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Hyperonic nuclear matter in Brueckner theory
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We determine in an extended Brueckner-Hartree-Fock formalism self-consistent single-particle potentials of
nucleons, lambda, and sigma hyperons for a system consisting of symmetric nuclear matter and lambda
hyperons of uniform densitiegy and p,, respectively. The binding energy per baryon of this system is
discussed and its maximum strangeness content preserving binding is evaluated. The results are used to
introduce a hyperonic symmetry energy term in a generalized mass formula for multistrange hypernuclei.
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[. INTRODUCTION finite systems composed of nucleons and lambda hyperons.
Of course, multistrange systems, especially those that can
There is an increasing interest in exploring nuclear sysbe created in heavy-ion collisions, may contain other hyper-
tems with strangeness, especially multistrange nuclear sysns. However, for not too large hyperonic densities, it is
tems, i.e., those containing several strange particles. Besidespected that= particles decay quickly through thbl
simple hypernuclei, which have been studied for a long time+ Z— A + A process. Similarly, in the same conditions, the
already[1], a few doubly strange hypernuclei have beenstrong interaction proce$s+N— A + N is always possible,
identified[2]. Recently, the production of hyperfragments in gnd sigma hyperons rapidly disappear from the medium.
relativistic heavy-ion collision§3] has received more atten- Therefore, hypermatter should appear as a mixture of nucle-
tion. Furthermore, the core of neutron stars, which is theyns and lambda particles for a relatively long time, deter-
object of theoretical investigatiorig], may contain a high mined basically by the characteristic weak decay time of
fraction of hyperons. The strangeness content of nuclear syfambda particles inside the medium. The latter is so long that
tems is regarded more and more as another degree of fregre system can be considered as equilibrated with respect to
dom, in similarity to theN/Z ratio. the strong interactions. For large hyperonic densities, the
Theoretical investigations of these systems have a limitedtrong decays mentioned above may be hindered by the Pauli
reliability, mainly due to the fragmentary knowledge of the pjocking inside the Fermi sea of particles[10,11]. In that

hyperon-nucleon and especially hyperon-hyperon interaccase, the addition of and = Fermi seas would be manda-
tions. The Nijmegeii5] and Jiich [6] groups have exploited tory.

the scarce existing measurements to build detailed meson-
exchange potentials. Although both potentials describe the
hyperon-nucleon scattering data reasonably well, they give II. EORMALISM
different predictions for many-body systems, partly because
they assume different exchanges, but mainly because the ex- We consider in this article the properties of an infinite
isting data do not constrain the potentials sufficiently. Thesystem composed of nucleoffgrotons and neutrons of same
forthcoming experiments at BNL and KEK/] will, for the  proportion and lambda hyperons with moderate strangeness
first time in about 30 years, yield fresh experimental infor-fraction p, /pny=0.3. This allows us to disregarl and E
mation that will hopefully improve the reliability of available components as mentioned above. However, we do consider
hyperon-nucleon and hyperon-hyperon potentials. 3 hyperons in the intermediate states, as it is well known
All the above-mentioned applications involve the effectsthat theAN andX N channels are strongly coupled. A related
of the hyperon-nucleofand hyperon-hypergrinteraction in  reason for the restriction to a small hyperon fraction is the
a more or less dense baryonic medium. In this article wdact that quantitative propertigpotentialg for the hyperon-
present the state of the art of hypernuclear matter calculagayperon interactions are presently essentially unknown due
tions in an extended Brueckner-Hartree-F@BKIF) formal-  to the lack of experimental constraints. Only their long-range
ism with the Paris nucleon-nucled®] and the Nijmegen part can be constructed to some extent using3ssymme-
soft-core hyperon-nucled] potentials. This work is an ex- try (this symmetry is partially brokenwhereas the short-
tension of a preliminary stud}9] that was restricted to a range behavior is completely undetermined. We therefore
fixed nucleon densitypy=po=0.17 fm 3. We consider neglect these interactions in this work, and are left with the
now varying lambda as well as nucleon densities. We calcunucleon-nucleon and hyperon-nucleon potentials.
late the binding energy and the nucleon, lambda, and sigma Both the Paris nucleon-nucleon and the Nijmegen soft-
mean fields for such a system. We also determine the hypecore hyperon-nucleon potentials that we use are given in the
onic symmetry energy in a generalized mass forrhltd for = common general form
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1 (there is another equation, obtained by interchanging
Vip=Vc(r) = 5[AS(r) + #(r)A]+Vsdr) o107 A<3), and a 4<4 structure when the mixing of angular
momentum states through the tensor potential applies.
1 The solutions of the Bethe-Goldstone equation determine
+HVis(DLS+Vo(r) 5[ (aiL)(apl) + (ozl)(oL)] the diagonalG-matrix elements

+V(D[3(11) (o) — (010%)]; ) (knky|GTSY kaY):4wfmdrr2jL(kr)
' 0
i.e., they contain central and momentum-dependent compo-
nents as well as spin-spin, linear and quadratic spin-orbit, « Voo 1 (DU oo (Kot
and tensor parts. The nucleon-nucleddN) system may YE[ vy (DU k),
exist in two isospin state3=0,1, whereas the hyperon- ®)

nucleon system may exist in thie=1/2 isospin state AN,

%N) and in theT=3/2 isospin stateXN). For this system, and the single-particle potentiglis the so-called continuous

there are three couplings in tAe=1/2 channel AA, A, choice are then given by

3.3) and one in thd = 3/2 channel £3,). When referring to

couplings in the hyperon-nucleon channel, and provided Bky= S (2T+1)(23+1)

there is no confusion possible, we use the notatiéh for Ua (kA)_T]S’J’L (2tp+1)(2s55+1)

denoting AN« XN, etc. Similarly, in order to simplify the

notation in the equations below, we udeand?, for denot- ki d°kg TS

ing the AN andX N channels, respectively. XJ (2m)3 <kAkB|GYJj Kaks), @)
Using these potentials we have to solve the Bethe-

Goldstone[12,13 integral equation in the nucleon-nucleon where the notatioth(AB) denotes the single-particle potential

and hyperon-nucleon channels. We write down the equatioof particle A due to the interaction with particleB in the

for the later, more complex, case: medium. Carrying out the calculation for the relevant com-

binations A=N,A,X and B=N,A, we obtain the total

single-particle potentials of nucleons and hyperons as

| 2 (=
Uyyr L (K r) =L (Kr) Syyr o+ ;fo dr'r’ZDYY',L'(F,T')

Un(kn) = UR" (kn) + URM (kn), (8a)
X 2 Vyryr Lt Wyyr ok E), () U, (ky)=UMN(ky)+UNM(ky), (8b)
Y",L"
with the intermediate propagator Us(ks)=U (ks) + UM (ks). (80)

(K)o (K T ) Eor (KT (Presently we neglect the hyperon-hyperon interaction and
2 Ju Y setU{¥=0. Because of the occurrence bfy and Uy in
Ev(k)—Ey/(K")+ie Eq. (4), the set of equation@®)—(8), together with the appro-
3 priate ones for the nucleons, constitutes a coupled system
that has to be solved in a self-consistent manner.

DYY/'L/(r,r,):f dk,k,
0

and We are interested in the total binding energy per baryon
2 K2 B/A (the difference between total energy and energy of the
Ev(k)= N LY +ReUp(ky) +ReUy(ky) +My+My . mtera_ctmn-free systejn In the BHF approximation this
2My - 2My quantity and the baryon numbgr per unit volume, i.e., the

(49 baryon density, are given by

Herek andk’ denote the relative momenta of the inithlY B 4 KV k2 1
and the intermediatdlY’ state,Ey(k) andEy. (k') are the AP= 53 4J’ dkie| 52—+ 5 Un(K)
. . A" (2m) 0 2My 2
corresponding energies, anfl,,(k’) denotes the angle-
averaged Pauli operator in the intermediate states. More de- K k2
tails on these quantities are given in the Appendix. In these +2J0 dkk? M+ 5 Ua(k) 9

expressionsY,Y’,Y"=A,3 account for the possibility of
NA—NZ mixing through the strong interaction, and the gnq
equation has to be solved for a set of states with definite
quantum number$,S,J, which have not been indicated ex- (N)3 L L(A)3
plicitly. In practice we consider all partial waves up Jo P:PN”LPA:ﬁ(ZkF +ke ). (10)
=5. The Bethe-Goldstone equation has thus>a22matrix
structure due the coupling between nucleon-lambda and
nucleon-sigma states, written schematically:

(UAA)_(jL +<DAAVAA DAAVAE)(UAA) 5
Ups 0 DasVsa DasVss

Ill. RESULTS
A. Single-particle potentials

In order to make the subsequent discussion more transpar-
ent, we begin in Fig. 1 with a plot of the hyperon-nucleon

Ups
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FIG. 1. The central components of the Nijmegen soft-core hyperon-nucleon potentials'i®,thts;, and *SD, partial waves, for the
four different hyperon-nucleon channel couplings. For comparison, the same components are shown for the Paris nucleon-nucleon potential
on the right-hand side.

potentials in the most important partial wavés,, 3S;, and  (unfortunately a more careful and time-consuming numeri-
3SD,, and for the four couplings\A, A3, 33(T=1/2), cal treatment of the short-range part of the integral equations.
and 23 (T=3/2). For comparison, also the results for the (b) The repulsion in the hyperon-nucleon potenti@fspar-
Paris nucleon-nucleon potential are shown. It should be enticular the 33 components appears to set in at slightly
phasized that we plot only the central componevis[see larger distances than in the nucleon-nucleon interaction.
Eq. (1)] of the potentials, although the momentum dependenThere is a strong attraction for all partial waves in the “mix-
parts () are known to be quite important quantitatively. ing” channel A3, in particular for the3SD, wave.

Therefore only qualitative features are illustrated by the fig- The qualitative behavior of the potentials, in particular the
ure. We mention the following(a) At short distancesr( last point just mentioned, allows us to understand the size of
=<1 fm) the hyperon-nucleon potentials are much “softer” the contributions of the individual partial waves to the
and their variation is much more pronounog@dnmonoton-  single-particle potentiald) ,(k=0) and Uy(k=0), which

ic) than the nucleon-nucleon potential, which basically rep-are listed in Table | for the case of individual hyperons in
resents a monotonically rising “hard core.” This implies pure nuclear matterk{” =0, k™=1.35 fm ). Let us re-

TABLE I. The contributions(in MeV) of various partial waves to the single-particle potentidigky=0) atk®™=1.35 fm * and
k™=0. The total sums include partial waves upJte5.

U4(0) Ux(0)

State (A) (AZ) (AA)+(AZ) (23)(1/2) S A)(1/2) (=3)(3/2) E2)+(SA)
's, -13.0 -2.3 -15.3 7.2 -0.5 —12.0 -52
’sg 17.1 -9.0 8.1 12.8 —4.4 8.6 17.0
3sD, -1.9 -19.2 -21.1 -8.4 —-14.9 -1.9 —25.1
3P, 0.4 -0.1 0.2 2.6 0.0 -2.0 0.6
P, 2.0 -0.4 1.6 2.0 -0.2 -2.7 -0.9
p, 2.2 -0.2 2.0 -5.3 -0.0 6.6 1.3
*pp, -2.9 -0.3 -3.3 0.8 -0.2 -1.6 -11
3PF, -0.0 -0.7 -0.7 -0.6 -05 -0.3 -1.4
DD, —0.06 -0.01 —-0.07 0.54 0.00 —-0.52 0.02
DS, —0.00 -0.01 —-0.01 -0.01 0.01 —0.00 —-0.00
D, —-0.41 —0.00 —-0.42 0.59 0.00 —-0.83 -0.24
D, —-0.35 —-0.05 —0.40 —1.44 0.00 1.37 —-0.07
°FF, -0.01 0.00 -0.01 0.09 0.00 -0.10 —0.00
kP, 0.00 —0.00 —0.00 —0.00 0.00 —0.00 0.00
Sum —29.8 -9.8 —-5.5 -15.3
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FIG. 2. Nucleon and hyperon single-particle potentiaésal and imaginary parntsn pure nuclear matterkéA):O) of three different
densities corresponding k&N): 1.05,1.35,1.65 fm®. The real parts correspond to the increasing functions, whereas the imaginary parts are
given by the curves with a negative slope. The nucleon curves are scaled by a factor 1/2. The vertical lines denote the position of the nucleon
Fermi momentum.

mind the reader that the Brueckner resummation basicalllocking of collisions below this value. However, there is no
cuts off the repulsive parts appearing in the potentials. Forestriction for the hyperons, since an arbitrary small excita-
the total depth of the mean fields we obtdih(k=0) tion of the nucleon Fermi sphere can be obtained by a cor-
~—30 MeV andUs(k=0)~-15 MeV, which is in the responding loss of energy of the hyperon. It is understand-
case of the lambda in good agreement with the analysis adble that this possibility vanishes for zero-momentum
(7,K) and (K,7) reactions and of hypernuclei binding en- particles. This is not the case far particles: The imaginary
ergieg[1], and in agreement with previous similar theoreticalpart has a nonvanishing value at zero momentum, because of
investigationg 14—16 restricted to vanishing hyperon den- the exothermic reactio®@N— AN. This can be checked
sity. For the sigma, the experimental as well as theoreticajjualitatively: In a semiclassical picture, the imaginary part is
[15] situation is less clear. Our calculation is the first onegiven by

with a fully self-consistent choice o€tontinuous single-

particle potentials, which appears to be most appropriate in p

particular for the sigma particle. Meson-exchange mean-field ImU=— ﬂ‘f( k) 20 (12)
theories yield also similar results, but sometimes at the ex-

pense of adapting coupling constaftd,17-19. wherep is the reduced hyperon-nucleon mégs. (A2)], o

In Fig. 2 we display the full momentum dependence ofthe cross section, angdthe nucleon density. An average over
the single-particle potentials in pure nuclear matter at thregne Fermi sphere of the nucleon is involved, witheing the
different densities. The real nucleon single-particle potential,yneron-nucleon relative momentum. With the Nijmegen po-
assume the usual momentum dependence, with a S,mqgntial, theSN— AN cross section is roughly equal &k
wiggle in the curves just above the Fermi momentum, typ|ca[5] with a~7 fm. The above formula yields I~
of first-order Brueckner calculations. The curves for the hy-_53 pmev for normal density, compared to the calculated
peron single-particle potentials have a similar shape. Theif merical value of~—19 MeV. The difference can be at-

curvature is less pronounced, which indicates a smaller efjpyted mainly to the remaining Pauli blocking that is not

fective mass. Defining a global effective mass by taken into account by the classical formula.
m* U(kg)—U(0)]"? In Fig. 3 we show the density dependence of characteris-
—= e — (11 tic features of the nucleon and hyperon single-particle poten-
m kg/2m tials in pure nuclear matter, namely, the depth of the mean

field for a nucleon or hyperon at redti(k=0), as well as
(kg is the nucleon Fermi momentymone finds at normal their global effective masses, according to Etl). At all
nuclear matter density values of 0.69, 0.84, and 0.91, for thelensities, the binding of the hyperons is much smaller
nucleon, lambda, and sigma patrticles, respectively. (=30%) than that of the nucleons. For all kinds of particles,
The imaginary parts of the single-particle potentials arethe absolute value of the mean field first increagesbso-
also given in Fig. 2. For the nucleons this quantity is differ-lute value as the density is increasing, reaches a maximum,
ent from zero only whetk> k(FN) due to the complete Pauli and then decreases. The density at which the hyperons are
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FIG. 3. DepthU(k=0) of nucleon and hyperon mean fields
(upper paneland global effective masses*/m according to Eq.
(11) (lower panel in pure nuclear matter as a function of nucleon
density.

most strongly boundy/py~1.5, is substantially smaller than
the one for nucleong/py=3. This is due to the fact that the

repulsive components of the hyperon-nucleon interaction be-

nucleon-nucleon onésee Fig. 1L Concerning the effective

masses, their deviations from the bare values reflect th
strengths of the interactions in the same manner as observ
S

for the well depths; namely, the nucleon effective mass i

smaller than the one of lambdas and sigmas, in that orde

The nonmonotonic behavior with density in the case of th
sigma is due to a competition between the isospin 2 (
<m) and 3/2 (m*>m) contributions.

In Fig. 4 we demonstrate the effect of increasing the

lambda hyperon densitykf")=0.8,1.2,1.6 fm') at fixed

nucleon densityy= pg. The real nucleon single-particle po-
tential Uy
pure nuclear matter case, due to the attractive hypero

entirely to the addition of the tern(") [see Eq.(8a)],
whereas the modification d3{}" (due to the self-consistent
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and single-particle potentials in the intermediate states.
Our numerical results allow us to test the approximation

UK _pa 13
UM oy’

which is often used in mean-field calculations. For the three
cases shown in Fig. 4 we obtain at zero momentlm @)

the ratiosU{("/UV=0.13, 0.39, 0.80, compared fo, /py
=0.10, 0.35, 0.83, respectively. For larger momenta, the re-
lation is less well satisfied, however.

The imaginary part of the nucleon mean field is increased,
due to the possible collisions with the lambda particles. The
imaginary part of the lambda potential differs from zero for
k>k{) . This quantity remains small unti<2 fm~2, cor-
responding to the opening of theN channel Ms—M,
~78 MeV), to which theAN is strongly coupled. It is in-
teresting to note that the imaginary part of tBesingle-
particle potential at low momenta is decreasing substantially
(in absolute valugas theA density is increasing. The reason
is that the>, N— AN transition is more and more hindered by
the Pauli principle in the growing Fermi sphere.

B. Binding energy

The binding energy per baryom/A, as a function of
baryon densityp=p, + py and hyperon fractiogy=p, /p is
shown in Fig. 5. For pure nuclear mattgr=0, curve on the
front face of the box, on the rightour calculation predicts
saturation at a too large densiy~0.23 fm 3), although the
magnitude ofB/A at the true saturation point~—15.1
MeV) is quite satisfactory. The failure to reproduce the cor-
rect saturation point is common to all nonrelativistic Brueck-
ner calculations with realistic potentials. In this article we are
in any case interested in the effect of adding hyperons to the
system, i.e., increasing Since the binding energy gained by
adding a single lambda to nuclear mattét, (0)|, is larger

Shan that by adding a nucleon, namelB/A|, it is energeti-

8ally favorable(as far as the binding energy is concermted
a&ld hyperons to the system. Of course, when their number is

increasing, the Pauli principle forces them to have kinetic
energy. As a result, at some finite hyperon fractign the

(r:iuantity B/A displays a shallow minimum, as indicated in

q:ig. 5. This fraction increases with increasing baryon den-

sity, since B/A decreases more and more in magnitude:
Dense nuclear matter favors the binding of a larger percent-
age of hyperons. On the other hand, the shift of the predicted
saturation point with strangeness fractignis practically
negligible, as is indicated by a projected curimearly

becomes increasingly deeper, compared 10 thgyaight ling in the figure: The internuclear distance favored

. . . o r'By nucleon-nucleon and hyperon-nucleon pairs is approxi-
nucleon interaction. This modification corresponds almos

Fnately the same.
It is convenient to introduce dimensionless quantities for a
parametrization of thg dependence dB/A by a parabolic

change of the energy denominator in the Bethe-Goldstongpproximation:

equation is very small. Concerning the hyperon single-

particle potentials, in our approximation scheme there is only

the contributionU{¥) [see Eqs(8b) and(80)], since we ne-

[B/AI(p.Y)
[B/AI(p,0)

y 2

glect the hyperon-hyperon interaction. There is consequently

only a small indirect effect(reduction with increasing

The parametery, and b,, depending upom, indicate the

lambda density, via the modification of the Pauli operatomposition of the minimum and the relative enhancement of the
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KM=0.80 fm™, p,/p, = 0.10 KM=1.20 fm™, p,/p, = 0.35 KM=1.60fm™, p,/p, = 0.83
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FIG. 4. Nucleon and hyperon single-particle potenti@sal and imaginary partdor three values ok{"=0.8,1.2,1.6 fm? at fixed
kM=1.35 fm . The dashed and dotted curves represgfl! andU{", respectively, and the solid curves, (lower curveg and U{"
(upper curveps The shaded areas thus represleﬁ‘l). The real parts correspond to the increasing functions, the imaginary parts to the
decreasing ones. The vertical lines denote the positions of the nu@elih line) and of the lambd#dashed ling Fermi momenta.

binding energy at this minimum, respectively. The function axYo
b(p,y) for several values of the density is shown in Fig. 6 Ymin=Yo+ —— ayby Xmin » (16b
together with the dependence of the parametgandb, on
the baryon density. The values at normal density are 5
Yo~0.026 andby~0.005. It should be stressed, however, I S
> andb _ b sed (ZIA) min= 572 Xmin- (160

that the simple fit, Eq(14), is only valid in the vicinity of the A ac
minimum yq. For a larger hyperon fraction the binding en-
ergy B/A increases faster than given by the formula above.Were it not for the Coulomb termag=0), ymi, would co-

For a first practical application, we use our results to-incide with the valug/o~0.026 determined earlier. The Cou-
gether with a generalized Bethe-Weigkar formula for hy-
pernuclear matter that was proposed in Rdf0] in the
framework of a Fermi gas model. It amounts to adding terms
describing the nuclear symmetry energy, surface energy, and
Coulomb energy:

B as 2/3 c )
K(A,x,y):—a\,b(po,y)+axx +m+ 7 (1=x=y)%,

(15

B/A (MeV)

with A=N+Z+ A, x=(N—-2)/A, andy=A/A (this is dif-
ferent from the definition in Ref.10]). In the Coulomb en-
ergy term, the relatiod/A=(1—x—y)/2 was used. Follow-
ing Ref.[10], we choose the parametdia MeV) a,= 16,
a,=28.5,a5=16.9, andac=0.72. The minimum of this ex-
pression with respect to andy for fixed A defines the line
of maximum binding for hypernuclei X(y) min(A). Assum-
ing the parametrization, Eq14), one finds, foXmin, Ymin.
and the proton fractionZ/A) i, y -~ 03

o 77 p(fm?)
X = 1-Yo (163 FIG. 5. Binding energy per baryon of hyperonic nuclear matter
min axy(z) 4a, ' as a function of baryon densify=p, + py and lambda fractiory
1+ —+ —— =pa /p. The projected curves show the locations of the minima for

2/3 ) ;
avbo A ac fixedy or p, respectively.
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FIG. 8. Fermi energy of the lambda hyperon as a function of

baryon densityp and lambda fractioy. The projected curve shows
the location of vanishing Fermi energy.

lomb repulsion, however, favors the replacement of protons
with lambdas, leading to an upward shiftyf;,, increasing
with the mass numbehk. This can easily be checked on the
above formulas. It is also seen in Fig. 7, where we plot the
dependence oY, and Z/A)min on A, together with the
binding energy B/A) i, at this point. For large mass num-
bersA~ 300, our results are very similar to those of R&0)]
(which are displayed as well in the figurevhereas we find

a substantially smaller hyperon fraction at smahl-100.
The reason is the assumption of momentum-independent
hyperon-nucleon mean field${V=—28 MeV andu{"=

—14 MeV made in that reference, which is not confirmed
by our calculation: At the Fermi momentum the single-
particle potentials are substantially smaller than at zero mo-
mentum; see Fig. 2. We therefore obtain less attraction than
in Ref. [10]. [The approximation b(pg,y)=1+ay
—By?, a=0.71, B=3.55 was derived in that work.

The previous considerations dealt with the mostly bound
hypernuclei. Another related problem is the maximum
strangeness that hypernuclei of given baryon number can
sustain. This limit corresponds to the hyperon drip line. Be-
yond this line, the last hyperon would be unbound. For actual
hypernuclei, the determination of this line would require de-
tailed calculations. To have a rough idea, we looked at the
maximum hyperon fraction for which the infinite system is
still bound. The latter is determined by a vanishing hyperon

FIG. 6. Normalized binding energy per baryon as a function of
lambda fractiony for fixed values of the baryon densigy [indi-
cated by the numbers near the cur(iesfm ~2)]. The positions of
the maxima are marked. The inset shows the posifigrof the
minimum and the relative enhancement of binding endrgyEq.
(14), as functions of the baryon density.

05 T

FIG. 7. Charge fractioZ/A, hyperon fractiom\/A, and binding

(B/A),., (MeV)
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Fermi energ)e(FA). The results are given in Fig. 8. We find
that the maximum lambda fraction at the nuclear matter den-
sity is about 0.4, and that it decreases with increasing baryon
density. This is due to the fact that with rising baryon density
the kinetic part of the lambda Fermi energy becomes more
and more dominant compared to the mean-field contribution.
Of course, the previous results are not to be taken too

energy per baryon as functions of mass numbeas predicted by  seriously, because the hyperon-hyperon interaction is ne-
the generalized mass formula E@.5 (solid lines. The dashed glected and, related to that, the important phenomends of
curves show the results of R¢fL0].

condensation is disregarded. Rather, they provide a lower
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bound on the strangeness fraction in hypernuclei and dem- 2 k2
onstrate the importance of a truly microscopic treatment folEy(p,k)= omtagt ReUy(ky) +ReUy(ky)+My+ My,
guantitative predictions. K (A1)
IV. CONCLUSIONS
MMy
We presented in this work a detailed microscopic calcu- M=My+My, u= m (A2)

lation of the hyperor(lambda symmetry energy in nuclear

matter, i.e., the change of binding energy when replacing M

nucleons by hyperons. Our theoretical framework is the self- _ _ VYN

consistent nonrelativistic Brueckner-Hartree-Fock approxi- kvn=Prntk o Prn= P- (A3)
mation with the continuous choice of single-particle poten-
tials, which is expected to work well for moderate densities
plpo=2,...,3.This is indeed the case for pure nuclear mat-
ter. To obtain a refined agreement, like saturation at the cor- Because of the presence of two different Fermi seas in the
rect density, requires adding contributions like third-orderintermediate state, there are two restrictions on the angle
graphs in the hole-line expansid@0,21] (their numerical cosf:=z=pk, namely

importance is still an unsettled issue, even for pure nuclear ’ '

2. Pauli operator and energy denominator

mattey. At higher densities, besides the increasing relevance p2+k2—k2

of higher order nucleonic diagrams, interiguark degrees > —zy=— (Ada)
of freedom should progressively become important, and a 2pyk

relativistic treatment appears more appropriate. Nevertheless, 5 \

the hyperonsymmetry energy should not be very sensitive PR+ k- k(F )2

to the slightly imperfect description of pure nuclear matter. Z<+tzy=+ W (A4b)

Furthermore, the adapted framework, with the so-called con-

tinuous choice, allows a reliable determination of the Single‘raking account of all possible cases of vanishing, complete
particle potentials, including their imaginary parts. .and partial blocking of the two species, and introducing the

ryperon ntcleon inferactions. Unfortunately. we were forceqi®/21on [alblcl: =maxa,min®0). the angle-averaged
to neglect the hyperon-hyperon interaction, in view of the auli operator can be written in the following compact form:

insufficient knowledge of the latter. For this reason, the re-

sults presented here are restricted to small values of the hy- fy(p,k)=[0]3([—1|zn[2]+[—1]zy[1])[1].  (A5)
peron fraction. We have carried out some exploratory calcu- . _ _
lations based on simple guesses for the\ potential, but The energy denominator in E¢3) also depends, via the

found that the results depend very strongly on the shortsingle-particle potentials, on the variatdehat is restricted
range behavior of the interaction that is not controlled byto a certain interval by the Pauli operator in the numerator. In
symmetry considerations. Note that it is not even clear thathe spirit of Brueckner’s original approa¢h2], we carry out
the A-A potential is repulsive. According to Refi2], the an angle averaging by replacirgwith its angle-averaged
analysis of some doubld hypernuclei would suggest that value, namely,
the A-A potential yields as much binding as theN poten- L
tial at low energy. For the time being, without sufficient
restrictions by eggerimental data, we cgnsider such an exten- (2) :E([_ Llzy[1]=[-1lzy|1D), (AB)
sion therefore as premature.

The results obtained in this work are suitable as a founuysing the notation introduced aboy#n the case of symmet-
dation for Thomas-Fermi calculations of heavy hypernucleiric nuclear matter, the energy denominator does not contain a
[18,19. We intend to pursue such applications, as well as aferm linear inz due to identical single-particle potentials.

extension of our formalism to hyperonic neutron matter. ThisThe angle averaging of leads in that case to the prescrip-
is of particular interest for the physics of neutron stars, whergjgn (22)=12/3)

the condensation of hyperofimost importantly®, ~ and A)
might have important effects on the equation of state and

) .M - ial
therefore possibly on global observables of the Btér 8. Momentum-dependent potentia|

The Bethe-Goldstone equation for the relative correlated

ACKNOWLEDGMENTS wave functionu reads
We would like to thank A. Kerman and A. Ramos for 2 (o
interesting discussions and T. Rijken for a helpful communi- u(r’y=j,(kr")+ ;J; drr2Dy(r’,0)[V,(r)u(r)].
cation. (A7)
APPENDIX .
For a momentum-dependent potential of the form
1. Kinematics
The energy of the nucleon-hyperon philY can be writ- 2 1(I+1)

1
__ = — 2T,
ten in terms of total and relative momeniaandk, respec- Vi) = 2[A,¢(r)+¢(r)A|], Ar=dit r o re

tively: (A8)
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it can (in order to avoid computing second derivatives of the Kmax _ _ k2 (k)
wave function be converted by partial integration infa0] Re F|(ryf’)=7’JO dkk21|(kr)1|(kr’)(—w_ E(K) +2M>
2 o
i ’ - 2 ’ ’ o(r—r’
u(r')y=ji(kr’)+ Wfo drr Hﬁ(r ) G(r)+Dy(r',r) _““(_rZ_)' (AL10)

r+2

><(d’ 0,2 (r)) un+[Di(r" 1) (U (1) im Fy(r.r) = k2Im Dy(r '), (A11d)

(A9)  with u being the reduced mass of the intermediate $tde
(A2)], ko denoting the zero of the energy denominator,

with the Green functions E(ko)=W, and u§ =[2(JE(K)/k?)|; ] " the effectivere-

o Jitkr)j(kr")f(k) duced mass of the intermediate two-particle system at this
D(r,r')= fo dkie= = ETie (A108  point. In these equations, the symilstands for the prin-
cipal part of the integral ankl,,,, corresponds to a humerical
j1(kn)j (ke ) (k) cutoff. It should be chosen large enough, such that the result

(A10b) is sufficiently insensitive to it. In practice, a value of
20 fm™ ! is more than enough.
The G-matrix elements are finally obtained by

F,(r,r’)=fO dkk* W_EK)+ic

The derivatives of the potentialh’ and ¢”, can be per-
formed analytically. For the sake of numerical evaluation, it "
is convenient to improve the rate of convergence of th@(k|G||k)=477J drr?j,(kn)[V,(Hu(k,r)] (A12)
above integrals by adding and subtracting suitable terms. 0

Splitting into real and imaginary parts, one obtains

L ¢'(r)
2 = 2 2 _
reoie) =7 [ =g 2 oo e o 5
d"(r)| .
in(r,r’)’ = 5| Thrsa(knke' (r) [u(k,r), (A13)
T min(r,r’) (A11d 2 Ji+1 |

21+1 ma)(r,r’)lJrl,
with a cutoffr =10 fm, which is also used in the discreti-
Im Dy(r,r")=—ako| g |j1(kor)ji(Kor ") f(ko), zation and numerical solution of the Bethe-Goldstone equa-
(A11b)  tion (A9).
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