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Hyperonic nuclear matter in Brueckner theory
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We determine in an extended Brueckner-Hartree-Fock formalism self-consistent single-particle potentials of
nucleons, lambda, and sigma hyperons for a system consisting of symmetric nuclear matter and lambda
hyperons of uniform densitiesrN and rL , respectively. The binding energy per baryon of this system is
discussed and its maximum strangeness content preserving binding is evaluated. The results are used to
introduce a hyperonic symmetry energy term in a generalized mass formula for multistrange hypernuclei.
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I. INTRODUCTION

There is an increasing interest in exploring nuclear s
tems with strangeness, especially multistrange nuclear
tems, i.e., those containing several strange particles. Bes
simple hypernuclei, which have been studied for a long ti
already @1#, a few doubly strange hypernuclei have be
identified@2#. Recently, the production of hyperfragments
relativistic heavy-ion collisions@3# has received more atten
tion. Furthermore, the core of neutron stars, which is
object of theoretical investigations@4#, may contain a high
fraction of hyperons. The strangeness content of nuclear
tems is regarded more and more as another degree of
dom, in similarity to theN/Z ratio.

Theoretical investigations of these systems have a lim
reliability, mainly due to the fragmentary knowledge of th
hyperon-nucleon and especially hyperon-hyperon inte
tions. The Nijmegen@5# and Ju¨lich @6# groups have exploited
the scarce existing measurements to build detailed me
exchange potentials. Although both potentials describe
hyperon-nucleon scattering data reasonably well, they g
different predictions for many-body systems, partly beca
they assume different exchanges, but mainly because the
isting data do not constrain the potentials sufficiently. T
forthcoming experiments at BNL and KEK@7# will, for the
first time in about 30 years, yield fresh experimental info
mation that will hopefully improve the reliability of availabl
hyperon-nucleon and hyperon-hyperon potentials.

All the above-mentioned applications involve the effe
of the hyperon-nucleon~and hyperon-hyperon! interaction in
a more or less dense baryonic medium. In this article
present the state of the art of hypernuclear matter calc
tions in an extended Brueckner-Hartree-Fock~BHF! formal-
ism with the Paris nucleon-nucleon@8# and the Nijmegen
soft-core hyperon-nucleon@5# potentials. This work is an ex
tension of a preliminary study@9# that was restricted to a
fixed nucleon densityrN5r050.17 fm23. We consider
now varying lambda as well as nucleon densities. We ca
late the binding energy and the nucleon, lambda, and si
mean fields for such a system. We also determine the hy
onic symmetry energy in a generalized mass formula@10# for
570556-2813/98/57~2!/704~10!/$15.00
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finite systems composed of nucleons and lambda hypero
Of course, multistrange systems, especially those that

be created in heavy-ion collisions, may contain other hyp
ons. However, for not too large hyperonic densities, it
expected thatJ particles decay quickly through theN
1J→L1L process. Similarly, in the same conditions, t
strong interaction processS1N→L1N is always possible,
and sigma hyperons rapidly disappear from the mediu
Therefore, hypermatter should appear as a mixture of nu
ons and lambda particles for a relatively long time, det
mined basically by the characteristic weak decay time
lambda particles inside the medium. The latter is so long t
the system can be considered as equilibrated with respe
the strong interactions. For large hyperonic densities,
strong decays mentioned above may be hindered by the P
blocking inside the Fermi sea ofL particles@10,11#. In that
case, the addition ofS andJ Fermi seas would be manda
tory.

II. FORMALISM

We consider in this article the properties of an infin
system composed of nucleons~protons and neutrons of sam
proportion! and lambda hyperons with moderate strangen
fraction rL /rN&0.3. This allows us to disregardS and J
components as mentioned above. However, we do cons
S hyperons in the intermediate states, as it is well kno
that theLN andSN channels are strongly coupled. A relate
reason for the restriction to a small hyperon fraction is
fact that quantitative properties~potentials! for the hyperon-
hyperon interactions are presently essentially unknown
to the lack of experimental constraints. Only their long-ran
part can be constructed to some extent using SU~3! symme-
try ~this symmetry is partially broken!, whereas the short
range behavior is completely undetermined. We theref
neglect these interactions in this work, and are left with
nucleon-nucleon and hyperon-nucleon potentials.

Both the Paris nucleon-nucleon and the Nijmegen s
core hyperon-nucleon potentials that we use are given in
common general form
704 © 1998 The American Physical Society
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57 705HYPERONIC NUCLEAR MATTER IN BRUECKNER THEORY
V125VC~r !2
1

2
@Df~r !1f~r !D#1VSS~r !s1s2

1VLS~r !LS1VQ~r !
1

2
@~s1L!~s2L!1~s2L!~s1L!#

1VT~r !@3~s1r̂!~s2r̂!2~s1s2!#; ~1!

i.e., they contain central and momentum-dependent com
nents as well as spin-spin, linear and quadratic spin-o
and tensor parts. The nucleon-nucleon (NN) system may
exist in two isospin statesT50,1, whereas the hyperon
nucleon system may exist in theT51/2 isospin state (LN,
SN) and in theT53/2 isospin state (SN). For this system,
there are three couplings in theT51/2 channel (LL, LS,
SS) and one in theT53/2 channel (SS). When referring to
couplings in the hyperon-nucleon channel, and provid
there is no confusion possible, we use the notationLS for
denotingLN↔SN, etc. Similarly, in order to simplify the
notation in the equations below, we useL andS for denot-
ing theLN andSN channels, respectively.

Using these potentials we have to solve the Bet
Goldstone@12,13# integral equation in the nucleon-nucleo
and hyperon-nucleon channels. We write down the equa
for the later, more complex, case:

uYY8,LL8~k,r !5 j L~kr !dYY8dLL81
2

pE0

`

dr8r 82DYY8,L8~r ,r 8!

3 (
Y9,L9

VY8Y9,L8L9~r 8!uYY9,LL9~k,r 8!, ~2!

with the intermediate propagator

DYY8,L8~r ,r 8!5E
0

`

dk8k82
j L8~k8r ! j L8~k8r 8! f Y8~k8!

EY~k!2EY8~k8!1 i e
~3!

and

EY~k!5
kN

2

2MN
1

kY
2

2MY
1ReUN~kN!1ReUY~kY!1MN1MY .

~4!

Herek andk8 denote the relative momenta of the initialNY
and the intermediateNY8 state,EY(k) and EY8(k8) are the
corresponding energies, andf Y8(k8) denotes the angle
averaged Pauli operator in the intermediate states. More
tails on these quantities are given in the Appendix. In th
expressionsY,Y8,Y95L,S account for the possibility of
NL↔NS mixing through the strong interaction, and th
equation has to be solved for a set of states with defi
quantum numbersT,S,J, which have not been indicated ex
plicitly. In practice we consider all partial waves up toJ
55. The Bethe-Goldstone equation has thus a 232 matrix
structure due the coupling between nucleon-lambda
nucleon-sigma states, written schematically:

S uLL

uLS
D 5S j L

0 D 1S DLLVLL DLLVLS

DLSVSL DLSVSS
D S uLL

uLS
D ~5!
o-
it,

d

-

n

e-
e

te

d

~there is another equation, obtained by interchang
L↔S), and a 434 structure when the mixing of angula
momentum states through the tensor potential applies.

The solutions of the Bethe-Goldstone equation determ
the diagonalG-matrix elements

^kNkYuGY,L
TSJukNkY&54pE

0

`

drr 2 j L~kr !

3 (
Y8,L8

VYY8,LL8~r !uYY8,LL8~k,r !,

~6!

and the single-particle potentials~in the so-called continuous
choice! are then given by

UA
~B!~kA!5 (

T,S,J,L

~2T11!~2J11!

~2tA11!~2sA11!

3EkF
~B! d3kB

~2p!3 ^kAkBuGY,L
TSJukAkB&, ~7!

where the notationUA
(B) denotes the single-particle potenti

of particle A due to the interaction with particlesB in the
medium. Carrying out the calculation for the relevant co
binations A5N,L,S and B5N,L, we obtain the total
single-particle potentials of nucleons and hyperons as

UN~kN!5UN
~N!~kN!1UN

~L!~kN!, ~8a!

UL~kL!5UL
~N!~kL!1UL

~L!~kL!, ~8b!

US~kS!5US
~N!~kS!1US

~L!~kS!. ~8c!

~Presently we neglect the hyperon-hyperon interaction
set UY

(L)50.! Because of the occurrence ofUN and UY in
Eq. ~4!, the set of equations~2!–~8!, together with the appro-
priate ones for the nucleons, constitutes a coupled sys
that has to be solved in a self-consistent manner.

We are interested in the total binding energy per bary
B/A ~the difference between total energy and energy of
interaction-free system!. In the BHF approximation this
quantity and the baryon numberA per unit volume, i.e., the
baryon densityr, are given by

B

A
r5

4p

~2p!3 F4E
0

kF
~N!

dkk2S k2

2MN
1

1

2
UN~k! D

12E
0

kF
~L!

dkk2S k2

2ML
1

1

2
UL~k! D G ~9!

and

r5rN1rL5
1

3p2 ~2kF
~N!31kF

~L!3!. ~10!

III. RESULTS

A. Single-particle potentials

In order to make the subsequent discussion more trans
ent, we begin in Fig. 1 with a plot of the hyperon-nucle
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FIG. 1. The central components of the Nijmegen soft-core hyperon-nucleon potentials in the1S0, 3S1, and 3SD1 partial waves, for the
four different hyperon-nucleon channel couplings. For comparison, the same components are shown for the Paris nucleon-nucleo
on the right-hand side.
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potentials in the most important partial waves1S0, 3S1, and
3SD1, and for the four couplingsLL, LS, SS(T51/2),
and SS(T53/2). For comparison, also the results for t
Paris nucleon-nucleon potential are shown. It should be
phasized that we plot only the central componentsVC @see
Eq. ~1!# of the potentials, although the momentum depend
parts (f) are known to be quite important quantitativel
Therefore only qualitative features are illustrated by the
ure. We mention the following:~a! At short distances (r
&1 fm) the hyperon-nucleon potentials are much ‘‘softe
and their variation is much more pronounced~nonmonoton-
ic! than the nucleon-nucleon potential, which basically re
resents a monotonically rising ‘‘hard core.’’ This implie
-

nt

-

-

~unfortunately! a more careful and time-consuming nume
cal treatment of the short-range part of the integral equatio
~b! The repulsion in the hyperon-nucleon potentials~in par-
ticular the SS components! appears to set in at slightly
larger distances than in the nucleon-nucleon interaction.~c!
There is a strong attraction for all partial waves in the ‘‘mi
ing’’ channelLS, in particular for the3SD1 wave.

The qualitative behavior of the potentials, in particular t
last point just mentioned, allows us to understand the siz
the contributions of the individual partial waves to th
single-particle potentialsUL(k50) and US(k50), which
are listed in Table I for the case of individual hyperons
pure nuclear matter (kF

(Y)50, kF
(N)51.35 fm21). Let us re-
TABLE I. The contributions~in MeV! of various partial waves to the single-particle potentialsUY(kY50) at kF
(N)51.35 fm21 and

kF
(L)50. The total sums include partial waves up toJ55.

UL(0) US(0)

State (LL) (LS) (LL)1(LS) (SS)(1/2) (SL)(1/2) (SS)(3/2) (SS)1(SL)

1S0 213.0 22.3 215.3 7.2 20.5 212.0 25.2
3SS1 17.1 29.0 8.1 12.8 24.4 8.6 17.0
3SD1 21.9 219.2 221.1 28.4 214.9 21.9 225.1
3P0 0.4 20.1 0.2 2.6 0.0 22.0 0.6
1P1 2.0 20.4 1.6 2.0 20.2 22.7 20.9
3P1 2.2 20.2 2.0 25.3 20.0 6.6 1.3
3PP2 22.9 20.3 23.3 0.8 20.2 21.6 21.1
3PF2 20.0 20.7 20.7 20.6 20.5 20.3 21.4
3DD1 20.06 20.01 20.07 0.54 0.00 20.52 0.02
3DS1 20.00 20.01 20.01 20.01 0.01 20.00 20.00
1D2 20.41 20.00 20.42 0.59 0.00 20.83 20.24
3D2 20.35 20.05 20.40 21.44 0.00 1.37 20.07
3FF2 20.01 0.00 20.01 0.09 0.00 20.10 20.00
3FP2 0.00 20.00 20.00 20.00 0.00 20.00 0.00

Sum 229.8 29.8 25.5 215.3
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FIG. 2. Nucleon and hyperon single-particle potentials~real and imaginary parts! in pure nuclear matter (kF
(L)50) of three different

densities corresponding tokF
(N)51.05,1.35,1.65 fm21. The real parts correspond to the increasing functions, whereas the imaginary pa

given by the curves with a negative slope. The nucleon curves are scaled by a factor 1/2. The vertical lines denote the position of th
Fermi momentum.
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mind the reader that the Brueckner resummation basic
cuts off the repulsive parts appearing in the potentials.
the total depth of the mean fields we obtainUL(k50)
'230 MeV andUS(k50)'215 MeV, which is in the
case of the lambda in good agreement with the analysi
(p,K) and (K,p) reactions and of hypernuclei binding e
ergies@1#, and in agreement with previous similar theoretic
investigations@14–16# restricted to vanishing hyperon den
sity. For the sigma, the experimental as well as theoret
@15# situation is less clear. Our calculation is the first o
with a fully self-consistent choice ofcontinuous single-
particle potentials, which appears to be most appropriat
particular for the sigma particle. Meson-exchange mean-fi
theories yield also similar results, but sometimes at the
pense of adapting coupling constants@11,17–19#.

In Fig. 2 we display the full momentum dependence
the single-particle potentials in pure nuclear matter at th
different densities. The real nucleon single-particle potent
assume the usual momentum dependence, with a s
wiggle in the curves just above the Fermi momentum, typi
of first-order Brueckner calculations. The curves for the h
peron single-particle potentials have a similar shape. T
curvature is less pronounced, which indicates a smaller
fective mass. Defining a global effective mass by

m*

m
5F11

U~kF!2U~0!

kF
2/2m G21

~11!

(kF is the nucleon Fermi momentum!, one finds at norma
nuclear matter density values of 0.69, 0.84, and 0.91, for
nucleon, lambda, and sigma particles, respectively.

The imaginary parts of the single-particle potentials
also given in Fig. 2. For the nucleons this quantity is diffe
ent from zero only whenk.kF

(N) due to the complete Pau
ly
r
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blocking of collisions below this value. However, there is
restriction for the hyperons, since an arbitrary small exc
tion of the nucleon Fermi sphere can be obtained by a c
responding loss of energy of the hyperon. It is understa
able that this possibility vanishes for zero-momentumL
particles. This is not the case forS particles: The imaginary
part has a nonvanishing value at zero momentum, becaus
the exothermic reactionSN→LN. This can be checked
qualitatively: In a semiclassical picture, the imaginary par
given by

Im U52 K k

2m
s~k!L r

2
, ~12!

wherem is the reduced hyperon-nucleon mass@Eq. ~A2!#, s
the cross section, andr the nucleon density. An average ov
the Fermi sphere of the nucleon is involved, withk being the
hyperon-nucleon relative momentum. With the Nijmegen p
tential, theSN→LN cross section is roughly equal toa/k
@5#, with a'7 fm. The above formula yields ImU'
223 MeV for normal density, compared to the calculat
numerical value of'219 MeV. The difference can be at
tributed mainly to the remaining Pauli blocking that is n
taken into account by the classical formula.

In Fig. 3 we show the density dependence of characte
tic features of the nucleon and hyperon single-particle pot
tials in pure nuclear matter, namely, the depth of the m
field for a nucleon or hyperon at rest,U(k50), as well as
their global effective masses, according to Eq.~11!. At all
densities, the binding of the hyperons is much sma
~&30%! than that of the nucleons. For all kinds of particle
the absolute value of the mean field first increases~in abso-
lute value! as the density is increasing, reaches a maximu
and then decreases. The density at which the hyperons
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most strongly bound,r/r0'1.5, is substantially smaller tha
the one for nucleons,r/r0*3. This is due to the fact that th
repulsive components of the hyperon-nucleon interaction
come effective already at a larger distance than for
nucleon-nucleon one~see Fig. 1!. Concerning the effective
masses, their deviations from the bare values reflect
strengths of the interactions in the same manner as obse
for the well depths; namely, the nucleon effective mass
smaller than the one of lambdas and sigmas, in that or
The nonmonotonic behavior with density in the case of
sigma is due to a competition between the isospin 1/2 (m*
,m) and 3/2 (m* .m) contributions.

In Fig. 4 we demonstrate the effect of increasing t
lambda hyperon density (kF

(L)50.8,1.2,1.6 fm21) at fixed
nucleon densityrN5r0. The real nucleon single-particle po
tential UN becomes increasingly deeper, compared to
pure nuclear matter case, due to the attractive hype
nucleon interaction. This modification corresponds alm
entirely to the addition of the termUN

(L) @see Eq.~8a!#,
whereas the modification ofUN

(N) ~due to the self-consisten
change of the energy denominator in the Bethe-Goldst
equation! is very small. Concerning the hyperon singl
particle potentials, in our approximation scheme there is o
the contributionUY

(N) @see Eqs.~8b! and ~8c!#, since we ne-
glect the hyperon-hyperon interaction. There is conseque
only a small indirect effect~reduction! with increasing
lambda density, via the modification of the Pauli opera

FIG. 3. DepthU(k50) of nucleon and hyperon mean field
~upper panel! and global effective massesm* /m according to Eq.
~11! ~lower panel! in pure nuclear matter as a function of nucle
density.
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and single-particle potentials in the intermediate states.
Our numerical results allow us to test the approximatio

UN
~L!

UL
~N!

'
rL

rN
, ~13!

which is often used in mean-field calculations. For the th
cases shown in Fig. 4 we obtain at zero momentum (k50)
the ratiosUN

(L)/UL
(N)50.13, 0.39, 0.80, compared torL /rN

50.10, 0.35, 0.83, respectively. For larger momenta, the
lation is less well satisfied, however.

The imaginary part of the nucleon mean field is increas
due to the possible collisions with the lambda particles. T
imaginary part of the lambda potential differs from zero f
k.kF

(L) . This quantity remains small untilk&2 fm21, cor-
responding to the opening of theSN channel (MS2ML

'78 MeV), to which theLN is strongly coupled. It is in-
teresting to note that the imaginary part of theS single-
particle potential at low momenta is decreasing substanti
~in absolute value! as theL density is increasing. The reaso
is that theSN→LN transition is more and more hindered b
the Pauli principle in the growingL Fermi sphere.

B. Binding energy

The binding energy per baryon,B/A, as a function of
baryon densityr5rL1rN and hyperon fractiony5rL /r is
shown in Fig. 5. For pure nuclear matter~y50, curve on the
front face of the box, on the right!, our calculation predicts
saturation at a too large density~r'0.23 fm23), although the
magnitude ofB/A at the true saturation point~'215.1
MeV! is quite satisfactory. The failure to reproduce the c
rect saturation point is common to all nonrelativistic Bruec
ner calculations with realistic potentials. In this article we a
in any case interested in the effect of adding hyperons to
system, i.e., increasingy. Since the binding energy gained b
adding a single lambda to nuclear matter,uUL(0)u, is larger
than that by adding a nucleon, namely,uB/Au, it is energeti-
cally favorable~as far as the binding energy is concerned! to
add hyperons to the system. Of course, when their numb
increasing, the Pauli principle forces them to have kine
energy. As a result, at some finite hyperon fractiony0, the
quantity B/A displays a shallow minimum, as indicated
Fig. 5. This fraction increases with increasing baryon d
sity, since B/A decreases more and more in magnitud
Dense nuclear matter favors the binding of a larger perc
age of hyperons. On the other hand, the shift of the predic
saturation point with strangeness fractiony is practically
negligible, as is indicated by a projected curve~nearly
straight line! in the figure: The internuclear distance favor
by nucleon-nucleon and hyperon-nucleon pairs is appro
mately the same.

It is convenient to introduce dimensionless quantities fo
parametrization of they dependence ofB/A by a parabolic
approximation:

@B/A#~r,y!

@B/A#~r,0!
:5b~r,y!'11b02b0S y

y0
21D 2

. ~14!

The parametersy0 and b0, depending uponr, indicate the
position of the minimum and the relative enhancement of
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FIG. 4. Nucleon and hyperon single-particle potentials~real and imaginary parts! for three values ofkF
(L)50.8,1.2,1.6 fm21 at fixed

kF
(N)51.35 fm21. The dashed and dotted curves representUL

(N) andUS
(N) , respectively, and the solid curvesUN ~lower curves! andUN

(N)

~upper curves!. The shaded areas thus representUN
(L) . The real parts correspond to the increasing functions, the imaginary parts t

decreasing ones. The vertical lines denote the positions of the nucleon~solid line! and of the lambda~dashed line! Fermi momenta.
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for
binding energy at this minimum, respectively. The functi
b(r,y) for several values of the density is shown in Fig.
together with the dependence of the parametersy0 andb0 on
the baryon density. The values at normal density
y0'0.026 andb0'0.005. It should be stressed, howev
that the simple fit, Eq.~14!, is only valid in the vicinity of the
minimum y0. For a larger hyperon fraction the binding e
ergy B/A increases faster than given by the formula abov

For a first practical application, we use our results
gether with a generalized Bethe-Weizsa¨cker formula for hy-
pernuclear matter that was proposed in Ref.@10# in the
framework of a Fermi gas model. It amounts to adding ter
describing the nuclear symmetry energy, surface energy,
Coulomb energy:

B

A
~A,x,y!52aVb~r0 ,y!1axx

21
aS

A1/3
1

A2/3aC

4
~12x2y!2,

~15!

with A5N1Z1L, x5(N2Z)/A, andy5L/A ~this is dif-
ferent from the definition in Ref.@10#!. In the Coulomb en-
ergy term, the relationZ/A5(12x2y)/2 was used. Follow-
ing Ref. @10#, we choose the parameters~in MeV! aV516,
ax528.5,aS516.9, andaC50.72. The minimum of this ex-
pression with respect tox andy for fixed A defines the line
of maximum binding for hypernuclei, (x,y)min(A). Assum-
ing the parametrization, Eq.~14!, one finds, forxmin , ymin ,
and the proton fraction (Z/A)min ,

xmin5
12y0

11
axy0

2

aVb0
1

4ax

A2/3aC

, ~16a!
e
,

.
-

s
nd

ymin5y01
axy0

2

aVb0
xmin , ~16b!

~Z/A!min5
2ax

A2/3aC

xmin . ~16c!

Were it not for the Coulomb term (aC50), ymin would co-
incide with the valuey0'0.026 determined earlier. The Cou

FIG. 5. Binding energy per baryon of hyperonic nuclear mat
as a function of baryon densityr5rL1rN and lambda fractiony
5rL /r. The projected curves show the locations of the minima
fixed y or r, respectively.
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FIG. 6. Normalized binding energy per baryon as a function
lambda fractiony for fixed values of the baryon densityr @indi-
cated by the numbers near the curves~in fm23)#. The positions of
the maxima are marked. The inset shows the positiony0 of the
minimum and the relative enhancement of binding energyb0, Eq.
~14!, as functions of the baryon density.

FIG. 7. Charge fractionZ/A, hyperon fractionL/A, and binding
energy per baryon as functions of mass numberA, as predicted by
the generalized mass formula Eq.~15! ~solid lines!. The dashed
curves show the results of Ref.@10#.
lomb repulsion, however, favors the replacement of prot
with lambdas, leading to an upward shift ofymin , increasing
with the mass numberA. This can easily be checked on th
above formulas. It is also seen in Fig. 7, where we plot
dependence ofymin and (Z/A)min on A, together with the
binding energy (B/A)min at this point. For large mass num
bersA'300, our results are very similar to those of Ref.@10#
~which are displayed as well in the figure!, whereas we find
a substantially smaller hyperon fraction at smallA'100.
The reason is the assumption of momentum-independ
hyperon-nucleon mean fieldsUL

(N)5228 MeV andUN
(L)5

214 MeV made in that reference, which is not confirm
by our calculation: At the Fermi momentum the singl
particle potentials are substantially smaller than at zero m
mentum; see Fig. 2. We therefore obtain less attraction t
in Ref. @10#. @The approximation b(r0 ,y)511ay
2by2, a50.71, b53.55 was derived in that work.#

The previous considerations dealt with the mostly bou
hypernuclei. Another related problem is the maximu
strangeness that hypernuclei of given baryon number
sustain. This limit corresponds to the hyperon drip line. B
yond this line, the last hyperon would be unbound. For act
hypernuclei, the determination of this line would require d
tailed calculations. To have a rough idea, we looked at
maximum hyperon fraction for which the infinite system
still bound. The latter is determined by a vanishing hyper
Fermi energyeF

(L) . The results are given in Fig. 8. We fin
that the maximum lambda fraction at the nuclear matter d
sity is about 0.4, and that it decreases with increasing bar
density. This is due to the fact that with rising baryon dens
the kinetic part of the lambda Fermi energy becomes m
and more dominant compared to the mean-field contribut

Of course, the previous results are not to be taken
seriously, because the hyperon-hyperon interaction is
glected and, related to that, the important phenomenon oJ
condensation is disregarded. Rather, they provide a lo

f

FIG. 8. Fermi energy of the lambda hyperon as a function
baryon densityr and lambda fractiony. The projected curve show
the location of vanishing Fermi energy.
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bound on the strangeness fraction in hypernuclei and d
onstrate the importance of a truly microscopic treatment
quantitative predictions.

IV. CONCLUSIONS

We presented in this work a detailed microscopic cal
lation of the hyperon~lambda! symmetry energy in nuclea
matter, i.e., the change of binding energy when replac
nucleons by hyperons. Our theoretical framework is the s
consistent nonrelativistic Brueckner-Hartree-Fock appro
mation with the continuous choice of single-particle pote
tials, which is expected to work well for moderate densit
r/r0&2, . . . ,3.This is indeed the case for pure nuclear m
ter. To obtain a refined agreement, like saturation at the
rect density, requires adding contributions like third-ord
graphs in the hole-line expansion@20,21# ~their numerical
importance is still an unsettled issue, even for pure nuc
matter!. At higher densities, besides the increasing releva
of higher order nucleonic diagrams, internal~quark! degrees
of freedom should progressively become important, an
relativistic treatment appears more appropriate. Neverthe
the hyperon~symmetry! energy should not be very sensitiv
to the slightly imperfect description of pure nuclear matt
Furthermore, the adapted framework, with the so-called c
tinuous choice, allows a reliable determination of the sing
particle potentials, including their imaginary parts.

We have used one of the most advanced microsco
hyperon-nucleon interactions. Unfortunately, we were forc
to neglect the hyperon-hyperon interaction, in view of t
insufficient knowledge of the latter. For this reason, the
sults presented here are restricted to small values of the
peron fraction. We have carried out some exploratory ca
lations based on simple guesses for theL-L potential, but
found that the results depend very strongly on the sh
range behavior of the interaction that is not controlled
symmetry considerations. Note that it is not even clear t
the L-L potential is repulsive. According to Ref.@2#, the
analysis of some doubleL hypernuclei would suggest tha
theL-L potential yields as much binding as theL-N poten-
tial at low energy. For the time being, without sufficie
restrictions by experimental data, we consider such an ex
sion therefore as premature.

The results obtained in this work are suitable as a fo
dation for Thomas-Fermi calculations of heavy hypernuc
@18,19#. We intend to pursue such applications, as well as
extension of our formalism to hyperonic neutron matter. T
is of particular interest for the physics of neutron stars, wh
the condensation of hyperons~most importantlyS2 andL)
might have important effects on the equation of state
therefore possibly on global observables of the star@4#.
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APPENDIX

1. Kinematics

The energy of the nucleon-hyperon pairNY can be writ-
ten in terms of total and relative momentap and k, respec-
tively:
-
r

-

g
f-
i-
-
s
-
r-
r

ar
e

a
ss,

.
n-
-

ic
d

-
y-
-

t-
y
at

n-

-
i
n
s
e

d

i-

EY~p,k!5
p2

2M
1

k2

2m
1ReUN~kN!1ReUY~kY!1MN1MY ,

~A1!

M5MN1MY , m5
MNMY

MN1MY
, ~A2!

kY,N5pY,N6k, pY,N5
MY,N

M
p. ~A3!

2. Pauli operator and energy denominator

Because of the presence of two different Fermi seas in
intermediate state, there are two restrictions on the an
cosu:[z5p̂k̂, namely,

z.2zY52
pY

21k22kF
~Y!2

2pYk
, ~A4a!

z,1zN51
pN

2 1k22kF
~N!2

2pNk
. ~A4b!

Taking account of all possible cases of vanishing, compl
and partial blocking of the two species, and introducing
notation @aubuc#:[max„a,min(b,c)…, the angle-averaged
Pauli operator can be written in the following compact for

f Y~p,k!5@0u 1
2 ~@21uzNu1#1@21uzYu1# !u1#. ~A5!

The energy denominator in Eq.~3! also depends, via the
single-particle potentials, on the variablez that is restricted
to a certain interval by the Pauli operator in the numerator
the spirit of Brueckner’s original approach@12#, we carry out
an angle averaging by replacingz with its angle-averaged
value, namely,

^z&5
1

2
~@21uzNu1#2@21uzYu1# !, ~A6!

using the notation introduced above.~In the case of symmet
ric nuclear matter, the energy denominator does not conta
term linear inz due to identical single-particle potential
The angle averaging ofz2 leads in that case to the prescri
tion ^z2&5 f 2/3.!

3. Momentum-dependent potential

The Bethe-Goldstone equation for the relative correla
wave functionu reads

u~r 8!5 j l~kr8!1
2

pE0

`

drr 2Dl~r 8,r !@Vl~r !u~r !#.

~A7!

For a momentum-dependent potential of the form

Vl~r !52
1

2
@D lf~r !1f~r !D l #, D l5] r

21
2

r
] r2

l ~ l 11!

r 2 ,

~A8!
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it can ~in order to avoid computing second derivatives of t
wave function! be converted by partial integration into@20#

u~r 8!5 j l~kr8!1
2

pE0

`

drr 2H FFl~r 8,r !f~r !1Dl~r 8,r !

3S f8~r !

r
1

f9~r !

2 D Gu~r!1@Dl~r 8,r !f8~r!#u8~r !J ,

~A9!

with the Green functions

Dl~r ,r 8!5E
0

`

dkk2
j l~kr ! j l~kr8! f ~k!

W2E~k!1 i e
, ~A10a!

Fl~r ,r 8!5E
0

`

dkk4
j l~kr ! j l~kr8! f ~k!

W2E~k!1 i e
. ~A10b!

The derivatives of the potential,f8 and f9, can be per-
formed analytically. For the sake of numerical evaluation
is convenient to improve the rate of convergence of
above integrals by adding and subtracting suitable ter
Splitting into real and imaginary parts, one obtains

Re Dl~r ,r 8!5PE
0

kmax
dk jl~kr ! j l~kr8!S k2f ~k!

W2E~k!
12m D

2
pm

2l 11

min~r ,r 8! l

max~r ,r 8! l 11
, ~A11a!

Im Dl~r ,r 8!52pk0um0* u j l~k0r ! j l~k0r 8! f ~k0!,
~A11b!
C
,
.
.

-
a

e

t
e
s.

Re Fl~r ,r 8!5PE
0

kmax
dkk2 j l~kr ! j l~kr8!S k2f ~k!

W2E~k!
12m D

2pm
d~r 2r 8!

r 2 , ~A11c!

Im Fl~r ,r 8!5k0
2Im Dl~r ,r 8!, ~A11d!

with m being the reduced mass of the intermediate state@Eq.
~A2!#, k0 denoting the zero of the energy denominat
E(k0)5W, and m0* 5@2(]E(k)/]k2)uk0

#21 the effectivere-
duced mass of the intermediate two-particle system at
point. In these equations, the symbolP stands for the prin-
cipal part of the integral andkmax corresponds to a numerica
cutoff. It should be chosen large enough, such that the re
is sufficiently insensitive to it. In practice, a value o
20 fm21 is more than enough.

The G-matrix elements are finally obtained by

^kuGl uk&54pE
0

`

drr 2 j l~kr !@Vl~r !ul~k,r !# ~A12!

54pE
0

r max
drr 2F j l~kr !S k2f~r !2~ l 11!

f8~r !

r

2
f9~r !

2 D1 j l 11~kr !kf8~r !Gul~k,r !, ~A13!

with a cutoffr max'10 fm, which is also used in the discret
zation and numerical solution of the Bethe-Goldstone eq
tion ~A9!.
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