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Giant resonances as collective states with dissipative coupling
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We describe giant resonances as the collective coordinates of a harmonic oscillator with dissipative cou-
pling. Using a quantum master equation, the energy and width of the first two levels are obtained as functions
of temperature and of the dissipative coupling strength. On this basis, we evaluate the ratio of the two spectral
linewidths. The result agrees with available experimental data. We evaluate transition matrix elements among
particle excitations belonging to the environment and find a weak dependence on temperature.
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I. INTRODUCTION

Giant resonances manifest themselves as broad bum
the nuclear spectra above the neutron emission thresho
has been established that the structure of these states co
of a large number of relevant particle-hole configurations,
of them contributing in phase to the excitation process.
cause of this, giant resonances are the most collective vi
tional states in nuclei.

The width of a giant resonance is composed of the ‘‘
cape’’ width, which represents the coupling to the co
tinuum, the ‘‘spreading’’ width, which represents the co
pling to two-particle–two-hole and even more compl
configurations, and the ‘‘Landau damping,’’ representing
breaking of the collective state in different pieces. Since
ant resonances are excitations embedded in the contin
part of nuclear spectra, one would expect that the continu
has to be taken into account explicitly in their descriptio
Yet the gross properties of these resonances can be stu
suitably by means of bound~e.g., harmonic oscillator! repre-
sentations@1,2#. This can be understood, since the partic
in the particle-hole excitations move in high angular mom
tum orbits. Therefore, the corresponding centrifugal and,
protons, Coulomb barriers tend to trap this particle within
nuclear volume, hindering the particle decay of the gi
resonance. The effective potential thus felt by the particl
well approximated by a harmonic oscillator potential. Th
also explains the small value of the escape width of the g
resonances@3#.

The strong collectivity of giant resonances indicates t
their double excitations are more likely to occur than t
double excitation of low energy vibrational states like, e.
the yrast quadrupole states in tin isotopes. This is why
study of double giant resonances~GR2! is a subject that is a
present being pursued intensively, both experimentally@4–
10# and theoretically@10–14#. These calculations evaluat
properties of the GR2. A microscopic calculation of the G
should include as basis elements all important two-partic
two-hole excitations as well as the particle-hole configu
tions of the constituent giant resonances. One would t
obtain at the same time the spreading width of the gi
resonances and quantities corresponding to the GR2.
570556-2813/98/57~2!/798~8!/$15.00
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such a calculation would require the diagonalization of m
trices of large dimensions. This would even be more diffic
if one includes the temperature as a variable in the form
ism.

Alternatively, given the strong collectivity of the gian
resonances and the many degrees of freedom that influ
their properties, one may consider that a statistical mode
of the formation and decaying processes including conce
like mean values and variances is an appropriate path to
tact this difficult problem. In this paper, we adopt such
point of view. We consider a collective coordinateq and its
vibrational modes determined by a harmonic oscillator p
tential. That is, we consider that the giant resonance co
sponds to the first excitation of the harmonic oscillator, w
energy\v0, and the GR2 to the second excitation, with tw
quantum oscillations and energy 2\v0 . Besides these exci
tations, we distinguish an ‘‘environment’’ of all the othe
excitations.

In Sec. II we derive Lindblad’s quantum master equati
using physical concepts, since the original derivation@15# is
rather abstract. We also derive a form of this equation wh
includes friction and diffusion@16,17#. It has been shown
that this equation gives very accurate descriptions of p
cesses in optics@18# as well as in nuclear physics@19,20#. In
Sec. III we obtain the energy mean value and width of
giant resonance and of the GR2. The corresponding eq
tions turn out to be analytically integrable. The decay sp
trum of the giant resonances is presented in Sec. IV an
summary and conclusions are in Sec. V.

II. QUANTUM MASTER EQUATION AND DECAY

In our formalism the decay of the giant resonance is
time-dependent process with energy loss due to the coup
of the system to a dissipative environment. Since this i
subject which is not very familiar in nuclear physics, we w
give the formalism in some detail. We therefore conside
systemS with HamiltonianH and an environmentE with
HamiltonianHE. Following Carmichael@21#, we introduce
the interactionV as
798 © 1998 The American Physical Society
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V5\(
i

siG i , ~1!

wheresi are operators of the systemS andG i are the conju-
gate operators of the environment. Therefore, the Ham
tonian of the total systemT5S% E is

HT5H1HE1V ~2!

and the corresponding equation of motion reads

ẋ~ t !52
i

\
@HT,x~ t !#, ~3!

where x(t)5R(t)r(t) is the density operator of the tota
system,r(t) is the density operator of the systemS, and
R(t) the density operator of the environmentE. When the
Hamiltonian evolution of the total systemT is projected on
the space of the system of interestS ~which is a non-
Hamiltonian evolution! one obtains for the reduced densi
matrix r(t)5TrEx(t) the expression

ṙ~ t !52
i

\
@H,r~ t !#2

1

\2E
0

t

e2~ i /\!Ht

3TrE@Ṽ~ t !,@Ṽ~ t8!,R̃~ t8! r̃ ~ t8!##e~ i /\!Htdt8, ~4!

where the tilde labels operators in the interaction pictu
e.g.,Ṽ(t)5e( i /\)(H1HE)tVe2( i /\)(H1HE)t.

With Eq. ~1!, Eq. ~4! takes the form of a general mast
equation:

ṙ~ t !52
i

\
@H,r~ t !#1(

i j
E

0

t

dt8e2~ i /\!Ht$^G̃ i~ t8!G̃ j~ t !&

3@ s̃ i~ t8! r̃ ~ t8!, s̃ j~ t !#1^G̃ i~ t !G̃ j~ t8!&

3@ s̃ i~ t !, r̃ ~ t8! s̃ j~ t8!#%e~ i /\!Htdt8, ~5!

where

^G̃ i~ t8!G̃ j~ t !&5TrE@ G̃ i~ t8!R̃~ t8!G̃ j~ t !# ~6!

are correlation functions of the environment operators
s̃ i(t)5e( i /\)Htsie

2( i /\)Ht. In the following we consider tha
the stateR(t8) of the environment does not depend on t
stater(t8) of the system~Born approximation! @21,22#. For
decay processes much slower than the time evolution of
environment operators~which we assume to be the valid i
our case! one gets

G̃ i5e~ i /\!~H1HE!tG ie
2~ i /\!~H1HE!t5e~ i /\!HEtG ie

2~ i /\!HEt,
~7!

these operators ared correlated~the Markoff approximation!
@21#,

^G̃ i~ t8!G̃ j~ t !&5^G̃ i~ t !G̃ j~ t8!&5ai j d~ t2t8!, ~8!

and Eq.~5! takes the form
l-

,

d

e

ṙ~ t !52
i

\
@H,r~ t !#1(

i j
ai j $@sir~ t !,sj #1@si ,r~ t !sj #%.

~9!

One notices that the dissipation matrixai j is positive, aii

>0, and Hermitian:ai j 5aji* .
Considering the real and the imaginary parts of the dis

pation parametersai j of the form

ai j 5
1

\2 Di j 1
i

2\
l i j , l i j 52l j i , Di j 5D ji , ~10!

one obtains, from Eq.~9!, the Markoffian quantum maste
equation

ṙ~ t !52
i

\
@H,r~ t !#1

i

2\(
i j

l i j @si ,sjr~ t !1r~ t !sj #

2
1

\2(
i j

Di j @si ,@sj ,r~ t !##. ~11!

From the positivity of the matrixai j and the Schwartz in-
equality for the vectors (bi1 ,bi2 , . . . ,bin), one gets the fun-
damental constraints

Dii >0, Dii D j j 2Di j
2 >

\2l i j
2

4
. ~12!

For a one-dimensional system with coordinateq and mo-
mentump, Eq. ~11! takes the form of the quantum mast
equation depending on a friction parameterl and three dif-
fusion parametersDqq , Dpp , andDqp , i.e. @16#,

ṙ~ t !52
i

\
@H,r~ t !#2

i

2\
l$@q,pr~ t !1r~ t !p#2@p,qr~ t !

1r~ t !q#%2
Dpp

\2
@q,@q,r~ t !##2

Dqq

\2
@p,@p,r~ t !##

1
Dqp

\2
$@q,@p,r~ t !##1@p,@q,r~ t !##%. ~13!

From Eqs.~8! and ~10! the diffusion coefficientsDi j and
the friction coefficientsl i j can be interpreted as the real an
imaginary parts of the time integrals of the correlation fun
tions, i.e.,

Di j 5\2ReH E
2`

`

^G̃ i~ t !G̃ j~ t8!&dt8J ,

~14!

l i j 52\ImH E
2`

`

^G̃ i~ t !G̃ j~ t8!&dt8J .

These coefficients can be related to microscopical qua
ties. We will show here an example of this relation by usi
the independent-oscillator model of Refs.@23,24#. In this
case a harmonic oscillator with the Hamiltonian

H5
p2

2m
1m

v0
2q2

2
~15!
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is coupled to an environment of harmonic oscillators w
coordinates$qi ,pi% and frequencies$v i%. The total Hamil-
tonian then is

HT5H1(
j

S pj
2

2mj
1

1

2
mjv j

2~qj2q!2D . ~16!

Assuming a Gibbs distribution for the environment oscil
tors, the correlation functions acquire the simple form

^qjqk&5
\d jk

2mv j
coth

\v j

2kT
. ~17!

With these correlation functions, and after some algebra,
obtains

ṙ~ t !52
i

\
@H̄,r~ t !#2

i

2\

m0v̄0
2

4m
d~v̄0!$@q,pr~ t !1r~ t !p#

2@p,qr~ t !1r~ t !q#%2
m0v̄0

3d~v̄0!

8\
coth

\v̄0

2kT

3S @q,@q,r~ t !##1
1

m2v̄0
2 @p,@p,r~ t !## D , ~18!

wherev̄0 is a renormalized resonance frequency correspo

ing to the HamiltonianH̄5H01( j
1
2 mjv j

2q2, d(v̄) is the

density of states at frequencyv̄, andm0 is the mass of the
environment oscillators in resonance with the system.

Comparing Eq.~18! with Eq. ~13! one finds that the fric-
tion coefficient can be written in terms of microscopic qua
tities asl5(m0v̄0

2/4m)d(v̄0).
We will now show that the complicated evolution of th

giant resonance can be described only by two parameters
temperatureT and the strength of the dissipative couplingl.

III. GIANT RESONANCES AND THE DECAY
OF A QUANTUM HARMONIC OSCILLATOR

IN THE MARKOFF APPROXIMATION

We consider a nucleus described in a space of collec
coordinates. For simplicity, we adopt a one-dimensio
model, with a dominant coordinateq of a harmonic oscillator
~HO! for the most probable state of the nucleus. The evo
tion on the other coordinates is assumed to proceed thro
dissipation and, therefore, the system is described by
master equation~13! with the Hamiltonian given by@see Eq.
~2!#

H5
p2

2m
1

mv0
2q2

2
, ~19!

wherep is the momentum,m is the effective mass, andv0 is
the frequency of the oscillator. We will derive equations f
the expectation values of the observablesq andp. From the
master equation, by multiplying byq and p and taking the
traces, one gets

d^q&
dt

52l^q&1
^p&
m

,
~20!

d^p&
dt

52l^p&2mv0
2^q&.
-

e

d-

-

the

e
l

-
gh
e

r

In the same fashion one obtains the expressions for
second- and fourth-order moments, like, e.g.,d^q2&/dt and
d^q2p21p2q2&/dt.

Equations~20! describe the time evolution of the coord
nate and momentum. The corresponding solutions are g
by

^q~ t !&5e2ltS ^q~0!&cosv0t1^p~0!&
sinv0t

mv0
D ,

~21!

^p~ t !&5e2lt@2mv0^q~0!&sinv0t1^p~0!&cosv0t#.

At equilibrium (t→`), the mean value of the coordinat
takes the value corresponding to the minimum of the pot
tial, which is zero in our case, while the momentum tends
zero.

The energy mean value

^H&5
^p2&
2m

1
mv0

2^q2&
2

, ~22!

as well as the energy width, defined as

G25^H2&2^H&2

5
^p4&

4m2
1

m2v0
4^q4&
4

1
v0

2^q2p21p2q2&
4

2^H&2,

~23!

can be derived from the second- and fourth-order mome
One thus gets

d^H&
dt

522l^H&1
Dpp

m
1mv0

2Dqq ,

d^H2&
dt

524l^H2&2l\2v0
213

Dpp^p2&

m2
13m2v0

4Dqq^q
2&

1v0
2~Dpp^q

2&1Dqq^p2&12Dqp^qp1pq&!. ~24!

The first of these equations has the solution

^H~ t !&5E`1~Ei2E`!e22lt, ~25!

whereEi is the initial value of the energy and

E`5
1

lS Dpp

2m
1

mv0
2Dqq

2 D ~26!

is the equilibrium value. Assuming a Gibbs distribution
the system at equilibrium, i.e.,Pn5(1/Q)e2bEn, Q
5(ne2bEn, b5(1/kT), and the eigenenergiesEn5(n
1 1

2 )\v0 of the HO we obtain

E`5^H~`!&5
1

Q(
n

S n1
1

2D\v0e2~n11/2!b\v0, ~27!

where
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Q5(
n

e2~n11/2!b\v05
1

2sinh~b\v0/2!
. ~28!

From these expressions, we obtain a much more transpa
form of the equilibrium energy~26!, i.e.,

E`52
1

Q

]Q

]b
5

\v0

2
coth

\v0

2kT
, ~29!

depending on the oscillator ground state energy\v0/2 and
on the temperatureT. Considering an equipartition of th
energy on the coordinatesq andp, from Eqs.~26! and ~29!
one obtains

Dpp

2ml
5

mv0
2Dqq

2l
5

\v0

4
coth

\v0

2kT
, ~30!

and, consequently, the diffusion coefficients take the fo
@16#

Dqq5
\l

2mv0
coth

\v0

2kT
,

~31!

Dpp5
\lmv0

2
coth

\v0

2kT
,

depending on the friction coefficientl and on the tempera
tureT. With these expressions, the second fundamental c
straint ~12! takes the form

\2l2

4
coth2

\v0

2kT
2Dqp

2 >
\2l2

4
,

which is satisfied only whenDqp50. One then obtains, from
the second of Eqs.~24!,

d^H2&
dt

524lH ^H2&2\v0F ^H&coth
\v0

2kT
2

\v0

4 G J .

~32!

With the notationE05\v0/2 for the ground state andEi*
5Ei2E`5Ei2E0h for the excitation energy, where

h5coth
\v0

2kT
, ~33!

one gets for the mean value of the Hamiltonian and for
width of thenth state of the HO the expressions

^H~ t !&n5En* e22lt1E0h,
~34!

Gn
25~C02En*

2!e24lt12E0En* he22lt1E0
2~h221!,

where C0 is the integration constant. The first term of th
energy mean value describes the decay of the excitation
ergy En* , while the second term corresponds to the equi
rium energyE0h(T) of the oscillator at temperatureT. The
first term of the energy width, containing the integration co
stantC0 , describes the effect of the initial state distributio
of the oscillator, which is determined by the initial collisio
leading to the giant resonance excitation. With the init
conditionC05En*

2 this term disappears. The third term re
ent

n-

e

n-
-

-

l

resents the equilibrium value of the widthGe
25E0

2@h2(T)
21# which is different from zero only at high temperatur
whenh(T).1.

Notice that the friction coefficientl is not related to the
width of the giant resonance, since the time evolution giv
by Eqs.~20! do not describe the full effect of the environ
ment. This is included in the general master equation~13!
and, therefore, the width is given byGn in Eq. ~34!. The
value ofGn in this equation depends upon the time of inte
action between the system and the environment. Assum
this time to have the valueDt and averaging on it one get
for the second term a factor@12exp(22lDt)#/(lDt)
'1/(lDt) and the width acquires the form

Gn
25

2E0En* h~T!

lDt
1E0

2~h221!. ~35!

IV. DECAY SPECTRUM OF THE GIANT RESONANCES

In the previous section we considered a double giant re
nance as the first two excited states of a dissipative HO.
calculated the time evolution of the energy mean value
of the width. To calculate also the spectrum, we consider
interaction between the HO and particle excitations belo
ing to the environment. We thus introduce the interact
Hamiltonian as

V5\c~aC~x!xrx1C~u!uru!. ~36!

We also define a coordinateq and a conjugate coordinat
s as

q5C~x!xrx , s5C~u!uru . ~37!

In the expressions above,x is the collective coordinate o
the oscillator. The operatoru5d/dx defines the momentum
p52 i\d/dx52 i\u, while the operatorsr x andr u describe
the particle excitations belonging to the environment. T
scalarsC(x) and C(u) are the coupling coefficients of th
operatorsr x and r u , respectively, anda5mv0 /\.

Because of the interactionV, the particle excitations
couple to states of the HO. The structure of those excitati
is different for different HO states. For the first~ground! HO
state that structure corresponds to the vacuum of excitat
for the second state~giant resonance! it is mainly two-
particle–two-hole~2p2h! excitations @25,26#, for the third
~GR2! it is mainly 4p4h, and so on. For each HO state, t
particle excitations form a band, as will be shown belo
The members of a particular band mix with the correspo
ing collective state due to the interactionV. Therefore each
state in the band carries a certain amount of collectiv
through the piece of the HO state that has contributed to
mixing.

The interaction potentialV takes a familiar form introduc-
ing the annihilation and creation operatorsA and A† of the
harmonic oscillator,

A5Aa

2S x1
u

a D , A†5Aa

2S x2
u

a D , ~38!

and the annihilation and creation operatorsa and a† of the
particle excitation,
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ma†5C~x!r x1C~u!r u , ma5C~x!r x2C~u!r u . ~39!

In terms of these creation and annihilation operators the
pressions~36! and ~37! become

V5\cAa

2
m~Aa†1A†a!. ~40!

q5mx
a†1a

2
, s5m

d

dx

a†2a

2
. ~41!

Labeling by the latin lettersk, l the collective states an
by i k ,i l the corresponding particle excitations in the field
the harmonic oscillator, the transition elements of the co
dinatesq,s take the form

qi kj l
5m^kuxu l &K « i kUa†1a

2 U« j l L ,
~42!

si kj l
5m K kU d

dxU l L K « i kUa†2a

2 U« j l L .

To obtain the spectrum as a function of these matrix e
ments, we will assume that the interaction is small and t
the time t is short. With these assumptions we solve t
master equation in the framework of perturbation the
@27#. For this purpose, we take the second-order expansio
the density operator in the interaction picture:

r85r~0!1r8~1!1r8~2!. ~43!

From the master equation~13!, we obtain the equations

dr~0!

dt
50,

dr8~1!

dt
52

i

\
@V8~ t !,r~0!#, ~44!

dr8~2!

dt
52

i

\
@V8~ t !,r8~1!~ t !#1L8~r~0!;t !,

where we used the notation

L@r~ t !#52
i

2\
l$@q,pr~ t !1r~ t !p#2@p,qr~ t !1r~ t !q#%

2
Dpp

\2
@q,@q,r~ t !##2

Dqq

\2
@p,@p,r~ t !##

1
Dqp

\2
$@q,@p,r~ t !##1@p,@q,r~ t !##%. ~45!

We assume that the initial state, which we will denote
um&, corresponds to the unperturbed density operator@27#
~i.e., r (0)5um&^mu).

The diagonal matrix elements of the density are
x-

f
r-

-
at
e
y
of

y

r i i ~m;t !5
1

\2
uVmiu2

sin2~v i t/2!

~v i /2!2

12S Dqqsmi
2 1

Dpp

\2
qmi

2 2lqmismiD t. ~46!

The first term of this expression results from the Hamilton
part of Eq.~13!, i.e., from the isolated~closed! system. The
corresponding width at timet is given byDH.1/t according
to Heisenberg’s uncertainty principle@27#. One can thus in-
terpret the parameter\l in Eqs. ~21! as the width corre-
sponding to the isolated system at time 1/l. As mentioned
above, this is not related to the withGn given by Eq.~35!.

The second term in Eq.~46! corresponds to the dissipativ
processes that takes place as the result of the interaction
the environment. This interaction is defined by the para
etersl, Dqq , Dpp , andDqp .

Considering quasiequilibrium transition processes, tha
when temperature can be defined, one gets from Eqs.~31!
and ~46! the transition spectrum

Tmi~T!5
r i i ~m;t !

t
5

1

\2
uVmiu2

sin2~v i t/2!

~v i t/2!2
t

1lF ~aqmi
2 1a21smi

2 !coth
\v0

2kT
22qmismiG .

~47!

Since we are interested in the decay from a stateu i k& of a
shell uk& to a stateu j l& of another shellu l &, the first term,
representing only the width of the initial level, does not e
ter. Thus, from Eq.~47! we obtain

Ti kj l
~T!5

r j l j l
~ i k ;t !

t

5lF ~aqi kj l

2 1a21si kj l

2 !coth
\v0

2kT
22qi kj l

si kj l G ,
~48!

depending on the matrix elements~42!. For the three states
u0& ~i.e., ground state!, u1& ~i.e., the giant resonance!, andu2&
~i.e., GR2! of the harmonic oscillator, we calculate the m
trix elements

^1uxu0&5
1

A2a
, K 1U d

dxU0L 52Aa

2
,

~49!

^2uxu1&5
1

2A2a
, K 2U d

dxU1L 52
1

2
Aa

2
.

Thus, we notice that only transitions within two success
bands,u i 2&→u j 1& or u i 1&→u j 0&, are allowed, while all the
transitions inside a bandu i k&→u j k&, or over a band,
u i 2&→u j 0&, are forbidden. For the two allowed transition pr
cesses one obtains, from Eq.~48!,
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Ti 1 j 0
~T!5

m2l

2 F ~Qi 1 j 0

2 1Si 1 j 0

2 !coth
\v0

2kT
12Qi 1 j 0

Si 1 j 0G ,
Ti 2 j 1

~T!5
m2l

8 F ~Qi 2 j 1

2 1Si 2 j 1

2 !coth
\v0

2kT
12Qi 2 j 1

Si 2 j 1G ,
~50!

whereTi 1 j 0
corresponds to the transition from the giant res

nance to the ground state andTi 2 j 1
from the GR2 to the gian

resonance. In these expressions we used the notation

Qi kj l
5 K « i kUa†1a

2 U« j l L , Si kj l
5 K « i kUa†2a

2 U« j l L .

~51!

Notice that the statej 0 is the vacuum of excitations, as me
tioned above.

In terms of the creation and annihilation operatorsa† and
a one gets

Ti 1 j 0
~T!5

m2l

4 F ~^« i 1
ua1u« j 0

&21^« i 1
uau« j 0

&2!coth
\v0

2kT

1^« i 1
ua1u« j 0

&22^« i 1
uau« j 0

&2G ,
Ti 2 j 1

~T!5
m2l

16 F ~^« i 2
ua1u« j 1

&21^« i 2
uau« j 1

&2!coth
\v0

2kT

1^« i 2
ua1u« j 1

&22^« i 2
uau« j 1

&2G . ~52!

V. COMPARISON WITH EXPERIMENTAL DATA

In this section we will analyze available experimental d
on the evolution of giant resonances with temperature. T
is a rather controversial subject mainly because there
several interpretations of the experimental data. Howeve
seems to be well established that the energyv0 and the per-
centage of the sum rule are practically independent of
temperature@28#. Instead, the experimental widthG in-
creases steadily with temperature, from about 4 MeV t
value that goes from 8 MeV@29# to 12 MeV @30# for nuclei
which are not too ‘‘hot,’’ i.e., up to about 100 MeV of exc
tation energy. This increase was explained as an effec
duced by the angular momentum transferred to the sys
through the complete fusion reactions used to populate th
nuclei @31#. If this is indeed the case, then the width wou
be independent of the temperature. This interpretation
been supported by experiments where the influence of a
lar momenta has been eliminated@29#.

For higher energies the situation is even more unclear
a rather lively debate is at present taking place on the issu
the dependence of the width onT. Thus, in Refs.@31–33#
one argues that there is a maximun of the angular momen
that is transferred to the nucleus at about 100 MeV. Abo
this energy the nucleus fissions and, therefore, the widt
independent of the temperature at high energies. Howeve
another interpretation one finds that the experimental va
-
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can be adjusted by assuming that the width increases wiT
@34,35#. This interpretation is supported by very detailed c
culations performed within the framework of the Landa
Vlasov transport theory@36#. In this theory, one finds tha
there are a number of processes contributing to the evolu
of the giant resonance with temperature, like, e.g., comp
tion between one- and two-body dissipation and a transi
from pure quantum to classical sound waves. A review
this can be found in Ref.@37#.

This rather confusing situation indicates that the form
ism presented in this paper, which is very different to t
other ones mentioned above, is perhaps timely.

We can thus evaluate the evolution of the width by us
Eq. ~35!. From this expression one obtains for the ratio of t
widths of the statesn52 ~i.e., GR2! and n51 at T50 the
value

G2

G1
5AE2*

E1*
, ~53!

which, from E2* 52\v0 , E1* 5\v0 , is G2 /G15A2. This
agrees with the corresponding experimental quantity of R
@4#. It also agrees with previous calculations perform
within a different theoretical framework@12#. Yet, even here
one finds disagreements among different publications. F
the experimental side, one has to consider that there is a l
spread of the data. A detailed review of these difficulties,
well as a very useful compilation of the data, can be found
Ref. @38#. A value of 2 for the ratio above is definitely no
ruled out by the experiments. In fact, one may even pre
this value since it is obtained by folding two Lorentzia
while the factor ofA2 corresponds to the folding of two
Gaussians. It is likely that the shape of the constituent g
resonances in the double giant resonance mode is more
lar to a Lorentzian as compared to a Gaussian function. F
the theoretical side@39# the decay of the multiphonon stat
formed through the excitation of many giant dipole res
nances was studied within the framework of a model cons
ing of a dissipative quantum pendulum. One thus finds t
the width of such anN-phonon state is proportional toN,
which is N52 for the double giant resonance.

There is also a number of microscopic calculations t
include the effect of two-particle–two-hole excitations on t
giant resonances. One can thus evaluate simultaneousl
width of the giant resonance and the double giant resona
as done in Ref.@40#. In this calculation the ratio~53! turns
out to be 1.5.

Perhaps even more important than the ratio discus
above is to notice that the dependence uponT of the widthG
in Eq. ~35! is defined by the factorh(T) @Eq. ~33!# which is
h' 1 for reasonable values ofT. For instance, assumingv0
5 15 MeV one trivially obtains that forT51 MeV it is
coth@\v0 /(2kT)# 5 1.000 001, and forT56 MeV it is
coth@\v0 /(2kT)# 5 1.18. In other words, our formalism pre
dicts that the widths are independent ofT.

The transition spectrum corresponding to the decay of
giant resonance is given by Eq.~52!. In Ti 1 j 0

the mixing of

the statei 1 with the giant resonance decreases as the en
of this state~the environment! departs from the energy of th
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giant resonance~the system!. The same is valid inTi 2 j 1
with

respect to the statei 2 and the GR2. The ratio between th
corresponding widths isA2, as has been shown above.

One notices in Eq.~52! that, at zero temperature, the spe
trum is dependent upon the matrix elements of the crea
operators only, as expected in a Tamm-Dancoff approxim
tion ~TDA! ~shell model! formalism. But thermal fluctua-
tions produce excitations where the particle states areanni-
hilated. This can be interpreted as the result of a transit
from a sharp to a diffuse Fermi surface due to the ther
fluctuations. As an analogy, this terms reminds one of
backward-going components of the random phase appr
mation ~RPA!.

The decay rates~52! are proportional to the coefficien
m2, i.e., to the coupling of the particle excitations to the H
field, and are also proportional to the dissipative coupl
strengthl of the collective motion. They depend on the tem
peratureT through the coth function, as was the case w
the width analyzed above. Therefore, even in the proce
of formation and decay of the giant resonance the dep
dence uponT is practically negligible.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied giant resonances as a
lective motion of nucleons described by the coordinate o
harmonic oscillator~HO!. This quantum open system is a
sumed to be embedded in a hot environment. Using a qu
tum master equation, the energy and width of the first le
which is the giant resonance, and of the second level, wh
is the double giant resonance~GR2!, were obtained as func
tions of temperature and of the dissipative coupling stren
that appears due to the energy exchange between the sy
and the environment. We singled out particle excitations t
are part of the environment, which may include even
nuclear continuum, and introduced a first-order interact
between the HO and that part of the environment which
defined by the particle excitations. This allowed us to defi
creation and annihilation operators for the HO as well as
the particle excitations. Within this basis we evaluated
transition spectrum as a function of the transition matrix
-
n

a-

n
al
e
i-

g
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es
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ol-
a

n-
l,
h

th
tem
at
e
n
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e
r
e
-

ements. The transition strength is proportional to the diss
tive strengthl and to the coupling coefficientm2. Thus, in
the deexcitation process a part of the energy of the collec
motion is transferred to the particle excitations only when
dissipative coupling is present~i.e., m2lÞ0).

We found that through the transfer of energy mention
above the particle excitations form bands surrounding
collective states. This produces a mixing between the col
tive vibrations of the HO and the particle states belonging
the corresponding band. The closer these states are to
collective vibration, the larger is the mixing between the
As a result, each particle state carries a collectivity wh
decreases with the distance in energy to the correspon
collective state. This generates the spreading width of
giant resonance as well as of the GR2. The structure of
bands is different for the different collective states. Thus,
the giant resonance the corresponding band consists m
of two-particle–two-hole excitations while for the GR2 th
band consists mainly of four-particle–four-hole excitation
We found that transitions within a band as well as transitio
crossing a band are forbidden.

In comparison with other existing theories, the width, c
culated from the second-order moments of the Hamiltoni
is a function of a term proportional to the friction streng
\l, related to the Hamiltonian part of the master equat
and to a non-Hamiltonian term which corresponds to qu
tum diffusion processes. On this basis, we evaluated the r
of the two spectral linewidths and obtained for this ratio t
valueA2 at T50, which agrees both with previous calcul
tions @12# and with available experimental data@4#.

We found that the energy, the width, and even the tran
tion spectrum are practically independent of the tempera
for reasonable values ofT, which agrees with previous inter
pretations of the experimental data@28,31–33#. However, it
is worthwhile to point out that this is a controversial iss
and there are other interpretations of those data which pre
strong dependence of the width with temperature@34–37#.
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