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Boson mappings and four-particle correlations in algebraic neutron-proton pairing models
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Neutron-proton pairing correlations are studied within the context of two solvable models, one based on the
algebra SO~5! and the other on the algebra SO~8!. In both of these models, particles interact inL50 pairs only.
Boson-mapping techniques are applied to these models and shown to provide a convenient methodological tool
both for solving such problems and for gaining useful insight into general features of pairing. We first focus on
the SO~5! model, which involves generalizedT51 pairing. Neither boson mean-field methods nor fermion-
pair approximations are able to describe in detail neutron-proton pairing in this model. The analysis suggests,
however, that the boson Hamiltonian obtained from a mapping of the fermion Hamiltonian contains a pairing
force between bosons, pointing to the importance of boson-boson~or equivalently four-fermion! correlations
with isospinT50 and spinS50. These correlations are investigated by carrying out a second boson mapping.
Closed forms for the fermion wave functions are given in terms of the fermion-pair operators. Similar tech-
niques are applied—albeit in less detail—to the SO~8! model, involving a competition betweenT51 andT
50 pairing. Conclusions similar to those of the SO~5! analysis are reached regarding the importance of
four-particle correlations in systems involving neutron-proton pairing.@S0556-2813~98!05002-X#

PACS number~s!: 21.60.Fw, 21.60.Jz, 21.30.Fe
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I. INTRODUCTION

The residual interaction between the nucleons in a nuc
is expected to contain a strong neutron-proton pairing co
ponent on the basis of isospin-invariance arguments. Pr
cal manifestations of neutron-proton pairing have prov
elusive, however, in large part because most of the nu
studied to date contain a significant neutron excess. In s
nuclei, the neutrons and protons near the Fermi surface
cupy different valence shells and thus cannot effectively
ploit the neutron-proton pairing interaction. Moreover,
shown recently@1,2#, even when the active neutrons and pr
tons occupy the same valence shell, they cannot effecti
build neutron-proton pair correlations except in the very n
row window of N'Z.

The development of radioactive beam facilities, now ta
ing place at many laboratories worldwide, promises
change the experimental situation dramatically. With th
new facilities, it should be possible to access allN5Z nuclei
up to 100Sn. In many of the heavierN'Z proton-rich nuclei,
the neutron-proton pairing degree of freedom is expecte
come into significant play. For this reason, renewed atten
is now being devoted to the theoretical aspects of neut
proton pairing. Sincefull shell-model calculations are fea
sible only for a limited set of nuclei, approximate metho
are needed to study in detail such collective features. Hist
cally, the method of choice has involved a generalization
the usual BCS treatment of pairing between like nucle
@3,4#. Unfortunately, this approach does not seem able
provide a correct description of many features of neutr
proton pair correlations@5#. Isospin projection seems to be
promising avenue to an improved theory@1#, but up to now it
has not been implemented.

In studying the effects of neutron-proton pairing, simp
570556-2813/98/57~2!/688~16!/$15.00
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models can be very useful. Several such models, containi
semirealistic representation of the different modes of pairi
have been constructed@6,7#. These models allow for exac
solution and simple examination of various aspects of
proximate treatments. Furthermore, they seem to refl
many of the key features of pairing that show up in mo
realistic shell-model calculations@1#.

In the present paper, we employ the technique of bo
mappings@8# to study pairing effects in these models. Th
basic idea of a boson mapping—as traditiona
implemented—is to map bi-fermion operators onto bos
operators in such a way as to preserve the physics of
original fermion problem. In principle, the original fermio
problem can be completely solved within the boson space
realistic applications, however, the boson mapping must
combined with approximation techniques.

Boson mappings not only provide a relatively simp
methodology for treating the original fermion problem, b
also can shed light on pairing correlations and on the ap
cability of pair approximations at the fermion level. Th
bosons are images of fermion pairs. Therefore, if the m
ping does not result in a simple description in terms of
basis bosons, there would correspondingly not be a sim
description in terms of fermion pairs.

Boson-mapping techniques may also be useful in an
tended sense, by providing a natural methodology for inc
porating correlations involving more than just two particle
In the neutron-proton pairing models to be discussed, insp
tion of the boson-mapped Hamiltonian suggests a pair
lectivity between the bosons introduced in the mapping. T
boson pair collectivity can then be treated with a seco
boson mapping@9#, whereby bi-boson operators are mapp
onto new bosons representing quartets of the original fer
ons. The original fermion problem can then be rephrased
688 © 1998 The American Physical Society
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57 689BOSON MAPPINGS AND FOUR-PARTICLE . . .
the language of these new bosons. A simple description
terms of these~quartet! bosons would confirm the impor
tance of the associated four-fermion correlated structures

The paper is organized as follows. We first consider
SO~5! model ofL50 monopole-isovector pairing. In Sec. I
we briefly discuss the model and its boson mapping and t
examine in detail several variants of boson mean-field
proximations. The applicability of fermion-pair approxima
tions is then studied in Sec. III. In Sec. IV, a second bos
mapping of the SO~5! model is performed and the role o
bi-boson~four-fermion! structures is investigated. We the
turn to the SO~8! model with both isoscalar and isovecto
L50 pair degrees of freedom in Sec. V. The same issues
addressed as for the SO~5! model, but without as much de
tail. Finally, Sec. VI summarizes the key conclusions of t
work and spells out some issues for future consideration

II. SO„5… MODEL: BOSON MEAN-FIELD METHODS

A. The SO„5… model and its boson realization

The SO~5! model is perhaps the simplest tool to meanin
fully investigate neutron-proton pairing. In this model, a sy
tem of N nucleons occupying a set of degenerate sing
particle orbits with total degeneracy 4V52((2 j 11)
interact via an isovector pairing interaction,

H5gS†
• S̃, ~1!

where

Sn
†5

1

2(l j ĵ @a†l j 1/2a†l j 1/2#00n
001, ~2!

S̃n5~2 !12nS2n , ~3!

and the sum overj includesj 5 l 1 1
2 and j 5 l 2 1

2.
The Hamiltonian~1! is invariant under the group of SO~5!

tranformations generated by the three pair creation opera
Sn

† , the three conjugate pair annihilation operatorsSn , and
the three components of the isospin operatorT. This makes
the analysis of the model extremely simple and it is for th
reason that it has been used recently in several studie
relevance to neutron-proton pairing@1,5,2#.

A Dyson boson realization of the SO~5! algebra has been
constructed in Ref.@10#. For the isovector pairing model, th
boson space is constructed in terms of a scalar (L50 S50
J50) isovector (T51) bosonsn , and the mapping takes th
form @2#

Sn
†→~V2N11!sn

†2
1

2
s†

•s†s̃n ,

S̃n→ s̃n ,

Tn→A2@s†s̃#0n
01 . ~4!

Here,N̂52s†
• s̃ is the boson number operator. In these a

all subsequent expressions, we use the standard notatio
the scalar product,
in
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s†
•s†5( ~2 !nsn

†s2n
† .

B. Approximate boson mean-field methods

Boson mappings provide an alternative technique
solving a fermion problem. Diagonalizing the mapp
Hamiltonian in the ideal boson space~where possible! would
yield all of the eigenvalues and the boson images of
eigenvectors of the original fermion problem. Note, ho
ever, that in the boson space spurious states may oc
These are boson states with no counterparts in the orig
fermion space that arise as a pure artifact of the mapping
physically realistic problems, where it is impossible to dia
onalize the mapped Hamiltonian in the full boson spa
these spurious states cannot be readily removed from
problem. In the SO~5! model, however, this is not the cas
Here it is possible to diagonalize exactly the mapped Ham
tonian. Furthermore, it can be shown that the spurious st
only arise for N.2V and that they all have isospinT
.2V2N/2. Thus, by focusing our analysis on systems w
N<2V, we can be sure that spurious boson states do
contaminate the physics of interest.

In the present study, we also treat the dynamics of
boson problem using approximate methods. By compar
with the exact results, we can assess the usefulness of t
approximate methods in capturing the dominant collect
dynamics in the presence of pair correlations.

We begin by considering boson mean-field techniqu
The starting point is to introduce a mean-field bosong as a
linear combination of the basis bosons. The creation oper
for the mean-field boson can thus be expressed as

g†5g1s1
†1g21s21

† 1g0s0
† . ~5!

From this mean-field boson, several approximate va
tional states can be considered. Minimization of the ene
of these variational states subject to the relevant constra
defines possible boson mean-field approximation procedu
each of which is the natural analogue of a fermion variatio
procedure. We will denote each boson variational proced
by the corresponding standard fermion terminology.1

In the boson analogue of the BCS method, for examp
the variational state is

uBCS)}exp~hg†!u0), ~6!

with constraints on the number of bosons~one-half the num-
ber of fermions!

~BCSuN̂/2uBCS!5N

and on thez-componentTz of the isospin

~BCSuT0uBCS!5Tz .

1All of these procedures can be equivalently formulated in ter
of a coherent-state theory, as in Ref.@11#.
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690 57J. DOBEŠAND S. PITTEL
The boson analogue of number-projected BCS is
Hartree-Bose procedure, whereby the variational state i
the form of a boson condensate2

uBCS,N)}g†Nu0) ~7!

with the single constraint

~BCS,NuT0uBCS,N!5Tz .

The next level of mean-field approximation we consid
involves the number-Tz projected BCS variational state,

uBCS,NTz)}PTz
g†Nu0). ~8!

Here,PTz
projects the boson condensate onto a state w

definiteTz .
Finally, if we were to apply, in addition to number andTz

projection, full isospinT projection, the exact SO~5! state
would be realized~as long as the probe function has a no
zero overlap with the exact state!.

C. Energies

We now compare the energies arising at the various le
of boson mean-field approximation with the exact groun
state energies of the SO~5! Hamiltonian ~1!. We consider
systems with an even number of nucleons only.

The exact eigenenergies for a system withN nucleon
pairs are given by

E52gF SN2
1

2
vsD S V1

3

2
2

1

2
N2

1

4
vsD

2
1

2
„T~T11!2t~ t11!…G , ~9!

wherevs is the singlet-pairing seniority andt is the reduced
isospin.

We are especially interested in the ground state of
system, which is realized forvs50 and t50. The ground-
state energy is then given by

Eexact52gFNS V1
3

2
2

1

2
ND2

1

2
Tz~Tz11!2d~Tz11!G ,

~10!

whered50 for even-even (T5Tz) systems and 1 for odd
odd (T5Tz11) systems.

Applying the Dyson boson mapping~4! to the SO~5!
Hamiltonian~1! leads to the boson Hamiltonian

HB52gF N̂~V112N̂!1
1

2
s†

•s†s̃• s̃G . ~11!

Much the same Hamiltonian was derived in Ref.@12# using
the Marumori prescription. The only difference is that t
Hamiltonian derived there allows for higher-seniority stat
outside ourL50 subspace.

2Throughout the present paper, we understand the projectio
performed before variation.
e
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-
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When the Hamiltonian~11! is used in the variational ap
proximations described in the preceding subsection, only
kinds of solutions can occur. The first, which we denote
A, hasg050; the second, denoted by B, hasg15g2150,
g051.3

In the BCS case, with trial state~6!, the solutions A and B
are degenerate forTz50, whereas only solution A applie
for Tz.0. Note that this is precisely what was found in th
generalized BCS treatment of Ref.@4#. The variational en-
ergy for these solutions is

E~BCS!5Eexact1gF3

2
N2

1

2
Tz2d~Tz11!G .

Adding number projection via the trial state~7! leaves
many properties of the solution~s! unchanged. The solution
A and B are still degenerate forTz50. And, forTz.0, only
the solution A applies. There is a change in the variatio
energy, however, which now becomes

E~BCS,N!5Eexact1gNF12
1

2

Tz

N S 11
Tz

N D G2gd~Tz11!.

~12!

Note that forTz→N, the approximate energy at this level o
approximation approaches the exact result, as expected
degenerate-orbit pairing model with one type of nucleon.

When imposingTz projection as well, some new feature
appear. For even-even nuclei, for example,Tz projection re-
moves the degeneracy of the solutions A and B, the solu
A giving the lower energy. Thus, for even-even nuclei, t
ground state solution is of the form A with variational ener

E~BCS,NTz!5Eexact1g
1

2
NS 12

Tz

N D . ~13!

Here, too, forTz→N, the approximate result approaches t
exact result, as clearly it should.

For odd-odd nuclei, on the other hand, the solution
disappears. Clearly, an odd-odd system must contain at
oneTz50 (s0) boson, and such components are not pres
in solution A.

In fact, problems with the solution A in odd-odd nucl
already show up at the level of number-projected BCS
proximation, though not as transparently. For an odd-o
nucleus with Tz5N21, the number-projected variationa
energy@see Eq.~12!# is lower than the exact energy.4

For the odd-oddTz50 nucleus, the number-projected s
lution is thus of the form B and already has goodTz . Fur-
thermore, the variational energy at this level of approxim
tion is

E~BCS,NTz50!5Eexact1g~N21!.

For the odd-oddTz.0 nucleus, there is no number-Tz pro-
jected variational solution from the above-discussed clas
trial functions.

as

3This notation is in correspondence with Ref.@4#.
4The same effect is seen in the fermion generalized BCS calc

tions of Ref.@4#.



th
th

e
re
ie
re
er

en
av
a

se
iti
ox

ns

era-

cted
a

r
re-
ly

of
en-

ode

fer

an

pec-
the
ssed

r

e

u
g

57 691BOSON MAPPINGS AND FOUR-PARTICLE . . .
A comparison of the variational energies obtained at
various levels of approximation discussed above with
exact ground-state energies is given in Fig. 1~a!. Two points
are immediately evident from the figure. First, as expect
the successive restoration of symmetries improves the ag
ment with the exact results. Second, the variational energ
independent of the specific mean-field approximation, ag
quite well with the exact values. This can be readily und
stood from the structure of the boson Hamiltonian~11!. In
this Hamiltonian, the first term only depends onN, and its
contribution to the variational energy for states with a giv
number of bosons is not dependent on the form of the w
function. Moreover, the largest contribution to the variation
energy from the second term2 1

2 gs†
•s†s̃• s̃ in Eq. ~11! is

2 1
2 gN 2 for all the above-discussed solutions. As a con

quence, the ground-state energy is not a particularly sens
observable for assessing the quality of the various appr
mate methods, at least for this model.

D. Two-particle transfer strengths

To assess the quality of the different variational solutio
we must consider other observables as well. In the SO~5!

FIG. 1. The exact and BCS SO~5! ground-state energiesE in
units of g, two-particle transfer strengthsSnn and Snp, the Fermi
strengthsSF

1 , and overlaps of exact and BCS wave functions a
shown as a function ofTz for V510 andN510. The results of the
boson mean-field approximations and the fermion-pair approxim
tions are displayed in the left and right parts of the figure, resp
tively. The exact results are denoted by circles, the BCS results
squares, the number projected BCS results by triangles pointing
and the number-Tz projected BCS results by triangles pointin
down.
e
e

d,
e-
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e
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e
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ve
i-
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model, there are not many such possibilities. The pair op
tors multipled by 1/AV give the normalized two-nucleon
transfer strengths of the respective pair@13#. The mean val-
ues of the product of pair operators may then be conne
with the summed strengths for two-nucleon pick-up from
given statei @14#,

Snp5 KN,iU 1

V
S0

†S0UN,i L
5(

f
u^N21,f u

1

AV
S0uN,i &u2, ~14!

and similarly for Snn and Spp.5 Since two-neutron-transfe
reactions provide valuable information on nn pairing cor
lations @15#, it is expected that np transfer will analogous
be sensitive to the neutron-proton-pairing mode. The sum
the three total transfer strengths is simply related to the
ergy of the spin-isospin conserving Hamiltonian~1!.

Exact values of the total transfer strengths for each m
can be readily deduced from formulas given in Refs.@1,2#.
For the approximate boson mean-field methods, we find

BCS:

Snn~solution A!5
1

2
~N1Tz!S 12

N1Tz

2V D ,

Snp~solution B!5NS 12
N

2V D ,

Number-projected BCS:

Snn~solution A!5
1

2
~N1Tz!S 12

N21

N
N1Tz

2V D ,

Snp~solution B!5NS 12
N21

2V D ,

Number-Tz projected BCS:

Snn~solution A!5
1

2
~N1Tz!S 12

N1Tz22

2V D ,

Snp~solution B!5NS 12
N21

2V D ,

All methods:

Snn~solution B!50,

Snp~solution A!50.

The exact and aproximate results for the pair-trans
strengths are compared in Figs. 1~b! and 1~c!. The exact and
approximate values differ considerably, much more so th

5These mean values are related to the pairing gaps of the res
tive pairing modes@5#. Their usefulness as a rough measure of
number of the respective pairs has also been extensively discu
@1,4,2#.

e

a-
c-
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692 57J. DOBEŠAND S. PITTEL
the energies. For example, forT50 states, all three exac
total transfer strengths are equal@1#. The approximate meth
ods, however, give a zero transfer strength for the mode
is not present in the approximate wave function. Thus, e
though the sum of all transfer strengths—as mirrored in
energy—is quite close to the exact value, its composit
from the various terms of the Hamiltonian may be co
pletely wrong.

E. Fermi strengths

Two other physically interesting observables in the SO~5!
model are the Fermi total strengths

SF
15^T 2T1&,

SF
25^t1T 2&.

These two quantities are related by the Ikeda sum rule

SF
22SF

152Tz .

The exact expression for theSF
1 strength is

SF
1~exact!52d~Tz11!.

The results for the two types of approximate solutions, A a
B, are independent of the specific boson mean-field meth
They are given by

SF
1~solution A!5N2Tz ,

SF
1~solution B!52N.

A comparison of exact and approximate results is given
Fig. 1~d!. We see that the approximate results may dif
substantially from the exact ones, especially for small val
of Tz . This again suggests that even if the approximate w
functions provide reasonable values for energies their qua
may be quite poor for other more-sensitive observables.

F. Overlaps

Another measure of the quality of approximate method
the overlap of the approximate wave functions with the ex
ones. Such a measure is not particularly useful when con
ering the BCS and number-projected BCS approximatio
however, where the approximate wave functions are a
aged over nuclei with different numbers of nucleon pa
and/or differentTz . Therefore, we calculate the overlap
only for the number-Tz projected BCS method. The resul
are illustrated in Fig. 1~e!.

We see that for small values ofTz , the approximate so
lution has very little overlap with the exact solution. It
only for Tz→N that the overlap approaches one. In th
limit, the solution A ~a pure nn condensate! is the exact
ground state of the model system. In the limit of symmet
nuclei, however, the approximate ground-state wave func
is very bad and a more sophisticated procedure is neces
in order to get an acceptable description of the system.
at
n
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III. SO „5… MODEL: FERMION-PAIR APPROXIMATIONS

In this section, we discuss the solution of the SO~5! model
in the original fermion space. While the exact solutions,
BCS solutions, and the isospin-projected BCS solutions@16#
have been discussed before, the effect of number andTz
projection in the BCS approach has to our knowledge ne
been studied.

As noted in Sec. II B, each of the boson mean-field a
proximations that we consider is the analogue of a fermi
pair approximation. The variational wave functions asso
ated with these fermion-pair approximations can be rea
obtained from Eqs.~6!, ~7!, and~8! by replacing the collec-
tive mean-field boson creation operatorg† with a collective
fermion-pair creation operator

G†5G1S1
†1G21S21

† 1G0S0
† ~15!

and the boson vacuumu0) with the fermion vacuumu0&.
Despite the obvious similarities between the boson me

field and the corresponding fermion-pair approximatio
they are not identical. Pauli effects are accommodated v
differently in the two approaches and this can lead to diff
ences in the results. It is only in the limitV→` that the
corresponding bosonic and fermionic results agree. Ne
theless, we expect the main features found in the bo
mean-field analysis to be present in the fermion-pair meth
as well.

Such a conjecture is readily confirmed for the SO~5!
model under investigation. In the fermion-pair approxim
tions, for example, two types of solution likewise occu
There is a solution A corresponding to the n n-̄p p̄ phase
(G050) and a solution B corresponding to the n p-̄ p n̄
phase (G15G2150). Furthermore, as in the boson mea
field treatment,~i! Tz projection removes the degeneracy
the solutions A and B, and~ii ! both solutions are unphysica
for odd-odd nuclei, except in the case ofTz50 where solu-
tion B is relevant.

Simple analytic expressions can be obtained in
fermion-pair approximations for many of the quantities d
cussed in Sec. II. In the fermion BCS, for example, the f
lowing simple expressions obtain:

E~BCS!

5Eexact1gFNS 3

2
2

3N
4V D2

1

2
TzS 11

Tz

2V D2d~Tz11!G ,
Snn~solution A!5

1

2
~N1Tz!S 12

N1Tz

2V
1
N1Tz

2V2 D ,

Snn~solution B!5
N 2

4V2
,

Snp~solution A!5
N 22Tz

2

4V2
,

Snp~solution B!5NS 12
N

2V
1
N

4V2D ,
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57 693BOSON MAPPINGS AND FOUR-PARTICLE . . .
SF
1~solution A!5N2Tz2

N22Tz
2

2V
,

SF
1~solution B!52NS 12

N
2V D .

For the number and number-Tz projected BCS, we have
not obtained closed expressions for all of the quantities
interest, even though it is likely that they too can be deriv
For those cases, the results we present have been obt
numerically. The one quantity for which we have obtain
an analytic expression is the energy of the number-Tz pro-
jected state,

E~BCS,NTz!5Eexact1
g

2
NS 12

Tz

N2
N22Tz

2

2NV D . ~16!

In the right half of Fig. 1, the results of the approxima
fermion-pair methods are shown next to their correspond
boson mean-field results. The fermionic results are in gen
closer to the exact ones than their bosonic counterparts. N
ertheless, the main deficiencies found in the bosonic ana
persist when working directly in the fermion space. Mo
notable are the large discrepancies in the Fermi and t
particle transfer strengths and in the overlaps between
approximate and exact wave functions.

Closer inspection of the results indicates that even for
relatively well-reproduced ground-state energies the appr
mate methods do not capture some important details.
example is the double binding energy difference@17#,

dVnp~N,Z!5
1

4
$@B~N,Z!2B~N22,Z!#

2@B~N,Z22!2B~N22,Z22!#%.

For even-even nuclei in this model, the exact expression
this quantity is

dVnp~N,Z!52
1

4
g, for N5Z,

50, otherwise.

The jump ofdVnp(N,Z) at theN5Z line, which is a persis-
tent feature of experimental data@18#, may be used to isolate
the Wigner term in the binding energy@19#.6

WhendVnp(N,Z) is calculated using the fermion numbe
Tz projected BCS method~16!—the approximation tha
yields the best reproduction of the exact energies—one
tains @2#

dVnp~N,Z!52
1

4V
g,

6Of course, the actual Wigner term may not have its main con
bution coming from isovector pairing, as it does in the SO~5!
model.
f
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irrespective of whetherN5Z or not. Clearly, the physics o
the jump atN5Z is rather subtle and its correct descriptio
needs more sophisticated approximate methods than BC
any of its variants.

Apparently, the standard fermion-pair approximations
not allow for the coexistence of like-particle and neutro
proton pairsin the case of an isospin-conserving Ham
tonian. This results in a very small value of the two-nucleo
transfer strength for the mode not present in the wave fu
tion. As shown recently@5#, all three pairing modes can co
exist, however, when the isospin symmetry of the Ham
tonian is violated. This led to a proposal to introduce
isospin-breaking Hamiltonian, chosen to reproduce at B
level the various pairing gaps in symmetric nuclei, and to u
it in BCS treatments of all nuclei.

We question such a prescription. One can rephrase
prescription of Ref.@5# and look for the parametersGn in the
general pair creation operator~15! that in T50 nuclei give
appropriate two-nucleon transfer strengths~or pairing gaps!
for all three modes. The condition within the SO~5! model is
that all three strengths should be equal. Working in
number-Tz projected BCS approximation and focusing o
the caseV510, N510, we find that this equality can b
achieved by choosingG1

25G21
2 50.2593, andG0

250.4815.
When we then calculate the ground-state energy and
Fermi strength with this same choice of structure coefficie
~for the sameT50 nucleus!, we obtain the results210.71
and 108.6, respectively. These are to be compared with
exact results of265.0 and 0, respectively, calculated usin
the isospin-invariant Hamiltonian. Clearly, the proposed p
scription cannot describe in a unified way the various obse
ables of interest.

We can understand these results as follows. The ferm
pair state just described, namely the one that yields eq
pair-transfer strengths for all three modes, is in fact ve
close to the exact state withmaximalisospinTmax5N,

uNTmaxTz&}PTzS 1

2
S1

†1
1

2
S21

† 1
1

A2
S0

†D Nu0&. ~17!

This suggests that the isospin-breaking procedure propo
in Ref. @5# produces high-isospin admixtures in the grou
state that are too large. This makes questionable its use
ness in describing the ground state of an isospin-conser
Hamiltonian whenTz'0.

It is useful to summarize here the principal findings up
this point in the analysis. It has been argued many times
the ~generalized! BCS method cannot properly describ
neutron-proton pairing in the SO~5! model @5#. The present
results show that this conclusion does not change when n
ber andTz projection are switched on~with variation after
projection!. The deficiencies of these standard fermion
methods for treating pairing are clearly seen in the analy
Furthermore, they can be alternatively seen within the c
text of analogous mean-field boson methods applied follo
ing a boson mapping of the model.

IV. SO„5… MODEL: BEYOND FERMION-PAIR
CORRELATIONS

Since fermion-pair approximations and the correspond
boson mean-field methods show deficiencies when applie

i-
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the ground state of the isovector neutron-proton pair
SO~5! model, we need to consider more sophisticated pro
dures.

A. BCS for boson Hamiltonian

The boson-mapped SO~5! Hamiltonian ~11! contains, in
addition to the dominant linear term, an attractive bos
boson pairing interaction. Two bosons only interact when
a J50 T50 scalar-isoscalar state. A natural first approach
consider for a system dominated by boson pairing is bo
BCS approximation@20#.

In this approach, a variational boson wave function of
form7

uF)}exp~hs1
†1zs†

•s†!u0) ~18!

is considered. A generalized Bogolyubov transformation,

sn
†5usn

†2v s̃n2xd1n , ~19!

is then introduced, with the constraint

u22v251.

The state~18! is the vacuum for quasiboson operators~19! if
the relations

2uz1v50,

uh2x50

are satisfied.8 Constraints on the average number of pairsN
and the average value of the isospinTz give

v25
N2Tz

2Tz13
,

x25Tz .

The energy of the state~18! is then easily calculated. W
present explicitly the result forTz50 only, for which the
energy is

E~BCS!5Eexact1NS 11
1

3
ND . ~20!

An illustrative comparison of the exact and approxima
boson BCS energies is given in the upper part of Fig. 2.
see that the boson BCS theory cannot explain the ener
satisfactorily.

Its failure can be traced to a very large dispersion in
pair number contained in the wave function~18!. For the
model under discussion, the dispersion is given by

7We limit our discussion here to even-even systems.
8In fact, the wave function~6! of Sec. II B can be considered in a

analogous way withv50. We denote the method in the prese
subsection as the boson BCS to distinguish it from the BCS~6! in
the mean-field boson approximation. In the latter, the BCS bra s
is a boson image of the fermion BCS state.
g
e-

-
n
o
n

e

e
ies

e

~DN!25~FuN̂ 2uF!2N 2

5
~N2Tz!~N1Tz13!~8Tz16!

~2Tz13!2
1Tz . ~21!

The results are displayed in the lower part of Fig. 2. As
clearly evident, the dispersion is quite large, especially
small values ofTz .

Some understanding of this result can be obtained by
cusing on the case ofTz50. Then, Eq.~21! is a special case
of a formula for the dispersion associated with the BCS wa
function ~18! for h50 and for pairing in a single level o
degeneracy 2V:

~DN!25N 2/V12N. ~22!

In the case under discussion of an isovectors boson, 2V
53 and

~DN!25
2

3
N~N13!. ~23!

Because of the inverse dependence onV of the dominant
quadratic term in Eq.~22!, the dispersion is quite large a
Tz50.9

te

9Note that in boson BCS theory, as contrasted to fermion B
theory, the linear and quadratic contributions add coherently, giv
a further reason for the large dispersion.

FIG. 2. The exact and boson BCS SO~5! ground-state energie
in units ofg are shown in the upper part of the figure as a funct
of Tz for V510 andN510. The pair-number dispersion in th
boson BCS state is given in the lower part.
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Thus, due primarily to the small dimensionality of th
s-boson space (d53), boson BCS is not an acceptable a
proach for treating boson-boson pairing correlations in t
model. It should be noted, however, that when number
Tz projection are applied to Eq.~18! the exact ground-stat
results are obtained.

B. A second boson mapping

As we saw in Sec. II, a boson mapping followed by
mean-field treatment of the resulting Hamiltonian is an alt
native to a BCS treatment of the original problem. Thus,
will now consider the possibility of implementing a seco
mapping of the problem, from the system ofsn bosons~rep-
resenting fermion pairs! to a new system of bosons that re
resent fermion quartets. We will first develop and apply
ideas to systems withT50 and then subsequently~for rea-
sons to be clarified later! to systems withTÞ0.

1. T50 case

In the boson-mapped SO~5! Hamiltonian ~11! only the
operators

s†
•s†, s̃• s̃, s†

• s̃ ~24!

appear. This set of operators closes under commutation

@s†
• s̃,s†

•s†#522s†
•s†,

@s†
• s̃,s̃• s̃#52s̃• s̃,

@s†
•s†,s̃• s̃#524s†

• s̃16, ~25!

generating the algebra O~2,1!.
In the second boson mapping, the boson space buil

from the threesn bosons is mapped onto a new space built
in terms of a singleJ50 T50 boson, which we denotet.
Whereas thesn bosons represented pairs of the original f
mions, these new bosons represent pairs ofs bosons, or
equivalently quartets of the original fermions. It should
clear at this point that the mapping just outlined can o
give information about states with totalT50.

In more detail, the mapping is constructed such that
commutation algebra of bi-boson operators~24! in the
s-boson space is preserved in thet-boson space. The Dyso
realization of the mapping for the O~2,1! algebra is

s†
•s†→6t†14t†t†t,

s̃• s̃→t,

s†
• s̃→22t†t. ~26!

Here,t† and t denote the creation and annihilation operat
of the bosont.

We obtain after the second boson mapping a U~1! Hamil-
tonian

HBB522gS V1
3

2
2t†t D t†t. ~27!
-
s
d

-
e

e

p
p

-

y

e

s

The eigenfunctions and eigenvalues of this Hamilton
can be simply obtained. The eigenfunctions are condens
of t bosons,utn))10 and the corresponding eigenenergies a

E522gS V1
3

2
2nDn. ~28!

These eigenenergies are exactly equal to the ground-
energies~10! of the original fermion SO~5! Hamiltonian~1!
if the obvious relationn5 1

2N is invoked.
There are several points that should be made before

ceeding to theTÞ0 case.
~1! The exact eigenstateutn)) is in the form of a Hartree-

Bose approximate solution for the HamiltonianHBB .
Equivalently, following the terminology of Sec. II B, we ca
think of it as representing the number-projected BCS
proximation ofHB . Thus, we have confirmed that BCS a
proximation of the mapped HamiltonianHB is an acceptable
way to describe the full correlation structure of the proble
as long as number projection is included.

~2! Clearly, the solutionutn)) involves four-fermion cor-
relations since the bosont itself represents a correlated qua
tet. Thus, we have confirmed the essential role played
four-body correlations in systems involving both like
particle ~nn and pp! pairing correlations and np pairing co
relations.

~3! Lastly, we have demonstrated, through the exam
studied here, the possible usefulness of iterative boson m
pings in accomodating many-particle correlation structur
Considering the difficulty in building quasiparticle metho
that can treat many-particle~e.g., quartet! correlations di-
rectly at the original fermion level, we feel that this could b
an important conclusion.

Of course, we should bear in mind that all of the abo
points have been demonstrated so far forT50 systems only.

2. TÞ0 case

The boson space introduced in the previous subsectio
constructed entirely in terms of theJ50 T50 t boson.
Thus, as noted earlier, the Hamiltonian~27! derived using
the mapping~26! to that space can only provide informatio
on even-N J50 T50 states.

To make possible a more complete analysis, we have
extend the set of operators~24! considered for the secon
boson mapping. If we want to also include nuclei withN
5odd and/orTzÞ0, we have to add to the set of operato
~24! the creation and annihilation operators of thes boson,

s†, s̃ . ~29!

We should thus consider, in addition to Eq.~25!, the com-
mutation relations

@ s̃n ,s†
•s†#522sn

† ,

@ s̃n , s̃• s̃ #50,

10We use double parentheses to denote a state in thet-boson
space.
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@ s̃n ,s†
• s̃ #52 s̃n , ~30!

and their Hermitian conjugates.
The algebra of the operators~24! and ~29! have their

Dyson boson realization on the space formed by the sca
isoscalar bosont ~representing, as before, fermion quarte!
and the scalar-isovector bosonsn ~representing fermion
pairs!.11

The Dyson realization of this extended algebra is

s†
•s†→6t†14t†t†t1s†

•s†24t†s†
•s̃ ,

s̃• s̃→t,

s†
• s̃→22t†t1s†

•s̃ ,

sn
†→sn

†22t†s̃n ,

s̃n→s̃n . ~31!

The ideal space formed by thet ands bosons is larger than
the originals-boson space. Nonphysical~spurious! states are
introduced by the second boson mapping, in addition
those already introduced by the first boson mapping. F
diagonalization of the mapped Hamiltonian in the ideal sp
separates physical states from spurious states, however,
viding eigenvalues and wave function images of the origi
problem.

Applying the second boson mapping~31! to the boson
Hamiltonian~11!, we obtain

HBB52gF N̂~V112N̂!13t†t12t†t†tt22t†ts†
•s̃

1
1

2
s†

•s†t G , ~32!

where we have used the notation

N̂52t†t2s†
•s̃

for the total number of nucleon pairs in the system. Note t
the Hamiltonian~32!, when restricted to states built fromt
bosons, correctly reduces to theT50 Hamiltonian~27!.

Though the Hamiltonian~32! is non-Hermitian~a general
feature of Dyson mappings! with nonzero nondiagonal ele
ments, we can nevertheless easily determine its eigene
gies. In the basis with good isospinT,

ut1/2~N2ns!;snsT)), ns>T,

the Hamiltonian matrix for Eq.~32! has all zero element
below the main diagonal. Therefore, the diagonal matrix
ements coincide with its eigenvalues, which we find to b

11This procedure is analogous to the familiar boson-fermion m
pings. In those mappings, introduced to simultaneously desc
systems with an even number and an odd number of fermions
set of bi-fermion and fermion operators is mapped onto a sp
formed by boson and quasifermion operators.
r-

o
ll
e
ro-
l

t

er-

l-

2gFNS V1
3

2
2

1

2
ND2

1

2
ns~ns11!G .

The lowest eigenvalue, withns5T, corresponds to the
physical state.12 The other eigenstates are nonphysical. T
energies of the physical solutions are in precise agreem
with the exact energies~9! of thevs50 states, as they shoul
be.

The corresponding left eigenvector for the physicalns

5T state is readily found to be

~~ t1/2 ~N2T!;sTTu. ~33!

Note further that the exact left eigenstate is a product o
t-boson condensate and as-boson condensate, precisely th
form of a coupled Hartree-Bose solution.

From the above remarks, we see that all of the conc
sions given at the end of the preceding subsection~for T
50 states! carry over to the more general case. Namely,~i!
number-projected boson BCS approximation following t
first boson mapping is an appropriate method for incorpo
ing the correlations contained in the SO~5! model,~ii ! incor-
porating four-particle correlations within the context
alpha-like clusters is the key to describing the structure
the system, and~iii ! iterative boson mappings are an attra
tive means of accommodating the various correlations c
tained in the model.

C. Wave function in terms of fermion-pair operators

In the previous subsection, we obtained an analytic fo
for the left eigenstates of the SO~5! model in thet2s space
of the second boson mapping. For this particular proble
we can invert the procedure to obtain the corresponding
act fermion wave functions.

The key to the procedure is to focus on the left eigensta
~33! of the second boson Hamiltonian. As can be seen fr
the mapping equations~4!, ~26!, and ~31!, there is a simple
chain of relations that take us from the left fermion eige
states to the left second boson eigenstates, namely

S̃• S̃→ s̃• s̃→t,

S̃n→ s̃n→s̃n . ~34!

We can therefore write the left fermion eigenstate that le
to Eq. ~33! as13

^NTu}^TTu~ S̃• S̃!1/2~N2T!.

Since at the fermion level the right and left eigenstates
conjugates to one another, we can now write the right eig
state as

uNT&}~S†
•S†!1/2~N2T!uTT&.

-
e

he
ce

12For N.V, the conditionT<2V2N must also be taken into
account.

13Note that the normalization of the fermion state cannot be s
ply deduced from the boson state, so that only a proportiona
relation is given.
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Finally, making use of the relation~17!, we obtain for the
exact SO~5! state vectors in terms of fermion pairs

uNTTz&

}PTz
~S†

•S†!1/2~N2T!S 1

2
S1

†1
1

2
S21

† 1
1

A2
S0

†D T

u0&.

~35!

A special case of this relation for the ground states of ev
even nuclei~with T5Tz) and odd-odd nuclei~with T5Tz
11) was given in Ref.@2#. Note that the exact wave func
tions involve a condensate ofS†

•S† J50 T50 quartets and
an isospin-stretched condensate ofJ50 T51 pairs projected
to goodTz .

The above considerations reconfirm what was dem
strated in the previous subsections, namely that four-par
correlations are an essential ingredient for a correct desc
tion of the eigenstates of the neutron-proton pairing SO~5!
model.

V. SO„8… MODEL

A. The model and its boson realization

A second algebraic model that has been used extens
@7,13,4# to study neutron-proton pairing correlations is o
based on the algebra SO~8!. As in the SO~5! model, neutrons
and protons move in a set of degenerate single-particle o
of total degeneracy 4V. In this model, however, they interac
via a sum of an scalar-isovector pairing interactionand a
vector-isoscalar pairing interaction, with the Hamiltoni
taking the form14

H5
g~11x!

2
S†

• S̃1
g~12x!

2
P†

• P̃1gphF•F. ~36!

Here, the operatorSn
† creates the sameL50 S50 J50 T51

isovector pair as in the SO~5! model, the operatorPn
† creates

an L50 S51 J51 T50 isoscalar pair, andFn
m is the

Gamow-Teller operator.
Note that the relative importance of isoscalar and isov

tor pairing in the Hamiltonian~36! is governed by a single
parameterx, which varies from21 ~pure isoscalar pairing!
to 11 ~pure isovector pairing!. The last term in the Hamil-
tonian, a particle-hole force in theT51 S51 channel, is
included to bring the Hamiltonian into closer contact w
more realistic nuclear Hamiltonians, without destroying t
simplicity of the model.

The Hamiltonian~36! is invariant under the group o
SO~8! transformations generated by the three isovector
creation operatorsSn

† , their three conjugate annihilation op
eratorsSn , the three isoscalar pair creation operatorsPm

† ,
their three conjugate annihilation operatorsPm , the three
components of the isospin operatorTn , the three compo-
nents of the spin operatorSm , and the nine components o
the Gamow-Teller operatorFn

m .

14We only consider the isospin-conserving version of the SO~8!
model in this work.
-

-
le
p-

ly

its

-

e

ir

The Dyson boson realization of the SO~8! algebra is con-
structed by mapping its bi-fermion operators onto boso
operators formed from the creation operatorssn

† of a scalar-
isovector bosons andpm

† of a vector-isoscalar bosonp, and

their conjugate annihilation operatorss̃n5(2)12ns2n and
p̃m5(2)12mp2m @21#:

Sn
†→~V2N̂11!sn

†1
1

2
~p†

•p†2s†
•s†! s̃n ,

Pm
†→~V2N̂11!pm

† 1
1

2
~s†

•s†2p†
•p†! p̃m ,

S̃n→ s̃n ,

P̃m→ p̃m ,

Tn→A2@s† s̃ #0n
01 ,

Sm→A2@p† p̃#m0
10 ,

Fn
m→2~pm

† s̃n1sn
† p̃m!. ~37!

Here,

N̂52~s†
• s̃1p†

• p̃ !

is the total boson number operator.
As in the SO~5! model, spurious states are introduced

this mapping. Here too they arise forN.2V @21# and can be
readily identified when a boson basis with good spin a
isospin is employed.

B. Dynamical symmetries of the model

For certain values of its parameters, the SO~8! Hamil-
tonian ~36! exhibits dynamical symmetries. In such cas
the eigenvalues can be obtained analytically. For all ot
parameters, analytic expressions for the eigenvalues ca
be obtained, and numerical diagonalization is required.

The SOT~5! dynamical symmetry limit of the model is
realized whenx51 andgph50. In this case, the Hamiltonian
reduces to Eq.~1! and its ground-state energy is given an
lytically by Eq. ~10!.

The SOS~5! limit is realized for the parametersx521
andgph50. In this case, the exact energies are given by

E52gF SN2
1

2
v tD S V1

3

2
2

1

2
N2

1

4
v tD

2
1

2
„S~S11!2s~s11!…G , ~38!

wheres is the reduced spin andv t is the triplet-pairing se-
niority. The ground state is realized forv t52Tz , s50, and
S50(1) for even-even~odd-odd! systems. Thus, the ground
state energy is

E52gF ~N2Tz!S V1
3

2
2

1

2
N2

1

2
TzD2dG , ~39!
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with d defined as before.
The third dynamical symmetry arises whenx50, namely

when there are equal amounts of isovector and isoscalar
ing. In this case, the Hamiltonian~36! has an SU~4! dynami-
cal symmetry and its exact eigenvalues can be written a

E52
1

4
g@2N~V13!2N22l~l14!#1gph@l~l14!

2S~S11!2T~T11!#, ~40!

with l the usual SU~4! label.
The ground-state solution in this symmetry limit aris

whenl5Tz1d, and the corresponding energy is

E52
1

4
g@2N~V13!2N22Tz~Tz14!2d~2Tz15!#

13gph~Tz1d!. ~41!

C. The first boson-mapped Hamiltonian

Mapping the fermion Hamiltonian~36! onto the space o
s andp bosons leads to the boson Hamiltonian

HB5
g~11x!

2 F ~V112N̂!s†
• s̃1

1

2
~p†

•p†2s†
•s†! s̃• s̃ G

1
g~12x!

2 F ~V112N̂!p†
• p̃

1
1

2
~s†

•s†2p†
•p†! p̃• p̃G1gph@p†

•p† s̃• s̃

1s†
•s† p̃• p̃12s†

• s̃p†
• p̃13N̂#. ~42!

Diagonalization of the boson Hamiltonian~42! is straightfor-
ward and represents an alternative method for exactly s
ing the SO~8! model.

D. Boson mean-field and fermion-pair approximations

It is of interest to consider approximate solutions for t
ground state of this model as well. Here, too, the natu
approximations to look at first are those based either
mean-field boson methods or on the analogous fermion-
approximations.

We will not discuss in detail either the methods or t
conclusions that emerge from these approximate treatme
since they parallel so closely the discussion for the SO~5!
model. Rather, we will just note some of the differences t
show up relative to the SO~5! analysis, as derived from th
earlier more extensive treatment of the SO~8! model in Ref.
@4#.

One of the more interesting new features that emerges
third type of mean-field solution. The solutions A and
discussed in Secs. II and III, of course persist in the SO~8!
analysis. But now a third solution~C! also appears, corre
sponding to a phase with n n̄-p p̄ andT50 n p̄- p n̄ pairs.

As in the SO~5! analysis, there is a partial decoupling
the pairing phases in the mean-field solutions. Specifica
the T51 n p̄- p n̄ phase is absent from solutions A and
ir-

v-

l
n
ir

ts,

t

a

y,
.

This leads to significant deficiencies in the mean-field
scription of Tz'0 nuclei, except when isoscalar pairing
dominant.

E. Beyond fermion-pair correlations: A second boson mapping

The boson mean-field and fermion-pair approximatio
touched on in the previous subsection incorporate fermi
pair correlations. The fact that they are unable to describe
detailed properties of the model suggests the need for a m
sophisticated procedure that incorporates further corr
tions.

1. The T50 S50 case

The only operators that enter the first boson Hamilton
~42! are the three operators~24! of the isovector boson spac
and the three analogous operators

p†
•p†, p̃• p̃, p†

• p̃ ~43!

of the isoscalar boson space. The operators~43! have com-
mutation relations analogous to Eq.~25!. As a consequence
the Hamiltonian~42! exhibits an O~2,1!^ O~2,1! symmetry.
Furthermore, the two-body terms of this Hamiltonian a
precisely in the form of a boson pairing interaction.

As in our treatment of the SO~5! model, we choose to
include the effects of boson pairing~or equivalently four-
fermion correlations! through the use of a second boso
mapping. Furthermore, we follow the same strategy as
Sec. IV, first carrying out the analysis forT50 S50 sys-
tems, and then generalizing.

When dealing withT50 S50 systems, we must ma
onto a boson space defined by two scalar-isoscalar bos
One is thet boson introduced in Sec. IV B, which reflects th
correlations of twos bosons. The second, which we deno
by q, reflects the correlations of twop bosons. The Dyson
realization of the O~2,1!^ O~2,1! algebra contains two parts
The set of operators~24! of the isovector boson space ma
according to Eq.~26!. The set of operators in the isoscal
space map according to the analogous relations

p†
•p†→6q†14q†q†q,

p̃• p̃→q,

p†
• p̃→22q†q. ~44!

Applying the second boson mapping to the Hamiltoni
~42! leads to a U~1!^ U~1! @or SU~2!# Hamiltonian

HBB52g~11x!F S V1
5

2
2N̂D t†t1t†t†tt2

3

2
q†t2q†q†qtG

2g~12x!F S V1
5

2
2N̂Dq†q1q†q†qq

2
3

2
t†q2t†t†tqG1gph@6~q†t1t†q!

14~q†q†qt1t†t†tq!18t†tq†q13N̂#, ~45!

where nowN̂ is given by
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N̂52~ t†t1q†q!.

In general, the problem of the Hamiltonian~45! must be
solved by numerical matrix diagonalization. In the case
the dynamical symmetry limits, however, we can obta
simple analytic solutions.

In the SOT~5! limit, the Hamiltonian matrix in the
ut1/2N2nqqnq)) basis has all zeros below the diagonal. T
same considerations as in Sec. IV B 2 can therefore be
plied. The diagonal elements of the Hamiltonian matrix g
directly the eigenvalues and reproduce the exact result~9! for
the T50 energy when an identificationnq5 1

4 vs is made.
The same is true for the SOS~5! limit, with the roles of the
isospin and spin and also thet- andq-bosons interchanged

To obtain the solution in the SU~4! limit, we first impose
the transformation

r †5
1

A2
~ t†2q†!,

w†5
1

A2
~ t†1q†!, ~46!

and rewrite the Hamiltonian~45! as

HBB52gF1

2 S V1
5

2
2N̂D N̂1

3

2
~r †r 2w†w!1r †r †rr

12r †rw†w1w†w†rr G
14gph@3w†w1w†w†ww2w†w†rr #. ~47!

Working with this Hamiltonian in the basisur 1/2N2nwwnw)),
we recover the exact SU~4! eigenvalues~40!, when an iden-
tification nw5 1

2 l is adopted.

2. General case

The procedure just outlined for carrying out a second
son mapping to thet2s space enables investigations ofN
5evenT50 S50 states only. For a more complete trea
ment, we must appropriately extend the second boson m
ping, in much the same way as we did in Sec. IV B
Namely, we must include, in addition to the sets of operat
~24!, ~29!, and ~43!, the additional one-boson creation an
annihilation operators

p†, p̃. ~48!

The full second boson mapping is now given by Eq.~31!
and
f

p-

-

-
p-
.
s

p†
•p†→6q†14q†q†q1p†

•p†24q†p†
•p̃,

p̃• p̃→q,

p†
• p̃→22q†q1p†

•p̃,

pn
†→pn

†22q†p̃n ,

p̃n→p̃n , ~49!

where p denotes the additional vector-isoscalar bos
needed to complete the ideal boson space.

This ideal boson space—formed from thet, s, q, andp
bosons—contains an unphysical subspace. Since the se
t-s andq-p are separated and since we have already de
mined the physical states~33! in the t-s sector, we find that
the physical basis of the full problem is of the form

ut1/2~N2T2S!2nqqnq; sTT;pSS)), S1T<2V2N.
~50!

The second boson image of the SO~8! Hamiltonian is
straightforwardly obtained and in general can be solved
matrix diagonalization. We will discuss here only the d
namical symmetry limits, where analytical solutions can
obtained as in Sec. IV B 2.

In the SOT~5! limit, for example, the Hamiltonian take
the form

HBB52gF ~V112N̂!~2t†t2s†
•s̃ !13t†t12t†t†tt

22t†ts†
•s̃1

1

2
s†

•s†t23q†t22q†q†qt

12q†tp†
•p̃2

1

2
p†

•p†t G , ~51!

with

N̂52~ t†t1q†q!2s†
•s̃2p†

•p̃.

In the basis~50!, the exact energies~9! are obtained when the
identification 2nq1S5 1

2 vs is made. The left vectors of the
basis~50! give the left physical eigenvectors in this limit.

The same arguments can be applied to the SOS~5! limit.
The only difference is that we must interchange the role
the isospin with that of the spin, and likewise the role of t
t- ands- bosons with that of theq- andp-bosons.

In the SU~4! limit, we again apply the transformatio
~46!, after which the second boson Hamiltonian takes
form
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HBB52gF1

2
~V112N̂!N̂13r †r 1r †r †rr 12r †rw†w

1w†w†rr 2r †r ~s†
•s̃1p†

•p̃ !2w†r ~s†
•s̃2p†

•p̃ !

1
A2

4
~s†

•s†2p†
•p†!r G

1gphF6w†w26r †r 14w†w†ww24w†w†rr 13N̂

24w†w~s†
•s̃1p†

•p̃ !14w†r ~s†
•s̃2p†

•p̃ !

1
1

A2
~s†

•s†1p†
•p†!w2

1

A2
~s†

•s†2p†
•p†!r

12s†
•s̃p†

•p̃G . ~52!

Again, the SU~4! energies~40! are easily obtained by work
ing in the basis

ur 1/2~N2T2S!2nwwnw;sTT;pSS)), ~53!

with 2nw1S1T5l. The left vectors of the basis~53! give
the left physical eigenvectors in the SU~4! limit.

F. Wave function in terms of fermion-pair operators

As we have just seen, the left physical eigenvectors of
second boson-mapped space take a very simple form in
three dynamical symmetry limits. As in Sec. IV C, we c
use this fact to find the corresponding wave functions
terms of fermion-pair operators. To do this, we must use
chains~34! as well as the analogousP-sector chains

P̃• P̃→ p̃• p̃→q,

P̃m→ p̃m→p̃m . ~54!

.

Proceeding as in Sec. IV C, we find that in the SOT~5!
limit the wave functions are given by

uNTTzSSzvs&}PTz
PSz

~S†
•S†!1/2~N2T21/2vs!

3~P†
•P†!1/2~1/2vs2S!

3S 1

2
S1

†1
1

2
S21

† 1
1

A2
S0

†D T

3S 1

2
P1

†1
1

2
P21

† 1
1

A2
P0

†D S

u0&, ~55!

wherePSz
is the projection operator that picks states w

spin-projectionSz .
An analogous expression holds in the SOS~5! limit with

the roles of isospin and spin and also ofS† and P† inter-
changed.
e
he

n
e

In the SU~4! limit, we must again take into account th
transformation~46!. This then leads to

uNTTzSSzl&}PTz
PSz

~S†
•S†2P†

•P†!1/2~N2l!~S†
•S†

1P†
•P†!1/2~l2S2T!

3S 1

2
S1

†1
1

2
S21

† 1
1

A2
S0

†D T

3S 1

2
P1

†1
1

2
P21

† 1
1

A2
P0

†D S

u0&. ~56!

In the case of the ground-state solutions, the wave fu
tions associated with the three dynamical symmetry lim
can be unified. For even-evenN5Z nuclei, for example, all
three can be written as

uNT50Tz50S50&}~aS†
•S†2bP†

•P†!N/2u0&. ~57!

In the SOT(5) limit, a51 andb50. In the SOS(5) limit,
a50 andb51. And, in the SU~4! limit, a5b51/A2.15

Similarly, we can write the ground-state wave functio
for even-evenN.Z nuclei by adding the appropriate numb
of isovector nn pairs to theN5Z solution ~57!, viz:

uNT5TzTzS50&

}~aS†
•S†2bP†

•P†!~N2Tz!/2S1
†Tzu0&. ~58!

Finally, for odd-odd nuclei, we must add to Eq.~58! ei-
ther an isoscalar or an isovector np pair, depending on
symmetry limit. In particular, in the SOT(5) and SU~4! lim-
its, the ground state is given by

uNT5Tz11TzS50&

}~aS†
•S†2bP†

•P†!~N2Tz21!/2S1
†TzS0

†u0&. ~59!

Analogously, in the SOS(5) and SU~4! limits, it is given by16

uNT5TzTzS51&

}~aS†
•S†2bP†

•P†!~N2Tz21!/2S1
†TzP†u0&. ~60!

In the SO~8! model, the quartet creation operator that re
resents an alpha cluster takes the form@13#

1

2A3V~V12!
~S†

•S†2P†
•P†!.

We see, therefore, that in the SU~4! limit the ground state
involves as many alpha-correlated structures as possible

Outside the dynamical symmetry limits, the above form
for the ground-state wave function are not exact. Nevert
less, when we consider them as variational wave functi

15Here, the normalizationa21b251 is used.
16In the SU~4! limit, there is a degeneracy in the ground states

odd-odd nuclei, explaining why we give two distinct ground-sta
solutions.
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~with a andb as variational parameters!, we find that at the
minimum they have almost perfect overlap with the ex
wave functions. Figure 3 illustrates the behavior ofa2 as a
function of the parameterx of the SO~8! Hamiltonian for a
few representative cases.17

We first discuss the results in the limitgph50, as illus-
trated in Figs. 3~a!–3~c!. In this limit, we are in the pure
isovector phase atx51 and in the pure isoscalar phase ax
521. Furthermore, the transition between the two pha
becomes sharper asV increases and/or the number of pa
decreases. In passing from the one phase to the other, w
course pass through the SU~4! phase. Note, however, tha
this is done smoothly. There is no plateau at the SU~4! phase,
suggesting no special stability associated with the maxim
alpha-correlated state.

When a particle-hole force is turned on@see Fig. 3~d!#,
some interesting changes show up. In particular, the p
isoscalar and isovector phases are never realized. Fur
more, the transition through the SU~4! phase is less abrup
This latter remark may have relevance to real nuclear s
tems, which are most likely near to—but not precisely a
the SU~4! limit. Our results suggest that even away from t
SU~4! limit, there may be significant alpha-particle transf
strength, as long as there is a sufficiently strong particle-h
force present.

Finally, we close this section by reiterating the key co
clusion of our analysis of the SO~8! model. Namely, in the
SO~8! model—a prototypical model that involves np pairin
correlations on the same footing as nn and pp pairing co

17In the odd-odd case, the form~59! applies forx>0 and the form
~60! for x<0.

FIG. 3. The variational parametera2 in the approximate SO~8!
ground-state wave functions~54!–~57! as a function of the Hamil-
tonian parameterx that controls the balance between isoscalar a
isovector pairing. The behavior is shown for~a! various shell de-
generaciesV with fixedN56 andTz50, ~b! variousNpair5N with
V510 andTz50, ~c! various Tz with fixed V510 andN5Tz

16, and~d! various values of the particle-hole strengthgph in the
T51,S51 channel with fixedN56, Tz50, andV510.
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lations—the ground-state wave functions exhibit essen
four-particle correlations. The fermion SO~8! ground state is
constructed in such a way that the maximal possible num
of fermions form correlated four-particleS50 T50 struc-
tures and the rest form like-particle pairs and/or an np p
and provide the isospin and spin of the system.

VI. DISCUSSION

We have studied neutron-proton pairing correlatio
within the framework of two simple and solvable nucle
models. In our analysis, we made extensive use of bos
mapping techniques. Since the bosons introduced by
~first! mapping represent correlated fermion pairs, such
approach provides a quite convenient framework in which
investigate pairing features in fermion systems.

With that in mind, we first studied the isovector-pairin
SO~5! model, both within the framework of boson mea
field methods and also through the use of genuine ferm
pair approximations. The latter represent generalizations
the standard procedures to treat the pairing between
nucleons. We find that these approaches fail to describe
tails of neutron-proton pairing, in the absence of isospin p
jection. In particular, the BCS solution does not allow for t
coexistence of like-particle and neutron-proton pairs. As
result, two-nucleon transfer strengths are not given correc
even though the approximate energies are quite close to
exact values. Tiny details of neutron-proton pairing corre
tions, as reflected in double binding energy differences,
also not well reproduced. Number andTz projection, by
themselves, are unable to improve the situation.

A nice feature of the boson mapping procedure is tha
provides detailed information on the boson-mapped Ham
tonian, information that can yield useful clues as to how
introduce the necessary additional correlations. The bo
Hamiltonian that emerged from a mapping of the SO~5! fer-
mion Hamiltonian contained an attractive pairing force b
tween bosons, suggesting that correlations between pai
bosons could be the key missing ingredient to an impro
description of the system. After first exploring the possib
use of boson BCS approximation to accommodate these
ditional correlations, we then turned to an alternative tre
ment based on a second boson mapping. A simple des
tion of the neutron-proton pairing problem was achieved
terms of the second bosons, confirming the importance
boson-boson~or equivalently pair-pair! correlations. Invert-
ing the method, we were also able to obtain in closed fo
the fermion wave functions of the SO~5! model expressed in
terms of the fundamental fermion-pair operators. The wa
functions that emerged clearly showed four-nucleon corre
tions.

We then carried out a similar study of a somewhat rich
model involving neutron-proton pair correlations based
the algebra SO~8!. We focused our analysis on the dynamic
symmetry limits of this model, where the group structu
could be used to obtain simple closed expressions. Here
we found that a description limited to fermion-pair~or boson
mean-field! correlations was insufficient and that fou
particle correlations were needed to accurately reproduce
exact results.

Thus, from these model calculations, we conclude t

d
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702 57J. DOBEŠAND S. PITTEL
correlations involving pairs of fermion pairs, or alternative
quartets of fermions, are important in the regime of neutr
proton pairing. It is not sufficient only to pair nucleon
Whenever possible, two nucleon pairs will couple togethe
form a T50 S50 ~alpha-particle-like! structure.

Qualitatively, this conclusion can be understood as f
lows. The smallest ‘‘cluster’’ that can simultaneously a
commodate two-neutron pairing correlations, two-prot
pairing correlations and neutron-proton pairing correlatio
is one that involves four nucleons—two neutrons and t
protons. Of course, when there is an excess of particles
given type, not all particles can form these maximally cor
lated alpha-like structures. Instead, they remain in li
particle and/or neutron-proton pairs, appended to the alp
like condensate.

The above conclusion is not limited, however, to cases
which all pairing modes contribute significantly. In th
SOS~5! limit of the SO~8! model, for example, which only
involves isoscalar np pairing, the ground-state wave func
involves a condensate ofP†

•P† pairs and thus contains four
particle correlations. There, however, the fact that the gro
state involves such a quartet structure is a direct reflectio
angular momentum restoration.

It is important to note, however, that the four-particle co
related structures that emerge are not exact alpha parti
Nor are they necessarily the most alpha-like structures av
able within the model. In the SO~8! model, for example, the
ground state is dominated by the maximal alpha structur
the SU~4! dynamical symmetry limit only.

A challenging problem that still remains is: What is
good way to incorporate such four-fermion correlations in
nuclear many-body approximation schemes? As no
above, boson BCS following a boson mapping does not s
to be an acceptable procedure for incorporating four-nucl
correlations in such models; fluctuations in the particle nu
ber are simply too large. Another possible approach wo
be to include the additional correlations through projecti
Isospin projection, in particular, would seem to be importa
In the simple SO~5! model, for example, it leads to the exa
solution. It still remains, however, to develop an appropri
ky
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isospin projection technique and to apply it to realis
nuclear structure problems.

We have put forth two ideas that could perhaps prov
the basis for an improved theory with four-particle corre
tions. One possibility would be to start from a trial groun
state-wave function in the form of Eqs.~57!–~60!. The S†

and P† are now collective pair creation operators, who
structure ideally should be determined variationally~or, less
ideally, from an analysis of simple two-body systems!. Such
an approach is a generalization of the generalized-senio
scheme for like nucleons, which is known to be connected
number-projected BCS theory.

A second possibility worth further investigation is the u
of iterative boson mappings. We have seen that two bo
mappings, coupled with a Hartree-Bose treatment in the s
ond boson space, is a way to build a number-projected the
involving four-nucleon correlations. In the current studie
where spurious states could be readily identified, such
approach proved extremely useful. Whether it will contin
to prove useful in more realistic applications, howev
where spurious states cannot be so readily separated,
remains to be investigated.

Other truncation schemes in the shell model should a
be studied. Our analysis of the SO~8! model suggests that th
usual truncation schemes built in terms of separate dyna
cal symmetry limits for neutrons and protons@the SU~2! se-
niority limit, for example# should not be of much use in th
general neutron-proton pairing problem. A truncation in t
SO~5! or SO~8! seniority quantum numbers, which woul
then include the necessary isospin correlations, could
haps be useful.
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