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Lowest order constrained variational calculation for asymmetrical nuclear matter
with the new Argonne potential

G. H. Bordbar and M. Modarres
Physics Department, Amir-Kabir University, Hafez Avenue, Tehran, Iran

and Centre for Theoretical Physics and Mathematics AEOI, P.O. Box 11365-8486, Tehran, Iran
~Received 17 June 1997!

The lowest order constrained variational method is used to calculate the properties of asymmetrical nuclear
matter with the new charge-independent breaking, ArgonneV18 (AV18), as well as ArgonneV14 (AV14)
potentials, for a wide range of density and proton to neutron ratio. The newAV18 potential, unlikeAV14 and
D-Reid interactions, overbinds nuclear matter at a saturation density of about 0.31 fm23 which agrees well with
the variational method based on hypernetted chain summation techniques. It is shown that it is not a good
approximation to use the result of nuclear and neutron matter to get the equation of state of asymmetrical
nuclear matter with an empirical parabolic approximation. Finally, various properties of asymmetrical nuclear
matter such as incompressibility, symmetry energy, etc., are given and a comparison is made with the other
many-body techniques.@S0556-2813~98!03501-8#

PACS number~s!: 21.65.1f, 26.60.1c, 64.70.2p
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I. INTRODUCTION

Since potential models which have fit only thenp data
often give a poor description ofpp data@1#, recently, a new
nucleon-nucleon potential (AV18) was proposed by Wiringa
et al. @2#. This potential, which is an updated version of t
ArgonneV14 (AV14) potential@3#, is designed such that it fit
both thepp andnp data as well as low-energynn scattering
parameters and deuteron properties by using the Nijme
NN scattering database@1,4#. Like theAV14 potential, it has
been written in an operator format with a charge-independ
part that has 14 operators~as before! and a charge-
independent breaking part that has three charge-depen
and one charge-asymmetric operators. So in order to
nuclear many-body calculations with this potential o
should treat explicitly the isospin projection in the nucle
many-body wave functions.

The lowest-order constrained variational~LOCV! which
was developed by us several years ago@5–9# is a useful tool
for the determination of the properties of nuclear matter.
the last years, the LOCV method has been extended fur
for finite temperature calculations and applied to neutr
nuclear, and asymmetrical nuclear matter@10–12#. In these
LOCV calculations a nucleon-nucleon potential such as R
soft core potential@13# ~Reid! with inclusion of isobar de-
grees of freedom@5,14# ~D-Reid! was used. Very recently we
developed the LOCV method forV8 @15#, V12 @16#, and Ur-
banaV14 @16# potentials and we found similar results wi
respect to the other variational methods in which the ma
body cluster contributions were included@17#.

The LOCV method is a fully self-consistent formalis
and it does not bring any free parameter into the calculat
It considers the normalization constraint to keep the hig
order terms as small as possible@5,7# ~this has been tested b
calculating the three-body cluster terms; see@5,17#!. The
functional minimization procedure represents an enorm
computational simplification over unconstrained metho
~i.e., to parametrize the short-range behavior of correla
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functions! that attempt to go beyond lowest order@15,21#.
The equation of state of asymmetrical nuclear matter

well as its incompressibility plays an important role in th
study of heavy-ion collisions@18#, stellar collapse, supernov
explosions, neutron stars, etc.@19#. Therefore, it is a grea
interest to predict such an equation of state by a full mic
scopic many-body calculation.

There are only a few microscopic calculations for asy
metrical nuclear matter@5,6,12,20#. In some of these calcu
lations an empirical parabolic approximation has been u
@21,22# ~rather than an explicit calculation!. So it is interest-
ing to investigate the validity of this approximation at va
ous proton fractions by performing a detailed calculation

In the present work we intend to calculate the equation
state of asymmetrical nuclear matter by using the LOC
method withAV18 @2#, AV14 @3#, and UrbanaV14 (UV14)
@16# potentials. So the plan of this article is as follows: T
lowest-order constrained variational method is briefly d
scribed in Sec. II. Section III is devoted to results and
discussion for the binding energy~Sec. III A!, symmetry en-
ergy ~Sec. III B!, and pressure and incompressibility~Sec.
III C ! of asymmetrical nuclear matter. Our summary a
conclusions are presented in Sec. IV.

II. LOCV FORMALISM

We consider a trial many-body wave function of the for

c5Ff, ~1!

wheref is a Slater determinant of plane waves ofA inde-
pendent nucleons,F is anA-body correlation operator which
will be replaced by a Jastrow form, i.e.,

F5S)
i . j

f ~ i j !, ~2!

andS is a symmetrizing operator. The cluster expansion
the energy functional is written as@23#
714 © 1998 The American Physical Society
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57 715LOWEST ORDER CONSTRAINED VARIATIONAL . . .
E~@ f # !5
1

A

^cuHuc&

^cuc&
5E11E21E31••• . ~3!

The one-body termE1 for an asymmetrical nuclear matte
that consists ofZ protons andN neutrons is

E15 (
i 51,2

3

5

\2ki
F2

2mi

r i

r
. ~4!

Labels 1 and 2 are used instead of proton and neutron
spectively, andki

F5(3p2r i)
1/3 is the Fermi momentum o

particle i (r5rN1rZ).
The two-body energyE2 is

E25
1

2A (
i j

^ i j uV~12!u i j 2 j i & ~5!

and

V~12!52
\2

2m
@ f ~12!,@¹12

2 , f ~12!##1 f ~12!V~12! f ~12!.

~6!

The two-body correlation operatorf (12) is defined as fol-
lows:

f ~ i j !5 (
a,p51

3

f a
~p!~ i j !Oa

~p!~ i j !. ~7!

a5$J,L,S,T,Tz% and the operatorsOa
p( i j ) are written as

Oa
p51,351,~ 2

3 1 1
6 S12!,~

1
3 2 1

6 S12!, ~8!
e-

whereS1253(s1• r̂ )(s2• r̂ )2s1•s2 is the tensor operator
We choosep51 for uncoupled channels andp52,3 for
coupled channels.

The two-body nucleon-nucleon interactionV(12) has the
following form:

V~12!5 (
p51

18

Vp~r 12!O12
p . ~9!

The first 14 operators are the same as before~see also our
previous calculation with theUV14 potential@16#! and they
are given by

O12
p5121451,s1•s2 ,t1•t2 ,~s1•s2!

3~t1•t2!,S12,S12~t1•t2!,

L•S,L•S~t1•t2!,L2,L2~s1•s2!,L2~t1•t2!,

L2~s1•s2!~t1•t2!,~L•S!2,~L•S!2~t1•t2!. ~10!

The four additional operators which break charge indep
dence are written as

O12
p5152185T12,~s1•s2!T12,S12T12,~tz11tz2!, ~11!

whereT1253(t1• r̂ )(t2• r̂ )2t1•t2 is the isotensor operator
These 18 components are denoted by the labelsc, s, t, st,
t, tt, ls, lst, l2, l2s, l2t, l2st, ls2, ls2t, T, sT, tT, and
tz. The T, sT, and tT, operators are the charge-depende
forces, while thetz operator is the charge-asymmertic for
@2#. By using correlation operators in the form of Eq.~7! and
the two-nucleon potential from Eq.~9!, we find the following
equation for the two-body energy:
E25
2

p4r S \2

2mD (
JLSTTz

~2J11!
1

2
@12~21!L1S1T#U K 1

2
tz1

1

2
tz2UTTzL U2E drH F ~ f a

~1!8!2aa
~1!2

~kFr !1
2m

\2 „$Vc23Vs1~Vt

23Vst!~4T23!1~VT23VsT!@T~6Tz
224!#12VtzTz%aa

~1!2
~kFr !1@Vl223Vl2s1~Vl2t23Vl2st!~4T

23!#ca
~1!2

~kFr !…f a
~1!2G1 (

i 52,3
F ~ f a

~ i !8!2aa
~ i !2

1
2m

\2 „$Vc1Vs1~26i 114!Vt2~ i 21!Vls1@Vt1Vst1~26i 114!Vtt

2~ i 21!Vlst#~4T23!1@VT1VsT1~26i 114!VtT#@T~6Tz
224!#12VtzTz%aa

~ i !2
~kFr !1@Vl21Vl2s1~Vl2t1Vl2st!

3~4T23!#ca
~ i !2

~kFr !1@Vls21Vls2t~4T23!#da
~ i !2

~kFr !…f a
~ i !2G1

2m

\2 H Vls22Vl222Vl2s23Vls2

1@~Vlst22Vl2t22Vl2st23Vls2t!~4T23!#%ba
2~kFr ! f a

~2! f a
~3!1

1

r 2 ~ f a
~2!2 f a

~3!!2ba
2~kFr !J , ~12!
where the coefficientaa
(1)2(x), etc., are defined as

aa
~1!2

~x!5x2I L,Tz
~x!, ~13!

aa
~2!2

~x!5x2@bI J21,Tz
~x!1gI J11,Tz

~x!#, ~14!
aa
~3!2

~x!5x2@gI J21,Tz
~x!1bI J11,Tz

~x!#, ~15!

ba
2~x!5x2@b23I J21,Tz

~x!2b23I J11,Tz
~x!#, ~16!

ca
~1!2

~x!5x2n1I L,Tz
~x!, ~17!
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716 57G. H. BORDBAR AND M. MODARRES
ca
~2!2

~x!5x2@h2I J21,Tz
~x!1n2I J11,Tz

~x!#, ~18!

ca
~3!2

~x!5x2@h3I J21,Tz
~x!1n3I J11,Tz

~x!#, ~19!

da
~2!2

~x!5x2@j2I J21,Tz
~x!1l2I J11,Tz

~x!#, ~20!

da
~3!2

~x!5x2@j3I J21,Tz
~x!1l3I J11,Tz

~x!#, ~21!

with

b5
J11

2J11
, ~22!

g5
J

2J11
, ~23!

b235
2J~J11!

2J11
, ~24!

n15L~L11!, ~25!

n25
J2~J11!

2J11
, ~26!

n35
J312J213J12

2J11
, ~27!

h25
J~J212J11!

2J11
, ~28!

h35
J~J21J12!

2J11
, ~29!

j25
J312J212J11

2J11
, ~30!

j35
J~J21J14!

2J11
, ~31!

l25
J~J21J11!

2J11
, ~32!

l35
J312J215J14

2J11
, ~33!

and

I J,Tz
~x!5E dqPTz

~q!JJ
2~xq!. ~34!

PTz
(q) is written as@tz1 or tz252 1

2 ~neutron! and1 1
2 ~pro-

ton!#

PTz
~q!5 2

3 p@ktz1

F3
1ktz2

F3
2 3

2 ~ktz1

F2
1ktz2

F2
!q

2 3
16 ~ktz1

F2
2ktz2

F2
!2q211q3# ~35!

for 1
2 uktz1

F 2ktz2

F u,q, 1
2 uktz1

F 1ktz2

F u,
PTz
~q!5 4

3 p min~ktz1

F3
,ktz2

F3
!

for q, 1
2 uktz1

F 2ktz2

F u, and

PTz
~q!50

for q. 1
2 uktz1

F 1ktz2

F u. TheJJ(x) are the familiar Bessel func

tions.
Now, we can minimize the two-body energy, Eq.~12!,

with respect to the variations in the functionsf a
( i ) but subject

to the normalization constraint@5,7#

1

A (
i j

^ i j uhTz

2 ~12!2 f 2~12!u i j &a50, ~36!

where in the case of asymmetrical nuclear matter the fu
tion hTz

(x) is defined as

hTz
~r !5F12 9

2 S J1~ki
Fr !

ki
Fr D 2G2 1/2

~Tz561!

51 ~Tz50!. ~37!

In terms of channel correlation functions we can write E
~36! as follows:

4

p4r (
a,i

~2J11! 1
2 @12~21!L1S1T#u^ 1

2 tz1
1
2 tz2uTTz&u2

3E
0

`

dr@hTz

2 ~kFr !2 f a
~ i !2

~r !#aa
~ i !2

~kFr !50. ~38!

As we will see later, the above constraint introduces
Lagrange multiplierl through which all of the correlation
functions are coupled. From the minimization of the tw
body cluster energy we get a set of coupled and uncoup
Euler-Lagrange differential equations. The Euler-Lagran
equations for uncoupled states are

ga
~1!92H aa

~1!9

aa
~1! 1

m

\2 @Vc23Vs1~Vt23Vst!~4T23!1~VT

23VsT!@T~6Tz
224!#12VtzTz1l#1

m

\2 @Vl223Vl2s

1~Vl2t23Vl2st!~4T23!#
ca

~1!2

aa
~1!2 J ga

~1!50, ~39!

while the coupled equations are written as
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ga
~2!92H aa

~2!9

aa
~2! 1

m

\2 $Vc1Vs12Vt2Vls1~Vt1Vst12Vtt2Vlst!~4T23!1~VT1VsT12VtT!@T~6Tz
224!#12VtzTz

1l%1
m

\2 @Vl21Vl2s1~Vl2t1Vl2st!~4T23!#
ca

~2!2

aa
~2!2 1

m

\2 @Vls21Vls2t~4T23!#
da

~2!2

aa
~2!2 1

ba
2

r 2aa
~2!2 J ga

~2!

1H 1

r 2 2
m

2\2 @Vls22Vl222Vl2s23Vls21~Vlst22Vl2t22Vl2st23Vls2t!~4T23!#J ba
2

aa
~2!aa

~3! ga
~3!50, ~40!

ga
~3!92H aa

~3!9

aa
~3! 1

m

\2 $Vc1Vs24Vt22Vls1~Vt1Vst24Vtt22Vlst!~4T23!1~VT1VsT24VtT!@T~6Tz
224!#12VtzTz1l%

1
m

\2 @Vl21Vl2s1~Vl2t1Vl2st!~4T23!#
ca

~3!2

aa
~3!2 1

m

\2 @Vls21Vls2t~4T23!#
da

~3!2

aa
~3!2 1

ba
2

r 2aa
~2!2 J ga

~3!

1H 1

r 2 2
m

2\2 @Vls22Vl222Vl2s23Vls21~Vlst22Vl2t22Vl2st23Vls2t!~4T23!#J ba
2

aa
~2!aa

~3! ga
~2!50, ~41!
it
ti-
q
r
th
es

s

dis-

gy

o

er
where

ga
~ i !~r !5 f a

~ i !~r !aa
~ i !~r !. ~42!

The primes in the above equations mean differentiation w
respect tor . As we pointed out before, the Lagrange mul
plier l is associated with the normalization constraint, E
~38!. The constraint is incorporated by solving the Eule
Lagrange equations only out to certain distances, until
logarithmic derivative of the correlation functions match

FIG. 1. The binding energy of asymmetrical nuclear matter v
sus density for various proton to neutron ratios~R!. Dotted curve
for AV14 and solid curve forAV18 potentials.
h

.
-
e

those of hTz
(r ) and then we set the correlation function

equal tohTz
(r ) ~beyond these state-dependence healing

tances!.

III. RESULTS AND DISCUSSION

A. Binding energy

In Fig. 1 we have plotted the result of our binding ener
calculation for asymmetrical nuclear matter with theAV18
and theAV14 potentials for different values of the proton t

- FIG. 2. As in Fig. 1 but for theUV14 potential. Exact LOCV
calculation~solid curve! and approximate LOCV calculation~dot-
ted curve!. WFF results@21# ~dashed curve!.
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neutron ratio~R50.0, 0.2, 0.4, 0.6, 0.8, 1.0! versus density.
This figure shows that as we increaseR the AV18 potential
gives more binding energy than theAV14 potential. So we
can conclude that at high values of the density,T50 chan-
nels give more attraction for theAV18 than theAV14 poten-
tials. It is seen that theAV18 potential overbinds nuclea
matter (R51.0) while the AV14 potential reproduces th
correct binding. But their saturation densities are far fro
empirical nuclear matter value (0.17 fm23). As we pointed
out before, in some of the works@21,22#, the asymmetrical

FIG. 3. Quadratic dependence of asymmetric energy for dif
ent potentials:D-Reid ~solid curve!, AV14 ~light solid curve!, AV18

~dashed curve!, andUV14 ~heavy dotted curve!. Dotted curve is the
result of BL @20#.
nuclear matter binding energy has been calculated by u
the results of many-body calculations for two extreme sit
tions, namely, nuclear (R51.0) and neutron (R50.0) mat-
ter with a parabolic approximation, i.e.,

Eapprox~r,a!5Enuclear~r,a50!1Esym~r!a2, ~43!

where the asymmetry parameter isa5(12R)/(11R) and
symmetry energy is

Esym5Eneutron~a51!2Enuclear~a50!. ~44!

r-

FIG. 4. The binding energy of nuclear matter versus density
different potentials.
y-body
TABLE I. The saturation energy and density of nuclear matter as well as its incompressibility for different potentials and man
methods.

Potential Method Author r0 ~fm23) E(r0) ~MeV! K ~MeV!

AV18 LOCV BM 0.310 218.46 302
AV14 LOCV BM 0.290 215.99 248

Variational WFF@21# 0.319 215.60 205
BB DW @24# 0.280 217.80 247

BHF BBB @25# 0.256 218.26 —
UV14 LOCV BM 0.366 221.20 311

Variational CP@26# 0.349 220.00 —
Variational WFF@21# 0.326 217.10 243

UV141TNI LOCV BM 0.170 217.33 276
Variational WFF@21# 0.157 216.60 261

CBF FFP@27# 0.163 218.30 269
D-Reid LOCV MI @5# 0.258 216.28 300
Reid LOCV HBI @6# 0.294 222.83 340

LOCV MO @28# 0.230 214.58 238
Empirical 0.170 215.86 ~200–300!
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Our approximation results and those of Wiringa, Ficks, a
Fabrocini~WFF! @21# together with the explicit LOCV mi-
croscopic calculations with theUV14 potential are displayed
in Fig. 2. As one expects, this approximation should only
valid for small values ofa ~largeR!. This feature can be
clearly seen from this figure.

In Fig. 3, we compare the quadratic dependence (a2) of
our asymmetry energy results@i.e.,E(r,a)2E(r,0)# for dif-
ferent potentials with those of Bombaci and Lombardo~BL!
@20# at different densities, i.e., 0.076, 0.17, and 0.3 fm23. It
is seen that at higher values ofa we cannot exactly fullfill
the parabolic approximation. But in general we are close
the empirical value at nuclear matter saturation density.
results with theUV14 potential are much closer to the em
pirical value than the others.

Figure 4 shows the comparison of nuclear matter bind
energies for different potentials. The saturation curve w
theAV14 and theD-Reid potentials is closer to the empiric
prediction with respect to the other potentials@without a
three-nucleon interaction~TNI!#. Even the enclosion o
three-body cluster terms@5,17# and the three-nucleon poten
tial @16# cannot predict the empirical values exactly with t
AV18 and theUV14 potentials, respectively. However, th
results ofUV141TNI is much better with respect to the oth
calculations.

In Table I we give our saturation energy and saturat
density of nuclear matter calculations for different potentia
The results of the others calculations are also given for c
parison. The difference between our LOCV calculation a
those of Mittet and Ostgaard~MO! @28# has been discusse
in Ref. @17#. Again it is seen that only results of theAV14 and
the D-Reid potentials are close to the empirical values giv
in this table and the inclusion of the TNI improves the c
culation.

In Fig. 5 we plot the saturation energy of asymmetric
nuclear matter versus the proton to neutron ratioR for vari-
ous potentials. The result of BL@20# is also given for com-
parison. Again, it is clearly seen that as we reach small
ues of R(.0.2) the difference between exact an
approximated calculations~for the UV14 potential! becomes
sizable. But for very small values ofR(.0.0) again the
difference becomes negligible. The same comparison

FIG. 5. The saturation energy of asymmetrical nuclear ma
versus proton to neutron ratio~R!.
d

e

o
e

g
h

n
.
-

d

n
-

l

l-

is

given for the saturation density against ratioR in Fig. 6. We
get similar results to those of BL@20# with the AV14 poten-
tial. This result is in agreement with what BL@20# have
pointed out, that the Paris and theAV14 potentials are very
similar to each other.

When this manuscript was in preparation, we obtaine
preprint from Akmal and Pandharipande@29#. They have
performed the variational method based on hypernetted c
summation~VCS! techniques with theAV18 potential. They
have given only the nuclear matter energies214.71 and
218.37 MeV at two values of nuclear matter densityr
5 0.16 and 0.28 fm23, respectively. These values can b
compared with our LOCV calculation for theAV18 potential
in Fig. 1 @the exact figures areE~0.16 fm23!5214.47 MeV
andE~0.28 fm23!5218.34 MeV! which is surprisingly close
to the Akmal-Pandharipande calculations@29#.

B. Symmetry energy

In general the symmetry energy is defined as

Esym~r!5
1

2

]2E~r,a!

]a2 U
a50

. ~45!

But it is also possible to make an approximation and use
~44!. The result is displayed in Fig. 7 for various potentia
@according to Eq.~45!#. It is seen that the calculation of WF

r FIG. 6. As in Fig. 5 but for the saturation density.

FIG. 7. The symmetry energy versus density for different pot
tials and methods.
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720 57G. H. BORDBAR AND M. MODARRES
@21# in which theEsym(r) has been evaluated by using E
~44! differs from the other calculations. Our results with t
AV18 and theAV14 potentials are in agreement with those
BL @20#.

The ratio~R! dependence of symmetry energies for va
ous potentials at their saturation densities~symmetry coeffi-
cient! is given in Fig. 8. From the semiempirical mass fo
mula, this should vary between 28 to 32 MeV@25#. It is seen
that only theAV14, the D-Reid, and theUV141TNI poten-
tials give values near the empirical prediction.

C. Pressure and incompressibility

By differentiating asymmetrical nuclear matter saturat
curve at each ratio~R! with respect to the density we ca
evaluate the corresponding pressure,

P5r2 S ]E~r,R!

]r D R . ~46!

FIG. 8. As in Fig. 7 but for the proton to neutron ratio~R!.
-

The results are displayed in Table II for two values ofR
50.8 and 0.2 with theAV18, AV14, and theUV14 potentials.
The approximated pressure using Eq.~43! and theUV14 po-
tential is also displayed. The difference between the ex
and the approximation calculations becomes more siza
especially for smaller ratios.

In the last row of Table I, we give the incompressibility o
symmetrical nuclear matter (a50) for various potentials,
i.e.,

K~a!59r0
2~a!

]2E~r,a!

]r2 U
r0~a!

. ~47!

The other results as well as the experimental prediction@30#
are also given for comparison. Figure 9 shows the asy
metrical incompressibility as a function ofR. The result of
BL @20# is also displayed.UV14 ~approx.! is the result of
incompressibility calculations, using only two extreme sit
ations, namely, neutron and nuclear matter.

IV. SUMMARY AND CONCLUSION

We have computed the equation of state of asymmetr
nuclear matter and some of its properties such as symm

FIG. 9. As Fig. 5 but for incompressibility.
TABLE II. The pressure of asymmetrical nuclear matter.

r

R50.8 R50.2

AV18 AV14 UV14 UV14 ~approx.! AV18 AV14 UV14 UV14 ~approx.!

0.05 20.299 20.229 20.305 20.261 20.170 20.037 20.168 20.084
0.1 20.855 20.728 20.896 20.821 20.364 20.213 20.398 20.219
0.15 21.357 21.160 21.500 21.414 20.366 20.267 20.474 20.223
0.2 21.578 21.246 21.933 21.799 20.039 0.084 20.318 0.036
0.25 21.288 20.803 22.014 21.781 0.812 0.964 0.226 0.713
0.3 20.238 0.316 21.558 21.286 2.484 2.434 1.345 1.979
0.35 1.769 2.294 20.328 20.149 5.202 4.682 3.205 4.034
0.4 4.890 5.372 1.457 1.858 9.146 8.106 5.910 7.065
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energy, pressure, etc. Several two-body potentials as we
the newAV18 potential have been used in order to test
N-N interactions and various many-body techniques aga
each other. A full microscopic calculation has been presen
which enabled us to check the validity of different empiric
values. It is found that the asymmetrical nuclear matter bi
ing energy is in good agreement with the empirical m
formula. But it is not a good approximation to use the ne
tron and nuclear matter results to get an equation of stat
C

de
ys

J

as
e
st
d

l
-
s
-
of

asymmetrical nuclear matter, especially at small proton
neutron ratios. This is very important when one intends
calculate the pressure and incompressibility of nucleo
matter.

It was shown that the newAV18 potential does overbind
nuclear matter and a very good agreement was found
tween the LOCV result and more sophisticated approac
like Brueckner-Hartree-Fock~BHF! and variational hyper-
netted chain techniques.
ys.
,

s.
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