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Lowest order constrained variational calculation for asymmetrical nuclear matter
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The lowest order constrained variational method is used to calculate the properties of asymmetrical nuclear
matter with the new charge-independent breaking, Argovine(AVig), as well as Argonné/,, (AVyy)
potentials, for a wide range of density and proton to neutron ratio. TheA¥y potential, unlikeAV;, and
A-Reid interactions, overbinds nuclear matter at a saturation density of about 0.3tfich agrees well with
the variational method based on hypernetted chain summation techniques. It is shown that it is not a good
approximation to use the result of nuclear and neutron matter to get the equation of state of asymmetrical
nuclear matter with an empirical parabolic approximation. Finally, various properties of asymmetrical nuclear
matter such as incompressibility, symmetry energy, etc., are given and a comparison is made with the other
many-body technique$S0556-28138)03501-§

PACS numbegp): 21.65+f, 26.60+c, 64.70—p

[. INTRODUCTION functiong that attempt to go beyond lowest ordés,21].
The equation of state of asymmetrical nuclear matter as

Since potential models which have fit only the data  well as its incompressibility plays an important role in the
often give a poor description gfp data[1], recently, a new study of heavy-ion collisionEl8], stellar collapse, supernova
nucleon-nucleon potentialA(V;g) was proposed by Wiringa €Xplosions, neutron stars, e{d9]. Therefore, it is a great
et al. [2]. This potential, which is an updated version of the INtérest to predict such an equation of state by a full micro-
ArgonneV,, (AVy,) potential[3], is designed such that it fits SCOPIC many-body calculation. . .
both thepp andnp data as well as low-energyn scattering There are only a few microscopic calculations for asym-
parameters and deuteron properties by using the Nijmeg e_tncal nuclea_r_matte[r5,6,1_2,2(}. In some of these calcu-
NN scattering databagd.4]. Like the AV, , potential, it has ations an empirical parabolic approximation has been used

been written in an operator format with a charge-independe 1,23 (rather than an explicit calculationSo it is interest-
i to investigate the validity of this approximation at vari-
part that has 14 operatoréas befor¢ and a charge- g 9 y bp

: . ous proton fractions by performing a detailed calculation.
independent breaking part that has three charge-dependent, o present work we intend to calculate the equation of

and one charge-asymmetric operators. So in order {0 dgyate of asymmetrical nuclear matter by using the LOCV

nuclear many-bo_d_y calcu_latmqs W|t_h t_h|s _potentlal ONemethod withAV,g [2], AV [3], and UrbanaVy, (UViy)

should treat explicitly the isospin projection in the nuclear(; 6] potentials. So the plan of this article is as follows: The

many-body wave functions. lowest-order constrained variational method is briefly de-
The lowest-order constrained variatiort@OCV) which  scribed in Sec. Il. Section Ill is devoted to results and a

was developed by us several years gge9)] is a useful tool  discussion for the binding energgec. 1l A), symmetry en-

for the determination of the properties of nuclear matter. Inergy (Sec. Ill B), and pressure and incompressibilitgec.

the last years, the LOCV method has been extended furthéll C) of asymmetrical nuclear matter. Our summary and

for finite temperature calculations and applied to neutronconclusions are presented in Sec. IV.

nuclear, and asymmetrical nuclear maftéd—12. In these

LOCV calculations a nucleon-nucleon potential such as Reid Il. LOCV FORMALISM

soft core potentia[13] (Reid) with inclusion of isobar de-

grees of freedorb,14] (A-Reid) was used. Very recently we We consider a trial many-body wave function of the form

developed the LOCV method fafg [15], V4, [16], and Ur-

banaVy, [16] potentials and we found similar results with y=Fo, D
respect to the other variational methods in which the many- ) )
body cluster contributions were includgti7]. where ¢ is a Slater determinant of plane wavesAfinde-

The LOCV method is a fully self-consistent formalism Pendent nucleons; is anA-body correlation operator which
and it does not bring any free parameter into the calculatiorWill be replaced by a Jastrow form, i.e.,
It considers the normalization constraint to keep the higher
order terms as small as possibg7] (this has been tested by F=SH £(ij) @)
calculating the three-body cluster terms; 4égl7]). The =] ’
functional minimization procedure represents an enormous
computational simplification over unconstrained methodsand S is a symmetrizing operator. The cluster expansion of
(i.e., to parametrize the short-range behavior of correlatiotthe energy functional is written 423]
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1 (¢|H|¢) where S;,=3(0oy-1)(0,-1)— 0y 05 is the tensor operator.

A (ylw) =EitEytEsto. 3 We choosep=1 for uncoupled channels angl=2,3 for
coupled channels.

The one-body ternk; for an asymmetrical nuclear matter  The two-body nucleon-nucleon interactid{l2) has the

E([f])=

that consists oZ protons and\ neutrons is following form:
2 18
3 ﬁzkiF Pi
_ ° pi V(12)= >, VP(r;,)O0P,. 9
E1 i=21,2 52m; p° @ p=1 e

Labels 1 and 2 are used instead of proton and neutron, ré-N€ first 14 operators are the same as befsee also our
spectively, and<iF=(37r2pi)1’3 is the Eermi momentum of Previous calculation with th&V,, potential[16]) and they

particlei (p=py+ pz)- are given by
The two-body energ¥; is o1 U=1.01-0,71 - 7.(01- 0,)
1 . L X(71-7),S12,S1 71 ™),
Ea=n > (i M2}~ ji) 5) (71 72).Si2: Sid 71 7)
! L-SL-S(m- 1), L2 L% 0y 03),LA( 7 7),
and
L2(01-02)(71-7),(L-9(L-9*(7- 7). (10
2
V(12)= — h_[f(lz),[vizyf(lz)]]_Ff(12)v(12)f(12). The four additional operators which break charge indepen-
2m © dence are written as
O, P B=T1, (01-02) T15,S15T 12, (T + 720), (12
The two-body correlation operatd(12) is defined as fol- v A12 Al 2 izt i
lows: whereT,=3(7,-r)(7-r)— 71- 7, is the isotensor operator.
3 These 18 components are denoted by the labets, 7, o7,
. )iy AP t,tr, Is,Is7, 12,120, 127, 1207, 12,1527, T, oT, tT, and
Fap) Mz:l EAURSERUR ™ 7z. TheT, oT, andtT, operators are the charge-dependent

forces, while therz operator is the charge-asymmertic force
a={J,L,S,T,T,} and the operator®®(ij) are written as [2]. By using correlation operators in the form of E@) and
the two-nucleon potential from E¢Q), we find the following
OP=13=1(2+1S,),(3 - tSp), (8)  equation for the two-body energy:

11 2 (D)2 (1)? 2m
5Ty T2(TTz)| | dr (o7 )%ag” (Ker)+ 27 (V= 3V, +(V,;

—3V,)(4T—3)+ (V1= 3V, )[ T(6T2—4)]+ 2V, T 3al (Ker) + [Vio— 3Vi20+ (Vi 3V20.) (4T

+ 2
i=2,3

— (i~ 1)Vig,J(AT=3) + [V +V,r+ (= 6i + LV, [ T(6T2= )]+ 2V, T3al " (ker) + [Viz+ Vigo + (Vig, + Viz,)

2
E2=é(ﬁ—) S, (23+1) S[1- (-1
7p\2m) STy, 2

o, ) 2m
—3)]cM(ker))F L (f")2a? 4+ Z7 (Ve Vot (=61 14V, (i = DVig+ [V, 4V (=61 + 14V,

()2 (i 2|, 2m
X(4T—3)]c, (Ker) +[Visz+ Viso(4T=3)1d,” (ker)f," |+ #Z Vis—2V|3=2V|3,—3V|s,
1
(Vi 2Vig,~ 2Vigp, = 3Visp,) (4T = 3) I} (ker ) 20+ ;)-(ff)—faS))Zbi(kFr)], (12
[
where the coefficiena®’(x), etc., are defined as a(j)z(x)=x2[y|J_1’TZ(x)+ﬁ|JH]TZ(X)], (15)
2

&, () =X 1, (), (13 D20 =X Bodl 317,00~ Bodl 317,01, (16)

a2’ () =X Bly 17 (0+ Yy, (0], (14) e 00 =xnl 7, (), (1



716 G. H. BORDBAR AND M. MODARRES 57

c2%(x)=x2[ 7| AR ACIRSZIRFSRACINP
¥ () =% p3l 3-17,(X) tvglyear (X)],
d&z)z(x) =x%[ &l 311, T Al 517 ()],

A2 () =X €31 317,00 + Nal s 17,00,
with

J+1
T 2J+1°

.
LRI

_2J(3+1)
P~ o551

vi=L(L+1),

_JP(J+1)
V2T o0

J34+232+33+2
VsT 2J+1 '

S J(IP+23+1)
KC N N

CJ(IP+3+2)
KER N PR

_J3+ 212+23+1
2= 2J+1 :

_J(J2+J+4)
T 23+1

CJ(FP+I+1)
27 23+1

_J3+2J2+5J+4
Na= 2J+1 ’

and
7,00 = f daPr (9)J35(xa).

Pt (q) is written ag 7,5 O 7,,= —
ton)]

3 3 2 2
PTz(q) - % W[ k'7:'21+ kEz2_ % (k'7:'21+ kEz2)q
2 2 B
- G (ky, =k ) %07+ 0]

1 F F 1F F
for 3 [k; —k: |<a<zl|k; +k: |,

(18)
(19
(20

(21)

(22

(23

(24)

(25

(26)

(27)

(28)

(29

(30

(31)

(32

(33

(34)

1 (neutron and+ 3 (pro-

(39

Pr(a)=§ = min(kE KE)
for q<3 |k —k; |, and
Pr(q)=0

for >3 [k, +k._|. Thedy(x) are the familiar Bessel func-
tions.

Now, we can minimize the two-body energy, EG42),
with respect to the variations in the functioff§ but subject
to the normalization constraifb,7]

£ S il a2-razlie-o, @9

where in the case of asymmetrical nuclear matter the func-
tion hy (x) is defined as

J (kIFr) 21— 1/2
hTZ<r>={1—%< o ) } (T,= 1)
=1 (T,=0). (37)

In terms of channel correlation functions we can write Eq.
(36) as follows:

4
7o 2 (2D - (DTG 73 | TP

X Fdr[h% (ker)—f9°(r) 12 (ker) =0. (38)
O z

As we will see later, the above constraint introduces a
Lagrange multipliern through which all of the correlation
functions are coupled. From the minimization of the two-
body cluster energy we get a set of coupled and uncoupled
Euler-Lagrange differential equations. The Euler-Lagrange
equations for uncoupled states are

(1)11
14 aa
9. | g+ 72 Vem3Vot (V= 8Vy)(4T=3)+ (Vy

m
=3V, n)[T(6T; = 4)]+2V T+ A+ 15[ Viz—=3Viz,

(1)

c
a (1)
g, =0, (39
a?

a

+ (V|27'_ 3V|207)(4T_ 3)]

while the coupled equations are written as
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(2)"
" aa/
9. - { 72Vt Vot 2V Vigt (V,+ Vo 2V, Vig ) (AT = 3) + (Vo Vor+ 2Vin) [ T(6TZ - 4) ]+ 2V, T,

al?
c2” . m d53 b |
tApF ﬁZ[V|2+V|20'+(V|27+V|20'T)(4T 3 et 72l Visat Visa (4T=3) ] 5 + — 9a
al? al? r aa
1 m b2
+ r—z—W[V.s—ZV.z—ZV.ZU—3V.52+(V.ST—2v|27—2v|zm—3V.szT><4T—3>]]Wg%o, (40

(3)//
g?"—[ s 72Vt Vo= AVi— 2V (V4 Vo = 4V, = 2V ) (AT = 3) + (V1 + Vo — AV)[T(6T2—4)]+ 2V, T,+\}

<3>2 (3)2 2
m m d, bs, 3)
+22[Vizt Viggt (Viz: +Vige,) (4T 3)] (3)2+ 72[Vis2 1 Vis2,(4T=3) ] (3)2 2,27 9a
1 m b2 2
1727 272 VisT2V127 2Vi20 = 3Viso + (Vis; = 2Vi2,~ 2Vi26,~ 3Vis2,) (4T 3) ] 22203 Ya =0, (41)
|
where those othz(r) and then we set the correlation functions
' _ . equal tohTZ(r) (beyond these state-dependence healing dis-
aV(r)y=fD(r)al(r). (42 tances.
The primes in the above equations mean differentiation with Ill. RESULTS AND DISCUSSION

respect tar. As we pointed out before, the Lagrange multi-
plier A is associated with the normalization constraint, Eq.
(38). The constraint is incorporated by solving the Euler- In Fig. 1 we have plotted the result of our binding energy
Lagrange equations only out to certain distances, until thealculation for asymmetrical nuclear matter with tA&/g

logarithmic derivative of the correlation functions matchesand theAV,, potentials for different values of the proton to

A. Binding energy

40 40

E(MeV)

-30 | | | |
0.05 0.15 0.25 0.35 0.45 0.55 0.05 0.15 0.25 035 0.45 0.55

P () P (m°)

FIG. 1. The binding energy of asymmetrical nuclear matter ver- FIG. 2. As in Fig. 1 but for thedJV,, potential. Exact LOCV
sus density for various proton to neutron rat{@). Dotted curve calculation(solid curve and approximate LOCV calculatiofdot-
for AV, and solid curve foAV,g potentials. ted curve. WFF resultd21] (dashed curve
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FIG. 3. Quadratic dependence of asymmetric energy for differ- (fm )

ent potentialsA-Reid (solid curve, AV, (light solid curve, AV,g
(dashed curve andUV,, (heavy dotted curye Dotted curve is the
result of BL[20].

FIG. 4. The binding energy of nuclear matter versus density for
different potentials.

) ) nuclear matter binding energy has been calculated by using
neutron ratio’R=0.0, 0.2, 0.4, 0.6, 0.8, 1)@ersus density. the results of many-body calculations for two extreme situa-

This figure sh_ow_s that as we increaRethe AVig potential  tions, namely, nuclearR=1.0) and neutron’®=0.0) mat-
gives more binding energy than t#ev,4 potential. So we ter with a parabolic approximation, i.e.,

can conclude that at high values of the density; 0 chan-

nels give more attraction for th&V,5 than theAV,, poten- Eapprod P, @) = Enucieak p,@=0) + Egynp)a®, (43
tials. It is seen that thé\V,g potential overbinds nuclear

matter (R=1.0) while the AV,, potential reproduces the where the asymmetry parameterds-(1—7R)/(1+R) and
correct binding. But their saturation densities are far fromsymmetry energy is

empirical nuclear matter value (0.17 fd). As we pointed

out before, in some of the work®1,22, the asymmetrical Esym= Eneutrof @=1) = Epnycieak @=0). (44

TABLE |. The saturation energy and density of nuclear matter as well as its incompressibility for different potentials and many-body
methods.

Potential Method Author po (fm™3) E(pg) (MeV) K (MeV)
AVig LOCV BM 0.310 —18.46 302
AV, LOCV BM 0.290 —15.99 248
Variational WFF[21] 0.319 —15.60 205
BB DW [24] 0.280 —17.80 247
BHF BBB [25] 0.256 —18.26 —
UV, LoCcv BM 0.366 -21.20 311
Variational CP[26] 0.349 —20.00 —
Variational WFF[21] 0.326 —-17.10 243
UV4+TNI LOCV BM 0.170 —-17.33 276
Variational WFF[21] 0.157 —16.60 261
CBF FFP[27] 0.163 —18.30 269
A-Reid LOCV MI [5] 0.258 —16.28 300
Reid LOCV HBI [6] 0.294 —22.83 340
LOCVv MO [28] 0.230 —14.58 238

Empirical 0.170 —15.86 (200-300
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Yt oo
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s
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&
8
E-15 LOCV(AV14)
g
=2
]
[95]
20 -
-25 L 1 L 0.15 1 I I
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
R R
FIG. 5. The saturation energy of asymmetrical nuclear matter FIG. 6. As in Fig. 5 but for the saturation density.

versus proton to neutron rati@).
given for the saturation density against ralian Fig. 6. We

Our approximation results and those of Wiringa, Ficks, andJet Similar results to those of BI20] with the AV, , poten-

Fabrocini (WFF) [21] together with the explicit LOCV mi- t@l- This result is in agreement with what BI20] have

croscopic calculations with theVy, potential are displayed Pointed out, that the Paris and the/,, potentials are very

in Fig. 2. As one expects, this approximation should only besimilar to each other. _ _ _

valid for small values ofx (large R). This feature can be  WWhen this manuscript was in preparation, we obtained a

clearly seen from this figure. preprint from Akmal and Pandharipand29]. They have _
In Fig. 3, we compare the quadratic dependene® (of perform(_ed the varlatlon_al methc_>d based on hype_rnetted chain

our asymmetry energy resufise., E(p,a) — E(p,0)] for dif- summa.tlon(VCS) techniques with thé\V,g poltentlal. They

ferent potentials with those of Bombaci and LombaBa) ~ have given only the nuclear matter energied4.71 and

[20] at different densities, i.e., 0.076, 0.17, and 0.3%mit ~ —18:37 MeV at tW93 values of nuclear matter density

is seen that at higher values afwe cannot exactly fullfill = 0-16 and 0.28 fm", respectively. These values can be

the parabolic approximation. But in general we are close t¢ompared with our LOCV calculation fojatmevls potential

the empirical value at nuclear matter saturation density. Thé Fig. 1[the exact figures arg(0.16 fm)=—14.47 MeV

results with theUV,, potential are much closer to the em- @hdE(0.28 fm*)=—18.34 Me\) which is surprisingly close

pirical value than the others. to the Akmal-Pandharipande calculatidi2g)].
Figure 4 shows the comparison of nuclear matter binding
energies for different potentials. The saturation curve with B. Symmetry energy

prediction with respect to the other potentigisithout a

three-nucleon interactiodTNI)]. Even the enclosion of 1 &’E(p,a)
three-body cluster tern{$,17] and the three-nucleon poten- Esynp) = 27 942 (45)
tial [16] cannot predict the empirical values exactly with the a=0

AV, and theUV,, potentials, respectively. However, the gyt it is also possible to make an approximation and use Eq.
results ofuV 4+ TNl is much better with respect to the other (44). The result is displayed in Fig. 7 for various potentials

calculations. _ _ ~ [according to Eq(45)]. It is seen that the calculation of WFF
In Table | we give our saturation energy and saturation

density of nuclear matter calculations for different potentials.
The results of the others calculations are also given for com- sol Uvi4
parison. The difference between our LOCV calculation and
those of Mittet and Ostgaar@0O) [28] has been discussed _ “V”*TN’\ s

in Ref.[17]. Again it is seen that only results of t#e/,, and 2 Yr

the A-Reid potentials are close to the empirical values given e
in this table and the inclusion of the TNI improves the cal- W’ 39
culation.

In Fig. 5 we plot the saturation energy of asymmetrical
nuclear matter versus the proton to neutron r&idor vari- L«
ous potentials. The result of B[20] is also given for com- 1
parison. Again, it is clearly seen that as we reach small val- 10 w ] ] w
ues of R(=0.2) the difference between exact and o8 o 0'25p (i) % o
approximated calculationgor the UV, potentia) becomes
sizable. But for very small values dR(=0.0) again the FIG. 7. The symmetry energy versus density for different poten-
difference becomes negligible. The same comparison igials and methods.

 WFFUV14)

\.\ .

\ Reid
WFF(AV14)

LP(UV14)
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320
45
— UVi4
S 270
s
40| g
3 220
o - T AViE 2
> Reid ——————— 2
S 85¢ AV14 §170
g > q
) A -Reid £
W wven i2s
30}
70
0.2
25}
FIG. 9. As Fig. 5 but for incompressibility.
20 ! The results are displayed in Table Il for two values7of
0.2 0.4 0.6 =0.8 and 0.2 with thé\V,5, AV,,, and theUV, potentials.
R The_ ap_proximat_ed pressure usir_lg E4B) and theUV,, po-
tential is also displayed. The difference between the exact
FIG. 8. As in Fig. 7 but for the proton to neutron rafiR). and the approximation calculations becomes more sizable,

especially for smaller ratios.

[21] in which theEqyn{p) has been evaluated by using Eq. In the _Iast row of Table I, we give the inc_:ompressibi_lity of
symmetrical nuclear mattera(=0) for various potentials,

(44) differs from the other calculations. Our results with the
AV, and theAV,, potentials are in agreement with those of €.

BL [20].
. . . 2
The ratlp(R) depepdence c_)f symmetry energies for vari- K(a)=9p2(a) I°E(p,a) - 47
ous potentials at their saturation densitiegmmetry coeffi- 0 9p2
ciend is given in Fig. 8. From the semiempirical mass for- pola)

mula, this should vary between 28 to 32 ME2A|. It is seen
that only theAV,,, the A-Reid, and thdJV,,+ TNI poten-  The other results as well as the experimental predidtdgh
tials give values near the empirical prediction. are also given for comparison. Figure 9 shows the asym-
metrical incompressibility as a function &. The result of
_ o BL [20] is also displayedUV,, (approx) is the result of
C. Pressure and incompressibility incompressibility calculations, using only two extreme situ-
By differentiating asymmetrical nuclear matter saturationations, namely, neutron and nuclear matter.
curve at each ratigR) with respect to the density we can
evaluate the corresponding pressure,

E
p:p2 (%;R)

IV. SUMMARY AND CONCLUSION

6 We have computed the equation of state of asymmetrical

. 4 1 ;
R ( nuclear matter and some of its properties such as symmetry

TABLE Il. The pressure of asymmetrical nuclear matter.

R=0.8 R=0.2
p AVig AV, UV, UV, (approx) AVig AV, UV UV, (approx)
0.05 -0.299 -0.229 —0.305 -0.261 -0.170 —-0.037 —0.168 —0.084
0.1 —0.855 —0.728 —0.896 -0.821 —0.364 -0.213 —0.398 -0.219
0.15 —1.357 —1.160 —1.500 —1.414 —0.366 —0.267 —0.474 —0.223
0.2 —-1.578 —1.246 —1.933 —1.799 —0.039 0.084 —0.318 0.036
0.25 —1.288 —0.803 —2.014 —1.781 0.812 0.964 0.226 0.713
0.3 —0.238 0.316 —1.558 —1.286 2.484 2.434 1.345 1.979
0.35 1.769 2.294 -0.328 —0.149 5.202 4.682 3.205 4.034

0.4 4.890 5.372 1.457 1.858 9.146 8.106 5.910 7.065
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energy, pressure, etc. Several two-body potentials as well asymmetrical nuclear matter, especially at small proton to
the newAV,g potential have been used in order to test theneutron ratios. This is very important when one intends to
N-N interactions and various many-body techniques againstalculate the pressure and incompressibility of nucleonic
each other. A full microscopic calculation has been presentethatter.

which enabled us to check the validity of different empirical It was shown that the newV,;3 potential does overbind
values. It is found that the asymmetrical nuclear matter bindnuclear matter and a very good agreement was found be-
ing energy is in good agreement with the empirical masgween the LOCV result and more sophisticated approaches
formula. But it is not a good approximation to use the neu-ike Brueckner-Hartree-FockBHF) and variational hyper-
tron and nuclear matter results to get an equation of state afetted chain techniques.
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