Nuclear levels and structure from the decays of 213Bi and 209Tl

G. Ardisson, V. Barci, and O. El Samad

Laboratoire de Radiochimie, Faculte´ des Sciences, Universite´ de Nice, F-06108 Nice Ce´dex 2, France

(Received 26 June 1997)

Direct γ and γ - γ coincidence spectra of pure ²⁰⁹Tl and ²¹³Bi sources obtained by radiochemical continuous separation were measured with coaxial and planar HPGe detectors. In 209 Tl the half-life was measured, the β -decay energies and intensities of 11 γ transitions were reported, and a new decay scheme was proposed. In ²¹³Bi β decay 22 transitions were observed, of which 18 were assigned to a new ²¹³Po level scheme accounting for 9 excited states. [S0556-2813(98)03402-5]

PACS number(s): 23.20.Lv, 21.60.Cs, 23.40. $-$ s, 82.55. $+$ e

I. INTRODUCTION

The knowledge of 213 Po nuclear structure would be interesting for the study of nucleon-nucleon interactions, since it has only two protons and three neutrons outside the doubly magic 208Pb core. Moreover, the analytical superasymmetric fission model $(ASFM)$ of Poenaru and Ivascu $[1]$ predicts this nucleus to be the best candidate for 5 He emission. These authors calculated the process half-life against ²¹³Po excitation energy $[1,2]$. Besides the two close isotopes 212 Po and ²¹⁴Po own α -emitter excited states, so-called long-range α emitters. Very few experimental data were known about the ²¹³Po $(T_{1/2} = 4.2 \mu s)$ level scheme (see Ref. [3], and references therein), because it cannot be reached by nuclear reactions and its levels can only be fed by ²¹³Bi $(T_{1/2} = 45.6 \text{ min})$ β decay (97.91%). In the last decade this decay was extensively studied by measuring γ -decay spectra of the nuclide in equilibrium with the ²²⁹Th parent and its daughters, through the decay chain ²²⁹Th \rightarrow ²²⁵Ac \rightarrow ²²¹Fr \rightarrow ²¹⁷At \rightarrow ²¹³Bi \rightarrow ²¹³Po, by Dickens and McConnell [4] and by Helmer *et al.* [5]. Owing to such a complexity the assignment of γ lines to transitions in a given nucleus was a hard task. Besides any 229 Th sample was contaminated by 228 Th, generating highenergy- γ emitter daughters. Therefore the decay was investigated using radiochemically separated 213 Bi sources to eliminate interferences due to parent nuclides $[6]$. But a further complication arises from the ²¹³Bi α -decay branch (2.09%) to the short-lived ²⁰⁹Tl $(T_{1/2}=2.2 \text{ min})$ with a poorly known γ spectrum. It feeds by β decay a 2152-keV level in $209Pb$, which deexcites by a strong cascade of 117, 465, and 1567-kev γ rays, generating high Compton background. So we decided to reinvestigate the 213 Bi decay using a pure source and to study the γ spectrum of the β decay of ²⁰⁹Tl obtained by continuous radiochemical separation from its ²¹³Bi parent. The relevant scheme discussed in this paper is sketched in Fig. 1.

II. RADIOCHEMICAL SEPARATIONS AND EXPERIMENTAL METHODS

A. 213Bi generator preparation

The 229 Th parent source was prepared from a 100-mg weight ²³³U sample which has undergone no chemical treatment for 30 years. The uranium solution, in 10 M HCl, was loaded on a Dowex 1-X8 anion exchanger column and ²²⁹Th in the eluate was evaporated to near dryness. The main impurity was ²²⁸Th and its daughters generated by the α decay of ²³²U, itself produced by $(n,2n)$ contamination reaction on 233U, during reactor irradiation for source production. Thorium isotopes, in 8 M HNO_3 , were fixed as nitrato complexes on a Dowex 1-8X column, while 224,225 Ra, 225 Ac and daughters passed through. After evaporation the eluate brought to 2 M in $HNO₃$, was percolated on a Dowex 50W-X8 column, thermostated at 80 $^{\circ}$ C, on which ²²⁵Ac and daughters were fixed, washing with 2 M HCl allowed 213 Bi and ²¹²Pb to be discarded, then ²²⁵Ra and ²²⁴Ra were eluted with 3 M HNO₃; pure ²²⁵Ac was eluted with 6 M HNO₃. 225 Ac was then loaded in 1 M HNO₃ on new Dowex 50W-X8 column used as a 213 Bi generator. 213 Bi sources, as anionic complexes, could be extracted every 2 h by washing the column with 0.5 M HCl; a small quantity of the shortlived ²²¹Fr ($T_{1/2}$ =4.8 min) was also eluted.

B. 209Tl source preparation and counting setup

213Bi sources were loaded in 0.5 M HCl on a small column of Dowex 1-X8, fixed at the external wall of the lead castle shielding the HPGe detector and connected to a microcolumn of nickel hexacyanoferrate (II) $(NiHCF)$, 0.10-g weight, placed in front of the detector. Washing with 2 cv (column volumes) of HCl discarded traces of 221 Fr remaining in the solution. The NiHCF exchanger was chosen to selectively fix the TI^+ ion (radius $r=147$ pm), strongly retaining $^{221}Fr^{+}$ ($r=180$ pm) [7]. A 0.5 M HCl, 0.1 M thiourea

FIG. 1. Simplified decay scheme of 213 Bi. The *Q* values are in keV.

FIG. 2. Comparison of ²¹³Bi-decay and ²⁰⁹Tl β -decay spetra. Only the main γ 's are marked in the corresponding spectrum.

reducing solution was percolated through the column containing 213 Bi, using a microprocessor controlled peristaltic pump; in these conditions Bi remained on the column while Tl^+ passed through and was strongly fixed on the NiHCF column. At elution rate of 1.7 ml min^{-1} the continous fixation of 209 Tl on the column allowed a counting rate of 60 s^{-1} mainly depending on the weak ²¹³Bi α branching ratio $(2.09 \pm 0.03)\%$.

C. 213Bi source preparation

Purified 213Bi sources were measured by counting the Dowex 1-X8 column with continuous elution of 209 Tl⁺ using the reducing solution; however, thallium was not completely removed because the recoiling nuclei resulting from α decay might be implanted in the resin grains and could not be totally eluted. A decontamination factor of 209 Tl better than 350 was achieved with respect to the equilibrium mixture.

D. γ spectrometers

The spectrometers consisted of a *n*-type HPGe detector of 17% relative efficiency and energy resolution of 1.90 keV [full width at half maximum (FWHM) of the 1.33 -MeV photopeak of ${}^{60}Co$, and a 30% *p*-type coaxial HPGe detector with 1.90-keV resolution. We also used a 200 -mm² area, 10-mm thick, planar HPGe detector for low-energy γ and x rays. Pulses were converted with an Ortec multichannel analyzer driven by a 486 PC computer. Spectrum files were transferred to a VAX 8530 computer and deconvoluted with the GAMANAL code $[8]$. The detectors were calibrated in energy and efficiency with standard 152Eu and 207Bi sources obtained from LMRI (Laboratoire de Métrologie des Rayonnements Ionisants).

III. MEASUREMENTS AND RESULTS

A. The 209 **Tl decay** γ spectrum

Sources of 209 Tl were counted with the 17 and 30% HPGe detectors; each γ spectrum was stored after 600-s counting time and afterwards summed in order to check the purity of the sources. 90 individual spectra were summed totalizing about 15 counting hours. In Fig. 2 we show a typical ²⁰⁹Tl-decay γ -ray spectrum and Table I summarizes energy and intensity values obtained in this work. In addition to the main γ cascade 117-465-1567 keV, we observed 8 new weak γ lines; among them the 920.34 and 1239.76-keV γ transitions were also found in the ²¹³Bi-²⁰⁹Tl mixture equilibrium decays $[6]$.

TABLE I. γ transitions from ²⁰⁹Tl β decay. Uncertanties are given in parentheses on the last digits of the figure.

E_{γ} (key)	$I_{\gamma}^{\ a}$ (%)	E (level) ^b (keV)	
117.24(5)	73(4)	2149.29	
284.04(23)	0.14(7)	2315.67	
311.5(3)	0.028(14)	2460.8	
375.5(2)	0.070(15)	2524.79	
465.10(5)	95(5)	2032.05	
$469.7(3)^c$	0.03(2)		
748.0(3)	0.09(3)	2315.67	
920.34(9)	0.70(7)	3069.63	
1239.76(15)	0.31(12)	3389.05	
1329.3(3)	0.026(5)	3341.4	
1566.96(5)	100(5)	1566.97	

^aFor 100 total decay of the parent.

^bDecaying level.

 \mathfrak{c}_γ not placed.

FIG. 3. Decay rate of ²⁰⁹Tl.

B. 209Tl half-life measurement

Since only one measurement of the 209 Tl half-life, by means of a GM counter and thallium purified sources, was published in 1950 [9], we decided to carry out a new measument using a multichannel anlyzer in multiscaling mode. ²⁰⁹Tl sources were fixed on NiHCF columns 20 min each and the decay was followed over 400 s in 20-s bins. Twenty spectra were added and the experimental points were fitted using standard least square methods. The decay rate is plotted in Fig. 3. Our accurate value, $T_{1/2} = (2.161 \pm 0.007)$ min agrees well, within one stardard deviation, with Hagemann's [9,10] reported value $T_{1/2}$ =(2.20±0.07) min.

C. The ²¹³Bi decay γ spectrum

Twenty-eight 213Bi sources were prepared and counted with continuous elimination of the 209 Tl daughter; the intensity ratio between the main photopeaks of 440 keV (^{213}Bi) decay) and 465 kev (209 Tl decay) was measured in each run to check the decontamination factor with respect to the elution rate. 94 individual spectra were added to a total of 49-h counting. A typical γ spectrum is also show in Fig. 2, and Table II summarizes the results obtained in this work.

The γ line of 323.69 keV was assigned to the transition from the ²⁰⁹Tl first excited $(3/2^+)$ to ground state $(1/2^+)$, from the α branch $(2.09 \pm 0.03)\%$ of the ²¹³Bi decay. The total transition intensity I_T may vary between 0.16 and 0.20 % depending upon the assumed multipolarity $\lceil \alpha(E2)=0.0896, \alpha(M1)=0.331 \rceil$. If *E*2 then $I_T=(0.16$ \pm 0.02)%, in good agreement with the intensity (0.16 \pm 0.03)% of the 5.549-MeV α group [11].

The 778.8-keV γ line (Table II) is interpreted as deexciting the ²⁰⁹Pb first excited state $(I^{\pi}=11/2^{-})$ through ²¹³Po \rightarrow ²⁰⁹Pb α decay. Its total transition intensity, (0.0043)

TABLE II. γ transitions from ²¹³Bi β decay. Uncertanties are given in parentheses on the last digits of the figure.

E_{γ} (keV)	I_{γ}^{a} (%)	$E(\text{level})^b$ (keV)	E_{γ} (keV)	I_{γ}^{a} (%)	E (level) ^b (keV)	
147.66(5)	0.0148(12)	440.42	807.38(5)	0.241(15)	1100.16	
292.76(5)	0.416(23)	292.77	826.47(6)	0.0057(5)	1129.27	
323.69(5)	0.148(12)	c	867.98(3)	0.0111(11)	867.98	
402.8(3)	0.00010(3)	1003.55	$880.2(3)^e$	0.0029(10)		
440.43(5)	$26.1(3)^d$	440.42	$884.6(3)^e$	0.00029(10)		
574.8(3)	0.00063(17)	867.98	886.66(14)	0.00102(19)	1328.2 ^g	
600.7(3)	0.00070(22)	600.73	$897.0(3)^e$	0.00031(9)		
604.9(3)	0.00050(18)	1045.67	1003.55(5)	0.050(5)	1003.55	
$646.03(9)^e$	0.00231(22)		1045.70(9)	0.018(3)	1045.67	
659.77(5)	0.0361(20)	1100.16	1100.12(5)	0.259(16)	1100.16	
710.81(21)	0.0102(11)	1003.55	1119.29(5)	0.050(3)	1119.27	
778.87(5)	0.0043(4)		1328.2(3)	0.00039(14)	1328.2	

^aFor 100 total decays ($\alpha + \beta$ ⁻) of the parent.

^bDecaying level.

^cTo ²⁰⁹Tl first excited to ground state transition from ²¹³Bi \rightarrow ²⁰⁹Tl α decay.

 d Normalization value from Ref. [5].

 $e^e \gamma$ not placed.

fTo ²⁰⁹Pb first excited to ground state transition from ²¹³Po \rightarrow ²⁰⁹Pb α decay.

^gThe placement is uncertain.

FIG. 4. Selected portions of coincidence spectra. (a) 117-keV gate in ²⁰⁹Tl β decay. S.E. is the single-escape peak. (b) 293-keV gate in 213Bi decay.

 ± 0.0004 %, agrees well with $I_{\alpha} = (0.006 \pm 0.002)$ % measured for the 7.612-MeV α group by Liang [12] or with I_{α} =(0.003±0.001)% for E_{α} =(7614±10) MeV by Valli $[13]$.

The 867.98-kev γ line, previously interpreted [6] as deexciting a 209 Tl state of the same energy is assigned here to 213 Po (Table I) as discussed in Sec. IV B 1.

The experimental setup included three *n*-type HPGe detectors of 20% relative efficiency and one 20 -cm² planar HPGe detector. The acquisition system was described elsewhere [7]. Figure 4 shows typical gated spectra and Table III summarize the γ - γ coincidence data.

IV. DISCUSSION

A. The 209 **Tl** β -decay scheme

In order to assign γ lines to both ²⁰⁹Pb and ²¹³Po level schemes γ - γ coincidence experiments were carried out using the long-lived 225 Ac parent in equilibrium with its daughters.

D. γ - γ coincidence measurements

The ²⁰⁹Pb level scheme as fed by the ²⁰⁹Tl β decay, reported in Fig. 5, was build using γ - γ coincidence data and Ritz's combination principle. We also compared our data

β decay	Gate energy (keV)	Coincidence γ 's ^a	
209 Tl	117	311.5, 375.5, 465.1, 920.3, 1239.8, 1567.0	
	376	117.2, 465.1	
	465	117.2, 284.0, 1329.3, 1567.0	
	920	117.2, 465.1, 1567.0	
	1240	117.2, 465.1	
	1329	465.1	
	1567	117.2, 465.1, 748.0, 920.3, 1239.8, 1329.3	
^{213}Bi	148	659.8	
	293	147.7, 574.8, 710.8, 807.4, 826.5	
	440	604.9, 659.8	
	660	147.7, 440.4	
	807	292.8	

TABLE III. γ - γ coincidence data.

^aOnly transitions experimentally observed in direct coincidence with the corresponding gate are reported.

with nuclear levels observed in one-particle transfer reactions $^{208}Pb(d,p)$ [14], $^{208}Pb(d,p\gamma)$ [15], $^{208}Pb(t,d)$ [16], ²⁰⁸Pb(α , ³He) [17], ²¹⁰Pb(p ,*d*) [18], and in the two-particle transfer reaction $^{207}Pb(t,p)$ [19]. Intensity balances at each level were calculated, correcting γ intensities for internal conversion, assuming pure multipolarities for the transitions

FIG. 5. ²⁰⁹Tl β -decay scheme. Dots mark coincidence relations. Total intensities are per 100 decay of the parent. Energies are in keV. Square brackets around values means deduced from level scheme.

117.24 keV $(E1)$, 465.10 keV $(E2)$, and 1566.96 keV $(E2)$. The leading intensity of the branch to the 2149-keV level was constrained by the condition $\Sigma I_B = 100$. Log *ft* values of β branches were computed from our measured half-life (Sec. III B), the β -decay energy Q_{β^-} =(3982±10) keV [20], and the f_0 matrix elements by Gove and Martin [21].

Although no direct measurement of the 209 Tl ground-state spin had ever been made, the shell model allows to predict a $[(\pi3s_{1/2})^{-1}(\nu2g_{9/2})_0^2]$ two-paired-particle one-hole lowest configuration, so the state must be $I^{\pi}=1/2^{+}$. The assignment is also supported by the $I=1/2$ value measured for all the ground states of odd-mass thallium isotopes between $A=199$ and 205. Hence β selection rules restrict direct feeding of ²⁰⁹Pb levels to I^{π} =1/2^{\pm}, 3/2^{\pm}, and 5/2⁻ [22,23].

The levels at (1566.97 ± 0.05) , (2032.05 ± 0.07) , and (2149.29 ± 0.09) keV are known and will not be discussed.

1. Level at (2315.67 \pm 0.20) keV

The feeding of a level at (2315.67 ± 0.20) keV in ²⁰⁹Pb is proposed owing to the good agreement of sum relationship of the new weak γ transitions of 748.0 and 284.04 keV from this level to $I^{\pi}=1/2$ ⁺ and $5/2$ ⁺ lower levels, observed in γ - γ coincidences, respectively, in 1567- and 465-keV gates. This level might be identified with the $(2319±2)$ keV level observed in ²⁰⁸Pb(*d*,*p*) [14], ²⁰⁸Pb(*d*,*p* γ) [15], and ²¹⁰Pb(*p*,*d*) [18] reactions with probable spin $I^{\pi}=3/2^{(-)}$. The corresponding β transition has log $ft=7.6$, in agreement with the expected value for a $\Delta I=0,\pm 1$ ($\Delta l=1$) $\Delta \pi$ yes, first-forbidden β transition [22,23], assuming a relative strong component of the $[(\nu 2g_{9/2})_0^2 + (\nu 3p_{3/2})^{-1}]$ configuration.

2. Levels at (2460.8 ± 0.4) *and* (2524.79 ± 0.22) *keV*

Two new levels are proposed at (2460.8 ± 0.4) keV and (2524.79 ± 0.22) keV to account for coincidences of 311.5and 375.5-keV transitions observed in the 117-keV gate. The former might be identified with the (2463 ± 3) -keV level observed in ²⁰⁸Pb(*d*,*p*) [14] and ²¹⁰Pb(*p*,*d*) [18] reactions with probable spin and parity $I^{\pi} = 5/2^-$, $7/2^-$. The high

 $^{213}_{84}P_0$ ₁₂₉

FIG. 6. Same as Fig. 5 for ²¹³Bi β decay.

log $ft=8.4$ value favors $I^{\pi}=5/2^-$ with a strong mixing of the $[(\nu 2g_{9/2})_0^2 + (\nu 2f_{5/2})^{-1}]$ configuration.

3. Level at (3069.63 \pm 0.13) keV

A level at (3069.63 ± 0.13) keV is deduced from the coincidence of the 920.34-keV γ transition observed in the 117-keV gate. The level may be the (3076 ± 5) -keV state $(I^{\pi} = 3/2^{-})$ measured in the ²⁰⁸Pb(*d*,*p*) [14] and ²⁰⁷Pb(*t*,*p*) [19] reactions.

4. Level at (3361.4 ± 0.3) keV

A level at (3361.4 ± 0.3) keV is suggested on the basis of a γ transition of 1329.3 keV, seen in the 465-keV gate, decaying to the 2032.06-keV level $(I^{\pi} = 1/2^+)$. Its energy is in good agreement with the level (3361 ± 3) keV measured in the ²⁰⁸Pb(d , p) [14] reaction, but its decay mode disagrees with their assignment $I^{\pi}=(5/2^{-})$, since the *M*2 transition strenght would be out of limits. Therefore the identification with this level may be doubtful and a spin $I^{\pi}=(1/2,3/2)$ is more probable for $\log ft = 6.1$.

5. Level at (3389.05 \pm 0.18) keV

The (3389.05 ± 0.18) -keV level is supported by the existence of a coincidence of the 1239.8-keV γ in the 117-keV gate. It may be identified with the $(3387[±]4)$ -keV level observed in the ²⁰⁸Pb(*d*,*p*) [14] and ²⁰⁷Pd(*t*,*p*) [19] reactions. It may be assigned a spin $I^{\pi}=(1/2,3/2)$ for the low $log ft = 6.0$ (Fig. 5).

B. The 213 Bi β -decay scheme

0.65 Cap.

29.76

600.73

440.42

292.77

 0.0

²¹³Bi deexcites mainly (97.91%) by β decay to ²¹³Po and by a weak α branch (2.09%) to ²⁰⁹Tl. The most of γ transitions reported in Table II were assigned to the level scheme according to γ - γ coincidence data. Total transition intensities were calculated applying corrections for internal conversion, assuming *M*1pure multipolarities for the most intense 293- and 440-keV γ transitions, as measured in conversion electron experiment in previous works $\lceil 3 \rceil$, and $E2$ multipolarity for the 148-keV transition according to level scheme as suggested by theoretical calculations (see Sec. IV C). Intensities were normalized to 100 total decays of the parent assuming an intensity (26.1 ± 0.3) % for the 440-keV transition, as measured by Helmer et al. [5] with respect to 100 decay of the ²²⁹Th parent. The β decay Q value was taken as (1427) \pm 7) keV [20]. The suggested decay scheme is shown in Fig. 6.

The spin of the 213 Bi parent ground state may be assumed $I^{\pi}=9/2$ ⁻ as suggested by the extreme single-particle shell model. The lowest configuration of the unpaired proton outside the closed magic $A=208$ core is $[(\pi 1h_{9/2})(\nu 2g_{9/2})_{0+}^4)]_{9/2}$. Similarly the lowest configuration for the unpaired neutron in the 213Po ground state is $[(\pi 1h_{9/2})^2_{0+} (\nu 2g_{9/2})^3_{9/2^+}]_{9/2^+}$. The ground-state to groundstate β transition ($\nu 2g_{9/2}$) \rightarrow ($\pi 1h_{9/2}$) will be first forbidden with $\Delta I = 0$ ($\Delta l = 1$) and $\Delta \pi$.

1. Level at (867.98 ± 0.03) *keV*

A (867.98 ± 0.03) -keV level is proposed to account for the γ line of 867.98 keV and the coincidence of the 574- and

 $9/2^{-}$

 $E\beta^-$

 0.0

 $\frac{213}{83}$ Bi₁₃₀

 $\underline{\mathbf{B}}$

0.00039

0.056

0.536

0.0019

 0.061

0.0117

31.0

0.36

65.9

1420

 $O = 1427$

45.59 min

 $\frac{\log ft}{\log ft}$

7.74

 7.12

6.23

8.89

7.53

8.65

6.073

8.22

6.323

 $(5/2^+)$

 $(7/2^{+})$

 $(11/2^+)$

 $9/2$

FIG. 7. Experimental and calculated level schemes of the v^3 configuration. Dotted lines connect levels of similar structure and indicate possible identifications in the experimental scheme of 213Po.

293-keV γ 's. Previously this transition was erroneously assigned to the ²⁰⁹Tl level scheme from the α branch of the $decay [6]$. This would imply a hindrance factor of about one unit caracteritic of a favored α transition, and therefore a spin assignment for the level inconsistent with the expected single-particle state in 209 Tl [24].

2. Level at (1003.55 ± 0.05) keV

The (1003.55 ± 0.05) -keV level, proposed in Ref. [6], was confirmed here by the presence of the 710-keV transition in coincidence with the 293-keV gating γ . A tentative level at (600.7 ± 0.3) keV was proposed on the basis of sum relationship between the weak 600.7- and 402.8-keV γ transitions as cascading from the 1003.5 -keV level (the order of the transitions may also be reversed).

3. Level at (1045.67 \pm 0.09) keV

A new level of (1045.67 ± 0.09) keV was deduced from the coincidence of the 604.9-keV transition with the 440-keV gating γ and the existence of the 1046-keV γ transition.

Single-particle configuration	e_i (keV) 0.0 ^a $896.29(5)^{a}$ 0.0 ^b $778.8(3)^{b}$		E_i (keV) $-3798.9(10)$ -2903 $-3936.8(14)$ -3158	
$(\pi 1h_{9/2})$ $(\pi 2f_{7/2})$				
$(\nu 2g_{9/2})$ $(\nu 1 i_{11/2})$				
Two-particle configuration	J^{π}	e_I (keV)	Δ_J (keV)	
$(\pi 1 h_{9/2})^2 J$	0^+ 2^+	0.0 ^c $1181.40(2)$ ^c	-1185 -3	
$(\nu 2g_{9/2})^2J$	0^+ 2^+ 4^+ $6+$ 8^+	0.0 ^d $799.7(1)^d$ $1097.7(10)^{d}$ $1195.6(10)^{d}$ $1279(30)$ ^d	-1249 -450 -152 -54 30	
$[(\nu 2g_{9/2})(\nu 1h_{11/2})]$	(10^{+})	$1799(15)^{d}$	-229	

TABLE IV. Experimental single-particle and two-particle energies outside the doubly magic ²⁰⁸Pb core used in the calculation.

 aFrom $\mathrm{^{209}Bi}$ [24].

 $^{\rm b}$ From 209 Pb [24].

 \rm{c} From ²¹⁰Po [26].

 d From 210 Pb [26].

4. Level at (1100.16 \pm 0.04) keV

The (1100.16 ± 0.04) -keV level, already suggested in Ref. [6], was confirmed on the basis of three γ transitions deexciting the state to the ground state and the two first excited levels, and from coincidence relationships with the 293- and 440-keV gating transitions (Table III). The 807-keV γ line, previously assigned to a level of the same energy, was observed in coincidence with the 293-keV gate.

5. Level at (1119.27 \pm *0.04) keV*

A (1119.27 ± 0.04) -keV level, previously proposed in Ref. $[6]$, was confirmed on the basis of coincidence data (Table III).

6. Level at (1328.2 ± 0.3) keV

A (1328.2 ± 0.3) -keV level was proposed to account for a transition of the same energy.

C. Semiempirical shell-model energy calculations in 213Po

Theoretical caculations were performed in the framework of the shell model, for a $(\pi^2 \nu^3)$ configuration. The Hamiltonian was chosen as

$$
H = \sum_{i} H_i + \sum_{i>k} H_{ik}, \qquad (1)
$$

with only one-particle and two-particle effective interactions. Taking eigenstates we get

$$
E_j^* = \langle \Phi_J | H | \Phi_J \rangle = \left\langle \Phi_J \middle| \sum_i H_i \middle| \Phi_J \right\rangle + \left\langle \Phi_J \middle| \sum_{i \ge k} H_{ik} \middle| \Phi_J \right\rangle
$$

$$
= \sum_i \epsilon_i + \sum_{i \ge k} \Delta_J(ik) = \sum_{i=1}^5 E_i + \sum_{i \ge k=1}^5 \Delta_J(ik) - E_g, \quad (2)
$$

where

$$
|\Phi_J\rangle = |j_1^{n_1}(v_1J_1)j_2^{n_2}(v_2J_2)J\rangle
$$

is the type of shell-model basis involved, of only two coupled shells with seniority, in the notation of De Shalit and Talmi $[25]$:

$$
\epsilon_i = \langle \Phi_J | H_i | \Phi_J \rangle
$$
 and $\Delta_J(ik) = \langle \Phi_J | H_{ik} | \Phi_J \rangle$

are single-particle and two-particle matrix elements; and

$$
E_i = e_i - S_i
$$

is the single-particle effective excitation energy relative to the ²⁰⁸Pb inert core, experimentally taken from the level energy e_i and the particle separation energy S_i in the onenucleon-plus-core close nuclei ²⁰⁹Bi(π) and ²⁰⁹Pb (ν) [24]:

$$
E_g = B(^{213}Po) - B(^{208}Pb)
$$

is the binding energy relative to the 208Pb core. For the choice of the two configuration we note that the lowest experimental single-particle state energies relative to the core, at less than 1 MeV, are the (ν 2*g*_{9/2}), (π 1*h*_{9/2}), and (ν 1*i*_{11/2}) configurations (Table IV). In addition, the $(\pi^2 \nu^3)$ ²¹³Po ground state configuration is most probably in the $[(\pi 1h_{9/2})^2v=0$ $J=0^+]$ proton and the broken-pair configuration, $[(\pi 1h_{9/2})^2 22^+]$ is more than 1 MeV higher (Table IV), so we can neglect it in this approximation. Finally we only retain the v^3 configurations

$$
[(v2g_{9/2})^3vJ^+],
$$

where $(v=1, J=9/2^+)$ or $(v=3, J=3/2^+\cdots 21/2^+)$, and

$$
[(\nu 2g_{9/2})_0^2 + ((\nu 1i_{11/2})]11/2^+
$$

which from the preceeding discussion might adequately describe the lowest energy levels, below 1 MeV, in 213Po. From a standard expansion of matrix elements between v^3 configurations as a function of two-particle configuration matrix elements, using coefficients of fractional parentages (CFP) $[25]$, the only extra experimental data needed are the two-neutron excitation energies e_j from the ²¹⁰Pb(v^2) level scheme, which enter in the coupling energies

$$
\Delta[(\nu 2g_{9/2})^2 J] = -S_{2n}(^{210}Pb) + e_J(^{210}Pb) -2E(\nu 2g_{9/2}),
$$

 $(J^{\pi}=0^{\pm},2^{\pm},4^{\pm},6^{\pm},8^{\pm})$, and

$$
\Delta[(\nu 2g_{9/2})(\nu 1i_{11/2})_J] = -S_{2n}(^{210}\text{Pb}) + e_J(^{210}\text{Pb})
$$

$$
-E(\nu 2g_{9/2}) - E(\nu 1i_{11/2}),
$$

 $(J^{\pi}=1^+\cdots10^+)$, where S_{2n} is the two-neutron separation energy. All the former $(\nu 2g_{9/2})^2$ states are known [26,27] and for the latter a probable (10^+) state was identified in ^{210}Pb (see Table IV). Taking these values, the level scheme, reported in Fig. 7, was calculated and compared with the experimental one, as a guide for parity and spins assignments. In the figure we we also reported the results (CKH) of Caurier $[28]$ who performed a more extensive analysis in the complete particle-hole space around the 208Pb core, with Kuo-Herling [29] residual interaction matrix elements. We also reported the experimental $[30]$ and theoretical $[31]$ data about the 211 Pb nucleus, which may also be described by a pure v^3 configuration. The agreement between theory and experiment is quite good with the suggested identifications in the complete shell-model space as well as in the truncated one.

ACKNOWLEDGMENTS

We would like to thank C. Sauvage for kind permission to use the γ - γ spectroscopy device of the Center de Spectroscopie Nucléaire et de Spectroscopie de Masse (CSNSM) in Orsay.

- [1] D. N. Poenaru and M. Ivascu, J. Phys. (Paris) 45, 1099 (1984).
- [2] D. N. Poenaru and M. Ivascu, Central Institute of Physics, Report No. NP27, Bucharest, 1983.
- [3] Y. A. Akovali, Nucl. Data Sheets 66, 237 (1992).
- [4] J. K. Dickens and J. W. McConnell, Radiochem. Radioanal. Lett. 47, 331 (1981).
- [5] R. G. Helmer, C. W. Reich, M. A. Lee, and I. Ahmad, Int. J. Appl. Radiat. Isot. 37, 139 (1986).
- [6] M. C. Kouassi, A. Hachem, C. Ardisson, and G. Ardisson, Nucl. Instrum. Methods Phys. Res. A **280**, 424 (1989).
- [7] A. Abdul-Hadi, V. Barci, B. Weiss, H. Maria, G. Ardisson, M. Hussonnois, and O. Constantinescu, Phys. Rev. C **47**, 94 $(1993).$
- [8] R. Gunnink and J. B. Niday, Lawrence Livermore National Laboratory, Report No. UCRL-51061, 1972.
- [9] F. Hagemann, Phys. Rev. **79**, 534 (1950).
- [10] F. Hagemann, L. I. Katzin, M. D. Studier, G. T. Seaborg, and A. Ghiorso, Phys. Rev. **79**, 435 (1950).
- [11] C. Graeffe, K. Valli, and J. Aaltonen, Ann. Acad. Sci. Fenn., Ser A VI, 145 (1964).
- [12] C. F. Liang, thesis, Paris-Orsay University, 1969.
- [13] K. Valli, Ann. Acad. Sci. Fenn., Ser A VI, 165 (1964).
- [14] D. G. Kovar, N. Stein, and C. K. Bockelman, Nucl. Phys. A231, 266 (1974).
- [15] W. Dunnweber, E. R. Cosman, E. Grosse, W. R. Ering, and P. Von Brentano, Nucl. Phys. **A247**, 251 (1975).
- [16] G. J. Igo, P. D. Barnes, E. R. Flynn, and D. D. Armstrong, Phys. Rev. 177, 1831 (1969).
- [17] R. Tickle and W. S. Gray, Nucl. Phys. A247, 187 (1975).
- [18] G. Igo, E. R. Flynn, B. J. Dropeski, and P. D. Barnes, Phys. Rev. C 3, 349 (1971).
- [19] E. R. Flynn, G. Igo, P. D. Barnes, D. Kovar, and R. Broglia, Phys. Rev. C 3, 2371 (1971).
- [20] G. Audi and A. H. Wapstra, Nucl. Phys. **A595**, 409 (1995).
- [21] N. B. Gove and M. J. Martin, Nucl. Data, Sect. A 10, 206 $(1971).$
- [22] A. H. Wapstra, G. J. Nijgh, and J. Van Lieshout, *Nuclear Spectroscopy Tables* (North Holland, Amsterdam, 1959).
- [23] S. Raman and N. B. Gove, Phys. Rev. C 7, 1995 (1973).
- [24] M. J. Martin, Nucl. Data Sheets 63, 723 (1991).
- [25] A. De Shalit and I. Talmi, *Nuclear Shell Theory* (Academic, New York, 1963).
- [26] E. Browne, Nucl. Data Sheets 65, 209 (1992).
- [27] T. Lönroth, University of Jjväskylä Departement of Physics, Research Report No. 4/1981, 1981 (unpublished).
- [28] E. Caurier (private communication).
- [29] G. H. Herling and T. T. S. Kuo, Nucl. Phys. **A181**, 113 (1972).
- [30] C. Ellegard, R. P. Barnes, and E. C. Flynn, Nucl. Phys. A259, 435 (1976).
- [31] E. K. Warburton and B. A. Brown, Phys. Rev. C 43, 602 $(1991).$