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Giant resonances as collective states with dissipative coupling
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We describe giant resonances as the collective coordinates of a harmonic oscillator with dissipative cou-
pling. Using a quantum master equation, the energy and width of the first two levels are obtained as functions
of temperature and of the dissipative coupling strength. On this basis, we evaluate the ratio of the two spectral
linewidths. The result agrees with available experimental data. We evaluate transition matrix elements among
particle excitations belonging to the environment and find a weak dependence on temperature.
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I. INTRODUCTION such a calculation would require the diagonalization of ma-
trices of large dimensions. This would even be more difficult
Giant resonances manifest themselves as broad bumpsiinone includes the temperature as a variable in the formal-
the nuclear spectra above the neutron emission threshold. igm.
has been established that the structure of these states consistAlternatively, given the strong collectivity of the giant
of a large number of relevant particle-hole configurations, alfesonances and the many degrees of freedom that influence
of them contributing in phase to the excitation process. Betheir properties, one may consider that a statistical modeling
cause of this, giant resonances are the most collective vibraf the formation and decaying processes including concepts
tional states in nuclei. like mean values and variances is an appropriate path to at-
The width of a giant resonance is composed of the “es+act this difficult problem. In this paper, we adopt such a
cape” width, which represents the coupling to the con-point of view. We consider a collective coordinateand its
tinuum, the “spreading” width, which represents the cou-\inrational modes determined by a harmonic oscillator po-
pling to two-particle-two-hole and even more COMpleXantia| That is, we consider that the giant resonance corre-

configurations, and the "Landau damping,” representing thesponds to the first excitation of the harmonic oscillator, with

breaking of the collective state in different pieces. Since g"energyﬁwo, and the GR2 to the second excitation, with two

ant resonances are excitations embedded in the continuum o : :
part of nuclear spectra, one would expect that the continuurﬁuf”mtum osm!la.uons' and e?ergﬁao. Beildes these exci-
has to be taken into account explicitly in their description. athns_, we distinguish an “environment™ of all the other
Yet the gross properties of these resonances can be studi€§c!tations. o , _
suitably by means of boun@.g., harmonic oscillatprepre- In Sec. Il we derive Lindblad’s quantum master equation
sentationg1,2]. This can be understood, since the particlesuSing physical concepts, since the original derivafios] is
in the particle-hole excitations move in high angular momenJather abstract. We also derive a form of this equation which
tum orbits. Therefore, the corresponding centrifugal and, fofncludes friction and diffusior{16,17. It has been shown
protons, Coulomb barriers tend to trap this particle within thethat this equation gives very accurate descriptions of pro-
nuclear volume, hindering the particle decay of the giantcesses in optickl8] as well as in nuclear physi¢49,20. In
resonance. The effective potential thus felt by the particle isSec. Il we obtain the energy mean value and width of the
well approximated by a harmonic oscillator potential. Thisgiant resonance and of the GR2. The corresponding equa-
also explains the small value of the escape width of the giartions turn out to be analytically integrable. The decay spec-
resonance§3]. trum of the giant resonances is presented in Sec. IV and a
The strong collectivity of giant resonances indicates thabummary and conclusions are in Sec. V.
their double excitations are more likely to occur than the
double excitation of low energy vibrational states like, e.g.,
the yrast quadrupole states in tin isc_;topes. _This is vyhy the . QUANTUM MASTER EQUATION AND DECAY
study of double giant resonanc@3R?2) is a subject that is at
present being pursued intensively, both experimen{ally In our formalism the decay of the giant resonance is a
10] and theoreticallyf10-14. These calculations evaluate time-dependent process with energy loss due to the coupling
properties of the GR2. A microscopic calculation of the GR2of the system to a dissipative environment. Since this is a
should include as basis elements all important two-particle-subject which is not very familiar in nuclear physics, we will
two-hole excitations as well as the particle-hole configura-give the formalism in some detail. We therefore consider a
tions of the constituent giant resonances. One would thusystemS with HamiltonianH and an environmenE with
obtain at the same time the spreading width of the gianHamiltonianHE. Following Carmichae[21], we introduce
resonances and quantities corresponding to the GR2. Btite interactionVv as
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9
wheres; are operators of the systefnandI’; are the conju- _ o o N
gate operators of the environment. Therefore, the HamilOne notices that the dissipation matay is positive, a;;

tonian of the total systerfi=SoE is =0, and Hermitiana;; = aj; .
Considering the real and the imaginary parts of the dissi-
HT=H+HE+V (2)  pation parametera;; of the form
and the corresponding equation of motion reads 1 [
P 9ed aij=77Dij+ 5N, Nj=—\;, D;=Dj, (10
_ h 2%
. i
x(t)=— g[HTvX(t)]’ ) one obtains, from Eq(9), the Markoffian quantum master

equation
where x(t)=R(t)p(t) is the density operator of the total i i
system,p(t) is the density operator of the syste& and o(t)=——[H,p()]+ =2 \ii[Si,Sip(t)+p(t)s:
R(t) the density operator of the environmelt When the P ptHp1* 5 1] ilsisip(t)+p(Ds;]
Hamiltonian evolution of the total systefnis projected on 1
the space of the system of intereSt (which is a non- — >, Dy[si.[s;.p()]]. (1)
Hamiltonian evolutiofn one obtains for the reduced density h=T] . .

matrix p(t) =Trgx(t) the expression e ) )
From the positivity of the matrixa;; and the Schwartz in-

) i 1t equality for the vectorsky,b;,, . . . ,biy), one gets the fun-
p()=—[H,p()]— ngoe_('/ﬁ)m damental constraints
~ ~ -~ . A2\ 2
X Tre[V(t),[V(t),R(t") p(t")]]e"MHtdt, (4) D=0, D;D;~Dfj=—"". (12)

where the tilde labels operators in the interaction picture,
e.g.”\"/(t):e(i/h)(H+HE)tVe—(i/ﬁ)(H+HE)t.

With Eq. (1), Eq. (4) takes the form of a general master
equation:

For a one-dimensional system with coordingtand mo-
mentump, Eqg. (11) takes the form of the quantum master
equation depending on a friction parameXeand three dif-

fusion parameter®q, D andDyp, i.e.[16],

pp»
. i t : ~ ~ ; ;
p(H==5IH.p(0]+ 2, Joave REET ) o= TH.p(0)]= 5 M[d.pp(t) + p(DP]—[P.Gp(1)

X[Si(t)p(t),5;(0]+(Ty(OT; (")

DPP qu
o . +p(0qT = —22[a.[a.p()]]- —2[p.[p.p()]]
X[5i(t), p(t')s;(t") ]peMHtdy, (5) h h

D
where + ﬁ{[q,[p,pam+[p,[q,p<t>]]}- (13

Tit)T () =Tre[ T (t)R()T(t 6

(L(OT;V) el T (IRADT (V)] © From Eqs.(8) and(10) the diffusion coefficient®;; and
are correlation functions of the environment operators andhe friction coefficients\;; can be interpreted as the real and
5.(t) = el/MHts o= (/ML | the following we consider that imaginary parts of the time integrals of the correlation func-

the stateR(t’) of the environment does not depend on thetlons, 1.€.,

statep(t’) of the systemBorn approximation[21,22. For © _

decay processes much slower than the time evolution of the Di; =ﬁ2Re{ J <Fi(t)l“j(t’)>dt’],
environment operatorevhich we assume to be the valid in -

(14
our casg one gets

'l:i:e(i/h)(H+HE)tI~ie—(i/ﬁ)(H+HE)t:e(i/ﬁ)HEtrie—(i/ﬁ)HEt Aij =2ﬁlm[ f_mw‘(t)ri(t ))dt }
(7 . : . ,
These coefficients can be related to microscopical quanti-
these operators a@correlatedthe Markoff approximation  ties. We will show here an example of this relation by using
[21], the independent-oscillator model of Ref23,24. In this
case a harmonic oscillator with the Hamiltonian
<F|(t,)FJ(t)>:<F|(t)1—‘](t,)>:all(S(t_t,), (8) 2 2 2
Y m woq
and Eq.(5) takes the form 2m 2

(15
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is coupled to an environment of harmonic oscillators within the same fashion one obtains the expressions for the
coordinates{q; ,p;} and frequencie$w;}. The total Hamil-  second- and fourth-order moments, like, edyg?)/dt and

tonian then is d(g?p?+ p?q?)/dt.
p 1 Equations(20) describe the time evolution of the coordi-
HT=H+ >, 2_J+ >mjw] 2(q ,-—q)2 ] (1)  nate and momentum. The corresponding solutions are given
i m; by

Assuming a Gibbs distribution for the environment oscilla-

tors, the correlation functions acquire the simple form (q(t)y=e | (q(0))cosmot+(p(0)) SiNwot ’
Ao _ Tho; Mool (21
(9 =5 -cothy —. (17)
’ (p(t))=e"M[ —mawu(q(0))sinwet +(p(0))coswqt].
With these correlation functions, and after some algebra, one
obtains At equilibrium (t—), the mean value of the coordinate

i Mew —2 takes the value corresponding to the minimum of the poten-
—_ _ tial, which is zero in our case, while the momentum tends to
p()=—7 L[Fp(0)] o7 “am Owollapp®+p(tp] A

moggé(w—o) hw_o The energy mean value
—[P.ap(t) +p(t)ql} — —g;—cothy, = < 2> 2 a)
1 (H)=5— > —°2q , 22)
x| [a.[q.p(1)]]+ —z[p [p.p(1)]]], (18)

as well as the energy width, defined as

wherewo is a renormalized resonance frequency correspond-
ing to the HamiltonianH=Hy+3;3m;w?q?, &(w) is the ['2=(H?—(H)?
den§ity of states at freq_ueney, andmg i_s the mass of the (p* m2wy(q*)  w3(q?p?+p’g?)
environment oscillators in resonance with the system. = 7 7

Comparing Eq(18) with Eq. (13) one finds that the fric- 4m
tion coefficient can be written in terms of microscopic quan- (23)
tities as\ = (Myw3/4m) &(wo).

We will now show that the complicated evolution of the can be derived from the second- and fourth-order moments.
giant resonance can be described only by two parameters: tlégne thus gets
temperaturd and the strength of the dissipative coupling

—(H)?,

A __ 2N(H)+ 22 4 ma?D
lIl. GIANT RESONANCES AND THE DECAY dt — 2MH T MegDeg,
OF A QUANTUM HARMONIC OSCILLATOR
IN THE MARKOFF APPROXIMATION d(H2) )

We consider a nucleus described in a space of collective dt
coordinates. For simplicity, we adopt a one-dimensional
model, with a dominant coordinatgof a harmonic oscillator + wé(Dpp<q2) +Dy(P?) +2Dg(ap+pa)). (24
(HO) for the most probable state of the nucleus. The evolu-
tion on the other coordinates is assumed to proceed throudrhe first of these equations has the solution
dissipation and, therefore, the system is described by the

= —4N(H?) — N 2wh+3 p:;fp +3m2wgD g d?)

master equatiofl3) with the Hamiltonian given bysee Eq. (H())=E..+(E,—E.)e 2\, 25
()]
p2  mwig? whereE; is the initial value of the energy and
H=om* 2 (19

2
wzl(Dpp_'_ mwOqu)

2m 2 (26

wherep is the momentun is the effective mass, andgl, is
the frequency of the oscillator. We will derive equations for
the expectation values of the observalijeandp. From the IS the equilibrium value. Assuming a Gibbs distribution of
master equation, by multiplying by and p and taking the the system at equilibrium, i.e.P,=(1/Q)e %%, Q
traces, one gets =>,e PEn B=(1KkT), and the eigenenergie€,=(n
+ 3)hwg of the HO we obtain
d(a) (p)

o Mat

d
%:_Mp)—maﬁ(q)- where

n+ 1 ﬁa) e (n+l/2)Bhw0 (27)

1
(20) Em:<H<w>>:5§
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1 resents the equilibrium value of the widﬂ’ﬁzEg[ 7?(T)
QZE e—(n+1/2)ﬁﬁwoz i ) (28) - hich is diff f | hiah
= 2sin B wy/2) 1] which is different from zero only at high temperature,
when »(T)>1.
From these expressionsl we obtain a much more transparent Notice that the friction coefficierX is not related to the
form of the equilibrium energy26), i.e., width of the giant resonance, since the time evolution given

by Egs.(20) do not describe the full effect of the environ-

10Q hwy hog ment. This is included in the general master equatibd)
Ew:_aﬁzTCOtl OkT’ (29 and, therefore, the width is given by, in Eq. (34). The

value ofI',, in this equation depends upon the time of inter-
depending on the oscillator ground state enefigy/2 and  action between the system and the environment. Assuming
on the temperaturd. Considering an equipartition of the this time to have the valuAt and averaging on it one gets
energy on the coordinatesandp, from Eqs.(26) and(29)  for the second term a factof1—exp(—2\At)])/(\AL)

one obtains ~1/(AAt) and the width acquires the form
D MwiDyq fwy Hho 2EEX 7(T)
PP _ 0~q9 _ 0. 0 2 oEn 7 2, 2
2mn 2\ 2 coT (30 =t TR~ D). (35)
and, consequently, the diffusion coefficients take the form
[16] IV. DECAY SPECTRUM OF THE GIANT RESONANCES
-~ 5 In the previous section we considered a double giant reso-
D =—cothﬂ, nance as the first two excited states of a dissipative HO. We
49 2mwy T 2kT (31) calculated the time evolution of the energy mean value and
of the width. To calculate also the spectrum, we consider the
:m\mwoCot hwg interaction between the HO and particle excitations belong-
PP 2 2kT’ ing to the environment. We thus introduce the interaction

) o - Hamiltonian as
depending on the friction coefficient and on the tempera-
ture T. With these expressions, the second fundamental con- V=hc(aCPxr+CWur,). (36)
straint(12) takes the form . ] ] )
We also define a coordinatpand a conjugate coordinate

h2\? hog .,  HhA\? s as

TCOthzm — qu> T1
q=C%xr,, s=CWur,. (37
which is satisfied only wheB 4,=0. One then obtains, from

the second of Eq¥24), In the expressions above,is the collective coordinate of

the oscillator. The operatar=d/dx defines the momentum

d(H?) ) hwy fwg p=-— ihd/dx= —.iﬁl',l, while the operators, andru describe
T =—4>\[<H ) —hog <H>C0th2k_T_T : the particle excitations belonging to the environment. The
(32) scalarsC™® and C(¥) are the coupling coefficients of the
operatorg, andr,, respectively, andv=mwq/#%.
With the notationEy=7%w/2 for the ground state ang’ Because of the interactioV, the particle excitations
=E;— E..=E;— E,7 for the excitation energy, where couple to states of the HO. The structure of those excitations

is different for different HO states. For the fifgfround HO

_ fiwg state that structure corresponds to the vacuum of excitation,
77_COtI'2|<-|-' 33 for the second statégiant resonandeit is mainly two-

particle—two-hole(2p2h excitations[25,26], for the third
one gets for the mean value of the Hamiltonian and for th€GR2) it is mainly 4p4h, and so on. For each HO state, the

width of thenth state of the HO the expressions particle excitations form a band, as will be shown below.
The members of a particular band mix with the correspond-
(H(t))a=Eje M+ Eq, ing collective state due to the interactivh Therefore each
(34 state in the band carries a certain amount of collectivity
['2=(Co—EF?)e” ™M+ 2EE* ne M+ E5(5?— 1), through the piece of the HO state that has contributed to the
mixing.

where C, is the integration constant. The first term of the  The interaction potential takes a familiar form introduc-
energy mean value describes the decay of the excitation €fhg the annihilation and creation operatéxsand A" of the

ergy E;; , while the second term corresponds to the equilib-harmonic oscillator,
rium energyEy7(T) of the oscillator at temperatue. The

u) \ﬁ

X+ — =1\/=

al’ 2

first term of the energy width, containing the integration con- \/E
stantCy, describes the effect of the initial state distribution A= 2
of the oscillator, which is determined by the initial collision

leading to the giant resonance excitation. With the initialand the annihilation and creation operataranda’ of the
conditionCy=E}? this term disappears. The third term rep- particle excitation,

u
X— E) , (38)
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MaT:C(X)rx+C(u)ruv Ma:C(X)rx_C(u)ru- (39 1 ZSinZ(witIZ)
Pii(m;t):ﬁwmﬂ T
In terms of these creation and annihilation operators the ex- (@i/2)
pressiong36) and(37) become D
+2| DgqSmit ﬁqrzni_)\qmismi t. (46

V=tc \/g,u(AaTvLATa). (40)
The first term of this expression results from the Hamiltonian
al+a da-a part of Eq.(.13), i..e., from thg isplatecdclosed system. '!'he
A=px——, S=pg —5 (41)  corresponding width at timeis given byA =1/t according

to Heisenberg’s uncertainty princip[@7]. One can thus in-
terpret the parametei\ in Egs. (21) as the width corre-
Labeling by the latin |etterk, | the collective states and Sponding to the isolated System at timéa. 1As mentioned
by iy,i; the corresponding particle excitations in the field of ahove, this is not related to the with, given by Eq.(35).
the harmonic oscillator, the transition elements of the coor-  The second term in Eq46) corresponds to the dissipative

dinatesq,s take the form processes that takes place as the result of the interaction with
; the environment. This interaction is defined by the param-
— (KIx at+a eters\, Dgq, Dpp, andDgp.
iyjy = (KX &, 2 |%i) Considering quasiequilibrium transition processes, that is,
(42 when temperature can be defined, one gets from E313.
d af—a and (46) the transition spectrum
NSNS rg
T(T)= pii(m;t) _ 1 |Vmi|ZSI (w,t/2)t

To obtain the spectrum as a function of these matrix ele- t %2
ments, we will assume that the interaction is small and that
the timet is short. With these assumptions we solve the
master equation in the framework of perturbation theory
[27]. For this purpose, we take the second-order expansion of

the density operator in the interaction picture:

(wit/2)?

2 —1.2 hwg
+N| (aQnpit+ @ smi)coth—ZKT—quismi .
(47)

43) Since we are interested in the decay from a stafeof a

shell |k) to a state|j,) of another shelll), the first term,
representing only the width of the initial level, does not en-
ter. Thus, from Eq(47) we obtain

p'=p @ p D 51 (@)

From the master equatiqi3), we obtain the equations

dp© .
5 =0 P, (ik;t)
TyM= =
dp,(l) i A
—_ 1y’ (0) _ o
dt h[v (©.p7, “4 =\ (aqizki|+a lsizkjl)COt%_zqikjlsikh J
dp'® i (48)
at =—%[V'(t),p’m(t)ﬁL'(P(O);t), . _
depending on the matrix elemern(®2). For the three states
. |0) (i.e., ground state|1) (i.e., the giant resonangend|2)
where we used the notation (i.e., GR2 of the harmonic oscillator, we calculate the ma-

_ trix elements
[
LIp(D]= = o7 MLa,pp(t)+p()P]=[p,qp(H) +p(t)ql}

1 d o
<1|X|O>=\/?, <1& 0>=—\/;,
_%[ [ t _% t “ (49
2Pl la.p(0]]- — S [p.p(D)]]
(2|x|1) ! <2‘ d 1> 1\ﬁ
D -, e = - = ~
s lalpp®l+plap®l). @9 224 dx 2 V2

Thus, we notice that only transitions within two successive
We assume that the initial state, which we will denote bybands,|i,)—|j;) or |i;)—]|jo), are allowed, while all the
|m), corresponds to the unperturbed density operf2at  transitions inside a bandi)—|j.), or over a band,
(i.e., p@=|m)(m|). li,)—|jo), are forbidden. For the two allowed transition pro-
The diagonal matrix elements of the density are cesses one obtains, from E¢8),
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N 5 5 hwg can be adjusted by assuming that the width increaseswith
Tij(M =571 (Qij,+ Sijj ) cothy = +2Qi i S, | [34,35. This interpretation is supported by very detailed cal-
- culations performed within the framework of the Landau-
w2\ ho Vlasov transport theory36]. In this theory, one finds that
T (T)=—{(Q? +S2. )coth—0+2Q- S|, there are a number of processes contributing to the evolution
2l1 8 f2li* ol 2kT 211720 . . . .
L 50 of the giant resonance with temperature, like, e.g., competi-
(50) tion between one- and two-body dissipation and a transition
from pure quantum to classical sound waves. A review of
whereTiljO corresponds to the transition from the giant reso-this can be found in Ref37].
nance to the ground state afig; from the GR2 to the giant This rather confusing situation indicates that the formal-

resonance. In these expressions we used the notation ~ iSm presented in this paper, which is very different to the
other ones mentioned above, is perhaps timely.

We can thus evaluate the evolution of the width by using

t t_
o :<8_ a+a . > S :<8_ a-—a . > Eq. (35). From this expression one obtains for the ratio of the
Wi W2 [T T W2 Th widths of the states=2 (i.e., GR3 andn=1 at T=0 the
(5)  value
Notice that the statg, is the vacuum of excitations, as men- "
tioned above. E: /E_Z (53)
In terms of the creation and annihilation operatn?and Iy EI’
a one gets
2 : * _ * _ : _ :
w2\ fwo which, from E =2%iw,, E¥=%wq, is T',/T;=42. This
ﬁle(T):T (<8i1|a+|8j0>2+<8i1|a|8j0>2)00t% agrees with the corresponding experimental quantity of Ref.

[4]. It also agrees with previous calculations performed
within a different theoretical framewofl 2]. Yet, even here

' one finds disagreements among different publications. From
the experimental side, one has to consider that there is a large

+(si 12" ]s; )7~ (s |als; )?

w2\ fiwg spread of the data. A detailed review of these difficulties, as
T}Zjl(T):E ((si2|a+|ejl>2+(si2|a|sjl>2)cot% well as a very useful compilation of the data, can be found in
Ref.[38]. A value of 2 for the ratio above is definitely not

ruled out by the experiments. In fact, one may even prefer
(52)  this value since it is obtained by folding two Lorentzians

while the factor of\2 corresponds to the folding of two

Gaussians. It is likely that the shape of the constituent giant
V. COMPARISON WITH EXPERIMENTAL DATA resonances in the double giant resonance mode is more simi-

In this section we will analyze available experimental datal@' 1© @ Lorentzian as compared to a Gaussian function. From

on the evolution of giant resonances with temperature. Thidhe theoretical sidg39] the decay of the multiphonon state
rmed through the excitation of many giant dipole reso-

is a rather controversial subject mainly because there al . - )
several interpretations of the experimental data. However, ffances was studied within the framework of a model consist-

seems to be well established that the enesgyand the per- ing of.a dissipative quantum pendulum. One thus finds that
centage of the sum rule are practically independent of th&1® width Cif such aN-phonon state is proportional #,
temperature[28]. Instead, the experimental width in- which 'SN_Z for the double giant resonance. .

creases steadily with temperature, from about 4 MeV to a There is also a number pf microscopic ca_lcullatlons that
value that goes from 8 Me¥29] to 12 MeV[30] for nuclei include the effect of two-particle—two-hole excitations on the
which are not too “hot,” i.e., up to about 100 MeV of exci- giant resonances. One can thus evaluate simultaneously the
tation energy. This increase was explained as an effect in¥idth of the giant resonance and the double giant resonance,
duced by the angular momentum transferred to the systei@s done in Refl40]. In this calculation the rati¢53) turns

through the complete fusion reactions used to populate thogt to be 1.5. ) .
nuclei [31]. If this is indeed the case, then the width would = P€rhaps even more important than the ratio discussed

be independent of the temperature. This interpretation ha@20Ve is to notice that the dependence upai the widthl'
been supported by experiments where the influence of angi? Ed- (35 is defined by the facton(T) [Eq. (33)] which is
lar momenta has been eliminatf2p]. n~ 1 for reasonaple_ values d’f For instance, assumingo

For higher energies the situation is even more unclear and 1° MeV one trivially obtains that fof=1 MeV it is
a rather lively debate is at present taking place on the issue §PtH7wo/(2KT)] = 1.000001, and forT=6 MeV it is
the dependence of the width Gh Thus, in Refs[31-33  COtAiwe/(2KT)] = 1.18. In other words, our formalism pre-
one argues that there is a maximun of the angular momentufiCts that the widths are independentTof
that is transferred to the nucleus at about 100 MeV. Above The transition spectrum corresponding to the decay of the
this energy the nucleus fissions and, therefore, the width igiant resonance is given by E2). In 7 ; the mixing of
independent of the temperature at high energies. However, ithe state ; with the giant resonance decreases as the energy
another interpretation one finds that the experimental valuesf this state(the environmentdeparts from the energy of the

+(eilatej )2 (s ale; )%
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giant resonancéhe system The same is valid irrizjl with ements. The transition strength is proportional to the dissipa-

respect to the state, and the GR2. The ratio between the tive strength and to the coupling coefficient?. Thus, in _
corresponding widths i§2, as has been shown above. the _deexmtatlon process a part qf the energy of the collective
One notices in Eq52) that, at zero temperature, the spec—m(’t'_on Is transfe.rred- to the pgmcle excitations only when a
trum is dependent upon the matrix elements of the creatioflissipative coupling is presefite., u*\ #0).
operators only, as expected in a Tamm-Dancoff approxima- We found that through the transfer of energy mentioned
tion (TDA) (shell model formalism. But thermal fluctua- above the particle excitations form bands surrounding the
tions produce excitations where the particle statesaard-  collective states. This produces a mixing between the collec-
hilated This can be interpreted as the result of a transitiortive vibrations of the HO and the particle states belonging to
from a sharp to a diffuse Fermi surface due to the thermathe corresponding band. The closer these states are to the
fluctuations. As an analogy, this terms reminds one of theollective vibration, the larger is the mixing between them.
backward-going components of the random phase approxias a result, each particle state carries a collectivity which
mation (RPA). decreases with the distance in energy to the corresponding
The decay rate¢52) are proportional to the coefficient collective state. This generates the spreading width of the
©?, i.e., to the coupling of the particle excitations to the HO gjant resonance as well as of the GR2. The structure of the
field, and are also proportional to the dissipative couplingbands is different for the different collective states. Thus, for
strengthh of the collective motion. They depend on the tem-the giant resonance the corresponding band consists mainly
peratureT through the coth function, as was the case withof two-particle—two-hole excitations while for the GR2 the
the width analyzed above. Therefore, even in the processemnd consists mainly of four-particle—four-hole excitations.
of formation and decay of the giant resonance the depenae found that transitions within a band as well as transitions

dence uporT is practically negligible. crossing a band are forbidden.
In comparison with other existing theories, the width, cal-
VI. SUMMARY AND CONCLUSIONS culated from the second-order moments of the Hamiltonian,

is a function of a term proportional to the friction strength

In this paper we have studied giant resonances as a ok ' ajated to the Hamiltonian part of the master equation
lective motion of nucleons described by the coordinate of &nd to a non-Hamiltonian term which corresponds to quan-
harmc()jmc gsc'”a?'(g'do)d Th|shquantum open system s as- y, giffusion processes. On this basis, we evaluated the ratio
sumed to be embedded in a hot environment. Using a quans the o spectral linewidths and obtained for this ratio the

‘“”? master equation, the energy and width of the first Ievfalvalue J2 atT=0, which agrees both with previous calcula-
which is the giant resonance, and of the second level, WhICHonS [12] and with available experimental ddl

i_s the double giant resonanc@RZ)_, vv_ere_obtained_ as func- We found that the energy, the width, and even the transi-
tions of temperature and of the dissipative coupling strengtl?ion spectrum are practically independent of the temperature
that appears due to the energy exchange. betwegn t.he SYStell reasonable values @ which agrees with previous inter-
and the environment. We singled out particle excitations th retations of the experir'nental dd8,31—33. However, it

2&@:&;&:&3uenqw;?]rgniﬁ?rt(’) de\JIEIeC dh amﬁr)'/stl-g(r:ljueciein?;?;cttig s worthwhile to point out that this is a controversial issue
between the HO a’nd that part of the environment which isnand there are other interpretations of those data which predict
defined by the particle excitations. This allowed us to defineStrong dependence of the width with temperaf(@-37.

creation and annihilation operators for the HO as well as for This work has been supported by an exchange program
the particle excitations. Within this basis we evaluated thébetween the Romanian Academy and the Royal Swedish
transition spectrum as a function of the transition matrix el-Academy of Engineering Sciences.
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