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Higher resonance contamination ofpNN couplings obtained via the three-point function method
in QCD sum rules
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We investigate the size of potential higher pseudoscalar resonance contaminations of the estimates of
isospin-conserving and isospin-violatingpNN couplings obtained using the three-point function method in
QCD sum rules. For the isospin-conserving case it is shown that conventional models of the isovector pseu-
doscalar spectral function imply resonance decay constants large enough to create significant contaminations,
and that assuming these models are incorrect, and that the decay constants are actually much smaller, implies
physically implausible values for the flavor-breaking quark condensate ratios. For the isospin-violating case it
is shown explicitly that such resonance contamination is unavoidably present and precludes using the three-
point function method as a means of estimating the at present unmeasured isospin-violatingpNN couplings.
@S0556-2813~98!00401-4#

PACS number~s!: 13.75.Gx, 11.30.Hv, 11.55.Hx, 24.85.1p
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I. INTRODUCTION

The general framework of QCD sum rules@1–3# has re-
cently proven popular as an approach to the computatio
observable of relevance to problems in nuclear and few-b
physics which has, in contrast to many effective hadro
models, a rather direct connection with QCD itself. T
method is attractive, first, because it is based on rather
eral properties of the underlying field theory@the operator
product expansion~OPE!, analyticity, unitarity, and the ex
istence of appropriately subtracted dispersion relations# and,
second, because it provides a means of relating integrals
physical spectral densities to the behavior of correlators
large spacelike momenta~obtained via the OPE! which, via
the Borel transformation of the original dispersion relatio
simultaneously exponentially suppresses higher energy
tributions to the physical spectral integrals and factoria
suppresses the contributions to the OPE associated
higher dimension operators. This means that one has
quite reasonable hope of, in favorable circumstances, c
structing a sum rule relating observable parameters~such as
masses, couplings and decay constants! occurring on the
phenomenological side of the sum rule to a small numbe
vacuum condensates~which parametrize nonperturbative e
fects in QCD! appearing on the OPE side of the sum rule

In the case of two-point functions, it is rather easy to s
what ‘‘circumstances’’ are favorable to such an analys
First, one should know that one is considering a chan
where the relevant spectral function consists of a lowest
ing single resonance contribution well-separated from hig
resonance and/or continuum pieces. This allows one
choose a Borel mass to strongly suppress the contribution
the weighted spectral integral from the more complica
part of the physical spectral function, and hence obtain
expression for the phenomenological side of the sum
that is dominated by a few observable parameters assoc
with the lowest lying physical state. Second, for such Bo
masses, it must simultaneously be the case that the OPE
570556-2813/98/57~1!/69~7!/$15.00
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of the sum rule is well converged at operators of low enou
dimension that the corresponding vacuum values are alre
known from other analyses. Leinweber@4# has provided a
very clear discussion of the criteria to be satisfied for
applicability of the sum rule method, and also a proced
for sensibly checking the validity of these criteria in a giv
case.

In the case of observables such as the isospin-conser
and isospin-breakingpNN couplings, the situation is slightly
more complicated. In the past, two different approaches h
been taken to estimating these couplings in the QCD s
rule framework.

The first of these approaches is the three-point funct
method @2,5–7#. In this approach one considers the thre
point vacuum correlator

GpaNN~p1 ,p2 ,q!5E d4x1d4x2exp~ ip1x12 ip2x2!

3^0uT@xN~x1!PI 51
a ~0!x N̄~x2!#u0&,

~1!

wherea labels the isospin of the pion (6 or 0),N stands for
either proton or neutron,PI 51

a [P1
a is a pseudoscalar inter

polating field for the pion, andxN is the Ioffe interpolating
field for the nucleon. In what follows we will use the follow
ing notation for the pseudoscalar currents:

Pf5 q̄ f ig5qf ,

P15A2 ū ig5d, ~2!

where f is a flavor labelf 5u,d,s. The a50 component of
the isovector current multiplet is, as usual,

P1
05 ū ig5u2 d̄ ig5d. ~3!
69 © 1998 The American Physical Society
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In what follows we will also require the flavor neutral iso
calar currents. For these we can use either the strange
light quark combinations

P0
l 5 ū ig5u1 d̄ ig5d,

P0
s5 s̄ ig5s, ~4!

or the singlet and octet combinations

P0
05@ ū ig5u1 d̄ ig5d1 s̄ ig5s#/A3,

P0
85@ ū ig5u1 d̄ ig5d22 s̄ ig5s#/A3 ~5!

as a basis. The Ioffe currents for the nucleons are define

xp5eabc@~@ua#TCgmub!g5gmdc#, ~6!

xn5eabc@~@da#TCgmdb!g5gmuc#. ~7!

Schematically, one then analyses the correlator using bo
hadronic model~which involves the relevantpNN couplings
as parameters! and the OPE, and matches the two repres
tations, appropriately transformed, to extract thepNN cou-
plings. In order to perform this analysis, it is necessary t
the momentumq on the external pion leg of the correlator b
large and spacelike, otherwise the OPE of the correlator
not be valid truncated to the low-dimension operators
which the analysis is practical. This condition, howev
means that one is rather far from the pion pole. This prob
is dealt with by looking for terms in the OPE which have t
same Lorentz structure as the pion contribution and in a
tion have a pole of the form 1/q2. However, as stressed b
Birse and Krippa@8#, this proceedure is inherently rathe
dangerous, since it is nota priori possible to separate con
tributions from the pion and from higher resonances to
coefficient of 1/q2. Since, moreover, one must certainly wo
at Q2[2q2.1 GeV2, i.e., rather far from the pion pole
one may no longer reasonably count on the proximity of t
pole to conclude that the pion contribution is dominant, a
would be for smallQ2. The reliability of the three-point
function method thus rests crucially on the assumption
the higher resonance contributions, in the region ofQ2 val-
ues under consideration, are small. The plausibility of t
assumption has not previously, to our knowledge, been
vestigated.

The second approach to thepNN couplings is the two-
point function method@2,6,8,9#. In this approach, one con
siders the two-point correlator

P~p,q!5 i E d4x exp~ ipx!^0uT@xN~x! x̄ N~0!#upa~q!&.

~8!

For large spacelike values ofp, the OPE for the product o
the two nucleon interpolating fields can presumably be tr
cated at operators of relatively low dimension. One may th
look at the vacuum-to-pion matrix elements of these ope
tors in order to estimate thepNN couplings. As has been
stressed by many authors, in order to be able to rem
contributions associated withN→N* transitions, one should
look not at theg5 term in the OPE, but rather the structu
nd
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q” g5 @8,11–14#. The advantage of the two-point method is,
course, that it completely avoids the problem of poten
contamination from higher resonance contributions, which
unavoidable in the three-point function method. The dis
vantage of the method is that, although the vacuum-to-p
matrix elements of the lowest dimension operators can al
evaluated with good accuracy using chiral perturbat
theory~ChPT! @10#, those for the higher dimension operato
are less certain. Thus, for example, the uncertainty in
value of the matrix element

gs^0u d̄ G̃mngnuup1~q!& ~9!

leads to uncertainties of;15% in the prediction for the
isospin-conservingpNN coupling using the two-point func
tion method@8#.

To date, the isospin-conservingpNN coupling has been
considered using both the two-point@2,6,8,9# and three-point
@2,5,6# function methods, and the isospin-violatingpNN
couplings using the three-point function method@7#. The
isospin-conserving coupling is, of course, known experim
tally, so the point of computing it using QCD sum rules
primarily to test the plausibility of the assumptions and tru
cations that go into the evaluation. The hope is that succ
in computing the coupling in the isospin-conserving ca
might serve as an indication of the reliability of the approa
employed and hence make the analogous calculation of
unmeasured isospin-violating couplings also plausibly r
able. Since both the two-point and three-point function tre
ments are successful in this regard, albeit it with signific
theoretical errors, it would seem reasonable to attemp
proceed to the isospin-violating case using either method
first attempt in this direction was made by Meissner a
Henley @7#, employing the three-point function metho
Since the isospin violating coupling has not yet been exp
mentally determined, this estimate of is considerable pot
tial interest, particularly in view of the recent revival of in
terest in the question of isospin-breaking in few-bo
systems~see for example the review of Ref.@15# for an ex-
tensive discussion of the situation up to 1990, and Ref.@16#
for a list of more recent papers on the subject!. We would,
therefore, like to understand whether, given the poten
problems of the three-point function method, this estimate
reliable or not.

In the present paper, therefore, we will investigate
question of higher resonance contaminations in the th
point function method, which is the biggest potential roa
block to using the method in the isospin-violating case. W
will show that existing~albeit model dependent! understand-
ing of the spectral density in the isovector pseudosca
channel implies that significant contamination is prese
even in the isospin-conserving case, and that requiring
understanding to be incorrect, and the contamination to
small, is equivalent to rather strong~and physically implau-
sible! statements about the values of flavor-breaking ratios
quark condensates. We will then proceed to show that cer
features of the isospin-violating analysis itself also clea
indicate the presence of significant higher resonance c
tamination, implying that the three-point function metho
cannot be reliably employed to extract the isospin-violat
pNN couplings.
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II. THE ISOSPIN-CONSERVING ANALYSIS

One does not know,a priori, the size of the couplings o
the excited isovector pseudoscalar mesons,p(1300),
p(1800),. . . , to thenucleon. Thus, in order to be certa
that the three-point function method for extractinggpNN is
not contaminated by contributions from these resonances
necessary that the conditions

f p8mp8
2

~Q21mp8
2

!
!

f pmp
2

~Q21mp
2 !

~10!

be satisfied, wheref M is the decay constant for mesonM and
p8 stands for any of the excitedI 51 pseudoscalar meson

The excited state pseudoscalar decay constants are
known experimentally and, owing to the fact that they hav
chiral suppression,@1# will be very difficult to measure.„The
p(1300) decay constant could, in principle, be measured
separating the small pseudoscalar contribution from the la
overlappinga1 contribution int decays via a detailed spin
parity analysis@17#.… However, theyare related to the light
current quark mass combinationmu1md via a series of finite
energy sum rules@18#. The most recent analysis of this ma
combination@18# models the continuum part of the spectr
function in the isovector pseudoscalar channel in terms
sum ofp(1300) andp(1800) resonances. The relative co
tribution of the two resonances in the model continuum sp
tral function is constrained by duality, and the overall no
malization is set by assuming the threshold value of
continuum spectral function, which can be estimated us
ChPT at tree level, is saturated by the tails of the resona
contributions. If we assume the model spectral functions
constructed~which are tied to the usually quoted values
the MS̄ masses! are reasonable, then we can read off t
corresponding values of the decay constants for thep(1300)
andp(1800). Taking the model with the best duality fit fro
Ref. @18#, we find

f p~1300!52.2 MeV,

f p~1800!51.0 MeV. ~11!

Forming the products of the couplingsf MmM
2 to the pseudo-

scalarI 51 current, and the propagators 1/(Q21mM
2 ) evalu-

ated atQ2;1 GeV2, we then find

F f MmM
2

~Q21mM
2 !

G
Q251 GeV2

51.8, 2.7, and 0.76 MeV,

~12!

for M5p, p(1300), andp(1800), respectively. For suc
values of the excited pseudoscalar decay constants, there
one would be forced to conclude that the contaminat
from, certainly the p(1300), and most likely also the
p(1800), would be far too large to make the method reliab

Of course, one might object that the above argument,
lying as it does on the model spectral functions of Ref.@18#,
is model dependent and therefore not conclusive. Indeed
validity of the method of Ref.@18# for setting the overall
normalization@and hence the overall scale of the correspo
ing decay constants in Eq.~11!# has been questioned@19#,
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leading to the suggestion that the normalization might ac
ally be significantly smaller than employed in Ref.@18#.
However, even if the normalization of the continuum spe
tral function were to be decreased byan order of magnitude,
the corresponding decay constants would be decreased
by a factor;3, leaving the product of thep(1300) coupling
to the current and propagator at the level of;50% of that of
the p.

It thus appears extemely unlikely that the couplings of
higher pseudoscalar resonances can be neglected in the t
point function analysis ofgpNN . Since, however, one doe
not actually have an experimental value forf p(1300), one is
still free to imagine that the decay constants are, for so
reason,muchmore than just an order of magnitude smal
than those corresponding to the model spectral function
Ref. @18# „for example, a spectral function a factor of 6
times smaller than that of Ref.@18# would bring thep(1300)
coupling times propagator factor to below 20% of the cor
sponding product for thep…. This appears a rather unlikel
prospect, but is one that cannot be presently ruled out. H
ever, it is important to realize that such an assumption is
without other nontrivial consequences.

Let us, therefore, for the moment, accept the~albeit un-
likely! prospect of extremely small excited pseudoscalar
cay constants and consider the consequences of such a
sumption for the quark masses and condensates. The
consequence is obvious, namely, if we strongly suppress
continuum contribution to the finite energy sum rule analy
for the quark mass, then we commit ourselves to sign
cantly lower values ofmu1md , of order 6 MeV~in the MS̄
scheme, at a scale of 1 GeV2, this value to be compared with
the conventionally quoted value 12 MeV!. This is not neces-
sarily a problem, since a recent analysis of world lattice d
also suggests a significantly lowered value ofmu1md @20#, a
possibility also noted in Ref.@19#. It does, however, force
one to significantly larger values of the light quark conde
sate, which can cause problems for the stability of the s
rule for the nucleon mass@21#. Moreover, such an assump
tion actually corresponds to rather strong constraints on
ChPT low-energy constant~LEC! H2

r ~where we adhere to
the notation of Gasser and Leutwyler@10# throughout!,
which LEC governs the flavor breaking of the quark conde
sates@10#. The reason for the existence of this constraint
that the inverse weighted~corresponding ton521 in the
notation of Ref.@18#! finite energy sum rule for the correlato

C5~q2![ i E d4xeiq•x^0uT$]mAm
~2 !~x!,]nAn

~1 !~0!%u0&

5~md1mu!2i E d4xeiq•x

3^0uT$P~2 !~x!,P~1 !~0!%u0& ~13!

with Am
(1) the charged isovector axial current andP(1) the

corresponding charged isovector pseudoscalar current,
be rewritten as a sum rule for the continuum portion of t
pseudoscalar spectral function, as follows:
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E
9mp

2

s dt

t

ImC5~ t !

p
5

3

8p2
@mu~s!1md~s!#2s@11R0~s!#

2
8mp

4 f p
4

F4
~2L8

r 2H2
r !, ~14!

wheremu,d(s) are the MS̄running masses at scales, R0(s)
contains perturbative corrections@18#, F is a leading order
ChPT LEC, equal to the pion decay constant in the ch
limit, and 2L8

r 2H2
r is a scale-independent combination

fourth order ChPT LEC’s. If we suppress the integral on
left-hand side~LHS! by a large factor like 60, and also th
running masses by of order a factor of 2, it turns out that
drive 2L8

r 2H2
r to values more than 3 times smaller th

those obtained in Ref.@18#. This in turn implies thatH2
r (mh)

mustnecessarilybe positive. We now argue that such valu
for H2

r (mh) lead to physically implausible predictions for th
ratios of quark condensates.

To see this, note that, onceH2
r is fixed, the flavor breaking

ratios of quark condensates are simultaneously fixed at n
to-leading order in the chiral expansion@10#, for example,

^0u s̄su0&

^0u ūuu0&
5113mp22mK2mh1

8~mK
2 2mp

2 !

F2
~2L8

r 1H2
r !,

~15!

wheremM5mM
2 ln~mM

2 /m2)/32p2F2, with m the ChPT renor-
malization scale. With H2

r ~mh!.0 and L8
r (mh)5(1.1

60.3)31023 @22#, we see from Eq.~15! that

^0u s̄su0&

^0u ūuu0&
.1.38. ~16!

Thus, assuming that the excited resonance decay cons
are sufficiently small to be able to neglect their contributio
to the three-point function sum rule simultaneously comm
one to the highly unnatural situation of a strange quark c
densate larger in magnitude than the light quark condens
In addition, one finds that, owing to the relation between
flavor breaking and isospin breaking condensate ratios g
by Eq. ~9.5! of Ref. @10#, such a value for the strange to u
quark condensate ratio implies, for the isospin-breaking c
densate ratiog defined by

g[
^0u d̄du0&2^0u ūuu0&

^0u ūuu0&
, ~17!

a value

g.1.531023, ~18!

in contradiction with extractions ofg from a variety of
sources@3,23–27# all of which obtaing,0.

In view of the results of the last paragraph, we conclu
that the hypothesis that one may neglect the higher reson
contamination in the three-point function analysis of t
isospin conserving couplinggpNN is a highly unpalatable
one. The only way to ‘‘save’’ the three-point function trea
ment is toassumethat, for some reason, the ratios of th
l
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coupling constants of all higher pseudoscalar resonance
the nucleon relative to that of the pion are tiny. This pos
bility is highly unnatural, but of course, not ruled out by th
discussion below. We will, therefore, in the next section, tu
to the case of the analysis of the isospin-breaking couplin
for which the meson-nucleon couplings are now implici
present, and demonstrate more directly the presence
analogous higher resonance contaminations.

III. THE ISOSPIN-VIOLATING ANALYSIS

In this section we will concentrate on the three-po
function analysis of the difference ofp0pp andp0nn cou-
plings,

dg5gp0nn2gp0pp . ~19!

In order to perform this analysis it is necessary to take i
account the fact thatP1

0 is not a suitable interpolating field
for the physicalp0, if one wishes to treat isospin breakin
effects. This follows from the observation that

^0uP1
0uh&5” 0. ~20!

As a consequence, if one were to useP1
0 asp0 interpolating

field, then even if one could ignore higher resonance con
butions, the result of the analysis would be a mixture of
isospin breakingp coupling and the isospin conservingh
coupling ~the latter multiplied by an isospin breaking fact
describing the coupling of theh to the I 51, I z50 current!.
As noted above, there is no means to separate the cont
tions corresponding to different mesons in the three-po
function approach. Meissner and Henley@7#, who first per-
formed the isospin violating analysis, dealt with this proble
by choosing a current combination with no vacuum-to-h ma-
trix element, namely,

Pp0[P1
01eP0

8 , ~21!

where the pseudoscalar currents are as defined above an
choice

e5u05
A3

4

md2mu

ms2m̂
, ~22!

where m̂5(mu1md)/2, and u0 is the leading orderp-h
mixing angle@10#, ensures that

^0uPp0uh&50 ~23!

to leading order in the chiral expansion. The choice of int
polating field with this property is not unique@16#; in fact,
for any a, defining

P~a!5~Pu2Pd!1e~a!@a~Pu1Pd!1~11a!Ps#

5~Pu2Pd!1e~a!
1

A3
@2P81~3a11!P0#,

~24!

one may find ane(a) such that
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^0uP~a!uh&50. ~25!

The set of solutions of Eq.~25!, as a function ofa, have
been worked out to next-to-leading order in the chiral exp
sion in Ref.@16#. Among other results of this analysis, it
found that the next-to-leading corrections are significant;
example, at next-to-leading order, the Meissner-Henley fi
choice must be modified to

Pp08 [P1
011.27u0P0

8 ~26!

if one wishes to maintain zero vacuum-to-h matrix element.
We will now explain why the existence of the above fam

ily of potential p0 interpolating fields is of relevance to ou
current discussion. Note that the choice ofPp0 was made by
Meissner and Henley with the problem of potential high
resonance contamination in mind. Indeed, they argued
this choice of interpolating field is the one that would su
press possibleh8 contributions@7#. It turns out, however,
that this is not the case, and the reason that it fails to be
leads us immediately into a consideration of the larger c
of p0 interpolating fields.

Let us, therefore, first outline why the interpolating fie
Pp0 necessarily has nonvanishing coupling to theh8. In
the chiral limit, of course, there is no flavor breakin
whatsoever, hence no isospin breaking couplings, and
flavor breaking meson decay constants. Once we introd
the quark mass matrix, with its flavor breakingms2m̂ dif-
ference and isospin breakingmd2mu difference, all flavor
and isospin breaking effects are potentially present. In
case of the isospin breaking and flavor breaking decay c
stants of theh8, one may obtain a leading estimate of t
ratio of these decay constants using SU(3)F arguments. In-
deed, we know that the breaking is produced by the qu
mass matrix, which has the following decomposition in
singlet, octet isovector and octet hypercharge componen

M5
1

3
~ms12m̂!2

1

2
~md2mu!l32

1

A3
~ms2m̂!l8 .

~27!

To leading order in the isospin-breaking and flavor-break
mass differences, therefore, the vacuum-to-h8 matrix ele-
ments ofP1

0 and P0
8 are given simply by the product of th

mass-dependent coefficients ofl3 andl8 in Eq. ~27! with a
common 8F38F→1F reduced matrix element. Recasting t
ratio of mass factors in terms of the mixing angleu0 defined
above, one then finds, straightforwardly, that

^0uPp0uh8&53u0^0uP0
8uh8&, ~28!

where^0uP0
8uh8&5O(ms2m̂). The RHS is thus nonzero, o

O(md2mu), and in fact has a numerical enhancement~the
factor 3) brought about by the fact that the couplings of
h8 to the P1

0 and P0
8 components ofPp0 add coherently.

Note that a similar argument, using a first order treatmen
flavor and isospin breaking, would predict that the isos
-
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e

f
n

violating and flavor violating axial currenth8 decay con-
stants were of the same sign, in agreement with the resul
a recent QCD sum rule analysis of the isospin violati
^0uT(Am

3 An
8)u0& correlator@28#.

If one considers allowing an admixture of the sing
pseudoscalar current into the interpolating field~i.e, allowing
a to deviate from21/3), one has, of course, in addition t
the 8F38F→1F reduced matrix element which govern
^0uP1

0uh8& and ^0uP0
8uh8&, the 1F31F→1F reduced matrix

element relevant tô0uP0
0uh8&. One can then certainly, in

principle, find a value ofa such that̂ 0uP(a)uh8&50. The
problem is that, even to do so at leading order in the qu
masses, one would need to know the ratio of the two redu
matrix elements above, and this information is not availab
Moreover, even if it were, this would not necessarily ens
that, for such a value ofa, the couplings of the higher reso
nances other than theh8 were small for the same value ofa.

Since we do not know,a priori, how to choose ap0

interpolating field~i.e., a value ofa) to remove evenh8
contamination, let alone one possible contamination ass
ated with yet higher pseudoscalar resonances, it is neces
to look for some sort ofpost factoindication of the absence
of such contributions. One obvious way of doing so is
study the extracted results for what is nominally the isos
violating pNN coupling,dg, as a function ofa. If one can
find a region ofa values for which the results are not sen
tive to a, then one might argue this was a signal that,
such values ofa, the effect of couplings to all higher reso
nances is negligible. In contrast, if one is unable to find su
a region ofa values then, since the various interpolatin
fields differ only in their couplings to the excited pseud
scalar resonances, beginning with theh8, it is clear that, in
general, there are large contaminations from the higher p
doscalar resonances and that, as a consequence, one h
reliable way of choosing a particular interpolating field f
which such contaminations are small. We will see, unfor
nately, that it is the latter situation which holds for the thre
point function analysis. Moreover, we will demonstate th
the variation ofdg with a is essentially as large as the valu
of dg extracted in the Meissner-Henley analysis, and he
that no reliable estimate ofdg can be made using the three
point function method.

In order to demonstrate the claims of the last paragrap
is necessary to understand how the generalization from
specific Meissner-Henley interpolating field choice,a5
21/3, to arbitrarya affects the sum rule for the isospi
breakingpNN coupling. It is straightforward to show that, i
the general case, the final sum rule„the analogue of Eq.~24!
of Ref. @7#… becomes

F2
dg

gpNN
G52

2

3
g1

4

3
k~a!1S dMN

MN
D ~2p!2mp

2f p
2M2

M61 1
4 gs

2^G2&M2

3F2S md2mu

md1mu
D1g22

dMN

MN

MN
2

M2 G , ~29!

whereM is the Borel mass,̂G2& the gluon condensate,gs
the strong coupling constant,dMN the quark-mass-differenc
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contribution to the nucleon mass splitting, andk(a) the co-
efficient ofPu1Pd appearing in the interpolating fieldP(a)
~so, for example, for the Meissner-Henley choicePp0, k
5u0 /A3). The terms in the second line of Eq.~29! arise
from evaluating the isospin breaking difference of couplin
of the Ioffe currents to the neutron and proton states us
the chiral odd sum rule for the nucleon two-point functio
@7#. The reason for the appearance ofk(a) in Eq. ~29!, i.e.,
the dependence on only the light quarkI 50 content of the
interpolating field, is that contributions of the strange qua
,

o
s
ke
r
th
r

tio

th

on

el

u

s
g

k

component of the interpolating field to the OPE side of t
sum rule vanish to the order considered in obtaining the s
rule.

From the expression forP(a) in Eq. ~24!, it is evident
that

k~a!5ae~a!. ~30!

In order to complete our investigation we, therefore, requ
only the expression fore(a), obtained in Ref.@16#:
e~a!52A3u0F11S 2~1019a!mp16~11a!mK1~413a!mh

3F2 D 2
32

3F2
~413a!~m̄K

2 2mp
2 !~3L7

r 1L8
r !1S 3mh

21mp
2

64p2F2 D
3H 11F mp

2

m̄K
2 2mp

2 G lnS mp
2

m̄K
2 D J 1

~mh
22mp

2 !

64p2F2
@11 ln~mK

2 /m2!#G , ~31!
ut
-

at
ve
the
the
t
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n-
nnot

for
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tion
rgy
ion
be
of

ful
T.

il of
nter
of
lly
wherem̄K
2 is the average of theK1 andK0 squared masses

the chiral log termsmM are as defined above and theLk
r are

the usual renormalized fourth order LECs, in the notation
Gasser and Leutwyler@10#. In Eq. ~31! the expression ha
been written so that the 1 occurring in the square brac
corresponds to the contribution obtained at leading orde
the chiral expansion, while the remaining terms give
next-to-leading order corrections. The above results rep
duce the Meissner-Henley field choice fora521/3, if one
keeps only the leading order contribution in Eq.~31!.

If we take the latest evaluation of the quark mass ra
from ChPT@29#, then we have

u05~1.160.2!31022. ~32!

„The upper end of the error bound would correspond to
evaluation of r 5(md2mu)/(md1mu) obtained using
h→3p, which corresponds to large values for the violati
of Dashen’s theorem advocated by a number of authors@30–
35#.… For the Meissner-Henley choicea521/3, we then
find, for the contribution to2dg/gpNN generated by the
isoscalar component of thep0 interpolating field~required to
remove theh contamination from the final result!,

@2dg/gpNN#k~21/3!5
4

3

u0

A3
@110.27#51.131022, ~33!

while, for comparison, for the choicea521, which re-
moves the strange quark content from the interpolating fi
we find

@2dg/gpNN#k~21!5
4

3
A3u0@110.21#53.131022. ~34!

To understand the implication of these results, one sho
bear in mind that the range of values for2dg/gpNN ex-
f

ts
in
e
o-

s

e

d,

ld

tracted by Meissner and Henley was (1.7–3.0)31022. ~The
range reflects the full range of uncertainties in all of the inp
parametersg, u0, anddMN .) We thus find that the correc
tions required to remove theh contamination are large on
the scale of the result obtained. Moreover, sincek~a!
5ae~a!, and the results of Ref.@16# showe(a) to be slowly
varying with a, and greater thanA3u0 in magnitude over a
wide range ofa values, we see also that the results for wh
is nominally the isospin breaking coupling is very sensiti
to a, varying, for example, by an amount as large as
maximum value quoted by Meissner and Henley over
range betweena50 anda521. We thus conclude, in ligh
of the discussion above, that the three-point function eva
ation of the isospin breaking coupling is plagued by u
known higher resonance contamination, and as such ca
provide a reliable estimate of this quantity.

IV. CONCLUSIONS

We have shown that the three-point function method
the treatment of both the isospin conserving and isospin
lating pNN couplings is plagued by problems with high
resonance contamination. In the course of this investiga
we have also seen how information from the finite ene
sum rules for the light quark masses, chiral perturbat
theory, and sum rules for the chiral LEC’s can sometimes
profitably employed to elucidate the physical content
other sum rules treatments.
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