;1. A localized state corresponds to th
localization of the electron wave functions around many
dividual sites, while an extended state is the opposite cas
percolation description of localized versus extended sta
can be found in Ziman@12#. Specifically, for site percolation
an extended state includes an incipient infinite cluster.

Applying these results, we plot the various expectat
values in Fig. 4. From these graphs one can comment on
possibility of criticality in this model. It is well known tha
the x.0, g51 case is not critical in the traditional sens
The zeros of the partition function occur on the negative r
x axis, well isolated from the relevant parameter domain.
the x1g51, 0,x,1 model, the reduced moments appe
to peak nearx51/2, which suggests thatx51/2 may be a
critical point for the model. However, var(m) peaks closer to
x50.9. At a true critical point one would expect this flu
tuation to be maximal at the critical point. Since for an
model the various expectation values must peak somewh
the existence of a maximum is insufficient evidence for cr
cality. Further evidence is inferred from the fact that t
partition function (x1g)A21 /A! has zeros on the negativ
real x1g axis in a complexified parameter space. These
roes are isolated fromx1g51 real space, and suggests th
a traditional critical point in which the zeros of the partitio
function encroach the thermodynamically relevant param
domain is completely absent in this model.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have shown that the random breaking
an interval process when suitably generalized encompass
wide range of physical models both in nuclear fragmentat
and in disordered systems. The fact that all these models
implicit to a particular process strongly recommends that
analysis of their properties should be the same. Traditiona
however, this has not been the case. The models have a
separately, motivated by particular features which theor
wished to capture. In nuclear fragmentation, the feature
reproduce is a specific criticality marked by the appeara
of an ‘‘infinite’’ cluster. Interest has therefore focussed
reduced moments whose behavior changes with the app
ance of such a cluster. In disordered systems the inte
instead has been on whether such systems lack
averaging properties, i.e., have significant non-Gauss
fluctuations. In this case, the focus is on probability distrib
tions of the measures which might express such n
Gaussian fluctuations, e.g., the largest cluster and the se
moment.

Given then this separate emphasis, it is understood w
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FIG. 4. The expected value~a! and variance~b! of the multiplicity and the expected values of the reduced second moment~c! and the
largest cluster~d! for the random broken interval~solid line! and spin-glass~dashed line! models. Note that the spin glass is only defin
when 0,x,1.
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the same variables in the models are studied in differ
ways. The corresponding analysis taken here reinforces
distinct approaches, as it shows that the general behavio
the two classes of models differ considerably. Neverthel
the convergence of their description within the rando
breaking of an interval mechanism makes such a distinc
somewhat puzzling. This mechanism is unlikely to be phy
cal in the nuclear case, but this is not an explanation for
different behavior in the two cases. Indeed, the explana
may have a great deal to do with criticality or its absen
Models with exponentt,2 tend to look disordered,t.2
tend to have distinct critical points and Gaussian distri
tions. Sincet5211/d, the two regions are characterized b
positive and negatived. It would be interesting to confirm
this observation as a general feature.
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APPENDIX A: A COMBINATORIAL IDENTITY

Recall that a permutation onn elements can be describe
by the cycles containing the elements which permute am
themselves under the iterated action of the permutation.
nt
he
of
s,

n
i-
e
n
.

-

.
r

g
or

example, the permutationp5(31254687
12345678) is usually written in

cycle notation as~132!~45!~6!~78!. If each cycle of lengthk
is associated with a cluster of the sizek, and these clusters
are ordered by the largest element in each cluster, then
permutation can be mapped to a sequential partitioning.
above example would correspond to the sequential parti
~2,1,2,3!.

Suppose one chooses a permutationpPSn uniformly at
random, i.e., with probability 1/n!. What is the probability
that the first cluster in the sequence has sizel15k? There
are (k21

n21) ways of choosing thek21 elements which are no
elementn but are inn’s cycle map. There are (k21)! dif-
ferent cycles which permute thek objects and (n2k)! ways
of permuting the remaining elements which are not in t
cycle. So the probability is (k21)!(n2k)!( k21

n21)/n! 51/n.
What about the second cluster? The (n2k)! ways of per-
muting the elements not in the first cluster is a permutat
p8PSn2l1

chosen uniformly at random. In this permutatio

l2 is the first element, and by the above argument has
l25k with probability 1/(n2l1). Iterating yields the prob-
ability of the whole sequence as being Pr(l1 ,...,lm)
51/@n(n2l1)(n2l12l2)•••#. Summing this over all pos-
sible orders one obtains 1/n! times the number of permuta
tions with this particular cycle class structure. It is we
known that this is given by Cauchy’s formula@42#
n!/Pknk!k

nk, so that
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(
l°n

1

n~n2l1!~n2l12l2!•••
5)

k

1

nk!
S 1

kD nk

.

~A1!

APPENDIX B: SUM RULES

For systems satisfying Eqs.~13! and ~14! one has the
following sum rules:

Sp5 (
k5p

A
@k#p

@A#p
^nk&5

~g!p21

~x1g!p21
, ~B1!
,

m

Spq5(
jk

@ j #p@k#q

@A#p1q
^nj~nk2d jk!&5x

~g!p21~g!q21

~x1g!p1q21
,

~B2!

where p,q.0, @k#051, @k#p5k(k21)•••(k2p11). No-
tice that the right-hand sides are independent ofA. These
rules are helpful in determining expectation values ofm,Y,
etc., and can be derived using a common combinatorial id
tity known as Norlu¨nd’s formula@43#.
s.

s.

E.

.
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