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N-phonon giant resonances in the nonlinear hydrodynamic approach
and the nucleon-nucleon interaction

V. Yu. Denisov*
Institute for Nuclear Research, Prospect Nauki 47, 252028 Kiev, Ukraine

~Received 29 May 1997!

Isoscalar and isovector density vibrations in a slab with sharp edges are studied in a nonlinear hydrodynamic
approach. The frequency shift of theN-phonon excitation due to nonlinear terms is obtained. The frequencies
of one- and two-phonon vibrations calculated in the nonlinear hydrodynamic theory are reduced by'5–30 %
for isoscalar and by'1–8 % for isovector resonances as compared to the linear approximation. The frequency
shift is a function of both the slab thickness and the parameters of the nucleon-nucleon interaction. Experi-
mental data on the frequency shift of theN-phonon states due to the nonlinear terms in the caseN>2 may be
used for selecting of the set of nucleon-nucleon interaction parameters.@S0556-2813~98!01902-5#

PACS number~s!: 21.60.Ev, 21.65.1f, 24.10.Nz, 24.30.Cz
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I. INTRODUCTION

Giant dipole resonances were predicted@1# and experi-
mentally discovered@2# more than 50 years ago. Neverth
less giant resonances have been and still are a major top
research in nuclear physics@1–15#. Many different types of
giant resonances have been discovered@5,6#. In the past few
years two-phonon giant resonances have been studied
experimentally and theoretically@10,12–15#. The two-
phonon giant dipole resonance has been observed at a
ergy approximately twofold larger than that of the on
phonon resonance@12,14#.

The one-phonon giant resonance is treated as the ex
state built on the ground state of the nucleus. In the fram
work of the harmonic oscillator model the two-phonon gia
resonance is treated as the excited state built on the
phonon excitation. Decay schemes of the one- and t
phonon giant resonances confirm the origin of these re
nances @12,14,15#. The N-phonon state may also b
considered in a similar way. Therefore the energy of
N-phonon giant resonanceEN\v must beN-fold larger than
the energy of one-phonon giant resonanceE1\v using a har-
monic oscillator model assumption. However, the measu
energies of the two-phonon isovector giant dipole resonan
are slightly smaller than 2E1\v @12,14#. Such a reduction in
the excitation energy of the two-phonon state is caused
the anharmonicity of vibrations in the nuclear matter.

The purpose of this paper is to study the frequency s
of the N-phonon isoscalar and isovector vibrational sta
due to the anharmonicity of density oscillations in a slab
nuclear matter with sharp edges in the framework of
nonlinear hydrodynamic model. We will attempt to obtain
analytical expression for the frequency shift of theN-phonon
isoscalar and isovector resonances caused by the vibra
nonlinearity. Therefore we consider giant resonances i
slab with sharp edges. It should be noted that various p
erties of giant resonances have been successfully desc
using different linear hydrodynamic approximations@3,4,6–
8#.

*Electronic address: denisov@kinr.kiev.ua
570556-2813/98/57~2!/666~9!/$15.00
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The anharmonicity of the two-phonon giant resonan
was estimated in the schematic nonlinear random-phase
proximation ~RPA! model with a simplified interaction in
@10#. The nonlinearity of one-phonon isoscalar monopole
ant resonance was investigated in the relativistic mean fi
theory @9#. Both of these studies require cumbersome n
merical calculations and the link between the parameter
the nucleon-nucleon interaction and the shift of resona
energy caused by anharmonicity is obtained numerically

The analytical expression derived in this paper confir
the direct and transparent connection between the shif
energy of theN-phonon giant resonances due to anharmon
ity and the constants of the Skyrme-type@17,18# energy den-
sity functional. The constants of the energy density fun
tional are related the parameters of nucleon-nucle
interaction@17,18#.

The nonlinear hydrodynamic model of the density vibr
tions in the slab of nuclear matter is described in Sec. II. T
results for isoscalar and isovector excitations are presente
Secs. III and IV, respectively. The summary and conclusio
are presented in Sec. V.

II. NONLINEAR DENSITY VIBRATIONS IN A SLAB

Density oscillationsr(r ,t) in the hydrodynamic approxi-
mation are described by the continuity equation@16#

]r

]t
1div~rv!50 ~1!

and the Euler equation

]v

]t
1~v¹!v1

1

m
¹

dE~r!

dr
50, ~2!

wherev(r ,t) is the velocity of nucleons anddE(r)/dr is the
variational derivative of the energy density functional.

Let us consider the energy density functional of nucle
matter of the form
666 © 1998 The American Physical Society



a

th
s

is

i-
p

Th
e
ys

s

h

n

to
e

ec-

ined

sion

y

s of
e

nite

er-

so-

of

d
the
the

-
e

the

h is

ch
that
de-
cil-
We

ns.

We
ki-

he
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E~r!5E~r`!1a0

~r2r`!2

2r`
1b0

~r2r`!3

6r`
2

1c0

~r2r`!4

12r`
3

1d0

~¹r!2

2r`
, ~3!

wherea0 , b0 , c0 , d0 are constants. We should note th
the form of realistic energy density functionals@17,18# does
not coincide exactly with Eq.~3!. However, any realistic
functional may be expanded into a series in the deviation
density from the equilibrium valuer` as in Eq.~3!, when
there are no gradient terms. The form of the gradient term
Eq. ~3! is the same as the form of the gradient term of
energy density functional of Skyrme force in the Thoma
Fermi approach@17,18#.

The spatial distribution of nuclear matter in the slab
confined along thez axis between2R andR and is infinite
along thex and y axes of the Cartesian system of coord
nates. The energies of different giant resonances are pro
tional to the nucleus radius orAN

21/3 @5,6#, whereAN is the
mass number. In the case of the slab thez axis simulates the
radial coordinate of the spherical system of coordinates.
role of the slab’sx and y coordinates is considered to b
similar to the role of angular coordinates in a spherical s
tem of coordinate for nuclei.

Given a slab geometry, Eqs.~1! and ~2! may be simpli-
fied:

]j

]t
1

]v
]z

1 f
]jv
]z

50, ~4!

]v
]t

1a
]j

]z
2d

]3j

]z3
1ev

]v
]z

1bj
]j

]z
1cj2

]j

]z
50, ~5!

wherea5a0 /m, b5b0 /m, c5c0 /m, andd5d0 /m, e and
f are the auxiliary constants (e5 f 51), andj is the function
described by the density vibrations

r~z,t !5r`@11j~z,t !#. ~6!

Equations~4! and ~5! are nonlinear. The nonlinear term
which contain constantse and f in Eqs.~4! and~5! arise due
to the nonlinear nature of the hydrodynamic equations. T
terms with constantsb andc in Eqs.~4! and~5! are related to
the anharmonic potential nature of the energy density fu
tional ~3!.

Let us try to solve the system of equations~4! and ~5! in
the form of the perturbation series which is often similar
the treatment of the nonlinear oscillations in classical m
chanics@23#:

j5j01j11j21•••, ~7!

v5v01v11v21•••, ~8!

k5k01k11k21•••, ~9!

v5v01v11v21•••. ~10!

In first approximation the solution of Eqs.~4! and ~5! is
t

of

in
e
-

or-

e

-

e

c-

-

j05asin~v0t !sin~k0z1w!, ~11!

v05a
v0

k0
cos~v0t !cos~k0z1w!. ~12!

Here a is the vibrations amplitude andv0 and k0 are the
frequency and the wave vector of the oscillations, resp
tively. We choose the solution of Eqs.~4! and~5! in the form
~11! and ~12! because this solution exists in the cased→0
and describes ordinary sound waves. The solutions obta
in the first order of perturbation theory are linear ina. The
frequency and wave vector are connected by the disper
equation

v0
25ak0

21dk0
4 . ~13!

As we have noted, thez coordinate for the slab geometr
corresponds to the radial coordinater of the spherical
nucleus. The transition densities of the giant resonance
the multipolarityl >1 are equal to zero at the center of th
spherical nucleusz5r 50 @6–8#. In contrast to this, transi-
tion densities of the monopole giant resonances have a fi
amplitude of vibrations at the center of the nucleus@4,8#.
Therefore we may simulate the transition densities of diff
ent behavior atz50 by choosing the value of the phasew in
Eqs. ~11! and ~12!. The values of the phasew50 and w
5p/2 modulate the transition densities of the giant re
nances with multipolaritiesl >1 and l 50, respectively.
The results of this section do not depend on the choice
phase, so we assumew50 for the sake of simplicity.

The wave vectork0 of density oscillations is determinate
by linear boundary conditions on the free surfaces of
slab. The boundary conditions are discussed in detail in
next sections. Due to the dispersion relation~13! the fre-
quency of vibrationsv0 is also fixed by the boundary con
ditions. The amplitude of vibrations is obtained from th
condition of energy equality, evaluated by means of
quantum and classical expressions

\v05Eclass. ~14!

The vibrations energy calculated in the classical approac

Eclass5
1

2E dVmr`v0
21E dVr`S a0

j0
2

2
1d0

~¹j0!2

2 D .

~15!

Note thatEclass}a2.
The nuclear interaction within the slab volume is mu

stronger than on its surfaces. Therefore we may consider
the nonlinear density vibrations dynamics in the slab are
termined by the dynamics within the slab, and that the os
lations of surfaces are tuned up on the volume dynamics.
shall ignore the nonlinearities in the boundary conditio
One can see that we should take into account\2 and \4

corrections to the Thomas-Fermi kinetic energy@18# in order
to describe accurately the surface layer of nuclear matter.
have limited ourselves to the Thomas-Fermi approach to
netic energy functional in Eq.~3!. So, we fixed the wave
vector k in the next orders of perturbation theory to be t
same as in the linear approximation, i.e.,k5k0.
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668 57V. Yu. DENISOV
The terms with coefficientsb, e, and f of Eqs.~4! and~5!
should be taken into account in the second order perturba
analysis. The system of equations for determiningj1 andv1
is given by

]j1

]t
1

]v1

]z
52 f

]~j0v0!

]z
, ~16!

]v1

]t
1a

]j1

]z
2d

]3j1

]z3
52ev0

]v0

]z
2bj0

]j0

]z
. ~17!

By taking the time derivative of Eq.~16! and the derivative
with respect toz of Eq. ~17! and subtracting Eq.~17! from
Eq. ~16! we obtain the equation forj1

]2j1

]t2
2a

]2j1

]z2
1d

]4j1

]z4
52av0v1sin~v0t !sin~kz!

2
1

2
a2$cos~2vt !@~2 f 1e!v0

2

1bk2#1~ev0
22bk2!%cos~2kz!.

~18!

The condition that there be no resonance term@23# on the
right side of this equation leads tov150. Equations~16!–
~18! can be solved as

j1~z,t !5a2@Acos~2v0t !1B#cos~2kz!, ~19!

v1~z,t !5a2
v0

k
~A2 f /4!sin~2v0t !sin~2kz!, ~20!

where

A5
~2 f 1e!v0

21bk2

8~v0
22ak224dk4!

, B5
bk22ev0

2

8~ak214dk4!
. ~21!

By using the same method as before we may easily ob
the third order solution. The nonresonance term condit
@23# in this order of the perturbation theory leads to the fin
correction of the oscillation frequency
on

in
n

v2[vshift~b,c,e, f !

5
2a2

192~a1dk2!1/2~a14dk2!dk
$a3~4 f 214e f1e2!

1a2b~4 f 12e!1ab21@6a2~e216e f15 f 2!1a~4be

218c114b f !110b2#dk21@a~9e2178e f166f 2!

12be110b f272c#d2k4

1~4e2146f e140f 2!d3k6%. ~22!

The vibration frequency changes in third order perturbat
theory. This frequency shift of oscillationsvshift is propor-
tional to the square of amplitude of vibrations, see also@23#.

The energy of the one-phonon (1\v) giant resonance
connected with density vibrations in the slab of nuclear m
ter is equal to

E1\v5\@v01vshift~b,c,1,1!#. ~23!

Here we have taken into account the semiclassical quan
tion rule for the classical periodic motion.

The N-phonon giant resonance in the slab is defined
coherent excitation ofN one-phonon oscillations. The den
sity fluctuation of theN-phonon giant resonance may be pr
sented as

jN\v~z,t !5asin~v0t !sin~k0z!1asin~v0t !sin~k0z!1•••

1asin~v0t !sin~k0z!

5~Na!sin~v0t !sin~k0z!. ~24!

Thus, the vibration amplitude of theN-phonon excitation is
by N-fold larger than the amplitude of the one-phonon sta
The N-phonon density oscillations in the slab are also d
scribed by the system of hydrodynamic expressions~4! and
~5!. The frequency shift of theN-phonon excitation due to
anharmonicity can be easily determined from the express
for the one-phonon case by substituting the constants rel
with the nonlinear terms of Eqs.~4! and ~5!:

bN\v→Nb1\v , cN\v→N2c1\v ,

eN\v→Ne1\v5N, f N\v→N f1\v5N. ~25!

Therefore the energy of theN-phonon excitation is given by

EN\v5\@Nv01vshift~Nb,N2c,N,N!#. ~26!

Let us define the ratios of energiesVN andWNM as

VN5
EN\v2N\v0

\v0
5

vshift~Nb,N2c,Ne,N f !

v0
, ~27!
WNM5
EN\v2EM\v

EM\v

5'
N2M

M S 11
Mvshift~Nb,N2c,N,N!2Nvshift~Mb,M2c,M ,M !

M ~N2M !v0
D . ~28!
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57 669N-PHONON GIANT RESONANCES IN THE NONLINEAR . . .
The ratiosVN andWNM quantify the nonlinearity~or anhar-
monicity! of theN-phonon excitation and the relative anha
monicity of theN-phonon and theM -phonon states, respec
tively. These ratios are equal toVN50 and WNM5(N
2M )/M in the case of harmonic oscillations. Deviatio
from these limiting values give us the qualitative charact
istics of the anharmonicity.

The ratioVN has only useful theoretical applications. W
must emphasize that the ratioWNM can be derived from ex
perimental data. Moreover, experimental data on the r
W21 for the electric giant dipole resonance can be found
@12,14#. The ratiosV1 andW21 will be analyzed in detail for
isoscalar and isovector vibrations in Secs. III and IV, cor
spondingly.

III. ISOSCALAR EXCITATION

The proton and neutron densities vibrate in phase in
case of isoscalar oscillations. These vibrations are descr
by Eqs. ~4! and ~5! and satisfy kinematic and dynam
boundary conditions on the free surfaces of the slab atz5
6R @7,8#.

The kinematic boundary condition assumes to be equa
of the normal to the surface velocities of the nucleonsv(z,t)
to the surfacevS6(t), i.e.,

v~z,t !uz56R5vS6~ t !, ~29!

wherevS6(t)5]d6(t)/]t is the velocities of surfaces of th
slab andd6 is the amplitude of surfaces oscillation. Here a
below the subscripts1 and 2 denote the right (z5R) and
the left (z52R) surfaces of the slab, respectively.

The dynamic boundary condition is assumed to be
equality of the normal to the surface pressures(z,t) caused
by the distortion of nucleon densityj(z,t) within the slab to
the pressureP6(t) caused by the restoring force of the su
face at the shift of surfaced6 from the equilibrium position,
i.e.,

s~z,t !uz56R5P6~ t !. ~30!

The restoring force of the surface is linked to both the s
face tension and the variation of the surface area@3#. In the
case of the slab there are no restoring forces on the sur
and the pressure

P650, ~31!

because the surface area does not change with surface
d6 . Note that boundary conditions~29!–~31! are the same
as used in Secs. 6A-3a and 6A-3b in@3#.

Let us substitute solutions~11! and ~12! in the boundary
conditions~29! and~30! and obtain the equation for the wav
vectork:

s~z,t !5r`

dE~r!

dr
5mr`S aj~z,t !2d

]2j~z,t !

]z2 D
5ar`m~a1dk2!sin~v0t !sin~kz1w!uz56R50.

~32!

Nontrivial solutions of this equation are
-

io
n

-

e
ed

ty

e

-

ce

ifts

kR5p~n11! for w50, ~33!

kR5p~n11/2! for w5p/2, ~34!

wheren50,1,2,3, . . . . Thevalue of the phasew50 should
be omitted for the isoscalar oscillations of density in the sl
because the center of mass oscillates along thez axis at this
phase value.

Now we determine the density vibrations amplitude
using Eqs.~14!, ~15!, and relationv5(C/B)1/2 between the
frequencyv, the massB, and the stiffnessC parameters of
the harmonic oscillator. After simple calculations of integra
in Eq. ~15! we obtain

a5
\

~BC!1/2
5S \k

mr`RS~a1dk2!1/2D 1/2

, ~35!

whereS is the unit square of the slab surface. Since we w
our estimates to be meaningful for atomic nuclei, we defi
the value ofS from the condition that the volume of vibra
tions in the slab is the same as the volume of nucleus w
the mass numberAN .

For symmetric nuclear matter and the realistic Skyr
energy density functional, constantsa0 , b0 , c0, andd0 are
obtained as

a052r`

]2

]r2
ESku¹rp~n!50

5
~18p4!1/3\2

3m
r`

2/31
3t0

2
r`1

t3

8
~a012!~a011!r`

a011

1
~18p4!1/3

6
@3t11t2~514x2!#r`

5/3, ~36!

b056r`
2 ]3

]r3
ESku¹rp~n!50

52
~18p4!1/3\2

3m
r`

2/31
3t3

8
~a012!~a011!a0r`

a011

1
~18p4!1/3

3
@3t11t2~514x2!#r`

5/3, ~37!

c0512r`
3 ]4

]r4
ESku¹rp~n!50

5
8~18p4!1/3\2

9m
r`

2/3

1
3t3

4
~a012!~a011!a0~a021!r`

a011

2
2~18p4!1/3

9
@3t11t2~514x2!#r`

5/3, ~38!

d05
1

32
@9t12t2~514x2!#r` . ~39!
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670 57V. Yu. DENISOV
Here we have taken into account that the protonrp and neu-
tron rn densities are connected to total density by express
rp(z,t)5rn(z,t)5 1

2 r`@11j(z,t)# and the realistic Skyrme
energy density functional in the Thomas-Fermi approach
defined as@18#

ESk5
3~9p4!1/3\2

10m
@~rp!5/31~rn!5/3#1

1

2
t0F S 11

1

2
x0D r2

2S x01
1

2D @~rp!21~rn!2#G1
1

12
t3ra0F S 11

1

2
x3D r2

2S x31
1

2D @~rp!21~rn!2#G1
3~9p4!1/3

20 F t1S 11
1

2
x1D

1t2S 11
1

2
x2D G@~rp!5/31~rn!5/3#r1

3~9p4!2/3

20 F t2S x2

1
1

2D2t1S x11
1

2D G@~rp!8/31~rn!8/3#1
1

16F3t1S 1

1
1

2
x1D2t2S 11

1

2
x2D G~¹r!22

1

16F3t1S x11
1

2D
1t2S x21

1

2D G@~¹rp!21~¹rn!2#, ~40!

wherer5rp1rn and t0, t1 , t2 , t3 , x0 , x1 , x2 , x3, and
a0 are the Skyrme force parameters@17,18#.

The values of constantsa0 , b0 , c0 , d0, and the param-
eters of most successful sets of Skyrme nucleon-nucleon
teractions@19–22#, the excitation energies of isoscalar de
sity vibrations in the slab in the harmonic approximationE
5\v0, the vibrations amplitudesa, and the ratiosV1 and
W21 are shown in Table I. The energies, amplitudes, a
ratios shown in Table I are calculated for two different v
ues of slab thickness, which coincide with the diameters
nuclei with AN540 andAN5208, respectively.

The values of constantsa0 , b0 , c0, andd0 evaluated for
different sets of Skyrme force are spread over wide interv
~see Table I!. We can shorten these intervals if we know t
experimental values of the ratioW21. Unfortunately we do
not have these data for the isoscalar resonances.

The anharmonicity of the one-phonon isoscalar monop
giant resonance obtained in@9# is consistent with the value
summarized in Table I. The values of excitation energ
calculated in the slab whose thickness is the same as
diameter of 208Pb for different sets of Skyrme force agre
with the experimental value of the isoscalar monopole re
nance energy in208Pb E'13.2213.9 MeV @11#.

The correctness of the definition of the unit square
surfaceS in Eq. ~35! is supported by the proximity of the
amplitude values presented in Table I and the amplitude
vibrations evaluated for different microscopic and mac
scopic models@6#.

The anharmonicity is stronger in light nuclei than in t
heavy ones because the vibration amplitudes in light nu
are much larger than in the heavy ones, as we can se
Table I. Due to anharmonicity the excitation energies of
isoscalar one-phonon resonanceE1\v5\v0(11V1) are re-
duced by 5–10 % for heavy and by 12–30 % for light nuc
n

is

n-
-

d

f

ls

le

s
he

-

f

of
-

ei
in

e

i

compared to the harmonic approach. Different sets
Skyrme interaction give various values of the ratiosV1 and
W21. The effect of the density vibrations anharmonicity f
the Sk3 set of parameters of Skyrme force is lager than
obtained with other sets.

The dependence of the ratiosV1 andW21 on the values of
constantsa0 , b0 , c0, and d0 is shown in Figs. 1–4. The
curves in this figures are calculated for the slab thickn
which corresponds to the diameter of208Pb. We changed
only one parameter and fixed others in each figure. We
sume that the equilibrium densityr` does not change with
the variations in parameters in Figs. 1–4. We choose
SkM* set of parameters of Skyrme force for fixed consta
in Figs. 1–4.

The ratiosV1 andW21 are a linear function of the param
eterc0, and a quadratic function ofb0 @see Figs. 2, 3, and Eq
~22!#. The ratiosV1 andW21 are changed for large values o
the constantsa0 and d0 as V1}W21}a0

1/2 and V1}W21

}d0
1/2. The dependence of the ratiosV1 on parametersb0

andc0 agrees with obtained in@23#.

IV. ISOVECTOR EXCITATION

The isovector density vibrations in the slab are conside
in similar way as the isoscalar oscillations in the previo
section. Therefore we focus only on new features in t
section.

Proton and neutron densities vibrate in the counter-ph
in the case of the isovector excitations of density. The ki
matic boundary conditions are defined separately for pro
and neutron velocities in this case@8#, i.e.,

vp~z,t !uz56R5vS6
p ~ t !, vn~z,t !uz56R5vS6

n ~ t !. ~41!

The dynamic boundary condition requires that the norm
to the surface pressure connected with deformation of
ovector density in the slab volume be equal to the pressur
nuclear surfaces caused by restoring surface force,

s~z,t !uz56R5P6~ t !. ~42!

We assume that there is no isovector restoring force of
face in the approximation of the passive surface, i.e.,

P6~ t !50. ~43!

The boundary conditions~41!–~43! are very similar to the
boundary conditions for isoscalar density oscillations~29!–
~31!.

The eigenvalues of wave vector are determined by
equation

sin~kz1w!uz56R50, ~44!

which is the same as Eq.~32!. Equation~44! is solved in Eqs.
~33!,~34!. The amplitude of isovector vibrations is also d
scribed by expression~35!. In contrast to the isoscalar cas
for the isovector density vibrations we may choose two d
ferent phase valuesw in Eq. ~44!: w50 andw5p/2.

It would be useful to present proton and neutron densi
in the symmetric nuclear matter for the isovector dens
oscillations as rp(z,t)5 1

2 r`@11j(z,t)#, rn(z,t)5 1
2 r`

@12j(z,t)#. We substitute these expressions in Eq.~40! and
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TABLE I. The parameters of Skyrme interaction, the constants of the energy density functional~3!, the
giant resonances energies in the slab evaluated in linear approachE5\v0, the density oscillations ampli-
tudesa, and the ratiosV1 andW21 for different sets of Skyrme force. The energies values, amplitudes,
ratiosV1 andW21 are given for the two values of the slab thickness, which coincide with diameters of n
with AN540 andAN5208. In the case of isovector excitations some quantities are presented for th
values of phasesw5p/2 andw50 ~in parentheses!.

Sk3 @19# Ska @20# SkM* @21# RATP @22#

t0(MeV fm3) 21128.75 1602.78 22645.00 22160
t1(MeV fm5) 395.00 570.00 410.00 513.00
t2(MeV fm5) 295.00 267.00 135.00 121.00
t3(MeV fm313a0) 14000.00 8000.00 15595.00 11600.00
x0 0.45 20.02 0.09 0.418
x1 0.00 0.00 0.00 20.36
x2 0.00 0.00 0.00 22.29
x3 1.00 20.286 0.00 0.586
a0 1.00 1/3 1/6 1/5
r`53/(4pr 0

3)(fm23) 0.1453 0.1554 0.1603 0.1599

Isoscalar case

a0 ~MeV! 79.06 58.58 48.17 53.33
b0 ~MeV! 733.5 459.8 347.4 401.5
c0 ~MeV! 46.53 2383.4 2424.2 2406.9
d0 (MeV fm2) 18.30 26.59 21.87 25.59

R5r 02081/3

E5\v0 ~MeV! 12.9 11.5 10.5 11.1
a 0.039 0.042 0.045 0.044
V1 20.107 20.050 20.049 20.047
W21 0.952 0.977 0.977 0.978

R5r 0401/3

E5\v0 ~MeV! 22.7 20.3 18.6 19.6
a 0.117 0.127 0.134 0.131
V1 20.330 20.161 20.160 20.151
W21 0.743 0.872 0.871 0.878

Isovector case

a08 ~MeV! 112.6 131.7 120.2 117.1
b08 ~MeV! 0 0 0 0
c08 ~MeV! 240.2 326.6 270.05 305.6
d08 (MeV fm2) 4.949 7.988 5.485 20.01129

R5r 02081/3

E5\v0 ~MeV! 15.4 ~30.9! 17.0 ~34.2! 16.4 ~32.9! 16.2 ~32.3!
a 0.036~0.051! 0.035~0.050! 0.036~0.051! 0.036~0.051!
V1 20.028 (20.014! 20.018 (20.009! 20.025 (20.012! 11.991~5.99!
W21 0.988~0.988! 0.992~0.992! 0.988~0.989! 6.562~6.563!

R5r 0401/3

E5\v0 ~MeV! 26.7 ~53.9! 29.6 ~60.0! 28.5 ~57.6! 28.0 ~56.0!
a 0.108~0.153! 0.105~0.148! 0.109~0.153! 0.109~0.154!
V1 20.082 (20.039! 20.053 (20.025! 20.074 (20.035! 36.0 ~18.0!
W21 0.936~0.938! 0.958~0.960! 0.941~0.943! 29.9 ~29.9!
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find the relationship between the constantsa08 , b08 , c08 , and
d08 and parameters of Skyrme force

a085
~18p2!1/3\2

3m
r`

2/31
~18p2!1/3

12
~ t2~415x2!23t1x1!r`

5/3

2t0r`S 1

2
1x0D2

1

12
t3~112x3!r`

a011 , ~45!

b0850, ~46!

c085
2~18p2!2/3

9 S 4\2

m
r`

2/31„3t1~11x1!1t2~12x2!…r`
5/3D ,

~47!

d085
1

16F3t1S x11
1

2D1t2S x21
1

2D Gr` . ~48!

The constantsa08 , b08 , c08 , andd08 have the same meanin
as in Eq.~3!, but we denote them with a prime to distinguis
the isoscalar and isovector constants.

FIG. 1. Dependence of the ratiosV1 ~top! andW21 ~bottom! on
a0.
The results of the calculation of the excitation energy,
amplitudes of the vibrations, and the ratiosV1 and W21 are
presented in Table I for the same cases as for the isosc
oscillations. We also calculated these quantities for the ph
w50, which was not allowed for the isoscalar density osc
lations.

The general tendencies of the anharmonic behavior of
isovector density vibrations are the same as for the isosc
case. The new features are as follows.

~1! The RATP set of parameters of Skyrme force@22#
shows an unrealistically strong anharmonicity of the isov
tor resonances. Our perturbative treatment of the nonlin
vibrations in Sec. II is not valid in this case. The values
ratios V1 and W21 presented in Table I for the isovecto
oscillations for the RATP set can be interpreted qualitative
We may conclude only that anharmonicity is very strong
this case. Such anharmonicity is not consistent with the
perimental valueW2150.9160.02 @12# observed for electric
giant dipole resonance, therefore it does not make m
sense to use this set of Skyrme force parameters.

~2! The results for the ratioW21 are not very sensitive to
the choice of phasew50 or w5p/2, as we can see in Tabl
I. In contrast to this the values of the ratioV1 change ap-
proximately two times for different values of phasew.

FIG. 2. Dependence of the ratiosV1 ~top! andW21 ~bottom! on
b0.
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57 673N-PHONON GIANT RESONANCES IN THE NONLINEAR . . .
~3! We can conclude that the nonlinear effects for isov
tor oscillations are weaker than for isoscalar density vib
tions in case of the sets Sk3, Ska, and SkM* of Skyrme
interaction.

~4! The values ofW21 calculated for the sets Sk3 an
SkM* of Skyrme force agree well with the experiment
value of W2150.9160.02 @12# observed for the isovecto
giant dipole resonances. The anharmonicity of isovector
ant resonances evaluated with the Ska set of Skyrme in
action is smaller than the experimental values. The anhar
nicity obtained in Ref.@10# also agrees with values present
in Table I. Unfortunately it is difficult to make definite con
clusion about theAN dependence by using existing expe
mental data. Nevertheless the tendency of ratioW21 to in-
crease withAN is confirmed by experiment, see figures
@12,14#.

V. CONCLUSION

The anharmonic terms of the energy density functio
lower considerably the energy of theN-phonon excitation.
Therefore the giant resonances should be studied in
framework of nonlinear models especially in light nuclei.

The experimental study of theN-phonon isoscalar and
isovector giant resonances of different multipolarities giv

FIG. 3. Dependence of the ratiosV1 ~top! andW21 ~bottom! on
c0.
-
-

i-
r-
o-

l

he
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us information about both the values andAN dependence of
the ratio WNM . The additional experimental informatio
may help to select sets of Skyrme force and reduce the va
tions of constantsa0 , b0 , c0 , d0 , a08 , b08 , c08 , andd08 .
Note that only limited experimental information for one
phonon and two-phonon giant resonances is available
analysis@12,14#. Nevertheless we may conclude that the S
and SkM* sets of Skyrme force lead to results which agr
with experimental data ofW21 for isovector giant resonances

Unfortunately we do not have any data about the thr
phonon giant resonances. Experimental data on the o
phonon, two-phonon, and three-phonon resonances may
greatly in determining the constantsc0 andc08 , because the
role of these constants increase with the number of phon
N due to Eq.~26!. The more precise definition of constan
a0 , b0 , c0 , d0 , a08 , b08 , c08 , andd08 should improve our
knowledge about the equation of state and more accu
description of nuclear matter.

The study of theN-phonon giant resonances in h
nucleus provide information about the temperature dep
dence of the constantsa0 , b0 , c0 , d0 , a08 , b08 , c08 , and
d08 .

FIG. 4. Dependence of the ratiosV1 ~top! andW21 ~bottom! on
d0.
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