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Quantum molecular dynamics approach to the nuclear matter below the saturation density
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Quantum molecular dynamics is applied to study the ground state properties of nuclear matter at subsatu-
ration densities. Clustering effects are observed to soften the equation of state at these densities. The structure
of nuclear matter at subsaturation density shows some exotic shapes with variation of the density.
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I. INTRODUCTION

One of the main interests of heavy-ion physics and as
physics is the property of nuclear matter in extreme con
tions. Its high-density behavior is important for the scena
of supernova explosions, the evolution of neutron stars,
reaction process of high-energy heavy-ion collisions, qua
gluon plasma, and so on. Properties of the nuclear ma
below saturation density, on the other hand, are essenti
describing the multifragmentation in the heavy-ion co
sions, the collapsing stages in supernova explosions, and
structure of neutron star crusts. Here the saturation densi
the density of the energy-minimum state of the nuclear m
ter at a fixed proton ratio. For symmetric nuclear matter,
saturation density is the normal nuclear densityr050.165
fm23. Since the matter is unstable below the saturation d
sity, an inhomogeneous state is expected to appear below
saturation density.

Besides, supernova matter~SNM! and neutron star matte
~NSM! are also interesting from the viewpoint of the nucle
shape. At low densities, nuclei in these matters are expe
to be crystalized so as to minimize the long range Coulo
energies. They melt into uniform matter at a certain den
close to the saturation density. Then what happens in
tween? About a decade ago, three groups@1–3# suggested
that nuclei have exotic structures in the SNM and/or NS
They showed that the stable nuclear shape changes
sphere to cylinder, slab, cylindrical hole, and spherical h
with an increase of the matter density. The favorable nuc
shape is determined by a balance between the surface
Coulomb energies. In the liquid drop model, a simple g
metrical argument demonstrates that the favorable sh
changes as a function of the volume fraction of the nucl
in the cell, independently of specific nuclear interactio
@2,4#. From recent studies in the liquid drop model@5# and
the Thomas-Fermi calculations@6,7#, the nonspherica
shapes of nuclei are expected in a density range at about
the saturation density although the range depends on
choice of nuclear interaction. Furthermore, these shapes
expected to survive even if the shell effects are taken
account@8#.

These exotic nuclear shapes may cause substantial a
physical consequences. In SNM, neutrino absorption by
clei may modify the leptonic energy of matter and lead to
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significant change in the strength of supernova explosi
@5#. In neutron stars, the exotic nuclei may also affect
pinning of superfluid neutron vortices to nuclei in inn
crusts of neutron stars, which are considered to be the in
step of neutron star glitches. Recently, Mochizuki a
Izuyama@9# demonstrated that exotic nuclear shapes actu
play an essential role in trapping vortices in a microsco
mechanism of the glitches.

The spatial fluctuation is important in describing prope
ties of SNM and NSM because geometrical distributions
nucleons may affect the neutrino reaction rate in SNM a
interactions with vortices in NSM. However, there have be
only two works@3,10# which allow arbitrary nuclear shape
in their models. These two works@3,10# use the Thomas-
Fermi approximation and treat SNM while none has be
done for NSM. Williams and Koonin@3# have investigated
the structure of neutron-proton symmetric nuclear ma
with the proton ratioZ/A50.5, while the authors of Ref
@10# studied the matter withZ/A50.285 at the total entropy
per baryon,s51. Unfortunately, some spatial fluctuation du
to a possible cluster correlation or nonuniform distribution
neglected since their calculations with the Thomas-Fermi
proximation are based on a one-body treatment of matte

In the field of nuclear reaction study, molecular dynam
has become one of the most powerful approaches to simu
the fragmentation. Advantages of molecular dynamics
the investigation of heavy-ion reactions are that no reac
mechanism is required to assume and that the fluctuatio
the system is automatically included.

Within various kinds of molecular dynamics, the quantu
molecular dynamics~QMD! @11–16# approach has been pro
posed to study high-energy heavy-ion collisions. QMD h
been also used for the analysis of fusion reaction, nucle
induced reaction, fragmentation in collisions between he
systems, and so on.

In this paper, we apply the QMD method to the inves
gation of the equation of state~EOS! and the structure of
nuclear matter at subsaturation densities. A similar calcu
tion using QMD is done in Ref.@13# aiming to see the EOS
of nuclear matter. It was reported that the clustering in ma
significantly softens the EOS below saturation density. Th
have used 254 nucleons in a cell and their aim was to st
the EOS. In the present paper, we are interested in the s
ture of matter for wide range of the mean density. For t
655 © 1998 The American Physical Society
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656 57TOSHIKI MARUYAMA et al.
purpose, 254 nucleons seem not sufficient and we enlarg
number of particles to investigate the density-depend
structure of nuclear matter as well as the EOS.

In the present QMD, we introduce the Pauli potential a
the momentum-dependent interaction in order to simulate
fermionic feature in a phenomenological way and the ene
dependence of the optical potential. The binding energie
finite nuclei and the saturation properties of nuclear ma
are well adjusted to the empirical values. As a result of t
new version of QMD, we can approximately describe t
properties of neutron-rich isotopes such as the density pr
of 11Li and the effects of surface neutrons in the low-ene
collisions @17#. With these ingredients of QMD and the p
riodic boundary condition, we investigate the ground st
properties of nuclear matter at subsaturation densities.

In Sec. II we describe our model based on QMD. In S
III, the EOS and the structure of nuclear matter is discuss
Finally, a summary is given in Sec. IV.

II. QMD SIMULATION FOR NUCLEAR MATTER

The present QMD code is an improved version of o
previous one@16#. In previous works@16,18#, where we have
employed very simple effective interactions in QMD, w
have nicely reproduced several observables in the nucl
induced reactions at an energy region of about 100 MeV
GeV. Several improvements of this QMD are done to ena
the calculations for the ground state of nuclear matter fo
wide range of density and proton ratios. First we have int
duced a phenomenological potential, namely, the Pauli
tential, to describe the fermionic feature of nucleons. By t
Pauli potential, we can uniquely determine the ground s
of the finite nuclei and nuclear matter by seeking the ener
minimum state. Second we have introduced a moment
dependent interaction, which is also an important feature
the fermion system with a finite range interaction. In t
following, we explain the details of the present QMD a
how it describes nuclear matter.

A. Total wave function and the equation of motion

In QMD, each nucleon state is represented by a Gaus
wave function of widthL,

f i~r !5
1

~2pL !3/4
expF2

~r2Ri !
2

4L
1

i

\
r•Pi G , ~1!

whereRi andPi are the centers of the position and mome
tum of thei th nucleon, respectively. The total wave functio
is assumed to be a direct product of these wave functio
Thus the one-body distribution function is obtained by t
Wigner transform of the wave function,

f ~r ,p!5(
i

f i~r ,p!, ~2!

f i~r ,p!58 expF2
~r2Ri !

2

2L
2

2L~p2Pi !
2

\2 G . ~3!

The equation of motion ofRi andPi is given by the New-
tonian equation
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Ṙi5
]H

]Pi
, Ṗi52

]H

]Ri
, ~4!

and the stochasticN-N collision term. HamiltonianH con-
sists of the kinetic energy and the energy of the two-bo
effective interactions.

B. Effective interactions

The Hamiltonian is separated into several parts as
lows:

H5T1VPauli1Vlocal1VMD , ~5!

whereT, VPauli, Vlocal, andVMD are the kinetic energy, the
Pauli potential, the local~momentum-independent! potential,
and the momentum-dependent potential parts, respective

The Pauli potential@14,19–21# is introduced for the sake
of simulating fermionic properties in a semiclassical wa
This phenomenological potential prohibits nucleons of
same spins and isospint from coming close to each othe
in the phase space. Here we employ the Gaussian form o
Pauli potential@14# as

VPauli5
1

2
CPS \

q0p0
D 3

(
i , j ~Þ i !

expF2
~Ri2Rj !

2

2q0
2

2
~Pi2Pj !

2

2p0
2 Gdt it j

ds is j
. ~6!

In the local potential part we adopt the Skyrme type w
the Coulomb and the symmetry terms as explained in Eq.~5!
of Ref. @16#,

Vlocal5
a

2r0
(

i
^r i&1

b

~11t!r0
t(i

^ r̃ i&
t

1
e2

2 (
i , j ~Þ i !

cicjE E d3r id
3r j

1

ur i2r j u
r i~r i !r j~r j !

1
Cs

2r0
(

i , j ~Þ i !
~122uci2cj u!r i j . ~7!

In the above equation,ci is 1 for protons and 0 for neutrons
while ^r i& and^ r̃ i& are overlaps of density with other nucle
ons defined as

^r i&[ (
j ~Þ i !

r i j [ (
j ~Þ i !

E d3rr i~r !r j~r !

5 (
j ~Þ i !

~4pL !23/2exp@2~Ri2Rj !
2/4L#, ~8!

^ r̃ i&[ (
j ~Þ i !

~4p L̃ !23/2exp@2~Ri2Rj !
2/4L̃ #, ~9!

L̃5
~11t!1/t

2
L. ~10!

A modified Gaussian widthL̃ is introduced so as to adjus
the effect of the repulsive density-dependent term@22# which
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57 657QUANTUM MOLECULAR DYNAMICS APPROACH TO THE . . .
is one of the approximated forms of the density-depend
term. Equation~10! is obtained by a condition that the orig
nal form of the density-dependent term@the left-hand side of
Eq. ~11!# is exactly reproduced by the approximation, i.
the second term in Eq.~7!, in the case of a degenerate
configuration~several wave packets are at the same posit!
as

E d3r S (
i

r i~r ! D t11

5(
i

F(
j
E d3r r̃ i~r ! r̃ j~r !G t

,

~11!

r̃ i~r ![~2p L̃ !23/2exp@2~Ri2r !2/2L̃ #. ~12!

The momentum-dependent term is introduced as a F
term of the Yukawa-type interaction. We divide this intera
tion into two ranges so as to fit the effective mass and
energy dependence of the real part of the optical potentia

VMD5VMD
~1! 1VMD

~2! 5
Cex

~1!

2r0
(

i , j ~Þ i !

1

11@~Pi2Pj !/m1#2
r i j

1
Cex

~2!

2r0
(

i , j ~Þ i !

1

11@~Pi2Pj !/m2#2
r i j . ~13!

The parametrization of the constants included in
above effective interactions will be discussed in Sec. II E

C. Energy-minimum state

With inclusion of the Pauli potential, we can define t
ground state as an energy-minimum state of the system
get the energy-minimum configuration, we use the followi
damping equation of motion:

Ṙi5
]H

]Pi
1mR

]H

]Ri
, Ṗi52

]H

]Ri
1mP

]H

]Pi
, ~14!

wheremR andmP are the damping coefficients with negativ
values when we need to cool the system.

We first distribute the particles randomly in the pha
space and cool down the system according to the dam
equation of motion until the energy reaches the minim
value. Sometimes the system stops at the local minim
during the cooling. We thus try again and again this cool
procedure with a different initial state and seek the r
energy-minimum state.

For a finite nucleus and infinite system above satura
density, this procedure works rather well. For an infinite s
tem at subsaturation densities, however, there are many
minimum states around the real ground state, which di
from the ground state in the details of the surface configu
tion of the clusters. Since the energy difference from
ground state is the order of 10 keV/nucleon in this case,
accept these states as ground states and neglect the
differences of the configuration.

D. Periodic boundary condition

In order to simulate infinite nuclear matter with a fini
number of particles, we use a cubic cell with a period
boundary condition. The size of the cell is determined fro
nt
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the average density and the particle number. The perio
boundary condition is introduced as follows: As shown
Fig. 1, we prepare 26 (53321) surrounding cells, where th
particle distribution reflects the distribution of the central c
exactly. The particles in the central cell move according
the interaction with all particles in the same cell and in t
surrounding cells as well. The particles in the surround
cells obey exactly the same motions as those in the cen
cell. Thus the Hamiltonian per cell is written as

H5 (
i 51, . . . ,N FTi

1 (
cell50, . . . ,26

j 51, . . . ,N

Hi j
~2!~Ri2Rj1Dcell ,Pi ,Pj !1•••G ,

~15!

whereTi is the one-body part~kinetic energy!, Hi j
(2) is the

two-body part of the Hamiltonian andDcell are the relative
position of surrounding cells from the center. Note that t
index ‘‘cell’’ runs from 0 ~the center cell! to 26 ~surrounding
cells! andD050.

As the interactions between particles are restricted wit
the 26 closest cells, we should use large cells. At least
size of the cell should be large enough compared to the
teraction range. Since the Coulomb interaction has a v
long range, we apply a ‘‘screening’’ to the Coulomb intera
tion ~see Sec. II F!. Hence the cell size is always longer tha
the interaction range in the present study.

E. Parametrization of the constants

We have 12 parameters in the effective interactions of
Hamiltonian, Eq.~5!, i.e., CP, q0 , p0 , a, b, t, Cs, Cex

(1) ,
Cex

(2) , m1 , m2 , and the Gaussian widthL. We should param-
etrize these constants to reproduce properties of the gro
states of the finite nuclei and saturation properties of nuc
matter.

We first determine the parameters of the Pauli potent
q0 , p0 , andCP, apart from the other effective interaction
by fitting the kinetic energy of the exact Fermi gas at ze

FIG. 1. An illustrative explanation of the cell configuration
Twenty-six surrounding cells~only eight cells are displayed in thi
figure! have exactly the same distribution of particles as the cen
cell. The relative position vector of each surrounding cell from t
central cell 0 isDcell andD050.
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658 57TOSHIKI MARUYAMA et al.
temperature and at various densities. For this, we define
free Fermi gas system as a ground state for the Hamilto
including only the kinetic energy and the Pauli potential
making use of the damping equation of motion, Eq.~14!, and
the periodic boundary condition with 1024 particles in a ce
In Fig. 2, we show the kinetic energies~the solid squares!
and the total energies~the open squares! obtained by using a
parameter set for the Pauli potential as

CP5207 MeV, p05120 MeV/c, q051.644 fm.
~16!

FIG. 2. Energy per particle of free Fermi gas. The solid li
shows the exact value. The cases of the molecular dynamics c
lation with only a Pauli potential are shown by the solid squa
~kinetic energy! and the open squares~total energy!.
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In the same figure we draw the exact energy of the Fermi
by the solid line. Although there are some other parame
sets which can reproduce the exact energies of the Ferm
in the same form, e.g., that used in Ref.@13#, we choose the
above parameter set to get good properties of the gro
states of the finite nuclei with other effective interactio
particularly in combination with the momentum-depende
interaction.

Among the remaining nine conditions, four are attribut
to the momentum-dependent interaction as follows. We c
culate the single-particle potential of momentump in ideal
nuclear matter at the normal nuclear density, which lead

U~p,r0!5U local1UMD~p!5a1b1S 4

3
ppF

3D 21

3EpF
d3p8F Cex

~1!

11@~p2p8!/m1#2

1
Cex

~2!

11@~p2p8!/m2#2G
5a1b1Cex

~1!g~x5m1 /pF , y5p/pF!

1Cex
~2!g~x5m2 /pF , y5p/pF!, ~17!

with

cu-
s

g~x,y!5
3

4
x3F11x22y2

2xy
ln

~y11!21x2

~y21!21x2
1

2

x
22H arctan

y11

x
2arctan

y21

x J G . ~18!
t
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We fit the energy dependence of this potential to the exp
mental data. In Fig. 3, we plot the energy dependence of
real part of the optical potential~the open circles and
squares! obtained from the experimental data of Hamaet al.
@23# for p-nucleus elastic scattering. From this figure, w
pick up three conditions, i.e.,U(0)5280 MeV,U(p)50 at
Elab5200 MeV, andU(p→`)5a1b577 MeV. For an-
other condition, we use the value of effective mass defi
by

1

m*
5

1

m
1S 1

p

]UMD

]p D
p5pF

. ~19!

We take the value ofm* 50.8m at r5r0 .
The other three conditions are coming from the satura

condition, i.e., the energy per nucleonE/A5216 MeV at
r5r0 ~0.165 fm23) and the value of incompressibilityK.

The last two parameters are given by hand. One is
value of the coefficient of the symmetry termCs. We take
25 MeV for Cs. This value leads to a symmetry energy
34.6 MeV for nuclear matter at saturation density~see Sec.
ri-
e

d

n

e

III B !. The other is the width of the Gaussian wave packeL,
which is a free parameter in the QMD model. This val
affects the ground state properties of finite nuclei and infin
nuclear matter below saturation densities, while it does
change those of infinite nuclear matter above saturation d
sities. We then choose this value to give a nice fitting to
binding energies of finite nuclei.

It should be noted here that we cannot determine th
parameters from the above conditions in an analytical w
since the Fermi distribution is not exactly achieved by t
Pauli potential and the additional potential energy includ
in the Pauli potential. In addition, the saturation properties
nuclear matter should be realized in simulated matter for
main purpose of this paper. We then simulate nuclear ma
by QMD with the periodic boundary condition using 102
particles in a cell. We search the energy-minimum state
the damping equation of motion as discussed above and
just the parameters. By this method, we have fixed th
parameter sets according to the value of incompressibilityK,
which are shown in Table I. We have prepared three kind
equation of state, namely, soft (K5210 MeV!, medium (K
5280 MeV!, and hard (K5380 MeV! EOS. These values o
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incompressibilityK are subtracted from the results of EO
~shown in Fig. 6, below! by fitting its curvature at the satu
ration point to the following parabolic form:

E/A5
K

18r0
2 ~r2r0!2216. ~20!

~This parabola is also shown in Fig. 6.!
Here the single-particle potential shown in Fig. 3 is a

calculated by simulated nuclear matter with the Pauli pot
tial and other effective interactions instead of ideal nucl
matter. The results are denoted by the crosses in Fig. 3
coincide well with the results of ideal nuclear matter exc
for the low-energy part, where the Pauli potential is effe
tive. Though this result in Fig. 3 is obtained with a parame
set of medium EOS, results with soft and hard EOS are
same as medium EOS within 2 MeV for all energy regio

In Fig. 4, we plot the binding energies of the ground st
of finite nuclei obtained by the damping equation of motio
Eq. ~14!, with three parameter sets, i.e., soft~the long dashed
line!, medium ~the dashed line!, and hard~the solid line!
EOS. All of them reproduce well the global trend of th

FIG. 3. The energy dependence of the real part of the opt
potential. The open circles and squares indicate the results obta
from the experimental data of Hamaet al. @23# for p-nucleus elastic
scattering. The solid line denotes the single-particle potential ca
lated by Eq.~17! in ideal nuclear matter with the parameter set
medium EOS. The short and long dashed lines sh
a1b1Cex

(1)g(x,y) and Cex
(2)g(x,y) of Eq. ~17!, respectively. The

single-particle potential calculated by simulated nuclear matter w
the Pauli potential is shown by the crosses.
-
r
nd
t
-
r
e

e
,

binding energies of various nuclei except for light nuc
from 12C to 20Ne. It might be due to the specific structures
these light nuclei, which are not well described by t
present QMD.

F. ‘‘Screened’’ Coulomb potential

For the neutron star, the same number of electrons exis
protons, since nuclear matter in the neutron star should
charge neutral. Hence the energy of the system remains fi
even if we calculate the Coulomb interaction of protons a
electrons. However, the Coulomb interaction is so long ra
that the Coulomb energy depends on the cell size in
treatment of the infinite system by the periodic bounda
condition with the surrounding neighbor cells. To avoid th
cell-size dependence, we introduce a cutoff of the Coulo
interaction in the way of a ‘‘screened’’ Coulomb potentia
We use the following ‘‘screened’’ Coulomb interaction in
stead of the second term of Eq.~7! for the nuclear matter
calculations:

al
ed

u-
f

h

FIG. 4. Binding energies of the finite system obtained by
damping equation of motion with three parameter sets, i.e., soft~the
long dashed line!, medium ~the dashed line!, and hard~the solid
line! EOS. The solid squares denote experimental data. The do
line indicates the binding energy per nucleon obtained by using
‘‘screened’’ Coulomb interaction in the case of medium EOS.
TABLE I. Effective interaction parameter set.

Soft (K5210 MeV! Medium (K5280 MeV! Hard (K5380 MeV!

a ~MeV! 2223.56 292.86 221.21
b ~MeV! 298.78 169.28 97.93
t 1.16667 1.33333 1.66667
Cs ~MeV! 25.0 25.0 25.0
Cex

(1) ~MeV! 2258.54 2258.54 2258.54

Cex
(2) ~MeV! 375.6 375.6 375.6

m1 ~MeV! 2.35 2.35 2.35
m2 ~MeV! 0.4 0.4 0.4
L (fm2) 2.1 2.1 2.05
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VC
scr5

e2

2 (
i , j ~Þ i !

cicjE E d3r id
3r j

3
exp@2ur i2r j u/r scr#

ur i2r j u
r i~r i !r j~r j !. ~21!

In this equation,r scr is the ‘‘screening’’ length, of which we
use 10 fm in the present study. The physical screening of
Coulomb potential by the electron localization is, howev
estimated to be much larger in the case of normal nuc
density@3#. Thus our ‘‘screening’’ should be considered as
technical approximation to avoid this cell-size depende
and to make the numerical calculation feasible. For this p
pose,r scr should be smaller than the cell size. On the oth
hand, to keep the proper description of finite nuclei, it sho
be lager than the size of nuclei. By the ‘‘screened’’ Coulom
interaction withr scr510 fm, however, the binding energie
are slightly modified, particularly in heavy nuclei. We com
pare the binding energies obtained by the ‘‘screened’’ C
lomb interaction with that of the normal one in Fig. 4. Th
dotted line is the result of the ‘‘screened’’ Coulomb intera
tion with medium EOS. Though the binding energies
heavy nuclei increase, the binding energies of finite nu

FIG. 5. Particle number dependence of the energy per nuc
of the infinite system for four average densities fromr50.4r0 to
2.2r0 .
e
,
ar

e
r-
r
d

-

-
f
i

still have the maximum around atA'100. This feature is
important to describe the clustering of matter at low den
ties.

III. EQUATION OF STATE AND THE STRUCTURE
OF NUCLEAR MATTER

In this section we study properties of nuclear matter
several conditions. It is desirable to use a cell large eno
to include several periods of structure and to avoid the s
rious effects of the boundary condition on the structure
matter. Though our calculation with typically 1024 particl
in a cell is not fully satisfactory in this respect, we consid
it is enough for semiqualitative discussions at the beginn
of this study. Actually, the global quantities, e.g., the grou
state energy of the system, are well saturated at this num
of particles in a cell. In Fig. 5, we show the energy p
nucleon of the infinite system as a function of the parti
number in a cell for four average densities fromr50.4r0 to
2.2r0 . For all densities, the energy of the system has alre
approached the asymptotic value above 256 particles wi
100 keV/nucleon. In this study we simulate an infinite sy
tem by the periodic boundary condition mainly with 1024
2048 particles in a cell, and investigate the ground st
properties of nuclear matter.

A. Symmetric nuclear matter

We first perform the calculations for symmetr
(Z/A50.5) matter at zero temperature to simulate supern
matter ~SNM! in the collapsing stage. Figure 6 shows t
energy per nucleon as a function of the average density.
solid squares indicate the energy of ‘‘uniform’’ nuclear ma
ter while open squares are the results of energy-minim
configurations.

The ‘‘uniform’’ matter energy is calculated as follows
First we distribute nucleons randomly and cool the syst
only with the Pauli potential. The Pauli potential is repulsi
and does not spoil the uniformity of the system. Then
impose the other effective interactions and cool only in
momentum space, fixing the positions of particles. The s

on
rom

s obtained
ses.
FIG. 6. The energy per nucleon of symmetric nuclear matter (Z/A50.5) at zero temperature as a function of the average densities. F
the left, the open squares are the results with soft (K5210 MeV!, medium (K5280 MeV!, and hard EOS (K5380 MeV! obtained by the
damping equation of motion searching the energy-minimum configuration in the full phase space. The solid squares indicate result
from the spatially uniform distribution. The kinetic energy of the electron is not included. We use 1024 particles in a cell for all ca
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FIG. 7. ~Color! The structure of symmetric nuclear matter. From the upper left, the average density isr51.0r0 , 0.8r0 , 0.6r0 , 0.4r0 ,
0.2r0 , and 0.1r0 . The white circles denote neutrons and red circles are protons. The nuclear potential of medium EOS is used. We
particles in a cell for these cases and the size of a cell is indicated in the figure.
e
ly
uo

ra-
her
en-
n-
tem turns out to be approximately uniform with this proc
dure. Note that simulated ‘‘uniform’’ matter is not exact
the same as ideal nuclear matter since the latter is contin
and completely uniform.
-

us

Both cases of uniform and energy-minimum configu
tions have almost the same energy per nucleon for the hig
densities as is seen in this figure. Below the saturation d
sity r0 , the energy per nucleon of the energy-minimum co
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FIG. 8. ~Color! The structure of symmetric nuclear matter at various temperatures. The left top is at the energy-minimum statT50
MeV! obtained by the cooling procedure. Excited states withT50.5, 3.0, 5.0, and 8.0 MeV are obtained by heating the energy-minim
state by the Metropolis sampling method. Mean density is 0.1r0 and 512 particles are used.
on
is

on
d
e-

ar

ve
ure
e-
figuration is lower than the uniform case. The deviati
amounts to about 5 MeV. As we see in the following, this
due to the structure change of matter from uniform to n
uniform such as a clusterized one. The energy difference
to the clustering effect is quantitatively similar to that r
-
ue

ported in Ref.@13# though they have investigated nucle
matter withT50.5 MeV.

This change of structure is displayed in Fig. 7. Abo
0.8r0 , the system is almost uniform and no specific struct
is seen. Below 0.8r0 , however, there appear some voids b
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FIG. 9. The left panel: the energy per nucleon of nuclear matter as a function of the proton ratioZ/A for the three fixed average densitie
r50.2r0 ~the solid triangles!, 0.6r0 ~the solid squares!, and 1.0r0 ~the solid circles!. The right panel: same as the left panel but with t
kinetic energy of the electrons.

FIG. 10. ~Color! The structure of asymmetric nuclear matter. From the upper left, the proton ratioZ/A is 0.098, 0.195, 0.293, and 0.391
while the average density is 0.1r0 for all panels. The white circles denote neutrons and red circles are protons. The nuclear pote
medium EOS is used. We use 1024 particles in a cell for these cases and the size of a cell is indicated in the figure.
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tween the matter. As the density gets lower, the voids
velop and nuclei are surrounded by the voids. Below 0.2r0

each nucleus is separate, while above that density nucle
connected to form some transient structures. This chang
structure is basically the same as reported in previous w
@1–3#. Furthermore, the transient shape of the matter
hole, slab, and cylinder is partly seen in our calculation
though the nuclear surface shape in QMD is somewhat c
plicated. It should be noted that the nuclear shapes do
show exact symmetry properties~sphere, cylinder, or slab!
assumed in the previous liquid-drop studies@1,2,4–7#, where
the assumption of the symmetries leads to clear change
the nuclear shape. Our result suggests that during the tra
tion from homogeneous to inhomogeneous matter,
nuclear shape may not have these simple symmetry pro
ties. It is possible that this is due to the incomplete minim
zation of the energy because there are several local min
around the real ground state and the energy difference du
the nuclear shape is extremely small. However, these sh
are not so strange in the transient SNM at the collaps
stage because the matter is not in perfect equilibrium.

In the case ofr50.1r0 in Fig. 7, we see many sma
clusters and isolated nucleons among big nuclei. Mos
them area particles, which cannot be distinguished fro
isolated nucleons in the figure. About 90% of the total nuc
ons belong to big nuclei (A.10) with an average mass num
ber A566. The existence of manya particles might be a
result of the local minimum configuration which becomes
serious problem especially near zero temperature. In our
culation, the system is cooled down from a random confi
ration to obtain the ground state configuration. Up to now
have not yet developed an effective cooling technique
avoid being trapped in local minimum states. For examp
oncea particles are formed among nuclei, they are hard
be absorbed due to the Coulomb barrier. On the other h
we should not exclude the possibility of such a configurat
to be realized in nuclear matter. If we can simulate the co
ing process in the star in the future, we can discuss the
sible local minimum states realized in the stellar system.

The change of the shape obtained in the QMD calcula
may affect the neutrino reaction rate in SNM. It has be
pointed out@1–3# that the nuclear distributions are esse
tially determined by a delicate balance~of the order of 1
keV/nucleon! between the surface and Coulomb energies
the present treatment, however, we neglect such a tiny
ergy difference between the nuclear shapes around
ground state. We then need further improvement of our tr
ment to investigate the effect of the shape on the neut
reaction rate in SNM.

Nevertheless, our results provide the EOS of symme
matter with sufficient accuracy as well as a global nucl
structure in the matter.

In Refs. @1,13#, a temperature dependence of the ma
structure is discussed. Our aim in this paper is to investig
the zero-temperature nature of nuclear matter and we
briefly discuss this point. Figure 8 is the temperatu
dependent structures of symmetric nuclear matter. In this
culation, the mean density is set tor50.1r0 and 512 par-
ticles are used. We have prepared finite-temperature s
with the Metropolis sampling method used in Ref.@13#. As a
initial state of this procedure, we used the nuclear matte
-

re
of
ks
e
l-

-
ot

of
si-
e

er-
-
a
to
es
g

f

-

al-
-
e
o
,

o
d,

n
l-
s-

n
n
-

n
n-
he
t-
o

ic
r

r
te
ill
-
l-

tes

at

T50 MeV obtained by the cooling method. The configur
tion is sampled after the system is equilibrated enough w
the finite temperature. We see no significant difference
structure betweenT50 and 0.5 MeV though the energy dif
ference per nucleon is 0.8 MeV. As the temperature g
higher, nuclei in the matter get more swelled and their s
faces become dimmer. A similar trend is reported in R
@13#. At the temperatureT55 MeV the clustering structure
is rather vague, and the system is completely uniform ab
T58 MeV. However, the qualitative structure of matter
rather insensitive to excitation@1# below T53 MeV.

B. Asymmetric nuclear matter

In neutron star matter~NSM!, beta equilibrium is
achieved and the proton ratio is given by the ener
minimum condition. The left panel of Fig. 9 is the energy p
nucleon of nuclear matter with several proton ratios. T
electron kinetic energy is not included in this figure, thou
the Coulomb interaction of protons and uniform electr
background is included. The energy per nucleon atr5r0 is
fitted by

E/A'216.2134.6
~Z2N!2

A2
@MeV#. ~22!

In other words, the symmetry energy at normal density
34.6 MeV in our calculation. The symmetry energies
r50.6r0 and 0.2r0 obtained in the same way are 23.0 a
18.9 MeV, respectively.

Including the electron kinetic energy at zero temperatu
we get the total energy of NSM as a function of the prot
ratio shown in the right panel of Fig. 9. It can be seen fro
this figure that the proton ratio that gives the energy mi
mum of the system is 0.032 (r50.2r0), 0.043 (r50.6r0),
and 0.072 (r51.0r0).

The structure of asymmetric nuclear matter at low dens
(0.1r0) is shown in Fig. 10. Even though the proton ratio
small, nucleons form a cluster structure at low density. If
proton ratio is very small, some neutrons cannot stay ins
the cluster but overflow into the space; clusters are floa
in the neutron sea. When the proton ratio increases, free
trons are absorbed into the clusters.

The departure from spherical symmetry of the nucle
~cluster! shape is also seen as in symmetric matter. This m
cause some consequences in the standard scenario of p
glitches. In the scenario, vortices in the superfluid neut
sea are supposed to be pinned to clusters~nuclei! and accu-
mulated in the inner crusts because neutrons are norm
nuclei. The strength of the pinning, which is important in t
scenario, depends on the geometry of nuclei as well as on
superfluid energy gap.

Finally, we have to recognize that the simulation of in
nite systems still needs a much larger number of particles
the least, a cell must include several periods of structure
distinct conclusions. If only one or two units of the structu
is included in a cell, the size of the unit structure is the sa
or half the size of the given cell size. The lattice is al
limited to be cubic. In this case, the results are dependen
the boundary condition which is artificially imposed. How
ever, we emphasize that the QMD framework can be u
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also for NSM and symmetric matter as has been used for
reaction studies. Together with some refinements of the
face energy, the present method will be able to describe f
stable and unstable nuclei to homogeneous and inhom
neous nuclear matter. The problem of computational time
this study is expected to be solved soon.

IV. SUMMARY

We have proposed the QMD approach for the descrip
of nuclear matter in a wide range of density and proton
tios. We can reproduce well the finite nuclear properties
various mass ranges by inclusion of the Pauli potential
the momentum-dependent interaction. We have investig
the EOS of nuclear matter by simulating an infinite syst
with our QMD. Below the saturation density, clustering
the system was observed, which softens the EOS by low
ing the energy per nucleon up to about 5 MeV.

We have shown the structure of nuclear matter at subs
ration density. The transient shape of symmetric nuclear m
ter, such as hole, slab, cylinder, and sphere, predicte
previous works with an analytic model and Thomas-Fe
calculations@1–3#, is partially seen in our calculation. How
ever, the structure of nuclear matter at subsaturation den
ev
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appears rather vaguely in our case. This result suggests
during the transition from homogeneous to inhomogene
matter, the nuclear shape may not have these simple sym
try properties. We need, however, further investigations
creasing the particle number to get quantitative conclusio

For asymmetric nuclear matter we have obtained the p
ton ratiosZ/A50.032 (r50.2r0), 0.043 (r50.6r0), and
0.072 (r51.0r0), which give the energy minimum of the
system for fixed average densities. At a considerably l
proton ratio, we have observed a neutron sea in which
normal nuclei are floating around.

In this paper we have presented our first results on infin
nuclear matter by the use of the molecular dynamics meth
Though it is still necessary to enlarge the particle numb
our results agree quantitatively with previous studies wh
include much more assumptions and restrictions in the m
els.

Our model contains a further possibility for the simulatio
of the dynamical evolution of infinite nuclear matter such
supernova explosions, the glitch of the neutron star, and
initial stage of the universe. An intensive and systema
study of nuclear matter with the present model will be im
portant since it contains fewer assumptions than the fore
ing models as to the structure of matter.
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