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Quantum molecular dynamics approach to the nuclear matter below the saturation density
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Quantum molecular dynamics is applied to study the ground state properties of nuclear matter at subsatu-
ration densities. Clustering effects are observed to soften the equation of state at these densities. The structure
of nuclear matter at subsaturation density shows some exotic shapes with variation of the density.
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I. INTRODUCTION significant change in the strength of supernova explosions
[5]. In neutron stars, the exotic nuclei may also affect the
One of the main interests of heavy-ion physics and astropinning of superfluid neutron vortices to nuclei in inner
physics is the property of nuclear matter in extreme condicrusts of neutron stars, which are considered to be the initial
tions. Its high-density behavior is important for the scenariostep of neutron star glitches. Recently, Mochizuki and
of supernova explosions, the evolution of neutron stars, thézuyamal9] demonstrated that exotic nuclear shapes actually
reaction process of high-energy heavy-ion collisions, quarkplay an essential role in trapping vortices in a microscopic
gluon plasma, and so on. Properties of the nuclear mattenechanism of the glitches.
below saturation density, on the other hand, are essential in The spatial fluctuation is important in describing proper-
describing the multifragmentation in the heavy-ion colli- ties of SNM and NSM because geometrical distributions of
sions, the collapsing stages in supernova explosions, and tmeicleons may affect the neutrino reaction rate in SNM and
structure of neutron star crusts. Here the saturation density isteractions with vortices in NSM. However, there have been
the density of the energy-minimum state of the nuclear matenly two works[3,10] which allow arbitrary nuclear shapes
ter at a fixed proton ratio. For symmetric nuclear matter, thén their models. These two works,10] use the Thomas-
saturation density is the normal nuclear densgigg=0.165 Fermi approximation and treat SNM while none has been
fm~3. Since the matter is unstable below the saturation denrdone for NSM. Williams and Koonif3] have investigated
sity, an inhomogeneous state is expected to appear below thiee structure of neutron-proton symmetric nuclear matter
saturation density. with the proton ratioZ/A=0.5, while the authors of Ref.
Besides, supernova matt@&@NM) and neutron star matter [10] studied the matter witlZ/A=0.285 at the total entropy
(NSM) are also interesting from the viewpoint of the nuclearper baryons=1. Unfortunately, some spatial fluctuation due
shape. At low densities, nuclei in these matters are expectdd a possible cluster correlation or nonuniform distribution is
to be crystalized so as to minimize the long range Coulomimeglected since their calculations with the Thomas-Fermi ap-
energies. They melt into uniform matter at a certain densityproximation are based on a one-body treatment of matter.
close to the saturation density. Then what happens in be- In the field of nuclear reaction study, molecular dynamics
tween? About a decade ago, three grolips3] suggested has become one of the most powerful approaches to simulate
that nuclei have exotic structures in the SNM and/or NSM.the fragmentation. Advantages of molecular dynamics for
They showed that the stable nuclear shape changes frothe investigation of heavy-ion reactions are that no reaction
sphere to cylinder, slab, cylindrical hole, and spherical holemechanism is required to assume and that the fluctuation of
with an increase of the matter density. The favorable nucleathe system is automatically included.
shape is determined by a balance between the surface and Within various kinds of molecular dynamics, the quantum
Coulomb energies. In the liquid drop model, a simple geo-molecular dynamicéQMD) [11—-16 approach has been pro-
metrical argument demonstrates that the favorable shapmosed to study high-energy heavy-ion collisions. QMD has
changes as a function of the volume fraction of the nucleudeen also used for the analysis of fusion reaction, nucleon-
in the cell, independently of specific nuclear interactionsinduced reaction, fragmentation in collisions between heavy
[2,4]. From recent studies in the liquid drop mod6] and  systems, and so on.
the Thomas-Fermi calculation$6,7], the nonspherical In this paper, we apply the QMD method to the investi-
shapes of nuclei are expected in a density range at about hajéition of the equation of stat&0O9 and the structure of
the saturation density although the range depends on thmuclear matter at subsaturation densities. A similar calcula-
choice of nuclear interaction. Furthermore, these shapes aton using QMD is done in Ref.13] aiming to see the EOS
expected to survive even if the shell effects are taken int@f nuclear matter. It was reported that the clustering in matter
account8]. significantly softens the EOS below saturation density. They
These exotic nuclear shapes may cause substantial astfiave used 254 nucleons in a cell and their aim was to study
physical consequences. In SNM, neutrino absorption by nuthe EOS. In the present paper, we are interested in the struc-
clei may modify the leptonic energy of matter and lead to ature of matter for wide range of the mean density. For this
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purpose, 254 nucleons seem not sufficient and we enlarge the . oH . JH
number of particles to investigate the density-dependent Ri =P P=- R’ (4)
1 1
structure of nuclear matter as well as the EOS.
In the present QMD, we introduce the Pauli potential andand the stochastibl-N collision term. HamiltoniarH con-

the momentum-dependent interaction in order to simulate thgists of the kinetic energy and the energy of the two-body
fermionic feature in a phenomenological way and the energyffective interactions.

dependence of the optical potential. The binding energies of
finite nuclei and the saturation properties of nuclear matter
are well adjusted to the empirical values. As a result of this S )
new version of QMD, we can approximately describe the The Hamiltonian is separated into several parts as fol-
properties of neutron-rich isotopes such as the density profill@WS:
of 1Li and the effects of surface neutrons in the low-energy
collisions[17]. With these ingredients of QMD and the pe-
riodic boundary condition, we investigate the ground stat§yhereT, Veauiis Viocal, @ndVyyp are the kinetic energy, the

properties of nuclear matter at subsaturation densities. Pauli potential, the locaimomentum-independerpotential,

In Sec. Il we describe our model based on QMD. In Secqnq the momentum-dependent potential parts, respectively.
IIl, the EOS and the structure of nuclear matter is discussed. The pauli potential14,19—21 is introduced for the sake

B. Effective interactions

H=T+Vpauit Viocat Vb ; 6)

Finally, a summary is given in Sec. IV. of simulating fermionic properties in a semiclassical way.
This phenomenological potential prohibits nucleons of the
Il. QMD SIMULATION FOR NUCLEAR MATTER same spin and isospinr from coming close to each other

in the phase space. Here we employ the Gaussian form of the

Pauli potential14] as
: F{ (Ri-R))’
S, exg -k
e

L 2q(2,

The present QMD code is an improved version of our
previous ong16]. In previous work$16,18, where we have
employed very simple effective interactions in QMD, we 1 7
have nicely reproduced several observables in the nucleon- ( )
induced reactions at an energy region of about 100 MeV to 5
GeV. Several improvements of this QMD are done to enable
the calculations for the ground state of nuclear matter for a _(Ri= P)?
wide range of density and proton ratios. First we have intro- ZpS
duced a phenomenological potential, namely, the Pauli po-
tential, to describe the fermionic feature of nucleons. By this In the local potential part we adopt the Skyrme type with
Pauli potential, we can uniquely determine the ground statghe Coulomb and the symmetry terms as explained in(&q.
of the finite nuclei and nuclear matter by seeking the energyef Ref.[16],
minimum state. Second we have introduced a momentum-
dependent interaction, which is also an important feature of a B -
the fermion system with a finite range interaction. In the Vlocalzz_poZ (pi)+ WZ (pi)"
following, we explain the details of the present QMD and T)Po

Vpauli= > Cp TP

5Ti7'j50'i0'j' (6)

how it describes nuclear matter. g2 s 3 1
+§i j%i) CiCjJ' j d°rid rj—|ri_r‘|Pi(ri)Pj(rj)
A. Total wave function and the equation of motion ' )
. . C
In QMD, each nl_JcIeon state is represented by a Gaussian + 2_5 2 (1-2[c;i—c;])pjj - (7)
wave function of widthL, Poi,j(#i)
1 (r—-R)?2 i In the above equatiort; is 1 for protons and O for neutrons,
I ~
()= ——"71 exp{ — =2 ‘tz"Pl (D while(p) and(p;) are overlaps of density with other nucle-
(2L) ons defined as

whereR; andP; are the centers of the position and momen-
tum of theith nucleon, respectively. The total wave function <pi>5_2 pijE_z f d3rpi(r)pj(r)
is assumed to be a direct product of these wave functions. 1#) 1#D)

Thus the one-body distribution function is obtained by the
Wigner transform of the wave function,

_(2_) (47L) " 3%exd — (R —Rj)%4L], (8
J(#Fi

frp)=2. 1i(r.p), @ (=3 (4nl) ¥exg—(R-R)¥4L1,  (©
J(#i)
(r—R)? 2L(p—P)? ~ (@
fi(r,p)=8ex;{— TR 2 . 3 LzTL. (10

The equation of motion dR; andP; is given by the New- A modified Gaussian widtft is introduced so as to adjust
tonian equation the effect of the repulsive density-dependent tE22] which
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is one of the approximated forms of the density-dependent i

L @ #* LA
term. Equation(10) is obtained by a condition that the origi- Dcell D
nal form of the density-dependent tefthe left-hand side of A s el
Eqg. (11)] is exactly reproduced by the approximation, i.e., 5 T 8
the second term in Eq7), in the case of a degenerated I A %
configuration(several wave packets are at the same pogition ®e? e ®
as & [ ] LN
1 @ ® . ’@Dceu
T - - T w " 'ﬁé‘;] ® % 2‘;“
f d3r(2 pi(r)) =2 {2 fdgrpi(r)pj(r)y ope ele o0 Mle oo B
: ! ! e w B oy @ #oa ®
(17
Bi(r)=(27L) Yexd — (R,—r)2/2L]. (12) L R R

The momentum-dependent term is introduced as a Fock . . . . .
term of the Yukawa-type interaction. We divide this interac-  FIG. 1. An illustrative explanation of the cell configuration.

energy dependence of the real part of the optical potential, digure) have exactly the same distribution of particles as the central
cell. The relative position vector of each surrounding cell from the

(1) 1 central cell 0 isD¢e; andDy=0.
Vio=Viid + Vi =5 - pij - : i
2p0i,[Zi) 1+[(Pi—Pj)/M1]2 ! the average density and the particle number. The periodic
boundary condition is introduced as follows: As shown in
c? 1 Fig. 1, we prepare 26 33— 1) surrounding cells, where the

(13 particle distribution reflects the distribution of the central cell
exactly. The particles in the central cell move according to

The parametrization of the constants included in thethe interaction with all particles in the same cell and in the

g : . ; . surrounding cells as well. The particles in the surrounding
above effective interactions will be discussed in Sec. Il E. : .
cells obey exactly the same motions as those in the central

cell. Thus the Hamiltonian per cell is written as

+
2001, %) 1+[(P— Pyl

C. Energy-minimum state

With inclusion of the Pauli potential, we can define the |, _ 2 T
ground state as an energy-minimum state of the system. To =1 N
get the energy-minimum configuration, we use the following
damping equation of motion:
+Ce"_02 26Hi(j2)(Ri_Rj+DcellaPi P+,
IH H . dH JH o=, -

=— 4 -, P:——+ —_—, (14) =1 ...
gP,  MRGR; T TR, HPp, 15

R
whereur andup are the damping coefficients with negative where T; is the one-body partkinetic energy, H{? is the
values when we need to cool the system. two-body part of the Hamiltonian anb, are the relative

We first distribute the particles randomly in the phaseposition of surrounding cells from the center. Note that the
space and cool down the system according to the dampingidex “cell” runs from 0 (the center cellto 26 (surrounding
equation of motion until the energy reaches the minimumells) and D,=0.
value. Sometimes the system stops at the local minimum As the interactions between particles are restricted within
during the cooling. We thus try again and again this coolingthe 26 closest cells, we should use large cells. At least the
procedure_ _vvith a different initial state and seek the reakjze of the cell should be large enough compared to the in-
energy-minimum state. teraction range. Since the Coulomb interaction has a very

For a finite nucleus and infinite system above saturatiomong range, we app|y a “Screening” to the Coulomb interac-
density, this procedure works rather well. For an infinite SYStion (see Sec. Il F Hence the cell size is a|WayS |0nger than
tem at subsaturation densities, however, there are many loc@e interaction range in the present study.
minimum states around the real ground state, which differ
from the ground state in the details of the surface configura- E. Parametrization of the constants
tion of the clusters. Since the energy difference from the
ground state is the order of 10 keV/nucleon in this case, w
accept these states as ground states and neglect the s
differences of the configuration.

We have 12 parameters in the effective interactions of the
miltonian, Eq.(5), i.e., Cp, 0o, Po. @, B, 7, Cs, C,
C&l s m1, Mo, and the Gaussian width. We should param-
etrize these constants to reproduce properties of the ground
states of the finite nuclei and saturation properties of nuclear
matter.

In order to simulate infinite nuclear matter with a finite ~ We first determine the parameters of the Pauli potential,
number of particles, we use a cubic cell with a periodicqy, py, andCp, apart from the other effective interactions,
boundary condition. The size of the cell is determined fromby fitting the kinetic energy of the exact Fermi gas at zero

D. Periodic boundary condition
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In the same figure we draw the exact energy of the Fermi gas

100 T —
exact Fermi gas by the solid line. Although there are some other parameter
go " B _ sets which can reproduce the exact energies of the Fermi gas
B in the same form, e.g., that used in Ref3], we choose the

above parameter set to get good properties of the ground
states of the finite nuclei with other effective interactions
particularly in combination with the momentum-dependent
interaction.

Among the remaining nine conditions, four are attributed
to the momentum-dependent interaction as follows. We cal-
culate the single-particle potential of momentynin ideal
nuclear matter at the normal nuclear density, which leads to

E/AiMeV]

p/po

FIG. 2. Energy per particle of free Fermi gas. The solid line
shows the exact value. The cases of the molecular dynamics calcu-
lation with only a Pauli potential are shown by the solid squares
(kinetic energy and the open squaréttal energy.

4 -1
§7TI0|3:')

U(p,po) =Vjgcat Ump(p) =a+ B+
g

PrF
xf d*p’ , 5
1+[(p—p") u4]
. c
1+[(p—p") pal?
=a+B+CHg(x=pu1/pr, y=p/pp)

temperature and at various densities. For this, we define the
free Fermi gas system as a ground state for the Hamiltonian
including only the kinetic energy and the Pauli potential by
making use of the damping equation of motion, Egl), and

the periodic boundary condition with 1024 particles in a cell.
In Fig. 2, we show the kinetic energié¢the solid squares
and the total energigshe open squarg®btained by using a

(2) — —
parameter set for the Pauli potential as +Cex9(X=2/pg, Y=p/Pg), 17
Cp=207 MeV, pg=120 MeVlc, qy=1.644 fm.
(16)  with
|
3 | 1+x2—y? +1)2+4x2 2 +1 -1
g(x,y)=—=x3 Y In (y*+1) +—-=2 arctany——arctany— . (18
4 2xy (y—1)%+x> X X X

We fit the energy dependence of this potential to the experilll B). The other is the width of the Gaussian wave patket
mental data. In Fig. 3, we plot the energy dependence of thevhich is a free parameter in the QMD model. This value
real part of the optical potentialthe open circles and affects the ground state properties of finite nuclei and infinite
squaresobtained from the experimental data of Haeteal.  nuclear matter below saturation densities, while it does not
[23] for p-nucleus elastic scattering. From this figure, wechange those of infinite nuclear matter above saturation den-
pick up three conditions, i.elJ(0)=—80 MeV,U(p)=0 at  sities. We then choose this value to give a nice fitting to the
E.p=200 MeV, andU(p—x)=a+B=77 MeV. For an- binding energies of finite nuclei.

other condition, we use the value of effective mass defined It should be noted here that we cannot determine these
by parameters from the above conditions in an analytical way,
since the Fermi distribution is not exactly achieved by the
Pauli potential and the additional potential energy included
in the Pauli potential. In addition, the saturation properties of
nuclear matter should be realized in simulated matter for the
main purpose of this paper. We then simulate nuclear matter

! iJr(l—&u“’")) (19)
m _

p dp p=pr

We take the value ofm* =0.8m at p=py.

by QMD with the periodic boundary condition using 1024

The other three conditions are coming from the saturatiomparticles in a cell. We search the energy-minimum state by

condition, i.e., the energy per nucle@A=—16 MeV at
p=po (0.165 fm %) and the value of incompressibilitg.

the damping equation of motion as discussed above and ad-
just the parameters. By this method, we have fixed three

The last two parameters are given by hand. One is thparameter sets according to the value of incompressililjty

value of the coefficient of the symmetry ter@,. We take

which are shown in Table I. We have prepared three kinds of

25 MeV for Cg. This value leads to a symmetry energy of equation of state, namely, sofK 210 MeV), medium K

34.6 MeV for nuclear matter at saturation densige Sec.

=280 MeV), and hard K= 380 MeV) EOS. These values of
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FIG. 3. The energy dependence of the real part of the optical 0 1 2
potential. The open circles and squares indicate the results obtainec 10 10
from the experimental data of Hanef al.[23] for p-nucleus elastic Mass Number A

scattering. The solid line denotes the single-particle potential calcu-
lated by Eq.(17) in ideal nuclear matter with the parameter set of  FIG. 4. Binding energies of the finite system obtained by the
medium EOS. The short and long dashed lines showdamping equation of motion with three parameter sets, i.e. (bt
a+p+CPg(x,y) and C@g(x,y) of Eq. (17), respectively. The long dashed ling medium (the dashed ling and hard(the solid
single-particle potential calculated by simulated nuclear matter witline) EOS. The solid squares denote experimental data. The dotted
the Pauli potential is shown by the crosses. line indicates the binding energy per nucleon obtained by using the
“screened” Coulomb interaction in the case of medium EOS.
incompressibilityK are subtracted from the results of EOS

(shown in Fig. 6, belowby fitting its curvature at the satu- phinding energies of various nuclei except for light nuclei

ration point to the following parabolic form: from 1%C to 2°Ne. It might be due to the specific structures of
these light nuclei, which are not well described by the

K
E/A= Z(P—Po)2—16- (20) present QMD.
Po
(This parabola is also shown in Fig.) 6. F. “Screened” Coulomb potential

Here the single-particle potential shown in Fig. 3 is also
calculated by simulated nuclear matter with the Pauli poten- For the neutron star, the same number of electrons exist as
tial and other effective interactions instead of ideal nucleaiprotons, since nuclear matter in the neutron star should be
matter. The results are denoted by the crosses in Fig. 3 ardharge neutral. Hence the energy of the system remains finite
coincide well with the results of ideal nuclear matter excepteven if we calculate the Coulomb interaction of protons and
for the low-energy part, where the Pauli potential is effec-electrons. However, the Coulomb interaction is so long range
tive. Though this result in Fig. 3 is obtained with a parameteithat the Coulomb energy depends on the cell size in our
set of medium EOS, results with soft and hard EOS are thé&reatment of the infinite system by the periodic boundary
same as medium EOS within 2 MeV for all energy region. condition with the surrounding neighbor cells. To avoid this

In Fig. 4, we plot the binding energies of the ground statecell-size dependence, we introduce a cutoff of the Coulomb
of finite nuclei obtained by the damping equation of motion,interaction in the way of a “screened” Coulomb potential.
Eq. (14), with three parameter sets, i.e., s@fte long dashed We use the following “screened” Coulomb interaction in-
line), medium (the dashed ling and hard(the solid ling  stead of the second term of E¢) for the nuclear matter
EOS. All of them reproduce well the global trend of the calculations:

TABLE |. Effective interaction parameter set.

Soft (K=210 MeV) Medium (K=280 MeV) Hard (K=380 MeV)

a (MeV) —223.56 -92.86 -21.21

B (MeV) 298.78 169.28 97.93

T 1.16667 1.33333 1.66667

Cs (MeV) 25.0 25.0 25.0

C (MeV) —258.54 —258.54 —258.54

c® (MeV) 375.6 375.6 375.6

wy (MeV) 2.35 2.35 2.35

wy (MeV) 0.4 0.4 0.4

L (fm?) 2.1 2.1 2.05
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———— still have the maximum around #=100. This feature is

. B important to describe the clustering of matter at low densi-
[ 3 ties.
Of ]
3 sl ;
= -5t ] IIl. EQUATION OF STATE AND THE STRUCTURE
S 10k 1 OF NUCLEAR MATTER
150 E In this section we study properties of nuclear matter at
b ] several conditions. It is desirable to use a cell large enough
e “1'02 — "“1'03 — to include several periods of structure and to avoid the spu-
number of particles A rious effects of the boundary condition on the structure of

matter. Though our calculation with typically 1024 particles
FIG. 5. Particle number dependence of the energy per nucleoih a cell is not fully satisfactory in this respect, we consider
of the infinite system for four average densities frpm 0.4p, to it is enough for semiqualitative discussions at the beginning
2.2pg. of this study. Actually, the global quantities, e.g., the ground
state energy of the system, are well saturated at this number
o2 of particles in a cell. In Fig. 5, we show the energy per
V= — > Cicif f dgrid3rj nucleon of the infinite system as a function of the particle
2 i) number in a cell for four average densities fronrs 0.4p, to
exp = |1, —1i|/r ol 2.2p,. For all densities, th_e energy of the system has alre_ady
= pi(ri)pj(ry). (21 approached the asymptotic value above 256 particles within
[ri=rj 100 keV/nucleon. In this study we simulate an infinite sys-
tem by the periodic boundary condition mainly with 1024 or

) . ) . i 2048 particles in a cell, and investigate the ground state
In this equationr s is the “screening” length, of which we  hroperties of nuclear matter.

use 10 fm in the present study. The physical screening of the
Coulomb potential by the electron localization is, however,
estimated to be much larger in the case of normal nuclear
density[3]. Thus our “screening” should be considered asa We first perform the calculations for symmetric
technical approximation to avoid this cell-size dependencg¢Z/A=0.5) matter at zero temperature to simulate supernova
and to make the numerical calculation feasible. For this purmatter (SNM) in the collapsing stage. Figure 6 shows the
pose,rg. should be smaller than the cell size. On the otherenergy per nucleon as a function of the average density. The
hand, to keep the proper description of finite nuclei, it shouldsolid squares indicate the energy of “uniform” nuclear mat-
be lager than the size of nuclei. By the “screened” Coulombter while open squares are the results of energy-minimum
interaction withrg,=10 fm, however, the binding energies configurations.

are slightly modified, particularly in heavy nuclei. We com-  The “uniform” matter energy is calculated as follows:
pare the binding energies obtained by the “screened” Coufirst we distribute nucleons randomly and cool the system
lomb interaction with that of the normal one in Fig. 4. The only with the Pauli potential. The Pauli potential is repulsive
dotted line is the result of the “screened” Coulomb interac-and does not spoil the uniformity of the system. Then we
tion with medium EOS. Though the binding energies ofimpose the other effective interactions and cool only in the
heavy nuclei increase, the binding energies of finite nuclemomentum space, fixing the positions of particles. The sys-

A. Symmetric nuclear matter

BB T S o o B B L B L B DL o B R B RS I AL
105_ K=210MeV(soft) F K=280MeV(medium) T K= 380 MeV(hard)/ ]

F = QMD(uniform) + = QMD(uniform) + = QMD(uniform) ]
5 :_U QMD _':_|:| QMD .0 QMD —:
or - =

E/A[MeV]

ceeelev e b e Ly

M A RS NEWES R

e
o L

LN LY UL A

IERE SRR N

2 E....l....|,...|....|... P T PO P TS PPI IFTIT AT I
%.O 05 10 15 2000 05 10 15 2000 05 10 15 20

P/Po P/Po P/Po

FIG. 6. The energy per nucleon of symmetric nuclear ma#ZéAE 0.5) at zero temperature as a function of the average densities. From
the left, the open squares are the results with $6ft 210 MeV), medium =280 MeV), and hard EOSK =380 MeV) obtained by the
damping equation of motion searching the energy-minimum configuration in the full phase space. The solid squares indicate results obtained
from the spatially uniform distribution. The kinetic energy of the electron is not included. We use 1024 particles in a cell for all cases.
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49.58fm

FIG. 7. (Colon The structure of symmetric nuclear matter. From the upper left, the average densityli€pg, 0.80¢, 0.60¢, 0.4pq,
0.2p9, and 0.Jy. The white circles denote neutrons and red circles are protons. The nuclear potential of medium EOS is used. We use 2048
particles in a cell for these cases and the size of a cell is indicated in the figure.

tem turns out to be approximately uniform with this proce- Both cases of uniform and energy-minimum configura-
dure. Note that simulated “uniform” matter is not exactly tions have almost the same energy per nucleon for the higher
the same as ideal nuclear matter since the latter is continuowensities as is seen in this figure. Below the saturation den-
and completely uniform. sity pg, the energy per nucleon of the energy-minimum con-
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31.24fm

FIG. 8. (Color) The structure of symmetric nuclear matter at various temperatures. The left top is at the energy-minimufin=state (
MeV) obtained by the cooling procedure. Excited states With0.5, 3.0, 5.0, and 8.0 MeV are obtained by heating the energy-minimum
state by the Metropolis sampling method. Mean density ipfahd 512 particles are used.

figuration is lower than the uniform case. The deviationported in Ref.[13] though they have investigated nuclear
amounts to about 5 MeV. As we see in the following, this ismatter withT=0.5 MeV.

due to the structure change of matter from uniform to non- This change of structure is displayed in Fig. 7. Above
uniform such as a clusterized one. The energy difference du@.8o, the system is almost uniform and no specific structure
to the clustering effect is quantitatively similar to that re- is seen. Below 08, however, there appear some voids be-
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FIG. 9. The left panel: the energy per nucleon of nuclear matter as a function of the protafy fafar the three fixed average densities
p=0.2p, (the solid triangles 0.6p, (the solid squargsand 1.@, (the solid circles The right panel: same as the left panel but with the
kinetic energy of the electrons.

Z/A=0.098 L/A=().19)

FIG. 10. (Color) The structure of asymmetric nuclear matter. From the upper left, the protorZfétics 0.098, 0.195, 0.293, and 0.391,
while the average density is @d for all panels. The white circles denote neutrons and red circles are protons. The nuclear potential of
medium EOS is used. We use 1024 particles in a cell for these cases and the size of a cell is indicated in the figure.
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tween the matter. As the density gets lower, the voids deT=0 MeV obtained by the cooling method. The configura-
velop and nuclei are surrounded by the voids. Below.2 tion is sampled after the system is equilibrated enough with
each nucleus is separate, while above that density nuclei atge finite temperature. We see no significant difference in
connected to form some transient structures. This change éfructure betweeff =0 and 0.5 MeV though the energy dif-
structure is basically the same as reported in previous workigrence per nucleon is 0.8 MeV. As the temperature gets
[1-3]. Furthermore, the transient shape of the matter likdligher, nuclei in the matter get more swelled and their sur-
hole, slab, and cylinder is partly seen in our calculation alfaceés become dimmer. A similar trend is reported in Ref.
though the nuclear surface shape in QMD is somewhat con-13]: At the temperaturd=5 MeV the clustering structure
plicated. It should be noted that the nuclear shapes do nét rather vague, and the system is completely uniform above
show exact symmetry propertiésphere, cylinder, or slab T=8 MeV. quever, th.e quahtatlve structure of matter is
assumed in the previous liquid-drop studi@,4—7, where rather insensitive to excitatidrl] below T=3 MeV.

the assumption of the symmetries leads to clear changes of

the nuclear shape. Our result suggests that during the transi- B. Asymmetric nuclear matter

tion from homogeneous to inhompgeneous matter, the |, neutron star matter(NSM), beta equilibrium is
nuclear shape may not have these simple symmetry propefehieved and the proton ratio is given by the energy-
ties. It is possible that this is due to the incomplete minimi- minimum condition. The left panel of Fig. 9 is the energy per
zation of the energy because there are several local minimacleon of nuclear matter with several proton ratios. The
around the real ground state and the energy difference due [actron kinetic energy is not included in this figure, though
the nuclear shape is extremely small. However, these shapgge Coulomb interaction of protons and uniform electron

are not so strange in the transient SNM at the Couapsm%ackground is included. The energy per nucleopapy is

stage because the matter is not in perfect equilibrium. fitted by
In the case ofp=0.1p, in Fig. 7, we see many small
clusters and isolated nucleons among big nuclei. Most of (Z—N)?
them area particles, which cannot be distinguished from E/A~—16.2+ 34-6A—2 [MeV]. (22)

isolated nucleons in the figure. About 90% of the total nucle-

ons belong to big nuclei> 10) with an average mass num-

ber A=66. The existence of mang particles might be a In other words, the symmetry energy at normal density is
result of the local minimum configuration which becomes a34.6 MeV in our calculation. The symmetry energies at
serious problem especially near zero temperature. In our cap=0.6pq and 0.2, obtained in the same way are 23.0 and
culation, the system is cooled down from a random configu18.9 MeV, respectively.

ration to obtain the ground state configuration. Up to now we Including the electron kinetic energy at zero temperature,
have not yet developed an effective cooling technique tove get the total energy of NSM as a function of the proton
avoid being trapped in local minimum states. For exampleratio shown in the right panel of Fig. 9. It can be seen from
oncea particles are formed among nuclei, they are hard tahis figure that the proton ratio that gives the energy mini-
be absorbed due to the Coulomb barrier. On the other handjum of the system is 0.032% €& 0.204), 0.043 (0=0.6py),

we should not exclude the possibility of such a configuratiorand 0.072 p=1.0p).

to be realized in nuclear matter. If we can simulate the cool- The structure of asymmetric nuclear matter at low density
ing process in the star in the future, we can discuss the po%0.1p.) is shown in Fig. 10. Even though the proton ratio is
sible local minimum states realized in the stellar system. small, nucleons form a cluster structure at low density. If the

The change of the shape obtained in the QMD calculatioproton ratio is very small, some neutrons cannot stay inside
may affect the neutrino reaction rate in SNM. It has beerthe cluster but overflow into the space; clusters are floating
pointed out[1-3] that the nuclear distributions are essen-in the neutron sea. When the proton ratio increases, free neu-
tially determined by a delicate balan¢ef the order of 1 trons are absorbed into the clusters.
keV/nucleon between the surface and Coulomb energies. In  The departure from spherical symmetry of the nuclear
the present treatment, however, we neglect such a tiny erelustey shape is also seen as in symmetric matter. This may
ergy difference between the nuclear shapes around theause some consequences in the standard scenario of pulsar
ground state. We then need further improvement of our treafglitches. In the scenario, vortices in the superfluid neutron
ment to investigate the effect of the shape on the neutringea are supposed to be pinned to clustergle) and accu-
reaction rate in SNM. mulated in the inner crusts because neutrons are normal in

Nevertheless, our results provide the EOS of symmetricwuclei. The strength of the pinning, which is important in the
matter with sufficient accuracy as well as a global nucleasscenario, depends on the geometry of nuclei as well as on the
structure in the matter. superfluid energy gap.

In Refs.[1,13], a temperature dependence of the matter Finally, we have to recognize that the simulation of infi-
structure is discussed. Our aim in this paper is to investigataite systems still needs a much larger number of particles. At
the zero-temperature nature of nuclear matter and we wilthe least, a cell must include several periods of structure for
briefly discuss this point. Figure 8 is the temperature-distinct conclusions. If only one or two units of the structure
dependent structures of symmetric nuclear matter. In this cals included in a cell, the size of the unit structure is the same
culation, the mean density is set p=0.1p, and 512 par- or half the size of the given cell size. The lattice is also
ticles are used. We have prepared finite-temperature statéimited to be cubic. In this case, the results are dependent on
with the Metropolis sampling method used in Rdf3]. Asa  the boundary condition which is artificially imposed. How-
initial state of this procedure, we used the nuclear matter atver, we emphasize that the QMD framework can be used
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also for NSM and symmetric matter as has been used for thappears rather vaguely in our case. This result suggests that
reaction studies. Together with some refinements of the suduring the transition from homogeneous to inhomogeneous
face energy, the present method will be able to describe frormatter, the nuclear shape may not have these simple symme-
stable and unstable nuclei to homogeneous and inhomogy properties. We need, however, further investigations in-
neous nuclear matter. The problem of computational time irfreasing the particle number to get quantitative conclusion.

this study is expected to be solved soon. For asymmetric nuclear matter we have obtained the pro-
ton ratiosZ/A=0.032 (p=0.2py), 0.043 (p=0.6py), and
IV. SUMMARY 0.072 (p=1.0pg), which give the energy minimum of the

system for fixed average densities. At a considerably low

We have proposed the QMD approach for the descriptiomproton ratio, we have observed a neutron sea in which the
of nuclear matter in a wide range of density and proton ranormal nuclei are floating around.
tios. We can reproduce well the finite nuclear properties for In this paper we have presented our first results on infinite
various mass ranges by inclusion of the Pauli potential andiuclear matter by the use of the molecular dynamics method.
the momentum-dependent interaction. We have investigatethough it is still necessary to enlarge the particle number,
the EOS of nuclear matter by simulating an infinite systemour results agree quantitatively with previous studies which
with our QMD. Below the saturation density, clustering of include much more assumptions and restrictions in the mod-
the system was observed, which softens the EOS by lowekls.
ing the energy per nucleon up to about 5 MeV. Our model contains a further possibility for the simulation

We have shown the structure of nuclear matter at subsatwf the dynamical evolution of infinite nuclear matter such as
ration density. The transient shape of symmetric nuclear masupernova explosions, the glitch of the neutron star, and the
ter, such as hole, slab, cylinder, and sphere, predicted iimitial stage of the universe. An intensive and systematic
previous works with an analytic model and Thomas-Fermistudy of nuclear matter with the present model will be im-
calculationg 1-3], is partially seen in our calculation. How- portant since it contains fewer assumptions than the forego-
ever, the structure of nuclear matter at subsaturation densiigg models as to the structure of matter.
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