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N-phonon giant resonances in the nonlinear hydrodynamic approach
and the nucleon-nucleon interaction
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Isoscalar and isovector density vibrations in a slab with sharp edges are studied in a nonlinear hydrodynamic
approach. The frequency shift of th\ephonon excitation due to nonlinear terms is obtained. The frequencies
of one- and two-phonon vibrations calculated in the nonlinear hydrodynamic theory are redueéd-B9 %
for isoscalar and by=1-8 % for isovector resonances as compared to the linear approximation. The frequency
shift is a function of both the slab thickness and the parameters of the nucleon-nucleon interaction. Experi-
mental data on the frequency shift of tNephonon states due to the nonlinear terms in the Bss@ may be
used for selecting of the set of nucleon-nucleon interaction paramgs@s56-28138)01902-5

PACS numbgs): 21.60.Ev, 21.65tf, 24.10.Nz, 24.30.Cz

I. INTRODUCTION The anharmonicity of the two-phonon giant resonances
was estimated in the schematic nonlinear random-phase ap-
Giant dipole resonances were predicfdd and experi- proximation (RPA) model with a simplified interaction in
mentally discovered2] more than 50 years ago. Neverthe- [10]. The nonlinearity of one-phonon isoscalar monopole gi-
less giant resonances have been and still are a major topic aht resonance was investigated in the relativistic mean field
research in nuclear physi¢s—15. Many different types of theory [9]. Both of these studies require cumbersome nu-
giant resonances have been discovéted]. In the past few merical calculations and the link between the parameters of
years two-phonon giant resonances have been studied bofhe nucleon-nucleon interaction and the shift of resonance
experimentally and theoreticallf10,12-13. The two-  energy caused by anharmonicity is obtained numerically.
phonon giant dipole resonance has been observed at an en-The analytical expression derived in this paper confirms
ergy approximately twofold larger than that of the one-ihe direct and transparent connection between the shift of
phonon resonande 2,14. _ _ energy of theN-phonon giant resonances due to anharmonic-
The one-phonon giant resonance is treated as the excnq@ and the constants of the Skyrme-ty[i,1§ energy den-

state built on the gr_ound state of the nucleus. In the frgmegity functional. The constants of the energy density func-
work of the harmonic oscillator model the two-phonon giantiional are related the parameters of nucleon-nucleon

resonance is treated as the excited state built on the ONGiteraction[17,18).

phonon excitation. Decay schemes of the one- and tWo- Thg nonlinear hydrodynamic model of the density vibra-
phonon giant resonances confirm the origin of these resqyong in the slab of nuclear matter is described in Sec. II. The
nances [12,14,13. The N-phonon state may also be regyjis for isoscalar and isovector excitations are presented in

considered in a similar way. Therefore the energy of thegecs |11 and IV, respectively. The summary and conclusions
N-phonon giant resonandg,;, must beN-fold larger than  5.e presented in Sec. V.

the energy of one-phonon giant resonakgg,, using a har-
monic oscillator model assumption. However, the measured
energies of the two-phonon isovector giant dipole resonances |l. NONLINEAR DENSITY VIBRATIONS IN A SLAB
are slightly smaller thanR;;,, [12,14. Such a reduction in
the excitation energy of the two-phonon state is caused bx1
the anharmonicity of vibrations in the nuclear matter.
The purpose of this paper is to study the frequency shift
of the N-phonon isoscalar and isovector vibrational states ap .
due to the anharmonicity of density oscillations in a slab of a_ter'V(PV):O @
nuclear matter with sharp edges in the framework of the
nonlinear hydrodynamic model. We will attempt to obtain an )
analytical expression for the frequency shift of thehonon ~ and the Euler equation
isoscalar and isovector resonances caused by the vibrations
nonlinearity. Therefore we consider giant resonances in a IV 1_8&(p)
slab with sharp edges. It should be noted that various prop- E+(VV)V+EV5—
erties of giant resonances have been successfully described p
using different linear hydrodynamic approximatidrds4,6—
8]. wherev(r,t) is the velocity of nucleons andf(p)/ p is the
variational derivative of the energy density functional.
Let us consider the energy density functional of nuclear
*Electronic address: denisov@kinr.kiev.ua matter of the form

Density oscillations(r,t) in the hydrodynamic approxi-
ation are described by the continuity equatji6]

=0, 2
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(p=p=)?>  (p=p)®  (p—px)*
(Vp)?
+d0 2‘0% ’ (3)

§O=asin(wot)sin(koz+ (P), (11)

vo=a%&miwdkmi&ﬂ+¢) (12)
0

Here « is the vibrations amplitude and, and k, are the

whereay, by, ¢y, dy are constants. We should note that frequency and the wave vector of the oscillations, respec-

the form of realistic energy density functiondls7,18 does

not coincide exactly with Eq(3). However, any realistic

tively. We choose the solution of Eqgl) and(5) in the form
(11) and (12) because this solution exists in the cake 0

functional may be expanded into a series in the deviation oénd describes ordinary sound waves. The solutions obtained

density from the equilibrium value.. as in Eq.(3), when

in the first order of perturbation theory are lineardn The

there are no gradient terms. The form of the gradient term ifirequency and wave vector are connected by the dispersion
Eq. (3) is the same as the form of the gradient term of theequation
energy density functional of Skyrme force in the Thomas-

Fermi approaciil7,18.

The spatial distribution of nuclear matter in the slab is

confined along the axis between-R andR and is infinite

wi=aki+dkg. (13)

As we have noted, the coordinate for the slab geometry

along thex andy axes of the Cartesian system of coordi- corresponds to the radial coordinate of the spherical
nates. The energies of different giant resonances are propdﬂucleus. The transition densities of the g|ant resonances of

tional to the nucleus radius axgm [5,6], whereAy is the

the multipolarity/=1 are equal to zero at the center of the

mass number. In the case of the slab zfexis simulates the SPherical nucleug=r=0 [6-8]. In contrast to this, transi-
radial coordinate of the spherical system of coordinates. ThEON densities of the monopole giant resonances have a finite
role of the slab’sx andy coordinates is considered to be amplitude of vibrations at the center of the nuclgéss].
similar to the role of angular coordinates in a spherical SySjl'herefore we may simulate the transition densities of differ-

tem of coordinate for nuclei.
Given a slab geometry, Egél) and (2) may be simpli-
fied:

& v dév

Tzt =0 @
v  9E ¢ Jv € ,0€
E+a5—d?+ev5+b§5+c55—o, (5)

wherea=a,/m, b=bgy/m, c=cy/m, andd=d,/m, e and
f are the auxiliary constante€ f=1), and¢ is the function
described by the density vibrations

p(z,1)=p[1+&(Z1)]. (6)

ent behavior az=0 by choosing the value of the phagén

Egs. (11) and (12). The values of the phasg=0 and ¢

= /2 modulate the transition densities of the giant reso-
nances with multipolarities”=1 and /=0, respectively.
The results of this section do not depend on the choice of
phase, so we assume=0 for the sake of simplicity.

The wave vectok, of density oscillations is determinated
by linear boundary conditions on the free surfaces of the
slab. The boundary conditions are discussed in detail in the
next sections. Due to the dispersion relatid®) the fre-
quency of vibrationsw, is also fixed by the boundary con-
ditions. The amplitude of vibrations is obtained from the
condition of energy equality, evaluated by means of the
quantum and classical expressions

fiwg=Egjass (14

Equations(4) and (5) are nonlinear. The nonlinear terms The vibrations energy calculated in the classical approach is

which contain constanes andf in Egs.(4) and(5) arise due

to the nonlinear nature of the hydrodynamic equations. The 1
terms with constantls andc in Egs.(4) and(5) are related to
the anharmonic potential nature of the energy density func-

tional (3).
Let us try to solve the system of equatiod$ and (5) in

the form of the perturbation series which is often similar to

a03+d0 2

& (V&)
EC|aSS:§J deva(Z)‘F f dVp., .

(15

Note thatE y,e& a?.
The nuclear interaction within the slab volume is much

the treatment of the nonlinear oscillations in classical mestronger than on its surfaces. Therefore we may consider that

chanics[23]:
§=&otétéot o, (7
v=vgtvitvot+---, (8)
k=ko+ky+Kot -+, ©)

(10

C!):C!)0+(1)l+(,()2+' ce

In first approximation the solution of Eq&4) and (5) is

the nonlinear density vibrations dynamics in the slab are de-
termined by the dynamics within the slab, and that the oscil-
lations of surfaces are tuned up on the volume dynamics. We
shall ignore the nonlinearities in the boundary conditions.
One can see that we should take into accolhtand %4
corrections to the Thomas-Fermi kinetic enef@§] in order

to describe accurately the surface layer of nuclear matter. We
have limited ourselves to the Thomas-Fermi approach to ki-
netic energy functional in Eq3). So, we fixed the wave
vectork in the next orders of perturbation theory to be the
same as in the linear approximation, iles Kg.



668

The terms with coefficientd, e, andf of Egs.(4) and(5)
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0= wgyr(b,c,e,f)

should be taken into account in the second order perturbation

analysis. The system of equations for determinfpganduv
is given by

0&;  du, d(éovo)

ot T e (16
vy 0& P& dvo &y
Tt 8y U5 T mbh (A7)

By taking the time derivative of Eq16) and the derivative
with respect taz of Eq. (17) and subtracting Eq.17) from
Eq. (16) we obtain the equation faf;

é
9z

P& 9%E I
a2 a2

= ZCY(,UOwlSir((l)()t)Sin(kZ)

1
_ E0(2{(;05{200'[)[(2f + e)wé

+bk?]+ (ew2—bk?)}cog 2kz).
(18

The condition that there be no resonance t¢28] on the
right side of this equation leads t9,=0. Equations(16)—
(18) can be solved as

£1(z,t)=a’[Acoq2wot) + B]cog 2kz), (19

vl(z,t)zaz%(A—f/4)sin(2w0t)sin(2kz), (20
where

(2f +e) w3+ bk? bk?®—ew?

—a?

~ 192a+dk?) X(a+t 4d |<2)o||<{as(4f2Jr def+e)
+a’b(4f+2e)+ab’+[6a%(e’*+6ef+5f%)+a(4be
—18c+ 14bf)+10b%]dk?+[a(9e?+ 78e f+ 66f2)
+2be+ 100 f—72c]d?k*

+ (4€%+ 46fe+ 40f2)d>k®}.

(22

The vibration frequency changes in third order perturbation
theory. This frequency shift of oscillationsg; is propor-
tional to the square of amplitude of vibrations, see §&3].

The energy of the one-phonon A{®) giant resonance
connected with density vibrations in the slab of nuclear mat-
ter is equal to

Eiro="n[wot wgin(b,C,1,1)]. (23

Here we have taken into account the semiclassical quantiza-
tion rule for the classical periodic motion.

The N-phonon giant resonance in the slab is defined as
coherent excitation oN one-phonon oscillations. The den-
sity fluctuation of theN-phonon giant resonance may be pre-
sented as

Ento(Z,t) = asin(wgt)sin(kgz) + asin(wet)sin(kgz) + - - -
+ asin(wqt)sin(kqz)
=(Na)sin(wot)sin(kyz).

Thus, the vibration amplitude of thé-phonon excitation is

by N-fold larger than the amplitude of the one-phonon state.
The N-phonon density oscillations in the slab are also de-
scribed by the system of hydrodynamic expressighsand

(5). The frequency shift of th&l-phonon excitation due to
anharmonicity can be easily determined from the expressions
for the one-phonon case by substituting the constants related
with the nonlinear terms of Eq$4) and (5):

(24)

2
bNﬁwHNblhwi CNfLw_>N Clhw>

enro—Neyo=N, fnpo—Nfy,=N. (25

= , B=————-. (21)  Therefore the energy of thi¢-phonon excitation is given b
8(w2—ak?—4dk?) 8(ak?+4dk?) 9y P 9 y
Ento=T[Nwo+ ognir(Nb,N*C,N,N)]. (26)
By using the same method as before we may easily obtain Let us define the ratios of energi¥g andWy,, as
the third order solution. The nonresonance term condition E.. —N#& Nb.N2c.Ne Nf
[23] in this order of the perturbation theory leads to the finite Vy= Niiow Wo :wshift( ,N“c,Ne,Nf) @7
correction of the oscillation frequency fiwg o
_ ENﬁw_ EMﬁw
NM EMﬁ,w
N—M M wghir Nb,N%¢,N,N) — Nwg,i( Mb,M2¢c,M,M
_ /1+ shift ) shift ) ‘ 29

M | M(N—M)w,
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The ratiosVy andWy quantify the nonlinearityor anhar- kR=m(n+1) for ¢=0, (33

monicity) of the N-phonon excitation and the relative anhar-

monicity of theN-phonon and thé/-phonon states, respec- kR=m(n+1/2) for ¢@=mu/2, (34)

tively. These ratios are equal t¥y=0 and Wyyu=(N

—M)/M in the case of harmonic oscillations. Deviations yheren=0,1,2,3... . Thevalue of the phase=0 should

from these limiting values give us the qualitative characterye omitted for the isoscalar oscillations of density in the slab,

istics of the anharmonicity. _ o because the center of mass oscillates along theis at this
The ratioVy has only useful theoretical applications. We ppase value.

must emphasize that the ratyy can be derived from ex- ~ Now we determine the density vibrations amplitude by

perimental data. Moreover, experimental data on the ratigsing Eqs(14), (15), and relationw = (C/B)Y2 between the
W,, for the electric giant dipole resonance can be found ir\‘requencyw, the massB, and the stiffnesg parameters of

[12,14. The ratiosV; andW,; will be analyzed in detail for  the harmonic oscillator. After simple calculations of integrals
isoscalar and isovector vibrations in Secs. lll and IV, corre{n Eq. (15) we obtain

spondingly.

4 % 1/2
lll. ISOSCALAR EXCITATION a (B2 (mprS(a+dk2)1’2> , (35
The proton and neutron densities vibrate in phase in the
case of isoscalar oscillations. These vibrations are describeghereS is the unit square of the slab surface. Since we want
by Egs. (4) and (5) and satisfy kinematic and dynamic our estimates to be meaningful for atomic nuclei, we define
boundary conditions on the free surfaces of the slab=at  the value ofS from the condition that the volume of vibra-

*R[7,8]. tions in the slab is the same as the volume of nucleus with
The kinematic boundary condition assumes to be equalityhe mass numbeh, .
of the normal to the surface velocities of the nucleo(at) For symmetric nuclear matter and the realistic Skyrme
to the surfacers. (1), i.e., energy density functional, constartg, by, co, andd, are
obtained as
v(Z,1)| = xr=vs= (1), (29)

2

wherev . (1) =96+ (t)/dt is the velocities of surfaces of the
vs(1) +(1) a0=2pw$55klvpp(n)=o

slab ands.. is the amplitude of surfaces oscillation. Here and
below the subscripts- and — denote the right1=R) and T
the left (z= —R) surfaces of the slab, respectively. _ (187°) RS . 3t

ts ap+1
- — - 0
The dynamic boundary condition is assumed to be the 3m =t 2 p=t 8 (ag+2)(aot1)p,,
equality of the normal to the surface pressu(e,t) caused (187413
by the distortion of nucleon density(z,t) within the slab to " 4 n n 5/3
the pressuré®..(t) caused by the restoring force of the sur- 6 (3t 1(5+4%) o=, (36

face at the shift of surfacé.. from the equilibrium position,
ie., 73

2
bo:6Pw$53klvpp<n)=o

0(2,1)| = +r=P=(1). (30)
The restoring force of the surface is linked to both the sur- _(18774)1/3ﬁ2 2, 3t3 +2)(ag+ Dagp®tt
face tension and the variation of the surface d8jaln the - am  P= T g (@t 2)(aot Daop,
case of the slab there are no restoring forces on the surface (1813
and the pressure g
b + g3t ta(5+4x0) p2, 37
P.=0, (31

4

he surf r not change with surf hi J
because the surface area does not change with surface shifts Co=120iﬁfsk|vpp<n>:o
p

S+ . Note that boundary condition29)—(31) are the same
as used in Secs. 6A-3a and 6A-3b[B].

Let us substitute solutiond 1) and (12) in the boundary _ 8(187") "R
conditions(29) and(30) and obtain the equation for the wave N 9m Pe
vectork:
+%( +2)(ag+ 1) ag(ag—1)p0™t
o&(p) 5?E(z,1) 4 (9o aotlaolao—1)p,
o(z,t)=p,—5—=mp,| aé(z,t)—d
op 972 2( 18774) 1/3
_ _ - [Btitt(5+4x)1p2°%, (39
= ap,.m(a+dk?)sin(wot)sin(kz+ ¢)|,— +g=0. 9
(32 1
. . . . =— — + o -
Nontrivial solutions of this equation are do 32[9t1 ta(5+4x2)]p (39
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Here we have taken into account that the prgiBrand neu- compared to the harmonic approach. Different sets of
tron p" densities are connected to total density by expressioSkyrme interaction give various values of the ratibsand
pP(z,t)=p"(z,t) =3 p.[1+ £(z,1)] and the realistic Skyrme W,,. The effect of the density vibrations anharmonicity for
energy density functional in the Thomas-Fermi approach ishe Sk3 set of parameters of Skyrme force is lager than that
defined ag18] obtained with other sets.

The dependence of the rativ's andW,, on the values of

3(97*) 32 o3 o5 1 1 ) constantsa,, by, cq, anddg is shown in Figs. 1-4. The
53k=T[(Pp) +(p")>"l+ Slof| 1+ 5% curves in this figures are calculated for the slab thickness
which corresponds to the diameter é¥Pb. We changed
1 o2 - 1 5 only one parameter and fixed others in each figure. We as-
~| X0t 5 |L(PN) (P + T5tap™) | 1+ 5X3/p sume that the equilibrium densipy. does not change with
the variations in parameters in Figs. 1-4. We choose the
1) o a2 3(97%)Y3 1 SkM* set of parameters of Skyrme force for fixed constants
—| X+ S |LPD (P + =55 | 1+ 5% in Figs. 1-4.
. 3(979)3 The ratijosvl ar(;dV\_/mfare a Iind(]efar[ func;i_on 021‘ tge p:zljraEm—
531 . m5/3 ™ etercg, and a quadratic function @, [see Figs. 2, 3, and Eq.
o 14 5% | [L(pP)7+ (P p+ —g tz(xz (22)]. The ratiosV; andW,, are changed for large values of
the constantsa, and d, as V;xW,;>al? and V Wy,
+E —t x1+l [(pp)8/3+(pn)8/3]+%3t1(1 «dy?. The dependence of the ratids on parameterd,
2 2 1 andc, agrees with obtained if23].
1 1 , 1 1
t5X1 |~y 1+ 5% | [(Vp)*— 74 3ty xat 5 IV. ISOVECTOR EXCITATION
L The isovector density vibrations in the slab are considered
= Py 2 ny2 in similar way as the isoscalar oscillations in the previous
| X2 F 2 LVPR)™+ (VoD (40 section. Therefore we focus only on new features in this
section.
wherep=pP+p" andty, t;, t», ts, Xo, Xi, X, Xs, and Proton and neutron densities vibrate in the counter-phase
a, are the Skyrme force parametéls,18. in the case of the isovector excitations of density. The kine-

The values of constantg, by, Co, do, and the param- Matic boundary conditions are defined separately for proton
eters of most successful sets of Skyrme nucleon-nucleon irRnd neutron velocities in this cag], i.e.,
teractiong 19—27, the excitation energies of isoscalar den-
sity vibrations in the slab in the harm%nic approximat®n 0P(Z )| = =08 (D), 02z 2r= V5 (D). (4D)
=fwy, the vibrations amplitudeg, and the ratios/; and
W,, are shown in Table I. The energies, amplitudes, anq0
ratios shown in Table | are calculated for two different val-
ues of slab thickness, which coincide with the diameters oﬁ
nuclei with Ay=40 andAy= 208, respectively.

The values of constantg,, by, ¢o, andd, evaluated for a(z,t)] ;= +g=P(t). (42
different sets of Skyrme force are spread over wide intervals
(see Table)l We can shorten these intervals if we know theWe assume that there is no isovector restoring force of sur-
experimental values of the rat\y,,. Unfortunately we do face in the approximation of the passive surface, i.e.,
not have these data for the isoscalar resonances.

The anharmonicity of the one-phonon isoscalar monopole P.(1)=0. (43

giant resonance obtained [ifi] is consistent with the values The boundary condition&1)—(43) are very similar to the

summanzeq in Table 1. The val'ues of excitation energie%oundary conditions for isoscalar density oscillatid®9)—
calculated in the slab whose thickness is the same as t 1)

diameter of2%%Pb for different sets of Skyrme force agree
with the experimental value of the isoscalar monopole reso
nance energy irf’®b E~13.2—13.9 MeV[11].
The correctness of the definition of the unit square of sin(kz+ ¢)|,— +r=0, (44)
surfaceS in Eq. (35) is supported by the proximity of the
amplitude values presented in Table | and the amplitudes afhich is the same as E(B2). Equation(44) is solved in Egs.
vibrations evaluated for different microscopic and macro-(33),(34). The amplitude of isovector vibrations is also de-
scopic model$6]. scribed by expressiof85). In contrast to the isoscalar case
The anharmonicity is stronger in light nuclei than in the for the isovector density vibrations we may choose two dif-
heavy ones because the vibration amplitudes in light nucleierent phase valueg in Eq. (44): ¢=0 ande= /2.
are much larger than in the heavy ones, as we can see in It would be useful to present proton and neutron densities
Table I. Due to anharmonicity the excitation energies of thein the symmetric nuclear matter for the isovector density
isoscalar one-phonon resonarieg, ,=fw(1+V,) are re- oscillations as pP(z,t)=3p.[1+£&(z,t)], p"(z,t)=3p.
duced by 5-10 % for heavy and by 12—30 % for light nuclei[ 1— &(z,t) ]. We substitute these expressions in &) and

The dynamic boundary condition requires that the normal

the surface pressure connected with deformation of is-
vector density in the slab volume be equal to the pressure of
uclear surfaces caused by restoring surface force,

The eigenvalues of wave vector are determined by the
equation
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TABLE |. The parameters of Skyrme interaction, the constants of the energy density fun¢8prtake
giant resonances energies in the slab evaluated in linear appEsatin,, the density oscillations ampli-
tudese, and the ratiod/; andW,, for different sets of Skyrme force. The energies values, amplitudes, and
ratiosV, andW,, are given for the two values of the slab thickness, which coincide with diameters of nuclei
with Ay=40 andAy=208. In the case of isovector excitations some quantities are presented for the two
values of phaseg=7/2 ande=0 (in parenthesgs

Sk3[19] Ska[20] SkM* [21] RATP [22]
to(MeV fm3) —1128.75 1602.78 —2645.00 —2160
t;(MeV fm®) 395.00 570.00 410.00 513.00
t,(MeV fm®) —95.00 —67.00 135.00 121.00
t3(MeV fm3*3a0) 14000.00 8000.00 15595.00 11600.00
Xo 0.45 —-0.02 0.09 0.418
X1 0.00 0.00 0.00 —-0.36
X, 0.00 0.00 0.00 —2.29
X3 1.00 —0.286 0.00 0.586
ag 1.00 1/3 1/6 1/5
po.=3/(4mr ) (fm~3) 0.1453 0.1554 0.1603 0.1599
Isoscalar case
a, (MeV) 79.06 58.58 48.17 53.33
b (MeV) 733.5 459.8 347.4 401.5
o (MeV) 46.53 —383.4 —424.2 —406.9
dy (MeV fm?) 18.30 26.59 21.87 25.59
R: I’02081/3
E=%w, (MeV) 12.9 11.5 10.5 11.1
a 0.039 0.042 0.045 0.044
A —-0.107 —0.050 —0.049 —0.047
W,y 0.952 0.977 0.977 0.978
R=r,40'3
E=fw, (MeV) 22.7 20.3 18.6 19.6
@ 0.117 0.127 0.134 0.131
A —0.330 —-0.161 —0.160 —0.151
W,y 0.743 0.872 0.871 0.878
Isovector case
a, (MeV) 112.6 131.7 120.2 117.1
by (MeV) 0 0 0 0
¢ (MeV) 240.2 326.6 270.05 305.6
dy (MeV fm?) 4.949 7.988 5.485 —0.01129
R=r,208"3
E=%w, (MeV) 15.4(30.9 17.0(34.2 16.4(32.9 16.2(32.3
@ 0.036(0.051) 0.035(0.050 0.036(0.051) 0.036(0.051)
A —0.028 (-0.014 —0.018 (-0.009 —0.025 (-0.012 11.991(5.99
W, 0.988(0.988 0.992(0.992 0.988(0.989 6.562(6.563
R=rq40"3
E=%wo (MeV) 26.7(53.9 29.6(60.0 28.5(57.9 28.0(56.0
o 0.108(0.153 0.105(0.148 0.109(0.153 0.109(0.1549
A —0.082 (-0.039 —0.053 (—0.029 —0.074 (- 0.035 36.0(18.0
W, 0.936(0.938 0.958(0.960 0.941(0.943 29.9(29.9
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FIG. 1. Dependence of the ratidg (top) andW,, (bottom) on
ao.

find the relationship between the constaafs by, cg, and

dy and parameters of Skyrme force

, (18’772) 1/3h2 (18’772)1/3
ap= +

0 3m 30/3 12 (t2(4+5X2)_3t1X1)p05C/3

1 1 a0+l
_top30 §+Xo - 1_2t3(1+ 2X3)pw ) (45)
by=0, (46)

2 1&7,2)2/3 4ﬁ2

C(,):(T<WP§/3+ (3t1(1+x1) +t2(1_X2))P050/3) :
(47)

’ 1 1 1
d0=1— 3'[1 Xl+ E +t2 X2+ E Poo - (48)
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FIG. 2. Dependence of the ratid§ (top) andW,; (bottom) on
bo.

The results of the calculation of the excitation energy, the
amplitudes of the vibrations, and the ratidg and W, are
presented in Table | for the same cases as for the isoscalar
oscillations. We also calculated these quantities for the phase
¢=0, which was not allowed for the isoscalar density oscil-
lations.

The general tendencies of the anharmonic behavior of the
isovector density vibrations are the same as for the isoscalar
case. The new features are as follows.

(1) The RATP set of parameters of Skyrme for@2]
shows an unrealistically strong anharmonicity of the isovec-
tor resonances. Our perturbative treatment of the nonlinear
vibrations in Sec. Il is not valid in this case. The values of
ratios V,; and W,; presented in Table | for the isovector
oscillations for the RATP set can be interpreted qualitatively.
We may conclude only that anharmonicity is very strong in
this case. Such anharmonicity is not consistent with the ex-
perimental valuaV,;=0.91+0.02[12] observed for electric
giant dipole resonance, therefore it does not make much
sense to use this set of Skyrme force parameters.

(2) The results for the ratidV,, are not very sensitive to

The constantg), by, c§, anddj have the same meaning the choice of phase=0 or ¢=7/2, as we can see in Table
as in Eq.(3), but we denote them with a prime to distinguish |. In contrast to this the values of the rati change ap-

the isoscalar and isovector constants.

proximately two times for different values of phage
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(3) We can conclude that the nonlinear effects for isovec-

:gngsﬂllggggso?ﬁgvizl'::rstg nSfck); 'S;nsgaé?(rlmdfegz/tl}/mve'brahs information about both the values aAg dependence of

interaction. the ratio Wy, . The additional experimental information
(4) The values ofW,, calculated for the sets Sk3 and M&y help to select sets of Skyrme force and reduce the varia-
SkM* of Skyrme force agree well with the experimental tions of constantsy, by, Co, do, @y, by, o, anddy.
value of W,;=0.91+0.02 [12] observed for the isovector Note that only limited experimental information for one-
giant dipole resonances. The anharmonicity of isovector giPhonon and two-phonon giant resonances is available for
ant resonances evaluated with the Ska set of Skyrme intefnalysig12,14. Nevertheless we may conclude that the Sk3
action is smaller than the experimental values. The anharm@nd SKM* sets of Skyrme force lead to results which agree
nicity obtained in Ref[10] also agrees with values presented with experimental data diV,, for isovector giant resonances.
in Table I. Unfortunately it is difficult to make definite con- Unfortunately we do not have any data about the three-
clusion about theAy dependence by using existing experi- phonon giant resonances. Experimental data on the one-
mental data. Nevertheless the tendency of réilg to in- phonon, two-phonon, and three-phonon resonances may help
crease withAy is confirmed by experiment, see figures in greatly in determining the constants andc;, because the
[12,14. role of these constants increase with the number of phonons
N due to Eq.(26). The more precise definition of constants
V. CONCLUSION ag, bg, Co, dy, aj, by, cb, anddy should improve our

The anharmonic terms of the energy density functionaknowledge about the equation of state and more accurate
lower considerably the energy of thé-phonon excitation. —description of nuclear matter.
Therefore the giant resonances should be studied in the The study of theN-phonon giant resonances in hot
framework of nonlinear models especially in light nuclei. nucleus provide information about the temperature depen-
The experimental study of thBl-phonon isoscalar and dence of the constantg, by, Co, do, ay, by, ¢g, and
isovector giant resonances of different multipolarities givesd; .
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