PHYSICAL REVIEW C VOLUME 57, NUMBER 2 FEBRUARY 1998

Boson mappings and four-particle correlations in algebraic neutron-proton pairing models
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Neutron-proton pairing correlations are studied within the context of two solvable models, one based on the
algebra S@b) and the other on the algebra @D In both of these models, particles interactis 0 pairs only.
Boson-mapping techniques are applied to these models and shown to provide a convenient methodological tool
both for solving such problems and for gaining useful insight into general features of pairing. We first focus on
the SA5) model, which involves generalizeébi=1 pairing. Neither boson mean-field methods nor fermion-
pair approximations are able to describe in detail neutron-proton pairing in this model. The analysis suggests,
however, that the boson Hamiltonian obtained from a mapping of the fermion Hamiltonian contains a pairing
force between bosons, pointing to the importance of boson-b@soequivalently four-fermioncorrelations
with isospinT=0 and spinS= 0. These correlations are investigated by carrying out a second boson mapping.
Closed forms for the fermion wave functions are given in terms of the fermion-pair operators. Similar tech-
niques are applied—albeit in less detail—to the($0nodel, involving a competition betweér=1 andT
=0 pairing. Conclusions similar to those of the GDanalysis are reached regarding the importance of
four-particle correlations in systems involving neutron-proton pairi§§556-28138)05002-X]

PACS numbds): 21.60.Fw, 21.60.Jz, 21.30.Fe

[. INTRODUCTION models can be very useful. Several such models, containing a
semirealistic representation of the different modes of pairing,
The residual interaction between the nucleons in a nucleusave been constructd®,7]. These models allow for exact
is expected to contain a strong neutron-proton pairing comsolution and simple examination of various aspects of ap-
ponent on the basis of isospin-invariance arguments. Practproximate treatments. Furthermore, they seem to reflect
cal manifestations of neutron-proton pairing have provermany of the key features of pairing that show up in more
elusive, however, in large part because most of the nuclaiealistic shell-model calculatiori4].
studied to date contain a significant neutron excess. In such In the present paper, we employ the technique of boson
nuclei, the neutrons and protons near the Fermi surface oecnappings[8] to study pairing effects in these models. The
cupy different valence shells and thus cannot effectively exbasic idea of a boson mapping—as traditionally
ploit the neutron-proton pairing interaction. Moreover, asimplemented—is to map bi-fermion operators onto boson
shown recently1,2], even when the active neutrons and pro-operators in such a way as to preserve the physics of the
tons occupy the same valence shell, they cannot effectivelgriginal fermion problem. In principle, the original fermion
build neutron-proton pair correlations except in the very narproblem can be completely solved within the boson space. In
row window of N~Z. realistic applications, however, the boson mapping must be
The development of radioactive beam facilities, now tak-combined with approximation techniques.
ing place at many laboratories worldwide, promises to Boson mappings not only provide a relatively simple
change the experimental situation dramatically. With thesenethodology for treating the original fermion problem, but
new facilities, it should be possible to accessNa# Z nuclei  also can shed light on pairing correlations and on the appli-
up to °%n. In many of the heavied~Z proton-rich nuclei, cability of pair approximations at the fermion level. The
the neutron-proton pairing degree of freedom is expected tbosons are images of fermion pairs. Therefore, if the map-
come into significant play. For this reason, renewed attentioping does not result in a simple description in terms of the
is now being devoted to the theoretical aspects of neutrorbasis bosons, there would correspondingly not be a simple
proton pairing. Sincdull shell-model calculations are fea- description in terms of fermion pairs.
sible only for a limited set of nuclei, approximate methods Boson-mapping techniques may also be useful in an ex-
are needed to study in detail such collective features. Historitended sense, by providing a natural methodology for incor-
cally, the method of choice has involved a generalization oporating correlations involving more than just two particles.
the usual BCS treatment of pairing between like nucleongn the neutron-proton pairing models to be discussed, inspec-
[3,4]. Unfortunately, this approach does not seem able tdion of the boson-mapped Hamiltonian suggests a pair col-
provide a correct description of many features of neutronlectivity between the bosons introduced in the mapping. This
proton pair correlationg5]. Isospin projection seems to be a boson pair collectivity can then be treated with a second
promising avenue to an improved thedfy, but up to now it  boson mapping9], whereby bi-boson operators are mapped
has not been implemented. onto new bosons representing quartets of the original fermi-
In studying the effects of neutron-proton pairing, simpleons. The original fermion problem can then be rephrased in
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the language of these new bosons. A simple description in
terms of theseglquarte} bosons would confirm the impor- STST:E (_)VSIStV'
tance of the associated four-fermion correlated structures.
The paper is organized as follows. We first consider the

SQ(5) model ofL =0 monopole-isovector pairing. In Sec. Il, B. Approximate boson mean-field methods
we br!efly.discus.s the model and its boson mapping a}nd then Boson mappings provide an alternative technique for
examine 1n detail seve_ral v_a_lrlants of t_)oson _mean-ﬂe_ld apéolving a fermion problem. Diagonalizing the mapped
proximations. The applicability of fermion-pair approxima- . iy nian in the ideal boson spagehere possiblewould
xjgpspszg;hgfntﬁteugg)”:nsggf i!llplgrfitrar%.eg/’ai dsfﬁgnrilgosfnyi_eld all of the eigenvgl_ues and.the boson images of all

. ; o . eigenvectors of the original fermion problem. Note, how-
bi-boson (four-fermion structures is investigated. We then

. . . ever, that in the boson space spurious states may occur.
tum to the S@B) model with both isoscalar and isovector These are boson states with no counterparts in the original

t&rmion space that arise as a pure artifact of the mapping. In
addressed as for the $) model, but without as much de- . I s . e
tail. Finally, Sec. VI summarizes the key conclusions of thephysmally realistic problems, where it is impossible to diag

work and spells out some issues for future consideration onalize the mapped Hamiltonian in the full boson space,
P " these spurious states cannot be readily removed from the

problem. In the S@) model, however, this is not the case.
. SO(5) MODEL: BOSON MEAN-FIELD METHODS Here it is possible to diagonalize exactly the mapped Hamil-
tonian. Furthermore, it can be shown that the spurious states
only arise for N>2() and that they all have isospif
The S@5) model is perhaps the simplest tool to meaning->2() —N/2. Thus, by focusing our analysis on systems with

fully investigate neutron-proton pairing. In this model, a sys-N<2(), we can be sure that spurious boson states do not
tem of N nucleons occupying a set of degenerate singlecontaminate the physics of interest.

A. The SO(5) model and its boson realization

particle orbits with total degeneracy (M=2%(2j+1) In the present study, we also treat the dynamics of the
Interact via an isovector pairing interaction, boson problem using approximate methods. By comparing
: = with the exact results, we can assess the usefulness of these
H=gS"S, D approximate methods in capturing the dominant collective
dynamics in the presence of pair correlations.
where We begin by considering boson mean-field techniques.
The starting point is to introduce a mean-field bogoas a
STZEE Jf[aﬂjl,zaﬂjl,z]om @ linear combina_tion of the basis bosons. The creation operator
V24 00w » for the mean-field boson can thus be expressed as
f_ o ot t t
~ v'=y1S1tv_1S_1t+ ¥0Sp- 5)
S,,Z(—)liys,,,, (3) 1°1 1°-1 0~0
and the sum ovef includesj =1+ % andj=I—L. From this mean-field boson, several approximate varia-

tional states can be considered. Minimization of the energy
gsf these variational states subject to the relevant constraints
¥ : " L efines possible boson mean-field approximation procedures,
S, the three conjugate pair annihilation operatBs and each of which is the natural analogue of a fermion variational

the three qomponents of the isospin qper&[oﬂ'hig makes ._procedure. We will denote each boson variational procedure
the analysis of the model extremely simple and it is for this,

hat it has b q v | studi %/ the corresponding standard fermion terminoldgy.
reason that it has been used recently in several studies of \, \he hoson analogue of the BCS method, for example,
relevance to neutron-proton pairipg,5,2.

AR the variational state is
A Dyson boson realization of the $8&) algebra has been
constructed in Ref.10]. For the isovector pairing model, the
boson space is constructed in terms of a scdlar@ S=0

J=0) isovector T=1) bosons,, and the mapping takes the
form [2] with constraints on the number of bosdiasie-half the num-
ber of fermion$

The Hamiltonian(1) is invariant under the group of 8
tranformations generated by the three pair creation operato

|BCS)xexp( 7y")|0), (6)

1
t _ | BRIP4 <
S,—=(Q=N+1)s,— 5s'-8's,, (BCYN/2|BCS =N

§VH'§V, and on thez-component T, of the isospin
T,—\2[s"S]g; - 4 (BCYT|BCY =T,.

Here,V'= —s'. S is the boson number operator. In these and
all subsequent expressions, we use the standard notation fotAll of these procedures can be equivalently formulated in terms
the scalar product, of a coherent-state theory, as in Rgf1].
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The boson analogue of number-projected BCS is the When the Hamiltoniar{1l) is used in the variational ap-
Hartree-Bose procedure, whereby the variational state is gfroximations described in the preceding subsection, only two

the form of a boson condensate kinds of solutions can occur. The first, which we denote as
A, has y,=0; the second, denoted by B, hags=vy_,=0,
|BCS\) = y™|0) (M yy=13 ° g B

In the BCS case, with trial staté), the solutions A and B
are degenerate fofF,=0, whereas only solution A applies
(BCSMT5|BCSN)=T,. for T,>0. Note that this is precisely what was found in the
generalized BCS treatment of Réfl]. The variational en-
The next level of mean-field approximation we considerergy for these solutions is
involves the numbef-, projected BCS variational state,

|BCSNT,) =Py y™0). (8 E(BCS) = Eexact™ 9

with the single constraint

3 1
SN= 5T, 8(T,+1)

Here, Pr_ projects the boson condensate onto a state with Adding number projection via the trial stat@) leaves

definiteTzz. many properties of the soluti¢g) unchanged. The solutions
Finally, if we were to apply, in addition to number aig A and B are still degenerate fdr,=0. And, forT,>0, only

projection, full isospinT projection, the exact S@®) state the solution A applie_s. There is a change in the variational

would be realizedas long as the probe function has a non-€nergy, however, which now becomes

zero overlap with the exact state

1+ Tz
N

}—gﬁ(Tz—l— 1).
(12)

17T
E(BCSN) =Eexact gA{l— SNV
C. Energies
We now compare the energies arising at the various levels _ .
of boson mean-field approximation with the exact ground-Note that fQFTZ—>M the approximate energy at this level of
state energies of the $8 Hamiltonian (1). We consider approximation approaches the exact result, as expected for a

systems with an even number of nucleons only. degenerate-orbit pairing model with one type of nucleon.
The exact eigenenergies for a system whihnucleon When imposingT, projection as well, some new features
pairs are given by appear. For even-even nuclei, for examglg projection re-
moves the degeneracy of the solutions A and B, the solution
E——qgl[ A= L Wasls EJ\/’— 1 A giving the lower energy. Thus, for even-even nuclei, the
9 2Us 2 27V aUs ground state solution is of the form A with variational energy

. (13

1 1 T,
~STT+)-t(t+1)], © E(BCSMZ>=Eexact+g§N( 1-

whereuvg is the singlet-pairing seniority artdis the reduced Here, too, forT,— N, the approximate result approaches the
isospin. exact result, as clearly it should.

We are especially interested in the ground state of the For odd-odd nuclei, on the other hand, the solution A
system, which is realized far;=0 andt=0. The ground- disappears. Clearly, an odd-odd system must contain at least
state energy is then given by oneT,=0 (sp) boson, and such components are not present

3 1 1 in solution A.
_ In fact, problems with the solution A in odd-odd nuclei
Eexac _Q[A{ Q+5- EN) ~ Tl D)= a4 1) already show up at the level of number-projected BCS ap-
(10) proximation, though not as transparently. For an odd-odd
nucleus withT,=N—1, the number-projected variational
where §=0 for even-even T=T,) systems and 1 for odd- energy[see Eq(12)] is lower than the exact enerdy.

odd (T=T,+1) systems. _ For the odd-odd,=0 nucleus, the number-projected so-
Applying the Dyson boson mapping}) to the S@5)  ytjon is thus of the form B and already has gobgl Fur-
Hamiltonian(1) leads to the boson Hamiltonian thermore, the variational energy at this level of approxima-
tion is

n ~ 1 _
Hg=—g A/’(Q+1—J\/)+EST-ST'§-S . (11)

E( BCS»NTZZ 0) =Eexact™ g(N_ 1).

Much the same Hamiltonian was derived in Rdf2] using  For the odd-oddr,>0 nucleus, there is no numb&g-pro-

the Marumori prescription. The only difference is that thejected variational solution from the above-discussed class of
Hamiltonian derived there allows for higher-seniority statestrial functions.

outside our.=0 subspace.

3This notation is in correspondence with REf].
2Throughout the present paper, we understand the projection as*The same effect is seen in the fermion generalized BCS calcula-
performed before variation. tions of Ref.[4].
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boson mean field fermion—pair approx. model, there are not many such possibilities. The pair opera-

T T T T LT T
o BCS o BCS
—-20 P r v N, T, proj
_40

—60

gnn

snP
T

sl (@] ]

— T tors multipled by 1{/Q give the normalized two-nucleon

- = N proj AT & N proj 1 transfer strengths of the respective gdi8]. The mean val-
ues of the product of pair operators may then be connected
with the summed strengths for two-nucleon pick-up from a
given statd [14],

1]
q % Nii

S
f

(N=1F[ =S| NV,i)I%, (14)

1
Ja

and similarly for S™ and SPP°> Since two-neutron-transfer
reactions provide valuable information on nn pairing corre-
lations[15], it is expected that np transfer will analogously
be sensitive to the neutron-proton-pairing mode. The sum of
the three total transfer strengths is simply related to the en-
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FIG. 1. The exact and BCS $8) ground-state energids in
units of g, two-particle transfer strength8™ and S™, the Fermi
strengthsS; , and overlaps of exact and BCS wave functions are
shown as a function of, for Q =10 andN=10. The results of the
boson mean-field approximations and the fermion-pair approxima-
tions are displayed in the left and right parts of the figure, respec-
tively. The exact results are denoted by circles, the BCS results by
squares, the number projected BCS results by triangles pointing up,
and the numbel-, projected BCS results by triangles pointing
down.

A comparison of the variational energies obtained at the
various levels of approximation discussed above with the
exact ground-state energies is given in Fig) 1Two points
are immediately evident from the figure. First, as expected,
the successive restoration of symmetries improves the agree-
ment with the exact results. Second, the variational energies,
independent of the specific mean-field approximation, agree
quite well with the exact values. This can be readily under-
stood from the structure of the boson Hamiltonidd). In
this Hamiltonian, the first term only depends &f) and its
contribution to the variational energy for states with a given
number of bosons is not dependent on the form of the wave
function. Moreover, the largest contribution to the variational
energy from the second termgs'-s's.S in Eq. (11) is

Exact values of the total transfer strengths for each mode

0 R I =N can be readily deduced from formulas given in R¢is2].
e For the approximate boson mean-field methods, we find

BCS:

1 N+T,
20 )

SPsolution B=A{ 1- 51 |
(solution B = 5q )

Number-projected BCS:

1
S"(solution A) = E(./\/—i- T,)

N=1N+T,
N 20

S®(solution B— A 1— o+
(solution B = RRCTouE

NumberT, projected BCS:

1
S"(solution A) = §(N+ TZ)( 1-

" solut _1N ./\/+TZ—2)
S (soutlonA)—E( +T,) 1_T )
S solut M1 N—-1

(solution B = RECTORE

All methods:
S™M(solution B =0,
S™(solution A =0.

The exact and aproximate results for the pair-transfer

—1gN 2 for all the above-discussed solutions. As a consestrengths are compared in Figgbjland Xc). The exact and
guence, the ground-state energy is not a particularly sensitivepproximate values differ considerably, much more so than

observable for assessing the quality of the various approxi-
mate methods, at least for this model.

D. Two-particle transfer strengths

SThese mean values are related to the pairing gaps of the respec-
tive pairing modeg5]. Their usefulness as a rough measure of the

To assess the quality of the different variational solutionspumber of the respective pairs has also been extensively discussed
we must consider other observables as well. In th€550 [1,4,2].
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the energies. For example, far=0 states, all three exact Ill. SO (5) MODEL: FERMION-PAIR APPROXIMATIONS

total transfer strengths are eqliz]. The approximate meth-

; In this section, we discuss the solution of the(S5Onodel
ods, however, give a zero transfer strength for the mode that . : . .
in the original fermion space. While the exact solutions, the

is not present in the approximate wave function. Thus, VeIl ~o solutions. and the isospin-projected BCS solutidit

though the sum of all transfer strengths—as mirrored in th ave been discussed before, the effect of number Bnd

energy—is quite close to the exact value, its composition. = .~ >~ "
fromg%/he va?ious terms of the Hamiltonian may bg COm_prOJectlon in the BCS approach has to our knowledge never
been studied.

pletely wrong. As noted in Sec. Il B, each of the boson mean-field ap-
proximations that we consider is the analogue of a fermion-

E. Fermi strengths pair approximation. The variational wave functions associ-
Two other physically interesting observables in them0  ated with these fermion-pair approximations can be readily
model are the Fermi total strengths obtained from Eqs(6), (7), and(8) by replacing the collec-
tive mean-field boson creation operatgr with a collective
SE=(T T, fermion-pair creation operator
S (T, r'=r,sl+r_,s",+1ys} (15)
and the boson vacuuf®) with the fermion vacuunO).
These two quantities are related by the Ikeda sum rule Despite the obvious similarities between the boson mean-
field and the corresponding fermion-pair approximations,
SF— S =2T,. they are not identical. Pauli effects are accommodated very
differently in the two approaches and this can lead to differ-
The exact expression for tl’&i Strength is ences in the results. It is only in the liml—« that the
corresponding bosonic and fermionic results agree. Never-
St (exach=28(T,+1). theless, we expect the main features found in the boson
mean-field analysis to be present in the fermion-pair methods
The results for the two types of approximate solutions, A and® well.

Such a conjecture is readily confirmed for the (50
odel under investigation. In the fermion-pair approxima-
tions, for example, two types of solution likewise occur.

S¢ (solution A=N—T,, There is a solution A corresponding to the rpp phase

(I'p=0) and a solution B corresponding to the Apn
phase [';=I"_;=0). Furthermore, as in the boson mean-
field treatment(i) T, projection removes the degeneracy of
the solutions A and B, an(i) both solutions are unphysical
A comparison of exact and approximate results is given irfor odd-odd nuclei, except in the case bf=0 where solu-
Fig. 1(d). We see that the approximate results may differtjon B is relevant.
substantially from the exact ones, especially for small values simple analytic expressions can be obtained in the
of T,. This again suggests that even if the approximate wav@ermion-pair approximations for many of the quantities dis-

functions provide reasonable values for energies their qualit¢ussed in Sec. II. In the fermion BCS, for example, the fol-
may be quite poor for other more-sensitive observables.  |owing simple expressions obtain:

B, are independent of the specific boson mean-field methho.1
They are given by

St (solution B=2\.

F. Overlaps E(BCS

Another measure of the quality of approximate methods is 3 3 1 T,
the overlap of the approximate wave functions with the exact = Eexactt 9| V| 5~ %f) 5T I+ 55|~ 8T +1)],
ones. Such a measure is not particularly useful when consid-
ering the BCS and number-projected BCS approximations, 1 NAT. NaT
however, where the approximate wave functions are aver- gy gojytion A)= = (NV+T,)| 1— L z|
aged over nuclei with different numbers of nucleon pairs 2 2Q 20?2
and/or differentT,. Therefore, we calculate the overlaps
only for the numbefF, projected BCS method. The results N2
are illustrated in Fig. (). S"(solution B) = E

We see that for small values af,, the approximate so-
lution has very little overlap with the exact solution. It is -
only for T,—N that the overlap approaches one. In this : N==T;
. . : S"P(solution A) = ————
limit, the solution A (a pure nn condensatés the exact 402
ground state of the model system. In the limit of symmetric

nuclei, however, the approximate ground-state wave function NN
is very bad and a more sophisticated procedure is necessary S"(solution =M 1— =+ —|,
in order to get an acceptable description of the system. 20 4072
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—T§ irrespective of whetheN=2Z or not. Clearly, the physics of
50 the jump atN=2Z is rather subtle and its correct description
needs more sophisticated approximate methods than BCS or
any of its variants.
+ . _ Apparently, the standard fermion-pair approximations do
Sr (solution B)_ZN( 1= E) not allow for the coexistence of like-particle and neutron-
proton pairsin the case of an isospin-conserving Hamil-

For the number and numb@t; projected BCS, we have tonian This results in a very small value of the two-nucleon
not obtained closed expressions for all of the quantities ofransfer strength for the mode not present in the wave func-
interest, even though it is likely that they too can be derivedtion. As shown recently5], all three pairing modes can co-
For those cases, the results we present have been obtain@¢st, however, when the isospin symmetry of the Hamil-
numerically. The one quantity for which we have obtainedtonian is violated. This led to a proposal to introduce an

an analytic expression is the energy of the nunibgpro-  isospin-breaking Hamiltonian, chosen to reproduce at BCS
jected state, level the various pairing gaps in symmetric nuclei, and to use

it in BCS treatments of all nuclei.
g T, ; We question such a prescription. One can rephrase the
E(BCSNT,) = Egyacit 5% 1- N m) . (16)  prescription of Ref[5] and look for the parametels, in the
general pair creation operat@5) that in T=0 nuclei give
i i ) appropriate two-nucleon transfer strengtbs pairing gaps
In the right half of Fig. 1, the results of the approximate ¢, 5| three modes. The condition within the @Dmodel is
fermion-pair methods are shown next to their corresponding,a+ ail three strengths should be equal. Working in the

boson mean-field results. The fermionic results are in genera), pert projected BCS approximation and focusing on
closer to the exact ones than their bosonic counterparts. Neygre case(Z)=10 N=10, we find that this equality can be

ertheless, the main deficiencies found in the bosonic analysgchieved by choosingTZ—Fz —0.2593. andl'2=0.4815
1_ _1_ . y O_ . .

persist when working directly in the fermion space. MOStWhen we then calculate the ground-state energy and the

nota}ble are the large d|screpan0|es in the Fermi and twolfermi strength with this same choice of structure coefficients
particle transfer strengths and in the overlaps between th&or the sameT=0 nucleus, we obtain the results-10.71

approximate and_exact wave funct_|on_s. and 108.6, respectively. These are to be compared with the
Closer inspection of the results indicates that even for the . :
. . exact results of~65.0 and 0, respectively, calculated using
relatively well-reproduced ground-state energies the approxiz_ . S . S
mate methods do not capture some important details Aﬁhe isospin-invariant Hamiltonian. Clearly, the proposed pre-
. -ap! np " "7scription cannot describe in a unified way the various observ-

example is the double binding energy differené],

ables of interest.

1 We can understand these results as follows. The fermion-

8Vog(N,Z)=S{[B(N,Z)—B(N-22)] pair state just described, namely the one that yields equal
4 pair-transfer strengths for all three modes, is in fact very

close to the exact state withaximalisospinT .=V,

N

1 1
For even-even nuclei in this model, the exact expression for |J\/'Trm.,l,(TZ><><73TZ ESIJr ESJLpL —Sg [0). (17
this quantity is \/E

St (solution A=N—T,—

—[B(N,Z—2)-B(N-22Z—-2)]}.

This suggests that the isospin-breaking procedure proposed
in Ref. [5] produces high-isospin admixtures in the ground
state that are too large. This makes questionable its useful-
ness in describing the ground state of an isospin-conserving
Hamiltonian whenT ,~0.
) ) o _ It is useful to summarize here the principal findings up to
The jump of6V,,(N,Z) at theN=Z line, which is a persis-  this point in the analysis. It has been argued many times that
tent fe_ature of experlmeqtal _d;{tbs], may bse used to isolate {ye (generalizell BCS method cannot properly describe
the Wigner term in the binding energ9]. _ neutron-proton pairing in the §6) model[5]. The present
When 6V, (N,Z) is calculated using the fermion number- yagyits show that this conclusion does not change when num-
T, projected BCS method16)—the approximation that per andT, projection are switched ofwith variation after
yields the best reproduction of the exact energies—one olyrgjection. The deficiencies of these standard fermionic
tains[2] methods for treating pairing are clearly seen in the analysis.
Furthermore, they can be alternatively seen within the con-
SV, (N.Z)=— —g text of analogous mean-field boson methods applied follow-
e 407 ing a boson mapping of the model.

1
OVng(N,Z)=— Zg, for N=2,

=0, otherwise.

IV. SO(5) MODEL: BEYOND FERMION-PAIR

6, . . . . CORRELATIONS
Of course, the actual Wigner term may not have its main contri-

bution coming from isovector pairing, as it does in the (50 Since fermion-pair approximations and the corresponding
model. boson mean-field methods show deficiencies when applied to
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the ground state of the isovector neutron-proton pairing o0k _]
SQ(5) model, we need to consider more sophisticated proce-

dures. - i

—20 L |

A. BCS for boson Hamiltonian [ = -

The boson-mapped $8) Hamiltonian (11) contains, in —40 + —

addition to the dominant linear term, an attractive boson- L i
boson pairing interaction. Two bosons only interact when in

aJ=0 T=0 scalar-isoscalar state. A natural first approach to —60 - I
consider for a system dominated by boson pairing is boson

BCS approximatiori20]. N i

In this approach, a variational boson wave function of the
form’ 0.8 |- m
Z N . i
|®)cexpps;+¢s'-sh)|0) 1 >

Z 0.6 s

is considered. A generalized Bogolyubov transformation, L D ]

ol=usl—vs,— x4y, (19 0.4 BT

| | | | | 1
is then introduced, with the constraint 0 2 4 6 8 10
ul—v?=1. T

VA
The statg18) is the vacuum for quasiboson operat(it9) if

the relations FIG. 2. The exact and boson BCS &Dground-state energies

in units ofg are shown in the upper part of the figure as a function
2u{+v=0 of T, for Q=10 and N=10. The pair-number dispersion in the
' boson BCS state is given in the lower part.

unp—x=0 N
(AN?=(DIN?P)—N?

are satisfied.Constraints on the average number of paifs
Y P _(N=T)(N+T,+3)(8T,+6) .

and the average value of the isosgingive T,. (21
(2T ,+3)2 ‘
, N-T,;
) The results are displayed in the lower part of Fig. 2. As is
clearly evident, the dispersion is quite large, especially for
xX2=T,. small values ofT,.

Some understanding of this result can be obtained by fo-
The energy of the statél8) is then easily calculated. We cusing on the case df,=0. Then, Eq(21) is a special case
present explicitly the result fof ,=0 only, for which the of a formula for the dispersion associated with the BCS wave
energy is function (18) for =0 and for pairing in a single level of
degeneracy 2:

1
E(BCY= Eexact"'A/( 1+ §N . (20 (AN)ZZNZ/Q+ 2N (22

An illustrative comparison of the exact and approximate|y the case under discussion of an isovectdnoson, Z)
boson BCS energies is given in the upper part of Fig. 2. We- 3 gnq

see that the boson BCS theory cannot explain the energies
satisfactorily. 2
Its failure can be traced to a very large dispersion in the (ANY2==N(N+3). (23
pair number contained in the wave functi¢b8). For the 3
model under discussion, the dispersion is given by
Because of the inverse dependence(brof the dominant
guadratic term in Eq(22), the dispersion is quite large at

- : : T,=02
"We limit our discussion here to even-even systems. z

8In fact, the wave functioii6) of Sec. Il B can be considered in an
analogous way withv=0. We denote the method in the present
subsection as the boson BCS to distinguish it from the B&Sn Note that in boson BCS theory, as contrasted to fermion BCS
the mean-field boson approximation. In the latter, the BCS bra stattheory, the linear and quadratic contributions add coherently, giving
is a boson image of the fermion BCS state. a further reason for the large dispersion.



57 BOSON MAPPINGS AND FOUR-PARTICE . .. 695

Thus, due primarily to the small dimensionality of the  The eigenfunctions and eigenvalues of this Hamiltonian
s-boson spaced=3), boson BCS is not an acceptable ap-can be simply obtained. The eigenfunctions are condensates

proach for treating boson-boson pairing correlations in thiof t bosons]t"))*° and the corresponding eigenenergies are
model. It should be noted, however, that when number and

T, projection are applied to Eq18) the exact ground-state B 3
results are obtained. E=-29| Q+5—njn. (28)
B. A second boson mapping These eigenenergies are exactly equal to the ground-state

. . energieq10) of the original fermion SC) Hamiltonian(1)
As we saw in Sec. Il, a boson mapping followed by ai iha obvious relatiom= 1A/ is invoked.

mean-field treatment of the resulting Hamiltonian is an alter-  tpare are several points that should be made before pro-
native to a BCS treatment of the original problem. Thus, Weceeding to ther £ 0 case.

will now consider the possibility of implementing a second (1) The exact eigenstaie")) is in the form of a Hartree-
mapping of thg problgm, from the systems)fbosons(rep- Bose approximate solution for the HamiltoniaHgg.
resenting feymmn paijso a new system of bosons that rep- Equivalently, following the terminology of Sec. Il B, we can
_resent fermion quar_tets. We will first develop and apply thethink of it as representing the number-projected BCS ap-
ideas to systlen? WII'{ﬂf=0 and then s_urllasequent(for '€a-  proximation ofHg. Thus, we have confirmed that BCS ap-
sons to be clarified lateto systems withr 0. proximation of the mapped Hamiltonidtg is an acceptable
way to describe the full correlation structure of the problem,

1. T=0 case L
as long as number projection is included
In the boson-mapped 38 Hamiltonian (11) only the (2) Clearly, the solutiorit")) involves four-fermion cor-
operators relations since the bosdritself represents a correlated quar-
L _ tet. Thus, we have confirmed the essential role played by
s'.s", 55, 'S (24 four-body correlations in systems involving both like-

particle (nn and pp pairing correlations and np pairing cor-
appear. This set of operators closes under commutation, relations.

(3) Lastly, we have demonstrated, through the example

[s"-5,s"-s"]=~2s5', studied here, the possible usefulness of iterative boson map-
pings in accomodating many-particle correlation structures.
[s1.3,5.5]=25"5, Considering the difficulty in building quasiparticle methods
that can treat many-particlée.g., quartet correlations di-
[sT-s'5.8]=—4s"5+86, (250 rectly at the original fermion level, we feel that this could be
an important conclusion.
generating the algebra(®1). Of course, we should bear in mind that all of the above

In the second boson mapping, the boson space built upoints have been demonstrated so farffer0 systems only.
from the threes, bosons is mapped onto a new space built up
in terms of a singlel=0 T=0 boson, which we denote 2. T#0 case

Whereas thes, bosons represented pairs of the original fer-  The boson space introduced in the previous subsection is
mions, these new bosons represent pairss djosons, or  constructed entirely in terms of thé=0 T=0 t boson.
equivalently quartets of the original fermions. It should beThys, as noted earlier, the Hamiltoni&27) derived using
clear at this point that the mapping just outlined can onlythe mapping26) to that space can only provide information
give information about states with tot@i=0. on evenA' J=0 T=0 states.

In more detail, the mapping is constructed such that the Tg make possible a more complete analysis, we have to
commutation algebra of bi-boson operatoi®4) in the  extend the set of operatof@4) considered for the second
s-boson space is preserved in thboson space. The Dyson poson mapping. If we want to also include nuclei with
realization of the mapping for the(@,1) algebra is =odd and/orT,#0, we have to add to the set of operators
- N fot (24) the creation and annihilation operators of thboson,
s'-s'—6t'+4t't't,

sf, s. (29
S-S—t,
We should thus consider, in addition to Eg5), the com-
st. 5 — ottt (26) mutation relations

T o at— _ oot
Here,t" andt denote the creation and annihilation operators [s,.8"-s']==2s,,

of the bosort. o
We obtain after the second boson mapping(&) WHamil- [s,,s-s]=0,
tonian

Hgs=—29

Q-+ §—tTt)tTt 27) Owe use double parentheses to denote a state int-theson
space.
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T T
[s,,s' s] S,, (30) g

Q > 1]\/ ! 1
T fam NNt
and their Hermitian conjugates.

The algebra of the operatof@4) and (29) have their The lowest eigenvalue, witth,=T, corresponds to the
Dyson boson realization on the space formed by the scalaphysical staté? The other eigenstates are nonphysical. The
isoscalar bosom (representing, as before, fermion quartets energies of the physical solutions are in precise agreement
ands)t[lle scalar-isovector bosan, (representing fermion with the exact energig®) of thev =0 states, as they should
pairs. be.

The Dyson realization of this extended algebra is The corresponding left eigenvector for the physiogl

_ =T state is readily found to be
s'.s'—6tT+4t"tTt+ o' oT—4t'e" o,
((tH2ND; T (33)
S:s—t, . .
Note further that the exact left eigenstate is a product of a
t-boson condensate andraboson condensate, precisely the
form of a coupled Hartree-Bose solution.
From the above remarks, we see that all of the conclu-

st.s——2tft+o'. 0,

Tt ot . : i

s,—0,~2t0,, sions given at the end of the preceding subsectfon T
o =0 stateg carry over to the more general case. Namély,
S,—0,. (31 number-projected boson BCS approximation following the

. i first boson mapping is an appropriate method for incorporat-
The ideal space formed by theand o bosons is larger than g the correlations contained in the @model, (ii) incor-
the originals-boson space. Nonphysidapurious states are  porating four-particle correlations within the context of
introduced by the second boson mapping, in addition tQypha-like clusters is the key to describing the structure of
those already introduced by the first boson mapping. Fuljhe system, andiii) iterative boson mappings are an attrac-

diagonalization of the mapped Hamiltonian in the ideal spacgye means of accommodating the various correlations con-
separates physical states from spurious states, however, pigined in the model.

viding eigenvalues and wave function images of the original

problem. C. Wave function in t f fermion-pai t
Applying the second boson mappiri§1) to the boson - Yvave function in ferms ot fermion-pair operators
Hamiltonian(11), we obtain In the previous subsection, we obtained an analytic form

for the left eigenstates of the $&) model in thet— o space
A A - of the second boson mapping. For this particular problem,
Hes= _Q[N(QJF1_M+3tTt+2tTtTtt_2tTt‘7T' o we can invert the proceduprl?a tg obtain thepcorrespofnding ex-
act fermion wave functions.

The key to the procedure is to focus on the left eigenstates
(33) of the second boson Hamiltonian. As can be seen from
the mapping equation@), (26), and(31), there is a simple
where we have used the notation chain of relations that take us from the left fermion eigen-

states to the left second boson eigenstates, namely

1
+ =o' o't

Sot-ott), 32

N=2t"t—o". & o~
S-S—s-s—t,
for the total number of nucleon pairs in the system. Note that
the Hamiltonian(32), when restricted to states built frotm §,—s,—0,. (34)
bosons, correctly reduces to tfie=0 Hamiltonian(27).
Though the Hamiltoniait32) is non-Hermitian(a general We can therefore write the left fermion eigenstate that leads

feature of Dyson mappingsvith nonzero nondiagonal ele- to Eq.(33) as®
ments, we can nevertheless easily determine its eigenener- o
gies. In the basis with good isospin (NT](TT|(S-S)V2N=D),

[tV2N"N0): 60 T)),  n,=T, Since at the fermion level the right and left eigenstates are
conjugates to one another, we can now write the right eigen-
the Hamiltonian matrix for Eq(32) has all zero elements state as
below the main diagonal. Therefore, the diagonal matrix el-
ements coincide with its eigenvalues, which we find to be |NT)oc (S SHV2N=T|TT),

This procedure is analogous to the familiar boson-fermion map- %For />, the conditionT<2Q — A must also be taken into
pings. In those mappings, introduced to simultaneously describaccount.
systems with an even number and an odd number of fermions, thel®Note that the normalization of the fermion state cannot be sim-
set of bi-fermion and fermion operators is mapped onto a spacply deduced from the boson state, so that only a proportionality
formed by boson and quasifermion operators. relation is given.
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Finally, making use of the relatiofi7), we obtain for the The Dyson boson realization of the &Dalgebra is con-
exact S@5) state vectors in terms of fermion pairs structed by mapping its bi-fermion operators onto bosonic

operators formed from the creation opera’rﬂ}mf a scalar-
INTT,) isovector bosors and pL of a vector-isoscalar bosqmn and
1 1 1 T their conjugate annihilation operatoss,=(—)*"*s_, and

- + + t D o=(=)1" .

Py (ST hHY2ND 5Si+5Sh+ ESO |0). P.=(=)"""p-, [21]:

(35

ST~ (Q-N+1)st+ %(p*~ pf—st.ss,,
A special case of this relation for the ground states of even-
even nuclei(with T=T,) and odd-odd nuclefwith T=T, A 1 _
+1) was given in Ref[2]. Note that the exact wave func- Pl—(Q-N+1)p)+ E(ST-ST—DT- PP,
tions involve a condensate & -S" J=0 T=0 quartets and
an isospin-stretched condensatelef0 T=1 pairs projected -~ o~
to goodT,. S, =Sy,

The above considerations reconfirm what was demon-

strated in the previous subsections, namely that four-particle ’ISM—>D,L,
correlations are an essential ingredient for a correct descrip-
tion of the eigenstates of the neutron-proton pairing B0 T,—2[s"s]g;,
model.
S,—\2[p"P1L0,
V. SO(8) MODEL
A. The model and its boson realization F,— _(pLEVJF SZEM)- 37

A second algebraic model that has been used extensivep{ere,
[7,13,4 to study neutron-proton pairing correlations is one
based on the algebra &). As in the S@5) model, neutrons N==(s"-5+p"p)
and protons move in a set of degenerate single-particle orbits
of total degeneracy. In this model, however, they interact s the total boson number operator.

via a sum of an scalar-isovector pairing interactamd a_ As in the S@5) model, spurious states are introduced by
vector-isoscalar pairing interaction, with the Hamiltonian this mapping. Here too they arise filr>2€) [21] and can be
taking the forni* readily identified when a boson basis with good spin and

isospin is employed.

1+Xx _ 1-x
Lo 900 ¢ = o ' )

5 PT.P+gmF F (36

B. Dynamical symmetries of the model

Here, the opera’[(ﬁz creates the same=0S=0J=0T=1 For certain values of its parameters, the (80OHamil-

isovector pair as in the S6) model, the operatoP’ creates tonian (36) exhibits dynamical symmetries. In such cases,
an L=0 S=1 J=1 T=0 isoscalar pair, and* is the the eigenvalues can be obtained analytically. For all other

Gamow-Teller operator parameters, analytic expressions for the eigenvalues cannot

Note that the relative importance of isoscalar and isovecP® °bta'”e$" and numerical diagonalization is required.
tor pairing in the Hamiltoniar(36) is governed by a single The SO(5) dynamical symmet.ry limit of the m.odell IS
parameteix, which varies from— 1 (pure isoscalar pairing realized wherx=1 andgph:O. In this case, the Hamﬂtoman
to +1 (pure isovector pairing The last term in the Hamil- reduces to Eq(1) and its ground-state energy is given ana-
tonian, a particle-hole force in th€E=1 S=1 channel, is lytically by Eqg. (.19)‘. .
included to bring the Hamiltonian into closer contact with The SC¥5) limit is realized for the parameters= — 1

more realistic nuclear Hamiltonians, without destroying the@d9pn=0- In this case, the exact energies are given by

simplicity of the model. 1 3 1 1
The Hamiltonian(36) is invariant under the group of E:—gHJ\/— Uy Q+———N——vt)
SQO(8) transformations generated by the three isovector pair 2 2 2 4

creation operatorS' , their three conjugate annihilation op- 1

eratorsS,, the three isoscalar pair creation operatBrs, - E(S(SJr 1)—s(s+1))

their three conjugate annihilation operatd?g, the three

components of the isospin operat®y, the three compo- \wheres is the reduced spin ang is the triplet-pairing se-

nents of the spin operatd,, and the nine components of pjority. The ground state is realized fof=2T,, s=0, and

the Gamow-Teller operataF, . S=0(1) foreven-ever{odd-odd systems. Thus, the ground-
state energy is

: (39

we only consider the isospin-conserving version of the&O0

model in this work. E=-g

(N_ Tz)

0.3 1,1
+5- N 5T =5, (39



698 J. DOBESAND S. PITTEL 57
with & defined as before. This leads to significant deficiencies in the mean-field de-
The third dynamical symmetry arises whes 0, namely  scription of T,~0 nuclei, except when isoscalar pairing is

when there are equal amounts of isovector and isoscalar paidominant.
ing. In this case, the Hamiltoniai36) has an S) dynami-
cal symmetry and its exact eigenvalues can be written as E. Beyond fermion-pair correlations: A second boson mapping

The boson mean-field and fermion-pair approximations

1
E=— -g[2MQ+3)~AN?=N(A+4)]+gpd N\ +4) touched on in the previous subsection incorporate fermion-
4 pair correlations. The fact that they are unable to describe the
—S(S+1)-T(T+1)] (40)  detailed properties of the model suggests the need for a more
’ sophisticated procedure that incorporates further correla-
with A the usual S label. tions.

The ground-state solution in this symmetry limit arises el
when\=T,+ 8, and the corresponding energy is 1. The T=0 5=0 case
The only operators that enter the first boson Hamiltonian
1 (42) are the three operato(24) of the isovector boson space

E=- Zg[ZN(Q+3)_M_T2(T2+4) — (2T, +95)] and the three analogous operators

+ 30T+ 0). (4D p"-p', p-p, PP (43)

of the isoscalar boson space. The opera(d8 have com-
mutation relations analogous to E@5). As a consequence,

Mapping the fermion Hamiltoniaf36) onto the space of the Hamiltonian(42) exhibits an @2,1)® O(2,1) symmetry.

s andp bosons leads to the boson Hamiltonian Furthermore, the two-body terms of this Hamiltonian are
precisely in the form of a boson pairing interaction.

As in our treatment of the S®) model, we choose to
include the effects of boson pairin@r equivalently four-
fermion correlations through the use of a second boson
(Q+1-Mp'-p mapping. _Furthermore, we follow thg same strategy as in

Sec. IV, first carrying out the analysis fdr=0 S=0 sys-

tems, and then generalizing.

+g.p"p's-S When dealing withT=0 S=0 systems, we must map
p ' .

onto a boson space defined by two scalar-isoscalar bosons.
One is the boson introduced in Sec. IV B, which reflects the
correlations of twas bosons. The second, which we denote
Diagonalization of the boson Hamiltonid&#2) is straightfor- :)ga(lqi'za:tei:)lﬁ%? ttr?: (EQO rlr%zgz)zni) (;flg\évg)r: (c):?)?]rssi.n?tl\?vng:l?tg.
yvard and represents an alternative method for exactly SOIVThe set of operator(;‘24) of tﬁe isovector boson space map
ing the S@8) model. according to Eq(26). The set of operators in the isoscalar
space map according to the analogous relations

C. The first boson-mapped Hamiltonian

_9(1+x)
B2

~ ~ 1 _—~
(Q+1-AM)st-s+ E(pT~pT—sT-sT)s~ s

g(1—x)
T

1 -
+5(s"s'=p'-php-p

+s'-sTp-p+2s"-sp’-p+3A47]. (42)

D. Boson mean-field and fermion-pair approximations

L . . . p'-p'—6qT+4q'q'q
It is of interest to consider approximate solutions for the '
ground state of this model as well. Here, too, the natural

approximations to look at first are those based either on P-pP—q,
mean-field boson methods or on the analogous fermion-pair = :
approximations. p-p——29°Q. (44)

We will not discuss in detail either the methods or the
conclusions that emerge from these approximate treatment
since they parallel so closely the discussion for thg 30
model. Rather, we will just note some of the differences that
show up relative to the SG) analysis, as derived from the Hgg=—g(1+x)

Applying the second boson mapping to the Hamiltonian
42) leads to a 1)@ U(1) [or SU2)] Hamiltonian

5 3
Q+= —N) tft+tTtTee— Eq*t— q'qTqt

earlier more extensive treatment of the (80Omodel in Ref. 2
[4]. 5
One of the more interesting new features that emerges is a -g(1-x)|| Q+ E_N a'q+q'q'qq
third type of mean-field solution. The solutions A and B,
discussed in Secs. Il and lll, of course persist in th€&0 3
analysis. But now a third solutiofC) also appears, corre- - Et*q—t*t*tq +96(q"t+t'g)
sponding to a phase with n-p pandT=0 n p- p n pairs.
As in the S@5) analysis, there is a partial decoupling of +4(qTqTQt+tTtth)+8tthTq+3f\/], (45)

the pairing phases in the mean-field solutions. Specifically,
the T=1 np-p n phase is absent from solutions A and C. where now\ is given by
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N=2(tTt+q'q). pt-pt—=6q'+4q'q'q+ =t =T —4aq'#" 7,

In general, the problem of the Hamiltoni&45) must be P-p—0q,
solved by numerical matrix diagonalization. In the case of
the dynamical symmetry limits, however, we can obtain
simple analytic solutions. pt-p——-2q'q+=" 7,
In the SO'(5) limit, the Hamiltonian matrix in the
|t/2V=nqqna)) basis has all zeros below the diagonal. The _
same considerations as in Sec. IV B 2 can therefore be ap- pI—> TrI—ZqTTrV,
plied. The diagonal elements of the Hamiltonian matrix give
directly the eigenvalues and reproduce the exact r€guior
the T=0 energy when an identificationq=%v5 is made. P, (49
The same is true for the S{B) limit, with the roles of the

isospin and spin and also theandg-bosons interchanged. . _
To obtain the solution in the SW) limit, we first impose where 7 denotes the additional vector-isoscalar boson

the transformation needed to complete the ideal boson space.
This ideal boson space—formed from ther, g, and 7
bosons—contains an unphysical subspace. Since the sectors
1 t-o andq-7 are separated and since we have already deter-
rf=—(t"'-q"), mined the physical stat¢83) in thet-o sector, we find that
V2 the physical basis of the full problem is of the form

1 [tY2N=T=9=nggng: o TT: 759)), S+T<2Q0-N.
wh=—(tT+q"), (46) (50
V2

The second boson image of the @D Hamiltonian is
and rewrite the Hamiltonia45) as straightforwardly obtained and in general can be solved by
matrix diagonalization. We will discuss here only the dy-

namical symmetry limits, where analytical solutions can be

1 PP obtained as in Sec. IV B 2.
HBB:_Q{E or E_N)NJF S (rr-wiw) ey In the SO'(5) limit, for example, the Hamiltonian takes
the form
+2I’TI’WTW+WTWTrr}
Hee=—0g| (Q+1-A)(2tTt—o' o)+ 3tTt+ 2t Tttt
+4gPF[3WTW+WTWTWW— WTWTI'I‘]. (47 BB g ( N)( ag'-o)

—2t'tot o+ EO'T' o't—3q't—2q'q gt
Working with this Hamiltonian in the basis 2V~ "ww"w)), 2
we recover the exact SY) eigenvalue440), when an iden-

tification n,,= 2\ is adopted. +2q"tw’ - %w*- 't (51)

2. General case
The procedure just outlined for carrying out a second boWith
son mapping to thé— o space enables investigations &f
=evenT=0 S=0 states only. For a more complete treat-
ment, we must appropriately extend the second boson map-
ping, in much the same way as we did in Sec. IVB 2.
Namely, we must include, in addition to the sets of operatorsn the basig50), the exact energig®) are obtained when the
(24), (29), and (43), the additional one-boson creation and identification 21;+S= v is made. The left vectors of the
annihilation operators basis(50) give the left physical eigenvectors in this limit.
The same arguments can be applied to the (S0limit.
_ The only difference is that we must interchange the role of
p', p. (48)  the isospin with that of the spin, and likewise the role of the
t- and o- bosons with that of theg- and 7-bosons.
In the SU4) limit, we again apply the transformation
The full second boson mapping is now given by E2f) (46), after which the second boson Hamiltonian takes the
and form

N=2t"t+q'q)— o' o— =" 7.
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1 AR toyptet ot
Hgg=—¢ §(Q+1—/\/)./\/+3r r+rfrfrr+2rrw'w

+wiwirr —rfr(o"- o+ 7" T —wir(oT-o— o 7)

t t

+T(0'T-0' —at ahr

+gpn BW'W—6rTr + 4w'wiww—4w'w'rr + 347

—w'w(e"- o+ at- T +aw'r (ot o— 7" 7

1 1

+—(o"ot+at- ahw— —=(c"- o= a" - 7H)r
2! 2!

+20" ont 7|, (52

Again, the SUW4) energieg40) are easily obtained by work-
ing in the basis
|rl/2(/\f7T78)7nWWnW;O.TT; WSS)), (53)

with 2n,,+S+T=N\. The left vectors of the basi&3) give
the left physical eigenvectors in the 8 limit.

F. Wave function in terms of fermion-pair operators
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In the SU4) limit, we must again take into account the
transformation(46). This then leads to

INTT,SS\)xPr Ps (ST ST—PT. pT) V20 (ST o

+pt.phr20-s-1)

X

.
1,1
ESI+§ST1+—S$)

«[Eptslpt Lot S0 56
2Pt Pt 5P 0).  (56)

In the case of the ground-state solutions, the wave func-
tions associated with the three dynamical symmetry limits

can be unified. For even-evéh=Z nuclei, for example, all
three can be written as

|INT=0T,=0S=0)x=(aS" S"—gPT.PHN2|0). (57

In the SA(5) limit, a=1 andB=0. In the SO(5) limit,
a=0 andB=1. And, in the SW4) limit, a=pB=1/,2.1°

Similarly, we can write the ground-state wave function
for even-everN>Z nuclei by adding the appropriate number
of isovector nn pairs to thél=2Z solution (57), viz:

|NT=T,T,S=0)
OC(aST' ST_IBPT, pT)(N—Tz)/ZSITz|O>_ (58)

Finally, for odd-odd nuclei, we must add to E&8) ei-

As we have just seen, the left physical eigenvectors of thener an isoscalar or an isovector np pair, depending on the

second boson-mapped space take a very simple form in thg mmetry limit. In particular, in the SW5) and SW4) lim-
three dynamical symmetry limits. As in Sec. IV C, we canits the ground state is given by

use this fact to find the corresponding wave functions in

terms of fermion-pair operators. To do this, we must use the

chains(34) as well as the analogou’-sector chains

PP 5-a,

(54)
Proceeding as in Sec. IV C, we find that in the '$8)

limit the wave functions are given by

INTT,SSvg)e Py Ps (ST 82N T-11200

X( PT_ PT) 1/2(1/2vg—9)

.
1,1 1
Es{+§s*1+—sg)

X
V2
11 o1 )\®
X EP1+§P_1+EPO |O>, (55

where Ps, is the projection operator that picks states with

spin-projectionsS, .

An analogous expression holds in the %8§) limit with
the roles of isospin and spin and also $f and P' inter-
changed.

INT=T,+1T,S=0)
x(aS'- ST gpPt. PHWV-T-V25T2gll0y.  (59)
Analogously, in the S&5) and SW4) limits, it is given by®
INT=T,T,S=1)
x(aS'-S'—gPT. PHW-T- D25 TpT|0) . (60)

In the S@8) model, the quartet creation operator that rep-
resents an alpha cluster takes the fqd8]

(S'-sT—pPT.PT).

1
2y3Q(Q+2)

We see, therefore, that in the 8 limit the ground state
involves as many alpha-correlated structures as possible.
Outside the dynamical symmetry limits, the above forms
for the ground-state wave function are not exact. Neverthe-
less, when we consider them as variational wave functions

SHere, the normalization®+ g2=1 is used.

18n the SU4) limit, there is a degeneracy in the ground states of
odd-odd nuclei, explaining why we give two distinct ground-state
solutions.
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lations—the ground-state wave functions exhibit essential
four-particle correlations. The fermion $8) ground state is
constructed in such a way that the maximal possible number
of fermions form correlated four-particl8=0 T=0 struc-
tures and the rest form like-particle pairs and/or an np pair
and provide the isospin and spin of the system.

VI. DISCUSSION

We have studied neutron-proton pairing correlations
within the framework of two simple and solvable nuclear
models. In our analysis, we made extensive use of boson-
mapping techniques. Since the bosons introduced by the
(first) mapping represent correlated fermion pairs, such an
approach provides a quite convenient framework in which to
investigate pairing features in fermion systems.

With that in mind, we first studied the isovector-pairing
SQ(5) model, both within the framework of boson mean-
field methods and also through the use of genuine fermion-

FIG. 3. The variational parameter in the approximate S@®) pair approximations. The latter represent generalizations of
ground-state wave functior(64)—(57) as a function of the Hamil- the standard procedures to treat the pairing between like
tonian parametex that controls the balance between isoscalar andiucleons. We find that these approaches fail to describe de-
isovector pairing. The behavior is shown f@ various shell de- tails of neutron-proton pairing, in the absence of isospin pro-
generacie$) with fixed N’'=6 andT,=0, (b) variousN ;=N with jection. In particular, the BCS solution does not allow for the
Q=10 andT,=0, (c) various T, with fixed 2=10 andN=T,  coexistence of like-particle and neutron-proton pairs. As a
+6, and(d) various values of the particle-hole strenggh, in the  result, two-nucleon transfer strengths are not given correctly,
T=1S=1 channel with fixedvV=6, T,=0, andQ = 10. even though the approximate energies are quite close to the
exact values. Tiny details of neutron-proton pairing correla-
tions, as reflected in double binding energy differences, are
Giso not well reproduced. Number arfig projection, by
themselves, are unable to improve the situation.

A nice feature of the boson mapping procedure is that it
provides detailed information on the boson-mapped Hamil-
st >0y : tonian, information that can yield useful clues as to how to
trated in Figs. 8)-3(c). In this limit, we are in the pure jnoquce the necessary additional correlations. The boson
isovector phase at=1 and in t_h_e pure isoscalar phasexat yamiltonian that emerged from a mapping of the(Sder-
=—1. Furthermore, the transition between the two phaseg,ion Hamiltonian contained an attractive pairing force be-
becomes sharper 43 increases and/or the number of pairs yween hosons, suggesting that correlations between pairs of
decreases. In passing from the one phase to the other, we ghsons could be the key missing ingredient to an improved
course pass through the 8 phase. Note, however, that gescription of the system. After first exploring the possible
this is done smoothly. There is no plateau at theBphase, e of boson BCS approximation to accommodate these ad-
suggesting no special stability associated with the maximallyjitional correlations, we then turned to an alternative treat-
alpha-correlated state. _ _ ment based on a second boson mapping. A simple descrip-

When a particle-hole force is turned ¢see Fig. 8)],  {jon of the neutron-proton pairing problem was achieved in
some interesting changes show up. In particular, the purgyms of the second bosons, confirming the importance of
isoscalar and |§Qvector phases are never .reahzed. Furth%bson-bosor(or equivalently pair-pajrcorrelations. Invert-
more, the transition through the $4) phase is less abrupt. jng the method, we were also able to obtain in closed form
This latter remark may have relevance to real nuclear sysme fermion wave functions of the $8& model expressed in

tems, which are most likely near to—but not precisely at—erms of the fundamental fermion-pair operators. The wave
the SL[_4) _I|m|t. Our results suggest that even away from thegynctions that emerged clearly showed four-nucleon correla-
SU(4) limit, there may be significant alpha-particle transfer tjons.

strength, as long as there is a sufficiently strong particle-hole \ye then carried out a similar study of a somewhat richer

forcg present. ) i ) . model involving neutron-proton pair correlations based on
Finally, we close this section by reiterating the key con-ihe gigebra S@). We focused our analysis on the dynamical
clusion of our analysis of the 38 model. Namely, in the  gymmetry limits of this model, where the group structure

SQ(8) model—a prototypical model that involves np pairing coyid be used to obtain simple closed expressions. Here too
correlations on the same footing as nn and pp pairing corr€se found that a description limited to fermion-péir boson
mean-field correlations was insufficient and that four-
particle correlations were needed to accurately reproduce the
YIn the odd-odd case, the for(G9) applies forx=0 and the form  exact results.
(60) for x<0. Thus, from these model calculations, we conclude that

wave functions. Figure 3 illustrates the behavioradfas a
function of the parametex of the S38) Hamiltonian for a
few representative cases.

We first discuss the results in the ling},,=0, as illus-
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correlations involving pairs of fermion pairs, or alternatively isospin projection technique and to apply it to realistic
guartets of fermions, are important in the regime of neutronnuclear structure problems.
proton pairing. It is not sufficient only to pair nucleons. We have put forth two ideas that could perhaps provide
Whenever possible, two nucleon pairs will couple together tahe basis for an improved theory with four-particle correla-
form aT=0 S=0 (alpha-particle-like structure. tions. One possibility would be to start from a trial ground-
Qualitatively, this conclusion can be understood as fol-state-wave function in the form of Eq&57)—(60). The S’
lows. The smallest “cluster” that can simultaneously ac-and P' are now collective pair creation operators, whose
commodate two-neutron pairing correlations, two-protonstructure ideally should be determined variationatly, less
pairing correlations and neutron-proton pairing correlationddeally, from an analysis of simple two-body systenfuch
is one that involves four nucleons—two neutrons and twoan approach is a generalization of the generalized-seniority
protons. Of course, when there is an excess of particles of scheme for like nucleons, which is known to be connected to
given type, not all particles can form these maximally corre-number-projected BCS theory.
lated alpha-like structures. Instead, they remain in like- A second possibility worth further investigation is the use
particle and/or neutron-proton pairs, appended to the alphaf iterative boson mappings. We have seen that two boson
like condensate mappings, coupled with a Hartree-Bose treatment in the sec-
The above conclusion is not limited, however, to cases irond boson space, is a way to build a number-projected theory
which all pairing modes contribute significantly. In the involving four-nucleon correlations. In the current studies,
SOS(5) limit of the SQ8) model, for example, which only where spurious states could be readily identified, such an
involves isoscalar np pairing, the ground-state wave functiorapproach proved extremely useful. Whether it will continue
involves a condensate 6 - PT pairs and thus contains four- to prove useful in more realistic applications, however,
particle correlations. There, however, the fact that the grounevhere spurious states cannot be so readily separated, still
state involves such a quartet structure is a direct reflection aemains to be investigated.
angular momentum restoration. Other truncation schemes in the shell model should also
It is important to note, however, that the four-particle cor-be studied. Our analysis of the 8P model suggests that the
related structures that emerge are not exact alpha particlessual truncation schemes built in terms of separate dynami-
Nor are they necessarily the most alpha-like structures avaikal symmetry limits for neutrons and protofthe SU2) se-
able within the model. In the S8) model, for example, the niority limit, for examplg should not be of much use in the
ground state is dominated by the maximal alpha structure igeneral neutron-proton pairing problem. A truncation in the
the SU4) dynamical symmetry limit only. SQ5) or SA8) seniority quantum numbers, which would
A challenging problem that still remains is: What is a then include the necessary isospin correlations, could per-
good way to incorporate such four-fermion correlations intohaps be useful.
nuclear many-body approximation schemes? As noted
above, boson BCS following a bosqn mapping does not seem ACKNOWLEDGMENTS
to be an acceptable procedure for incorporating four-nucleon
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