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Shell-model calculations for the three-nucleon system
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We use Faddeev’'s decomposition to solve the shell-model problem for three nucleons. The dependence on
harmonic-oscillator excitations allowed in the model space, up &dBm the present calculations, and on the
harmonic-oscillator frequency is studied. Effective interactions derived from Nijmegen Il and Reid93 poten-
tials are used in the calculations. The binding energies obtained are close to those calculated by other methods.
The structure of the Faddeev equations is discussed and a simple formula for matrix elements of the permu-
tation operators in a harmonic-oscillator basis is given. The Pauli principle is properly treated in the calcula-
tions.[S0556-281®8)02102-5

PACS numbdps): 21.45+v, 21.60.Cs, 27.16:h

[. INTRODUCTION cations. The present approach has several advantages. First,
any number of partial waves can be included. Second, the
Many different methods have been used to solve the&alculation is simplified by using a compact formula for the
three-nucleon problem in the past. The most viable approachiatrix elements of the permutation operators in the
appears to be the Faddeev mettiadl It has been success- harmonic-oscillator basis. Also, because of the way we do
fully applied to solve the three-nucleon bound-state problenihe model-space truncation, we keep equivalence of the Fad-
for various nucleon-nucleon potentig-5]. The most com- deev and Schiinger equations throughout the calculation.
plex calculations of this kind include up to 34 channels, In Sec. Il we discuss the shell-model Hamiltonian with a
when all thej<4 waves are taken into account. The preci-bound center-of-mass, the Faddeev equation, and the meth-

sion achieved in these calculations is better than[4%]. ods used to derive the starting-energy-independent effective
On the other hand, when studying the properties of mordnteraction. Results of the calculations for the three-nucleon
complex nuclei one typically resorts to the shell model. InSystem are presented in Sec. lll. In particular, we discuss the

that approach, the harmonic-oscillator basis is used in a trurfarmonic-oscillator frequency and the model-space-size de-
cated model space. Instead of the free nucleon-nucleon pgendences. Conclusions are given in Sec. IV.

tential, one uses effective interactions inside the model

space. Examples of such calculations are the large-basis no- Il. SHELL-MODEL HAMILTONIAN

core shell-model calculations that have recently been per- AND THE FADDEEV APPROACH

formed[6—8]. In these calculations all nucleons are active, )

which simplifies the effective interaction as no hole states are N most shell-model studies the one- plus two-body
present. The effective interaction is determined for a systerif@miltonian for theA-nucleon system, i.e.,

of two nucleons in a harmonic-oscillator well interacting by A g2 A
the nucleon-nucleon potential and is subsequently used in the i s

. b quently H=2, o=+ V\(ri—T)), 1)
many-particle calculations. =1 2m i

In the present paper we combine the application of the
shell-model approach to the three-nucleon system with thevherem is the nucleon mass andy(r;—r;) the nucleon-
Faddeev method. We use Faddeev's decomposition for theucleon interaction, is modified by adding the center-of-mass
basis states and remove the center-of-mass term. This leadgrmonic-oscillator potentiab AmQ2R?, R=1/A AT
to a significant simplification of the problem and allows us to7js potential does not influence intrinsic properties of the
extend considerably the model space. We can study the cORiany_hody system. It provides, however, a mean field felt by
vergence properties of the results with the increasing model;.n nucleon and allows us to work with a convenient

space. If convergence is achieved, then this approach leads @ monic-oscillator basis. The modified Hamiltonian, de-

the exact solution of the thre_e-nucleon prpblem and is, thu ending on the harmonic-oscillator frequerf®y can be cast
complementary to the traditional calculations, based on th

) : : . to the form
differential equation solutions.
In addition to the attempt of solving the three-nucleon AT 22

S pi 1 )
problem exactly, the present method serves primarily as a HO=Y | =+ - mQ2r:
test of the shell-model approach. In particular, it allows us to =1l2m 2
test effective interactions used in standard shell-model appli- A mO2

+ F—r)— —(ri—r:)2|.
2 VN =) = (1) } @

*On leave of absence from the Institute of Nuclear Physics, Acad- o .
emy of Sciences of the Czech Republic, 250 6% Rear Prague, | he one-body term of the Hamiltonig@) can b? rewritten
Czech Republic. as a sum of the center-of-mass terd{,=P2 /2Am
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with 7(*) and7(™) the cyclic and the anticyclic permutation

tive coordinates only. In the present application we use &Perators, respectiv(e_l))/. Wat)jgrived a simple formula for the
basis, which explicitly separates center-of-mass and relativélatrix elements o "'+ 77" in the basis(6), namely,
coordinate wave functions. Therefore, the center-of-mass

term contribution is trivial and will be omitted from now on.
For a three-nucleon system, i.A+ 3, the transformation

of the coordinates
N 1. o
r= E(rl_rZ),

(3a)
- 2., . - -
y= 5[5(r1+r2)—r3], (3b)
and, similarly, of the momenta

- 1. .

p="\5(P1~P2). (4a
- 1. . 2.
9= "\ g(P1+P2)~ \/3Ps, (4b)

can be introduced that brings the relative-coordinate part of

the one-body harmonic-oscillator Hamiltonian into the form

~2 ~2
— P 1 2.2 a 1 2,2
Ho—2m+2mQr+2m+2mQy. (5)
Eigenstates of this Hamiltonian,
Inlsjt, NCST7,IT), (6)

are then used as the basis for our calculation. Hereand

N, L are the harmonic-oscillator quantum numbers corre-

(n1l181j 1ty N1 L1 STy 7, IT| T
+ T(+)| n2| 252j 2t2 ,Nzﬁzsjo,\]-D

= 5N1,N2§ Ezézjljzjljzglnglfz

i st s l, s s
SYEIIE SV O SV A
2 2
L S J L S J
R I
2 2 1 2 2 1
X
ESsz 1Tt
2 2 2

X [( _ 1)sl+52+t1+t2—l:1—|1
X(NLLNg LNl o NZ Lol Y g5

+ (Nl JNLLILINGLonol 5L ) g=35], (10
where Ni=2n,+1;+2N+ L, i=12, j=2j+1, and
(N1Linql 1L Nl N, L0 ) g5 is the general harmonic-
oscillator bracket for two particles with mass ratio 3 as de-
fined, e.g., in Ref[10], where a compact formula is also
given for calculating the brackets. The expressibf) can

be derived by examining the action @t ") and7(~) on the
basis state$6). A similar derivation for a different basis is
described, e.g., in Refl11].

Note that the eigensystem of the metti¢9) consists of

sponding to the harmonic oscillators associated with the coawo subspaces. The first subspace has eigenstates with the

ordinates and momentap andy,q, respectively. The quan-

eigenvalue 3, which form totally antisymmetric physical

tum numberss,t,j describe the spin, isospin, and angularstates, while the second subspace has eigenstates with the
momentum of the relative-coordinate partial channel of par€igenvalue 0, which form a not completely antisymmetric,

ticles 1 and 25=3 and =3 are the spin and isospin of the
third particle, while7 is the angular momentum of the third

unphysical subspace of states. It is possible to Hermitize the
Hamiltonian(8) on the physical subspace, where it is quasi-

particle relative to the center-of-mass of particles 1 and 2Hermitian (see the discussion of quasi-Hermitian operators,
The J and T are the total angular momentum and the total€.9., in Ref[9]). The Hermitized Hamiltonian takes the form

isospin, respectively. Note that for thél nucleusJ= 3 and
T=3.

H=Ho+ TH2v(r)T*?, (12)

The Faddeev equation for the bound system can be writ-

ten in the form

H|p)=E|¢), 7

with

H=Ho+V(NT. (8)
Here, V(r)=Vy(y2r)—imQ?2 is the potential andZ,
which has the properties of a metric operdt®)9], is given
by

T=1+T ) +7H), 9

where?operates on the physical subspace only.

Apparently, the interactioW(F) is diagonal in the quan-
tum numbersV, £, .7 (and also ins,j,t due to the properties
of the nucleon-nucleon potentjallhe metric7 (9) is, on the
other hand, diagonal ilN=2n+1+2N+ £. Note that any
basis truncation other than one of the tyyy& N, Violates,
in general, the Pauli principle and mixes physical and un-
physical states. Here\.x Characterizes the maximum of
total allowed harmonic-oscillator quanta in the model space
and is an input parameter of the calculation. At the same
time, the truncation into totally allowed oscillator quama
<N ax Preserves the equivalence of the Hamiltoni&8s
and(11) on the physical subspace.
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From solving two-nucleon systems in a harmonic-nents of the eigenvectgk) of the Hamiltonian(12) can be
oscillator well, interacting by soft-core potentials, one learnsexpressed as a combination of tRespace components with
that excitations up to about 300 (N,a=300) are required the help of the operatap:
to get almost exact solutions. We anticipate, therefore, that at
least the same number of excitations should be allowed to
solve the three-nucleon system using the formalism dis- <“Q|k>‘a2,, (aqlw] ap)(aelk). (13
cussed above. The Faddeev formulation has the obvious ad-
vantage compared with the traditional shell-model approacii the dimension of the model spaceds, we may choose a
that the center-of-mass coordinate is explicitly removedsetk of dp eigenvectors, for which the relatida3) will be
Even then, it is presently not feasible to solve the eigenvalusatisfied. Under the condition that thgx dp matrix ( ap|k)
problem either for Eq(8) or for Eq. (11) in such a large for |k) e K is invertible, the operatow can be determined
space. On the other hand, shell-model calculations are afrom Eq.(13). In the present application we select the lowest
ways performed by employing effective interactions tailoredstates obtained in each channel. Their number is given by the
to a specific model space. In practice, these effective interaumber of basis states satisfying2I<N,,,,. Once the
actions can never be calculated exactly as, in general, for amperatorw is determined the effective Hamiltonian can be
A-nucleon system thé\-body effective interaction is re- constructed as follows:
quired. Consequently, large model spaces are desirable. In
that case, the calculation should be less affected by any im-
precision of the effective interaction. The same is true for the
evaluation of any observable characterized by an operator. In
the model space, renormalized effective operators are re-
quired. The larger the model space, the less renormalization +% (el B klag)(aglw|ap)|.
is needed. We may take advantage of the present approach to
perform shell-model calculations in significantly larger (14)
model spaces lthan are possib_le in conve.n_tional shgll-m_od@ should be noted tha|k) =3, |ap){ap|K) for [k)e K is
approach, particularly when using a Hermitized Hamiltonian_ . . P .

(11). At the same time we can investigate convergence prop"21 nght e|genyectpr of Eq14) W'th the' elgepvalueEk.
This Hamiltonian, when diagonalized in a model-space

erties of effective interactions. If convergence is achieved, . d tv the gétof do ei luesE
we should obtain the exact solution, since we recover th@3S!S: reproauces exactly the setot dp eigenvaluess,.
ote that the effective Hamiltonian is, in general, quasi-

original full-space problem ablpg,—:<, provided that the Hermitian. It can be Hermitized by a similarity transforma-

conditionV4—V is satisfied in this limit. . . . T
oo L : tion determined from the metric operat®e(1+ o'w)P. The
Usually, the effective interaction is approximated by aHermitian Hamiltonian is then given Hy3]

two-body effective interaction determined from a two-
nucleon system. In the _preéent calcul_atlons we replace matrix H_2€ﬁ=[P(1+ 07 0)PTYH o P(1+ 0! w)P] 12
elements of the potentil(r) by matrix elements of an ef- (15)
fective two-body interaction, derived in a straightforward

manner for each relative-coordinate partial channel. The rel- Finally, the two-body effective interaction used in the
evant two-nucleon Hamiltonian is then present calculations is determined from the two-nucleon ef-

fective Hamiltonian(15) asVeg=Hoef— Hop.

<7P|H2eﬁ|aP>:k§E:’C <7P|k>Ek<k|aP>

~2 2
_ P” 1 2 - ma”, IIl. APPLICATION TO THE THREE-NUCLEON PROBLEM
=Hg,+ V=o—+ =mQ2r2+Vy(\2r)— -
Ho=Hopt+V=5—+ SmO2r?+Vy(y2r) - ——%,

(12) In this section we discuss the results of application of the
formalism outlined in Sec. Il for théH system. In the cal-
culations we use the Nijmegen Il nucleon-nucleon potential

which can be solved as a differential equation or, alternaf14] corrected in the!P; wave [15], and the Reid93
tively, can be diagonalized in a sufficiently large harmonicnucleon-nucleon potentiall4]. We work in the isospin for-
oscillator basis. The latter possibility is, obviously, not ap-malism; the charge invariant potentislly=5V,,+ %Vnp is
plicable for hard-core nucleon-nucleon potentials. used for eacil =1 wave[16].

To construct the effective interaction we employ the Lee- The two-body effective interaction employed in the cal-
Suzuki[12] similarity transformation method, which gives culation is derived from Eq€13)—(15). Our model space is
the effective interaction in the formPVP=PVP characterized by the conditioN<Np,, N=2n+1+2N
+PVQwP, with w the transformation operator satisfying +£. The condition for the relative-coordinate effective-
w=QuwP, andP, Q=1- P, the projectors on the model and interaction model space is them2 |<N,,,,. When diago-
the complementary spaces, respectively. Our calculationsalizing the two-nucleon relative-coordinate Hamiltonian
start with exact solutions of the Hamiltonidh2) and, con- (12) in the full space we truncate the harmonic-oscillator
sequently, we construct the operaterand, then, the effec- basis by keeping only the states with<152. The error
tive interaction directly from these solutions. Let us denotecaused by this truncation can be estimated, as the system can
the relative-coordinate two-nucleon harmonic-oscillatorbe solved as a differential equation. We found that the low-
states, which form the model space]as), and those which lying eigenvalues obtained in the two calculations do not
belong to theQ space, agaq). Then theQ-space compo- differ by more than~ 102 MeV and in most cases by much
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FIG. 3. Point-nucleon radius, in fm, dependence on the maximal
FIG. 1. Ground-state energy, in MeV, dependence on the maxinumber of harmonic-oscillator excitations allowed in the model
mal number of harmonic-oscillator excitations allowed in the modelspace for the Nijmegen I potential. Results fofi()
space for the Nijmegen Il potential. Results fok( =14,17,19,21,22,24 MeV are presented.

=14,17,19,21,22,24 MeV are presented. The dotted line represents

the res_ult—7.62 MeV of the 34-channel Faddeev calculation re-NmaX>22 we used the Hermitian Hamiltonian only. Note

ported in Ref[5]. that the Hamiltonian$8) and (11) have identical spectra of
the physical states, provided that no other truncation than

less. The lowest eigenvalues are typically of the order of 1ONstax is allowed. The unphysical eigenstates if (8)

('\:Aaelgﬁla'\:gge t';]h:tetf?::t?\goirn?;gcet?fr?ss L\:V'th |nc_re3azsﬁh£sV\:g_ have energies corresponding to the unperturbed harmonic os-
P Mhar= 32, cillator, starting at 2.

qUIgr?c;ntr: gfr]%sczc;"’}ﬁ@&ﬂ%?{ is found we mav directl In Figs. 1-4 we present the results for the ground-state
Y yenergies and point-nucleon radii, calculated frar?)

diagonalize the non-Hermitian HamiltonidB) in the basis A s 2o ] ) N
(6) truncated byN,., and withV replaced by,. =(1/A)Ei:1<(ri—R) ), obtained WIFh the Nljmggen Il and
On the other hand, a calculation with the Hermitizedthe Reid93 nucleon-nucleon potentials, respectively. Our cal-
Hamiltonian (11) can be performed in three steps. First theculation starts aNp,,=8, which corresponds to a model
effective interaction is calculated for each relative-coordinatPace easily accessible with the traditional shell-model cal-
partial channel. Second the metfic(9) is diagonalized for %ulatlo_ns. In Ref[8] we performed an B¢} calculation for
eachN up toN,,s. The physical eigenvectors corresponding H using a slightly _d|ﬁerent effective interaction than we
to the eigenvalue 3 are selected and used, finally, as a ne@mPloy here but derived in an analogous way. Note that it is
basis in which the Hamiltoniafl1) is diagonalized. As the §tra|ghtfonNard to 'transform the relatlve-coprdlnate effective
number of physical states is about a third of the number ofnteéraction used in the present calculations to the two-
all original basis state), it is more efficient to diagonalize particle bas_ls used for the shell-model input b_y the st_and_ard
the Hamiltonian(11) than the non-Hermitian Hamiltonian transformationf17]. We used the transformed mteraqtmn in
(8), in particular for higher values oN,,. In fact, for f[he_8hQ space to test our re_sults. The shell-mo_del dlagon_al-
ization was performed by using the many-fermion-dynamics
shell-model cod¢18] and we obtain the same answers from

7.8
7.6t both the present calculation and the shell-model calculation.
A
78 t 1.76
N~
~ 79t
)
S 60| = 1.70
\ L .
S o E
-8.8 | / , -
651 Reid93 7~ 1.65
8.4 Y
-8.5 14" ~ .
Reid93
6 8 101214 16 18 20 B2 24 26 28 30 32 34
N 155 1 1 L L 1 1 1 L L L 1 L L
max
6 8 10 12 14 16 18 B0 22 24 26 28 30 32 34
FIG. 2. Ground-state energy, in MeV, dependence on the maxi- Nax
mal number of harmonic-oscillator excitations allowed in the model
space for the Reid93 potential. Results forhQ) FIG. 4. Point-nucleon radius, in fm, dependence on the maximal

=14,17,19,22,23,24 MeV are presented. The dotted line representaimber of harmonic-oscillator excitations allowed in the model
the result—7.63 MeV of the 34-channel Faddeev calculation re-space for the Reid93 potential. Results foriQ)
ported in Ref[5]. =14,17,19,22,23,24 MeV are presented.
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FIG. 5. D-state andS’-state probability, in %, dependence on  F|G. 6. Dependence of the energy difference, in MeV, between
the maximal number of harmonic-oscillator excitations allowed inthe binding energies ofH and *He on the maximal number of

the model space for the Reid93 potential. Results#fr=19,24  harmonic-oscillator excitations allowed in the model space for the
MeV are presented. Reid93 potential. Results fdrQ)=19,24 MeV are presented.

The present calculation has, obviously, much smaller dimenaucleon potentialg4]. The D-state percentage is approxi-
sion. mately 1.5 times the correspondiiy-state percentage of
As the results depend dN,. and ) introduced in Eq. deuteron(5.7%.
(2), we must test the convergence with regard to both of In addition to the calculations discussed so far, we also
these parameters. With increasiNg,, the calculations grow computed properties ofHe, with the focus on obtaining the
tedious. We performed the calculations upNig,,=32 for a  binding-energy difference betweéi and *He. In those cal-
wide range of the harmonic-oscillator frequenci@swith culations the Coulomb potential was added to the proton-
values typical for standard shell-model calculations varyingproton ~ potential and the  averaged  potential
from Q=14 MeV to# Q) =24 MeV. In general, we observe Vy= §Vpp+ %Vnp was eventually used for eadh=1 wave
a slow convergence with increasid,,. An unusual fea- [16]. The binding-energy differences obtained using the
ture is the convergence from below. This is caused by the usReid93 potential and () =19 and 24 MeV are presented in
of effective interactions instead of the free nucleon-nucleorFig. 6. For larger model spaces we get an almost
interaction. The effective interactions we employ are tooQ-independent difference. The binding-energy splitting
strong. We have not reached the convergence with respect ghows convergence with increasiig,.. It decreases with
Q in the whole range studied. However, for the valdig® N, in correlation with increasing point-nucleon radius and
=22-24 MeV our results almost reach convergence withapproaches 0.66 MeV. This result is again in agreement with
Nmax= 32, in particular for the Reid93 potential. We note those obtained using other nucleon-nucleon potentiéls
that the traditional 34-channel Faddeev calculation, as reNote that the experimental value of the binding-energy dif-
ported in Ref[5], gives the binding energies 7.62 and 7.63ference is 0.764 MeV. To test the quality of the approxima-
MeV for the Nijmegen Il and the Reid93 nucleon-nucleontion used for the potential averaging and limitationTte 3,
potentials, respectively. We present these values in Figs. we performed alN,,,,= 8 calculation with complete isospin
and 2 as dotted lines for comparison. From the figures it idbreaking using proton-neutron formalism. The present
apparent that we are obtaining virtually the same values imethod can be used to perform calculations with isospin
the calculations which start to converge. When comparingreaking. For this particular calculation, however, we em-
the results for the two different potentials used we can seeloyed the many-fermion-dynamics shell-model code. The
larger sensitivity to() of the Reid93 calculation. On the effective interaction was calculated separately for the proton-
other hand, the calculation using the Nijmegen Il potential isoroton and proton-neutron systems, respectively, and trans-
slower in reaching the stability with respecty,,. While  formed to the two-particle basis as discussed earlier in this
the ground-state energy calculation begins to stabilize for theection. In this way we found that the binding energy ob-
largest values of) employed, the radius calculation has not tained with and without isospin breaking differs by 11 keV
reached complete stability for any of teevalues within the and the nucleon radius differs by less than 0.001 fm in a
model spaces we used. calculation witha Q) =19 MeV. This confirms, that the limi-
As a further test on the stability and convergence of theation toT= 3 together with the potential averaging provides
method we analyzed the ground-state wave functions andn excellent approximation.
calculated the probability o§,P,D,S’,S” states. In Fig. 5 We stressed before that no other basis truncation than
we show theD-state ands’-state probabilities as a function <N, was used. That means that we keep all the relative-
of Njax for the Reid93 calculations withQ)=19 and 24 coordinate channels in the basis. In most calculations, how-
MeV. We observe a good stability with respectNg,,, and  ever, we set the nucleon-nucleon potentigl to zero forj
little dependence of2 for larger model spaces. Theg-state  >6. We also performed calculations with set to zero for
probability approaches 8.49, -state probability percentage j>4. The largest contribution of the=5,6 waves to the
reaches 1.2%. Not shown in the figure are the calculatedinding energy we observed was about 5 keV. This contri-
P-state andS’-state percentage probabilities, for which we bution increases witiN,,, and (). Moreover, we performed
get 0.06 and~10 ° %, respectively. The present numbers several calculations withy nonzero up tg =9, and found
are in agreement with those obtained using other nucleorthat the ground-state energy is affected by less than 0.3 keV
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compared to the=<6 calculations. Note that such a trunca- MeV. We have seen, in fact, that the higher partial waves of
tion of Vy does not imply tha¥/=0, see Eq(8). Also, this  the nucleon-nucleon interaction are not significant. However,
type of potential truncation is not the same as used in thave believe a proper treatment of the metric oper&®ris
traditional Faddeev calculatioh2-5]. The difference is, that important.

there is no truncation in the treatmentdf9) in the present We observed that the convergence was rather slow with
calculations. some dependence on the type of the nucleon-nucleon poten-

It should be noted that the calculated binding energy obtial. In smaller model spaces we cannot reproduce correctly
tained from calculations employing nucleon-nucleon potenthe ground-state energy and the radius at the same time for
tials fitted to the two-nucleon scattering underbifid by  any choice of). The wave function probability distribution
about 0.8 MeV, as its experimental binding energy is 8.48hows good stability as well as the binding-energy difference
MeV. Suggested solutions to this problem include the use obetweenH and *He. Our results show, that ari8) calcu-
three-body forces, nonlocal potentials, and relativistic cordation accessible by the standard shell-model approach de-
rections[19]. scribes the ground states properties within 10% of exact val-

ues. Modifications of effective interactions are possible to
V. CONCLUSIONS improve the description in small spaces. Examples of such
) modifications can be found in RefsZ,8].

In the present paper we have discussed the three-nucleon an unusual feature of the present approach is the conver-
bound system solution by combining the shell-model apyence from below. This is caused by the use of effective
proach with the Faddeev method. The use of FaddeeV's denteractions instead of the free nucleon-nucleon interactions.
composition reduces the basis and allows to perform shelilvhe effective interactions we employed were too strong. Ob-
model calculations in significantly larger model spaces tharjigusly, it is possible to test convergence properties of alter-
in the traditional shell-model approach. We were able to calnative effective interactions, as discussed, e.g., in RRéN.
culate with the model spaces which included up t& 82 |t should be noted, however, that the effective interaction
(Nmax=32) harmonic-oscillator excitations. should meet the criteriol o—V for N.— in order to

We employed effective interactions, which take into ac-converge to the exact solutions.
count the two-body correlations, in the calculations. These The formalism discussed here may be generalized for
effective interactions were derived in the two-particle rela-more complex systems as well. In particular, we are working
tive coordinate channels from the Nijmegen Il and Reid93yn 3 generalization of the formalism for the=4 system,
nucleon-nucleon potentials and subsequently used in thghich relies on some results presented in this work. Also, it
three-body calculation. _ may be used to solve the three-nucleon system bound in a

As our results depend on the model-space size parametgirmonic-oscillator well. Then, from those solutions three-
Nmax &nd on the harmonic-oscillator frequenQy we tested  hody effective interactions can be constructed. Such interac-
the convergence in both these parameters. Even for the largpns, after transformation to an appropriate three-particle ba-

est model spaces we have not reached complete convergengg can serve as an input to standard shell-model calculations
with respect to() in the whole range of the used values. for light nuclei.

However, fori ) = 22— 24 MeV our results start to converge
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