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Shell-model calculations for the three-nucleon system

P. Navrátil * and B. R. Barrett
Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 21 May 1997!

We use Faddeev’s decomposition to solve the shell-model problem for three nucleons. The dependence on
harmonic-oscillator excitations allowed in the model space, up to 32\V in the present calculations, and on the
harmonic-oscillator frequency is studied. Effective interactions derived from Nijmegen II and Reid93 poten-
tials are used in the calculations. The binding energies obtained are close to those calculated by other methods.
The structure of the Faddeev equations is discussed and a simple formula for matrix elements of the permu-
tation operators in a harmonic-oscillator basis is given. The Pauli principle is properly treated in the calcula-
tions. @S0556-2813~98!02102-5#

PACS number~s!: 21.45.1v, 21.60.Cs, 27.10.1h
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I. INTRODUCTION

Many different methods have been used to solve
three-nucleon problem in the past. The most viable appro
appears to be the Faddeev method@1#. It has been success
fully applied to solve the three-nucleon bound-state prob
for various nucleon-nucleon potentials@2–5#. The most com-
plex calculations of this kind include up to 34 channe
when all thej <4 waves are taken into account. The pre
sion achieved in these calculations is better than 1%@4,5#.

On the other hand, when studying the properties of m
complex nuclei one typically resorts to the shell model.
that approach, the harmonic-oscillator basis is used in a t
cated model space. Instead of the free nucleon-nucleon
tential, one uses effective interactions inside the mo
space. Examples of such calculations are the large-basis
core shell-model calculations that have recently been
formed @6–8#. In these calculations all nucleons are activ
which simplifies the effective interaction as no hole states
present. The effective interaction is determined for a sys
of two nucleons in a harmonic-oscillator well interacting
the nucleon-nucleon potential and is subsequently used in
many-particle calculations.

In the present paper we combine the application of
shell-model approach to the three-nucleon system with
Faddeev method. We use Faddeev’s decomposition for
basis states and remove the center-of-mass term. This l
to a significant simplification of the problem and allows us
extend considerably the model space. We can study the
vergence properties of the results with the increasing mo
space. If convergence is achieved, then this approach lea
the exact solution of the three-nucleon problem and is, th
complementary to the traditional calculations, based on
differential equation solutions.

In addition to the attempt of solving the three-nucle
problem exactly, the present method serves primarily a
test of the shell-model approach. In particular, it allows us
test effective interactions used in standard shell-model ap
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cations. The present approach has several advantages.
any number of partial waves can be included. Second,
calculation is simplified by using a compact formula for t
matrix elements of the permutation operators in t
harmonic-oscillator basis. Also, because of the way we
the model-space truncation, we keep equivalence of the F
deev and Schro¨dinger equations throughout the calculation

In Sec. II we discuss the shell-model Hamiltonian with
bound center-of-mass, the Faddeev equation, and the m
ods used to derive the starting-energy-independent effec
interaction. Results of the calculations for the three-nucle
system are presented in Sec. III. In particular, we discuss
harmonic-oscillator frequency and the model-space-size
pendences. Conclusions are given in Sec. IV.

II. SHELL-MODEL HAMILTONIAN
AND THE FADDEEV APPROACH

In most shell-model studies the one- plus two-bo
Hamiltonian for theA-nucleon system, i.e.,

H5(
i 51

A pW i
2

2m
1(

i , j

A

VN~rW i2rW j !, ~1!

wherem is the nucleon mass andVN(rW i2rW j ) the nucleon-
nucleon interaction, is modified by adding the center-of-m
harmonic-oscillator potential12 AmV2RW 2, RW 51/A ( i 51

A rW i .
This potential does not influence intrinsic properties of t
many-body system. It provides, however, a mean field felt
each nucleon and allows us to work with a convenie
harmonic-oscillator basis. The modified Hamiltonian, d
pending on the harmonic-oscillator frequencyV, can be cast
into the form

HV5(
i 51

A F pW i
2

2m
1

1

2
mV2rW i

2G
1(

i , j

A FVN~rW i2rW j !2
mV2

2A
~rW i2rW j !

2G . ~2!

The one-body term of the Hamiltonian~2! can be rewritten
as a sum of the center-of-mass termHc.m.

V 5PW c.m.
2 /2Am

-
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57 563SHELL-MODEL CALCULATIONS FOR THE THREE-NUCLEON SYSTEM
1 1
2 AmV2RW 2, PW c.m.5( i 51

A pW i , and a term depending on rela
tive coordinates only. In the present application we us
basis, which explicitly separates center-of-mass and relat
coordinate wave functions. Therefore, the center-of-m
term contribution is trivial and will be omitted from now on

For a three-nucleon system, i.e.,A53, the transformation
of the coordinates

rW5A1

2
~rW12rW2!, ~3a!

yW5A2

3
@ 1

2 ~rW11rW2!2rW3#, ~3b!

and, similarly, of the momenta

pW 5A1

2
~pW 12pW 2!, ~4a!

qW 5A1

6
~pW 11pW 2!2A2

3
pW 3 , ~4b!

can be introduced that brings the relative-coordinate par
the one-body harmonic-oscillator Hamiltonian into the for

H05
pW 2

2m
1

1

2
mV2rW21

qW 2

2m
1

1

2
mV2yW 2. ~5!

Eigenstates of this Hamiltonian,

unls jt,NLSJt,JT&, ~6!

are then used as the basis for our calculation. Heren,l and
N,L are the harmonic-oscillator quantum numbers cor
sponding to the harmonic oscillators associated with the
ordinates and momentarW,pW andyW ,qW , respectively. The quan
tum numberss,t, j describe the spin, isospin, and angu
momentum of the relative-coordinate partial channel of p
ticles 1 and 2.S5 1

2 andt5 1
2 are the spin and isospin of th

third particle, whileJ is the angular momentum of the thir
particle relative to the center-of-mass of particles 1 and
The J and T are the total angular momentum and the to
isospin, respectively. Note that for the3H nucleusJ5 1

2 and
T5 1

2.
The Faddeev equation for the bound system can be w

ten in the form

H̃uf&5Euf&, ~7!

with

H̃5H01V~rW !T. ~8!

Here, V(rW)5VN(A2rW)2 1
3 mV2rW2 is the potential andT,

which has the properties of a metric operator@3,9#, is given
by

T511T ~2 !1T ~1 !, ~9!
a
e-
ss

of

-
o-

r
r-

.
l

it-

with T (1) andT (2) the cyclic and the anticyclic permutatio
operators, respectively. We derived a simple formula for
matrix elements ofT (2)1T (1) in the basis~6!, namely,

^n1l 1s1 j 1t1 ,N1L1SJ1t,JTuT ~2 !

1T ~1 !un2l 2s2 j 2t2 ,N2L2SJ2t,JT&

52dN1 ,N2(LS
L̂2Ŝ2 ĵ 1 ĵ 2Ĵ1Ĵ2ŝ1ŝ2 t̂1 t̂2

3~21!LH l 1 s1 j 1

L1
1

2
J1

L S J

J H l 2 s2 j 2

L2
1

2
J2

L S J

J
3H 1

2

1

2
s1

1

2
S s2

J H 1

2

1

2
t1

1

2
T t2

J
3@~21!s11s21t11t22L12 l 1

3^N1L1n1l 1Lun2l 2N2L2L&d53

1^n1l 1N1L1LuN2L2n2l 2L&d53#, ~10!

where Ni52ni1 l i12Ni1Li , i[1,2, ĵ 5A2 j 11, and
^N1L1n1l 1Lun2l 2N2L2L&d53 is the general harmonic
oscillator bracket for two particles with mass ratio 3 as d
fined, e.g., in Ref.@10#, where a compact formula is als
given for calculating the brackets. The expression~10! can
be derived by examining the action ofT (1) andT (2) on the
basis states~6!. A similar derivation for a different basis is
described, e.g., in Ref.@11#.

Note that the eigensystem of the metricT ~9! consists of
two subspaces. The first subspace has eigenstates wit
eigenvalue 3, which form totally antisymmetric physic
states, while the second subspace has eigenstates wit
eigenvalue 0, which form a not completely antisymmetr
unphysical subspace of states. It is possible to Hermitize
Hamiltonian~8! on the physical subspace, where it is qua
Hermitian ~see the discussion of quasi-Hermitian operato
e.g., in Ref.@9#!. The Hermitized Hamiltonian takes the form

H̄5H01 T̄ 1/2V~rW ! T̄ 1/2, ~11!

where T̄ operates on the physical subspace only.
Apparently, the interactionV(rW) is diagonal in the quan-

tum numbersN,L,J ~and also ins, j ,t due to the properties
of the nucleon-nucleon potential!. The metricT ~9! is, on the
other hand, diagonal inN52n1 l 12N1L. Note that any
basis truncation other than one of the typeN<Nmax violates,
in general, the Pauli principle and mixes physical and u
physical states. Here,Nmax characterizes the maximum o
total allowed harmonic-oscillator quanta in the model spa
and is an input parameter of the calculation. At the sa
time, the truncation into totally allowed oscillator quantaN
<Nmax preserves the equivalence of the Hamiltonians~8!
and ~11! on the physical subspace.
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564 57P. NAVRÁTIL AND B. R. BARRETT
From solving two-nucleon systems in a harmon
oscillator well, interacting by soft-core potentials, one lea
that excitations up to about 300\V (Nmax5300) are required
to get almost exact solutions. We anticipate, therefore, tha
least the same number of excitations should be allowed
solve the three-nucleon system using the formalism
cussed above. The Faddeev formulation has the obvious
vantage compared with the traditional shell-model appro
that the center-of-mass coordinate is explicitly remov
Even then, it is presently not feasible to solve the eigenva
problem either for Eq.~8! or for Eq. ~11! in such a large
space. On the other hand, shell-model calculations are
ways performed by employing effective interactions tailor
to a specific model space. In practice, these effective in
actions can never be calculated exactly as, in general, fo
A-nucleon system theA-body effective interaction is re
quired. Consequently, large model spaces are desirabl
that case, the calculation should be less affected by any
precision of the effective interaction. The same is true for
evaluation of any observable characterized by an operato
the model space, renormalized effective operators are
quired. The larger the model space, the less renormaliza
is needed. We may take advantage of the present approa
perform shell-model calculations in significantly larg
model spaces than are possible in conventional shell-m
approach, particularly when using a Hermitized Hamilton
~11!. At the same time we can investigate convergence pr
erties of effective interactions. If convergence is achiev
we should obtain the exact solution, since we recover
original full-space problem asNmax→`, provided that the
conditionVeff→V is satisfied in this limit.

Usually, the effective interaction is approximated by
two-body effective interaction determined from a tw
nucleon system. In the present calculations we replace m
elements of the potentialV(rW) by matrix elements of an ef
fective two-body interaction, derived in a straightforwa
manner for each relative-coordinate partial channel. The
evant two-nucleon Hamiltonian is then

H2[H021V5
pW 2

2m
1

1

2
mV2rW21VN~A2rW !2

mV2

3
rW2,

~12!

which can be solved as a differential equation or, alter
tively, can be diagonalized in a sufficiently large harmon
oscillator basis. The latter possibility is, obviously, not a
plicable for hard-core nucleon-nucleon potentials.

To construct the effective interaction we employ the Le
Suzuki @12# similarity transformation method, which give
the effective interaction in the formPVeffP5PVP
1PVQvP, with v the transformation operator satisfyin
v5QvP, andP, Q512P, the projectors on the model an
the complementary spaces, respectively. Our calculat
start with exact solutions of the Hamiltonian~12! and, con-
sequently, we construct the operatorv and, then, the effec
tive interaction directly from these solutions. Let us den
the relative-coordinate two-nucleon harmonic-oscilla
states, which form the model space, asuaP&, and those which
belong to theQ space, asuaQ&. Then theQ-space compo-
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nents of the eigenvectoruk& of the Hamiltonian~12! can be
expressed as a combination of theP-space components with
the help of the operatorv:

^aQuk&5(
aP

^aQuvuaP&^aPuk&. ~13!

If the dimension of the model space isdP , we may choose a
setK of dP eigenvectors, for which the relation~13! will be
satisfied. Under the condition that thedP3dP matrix ^aPuk&
for uk&PK is invertible, the operatorv can be determined
from Eq.~13!. In the present application we select the lowe
states obtained in each channel. Their number is given by
number of basis states satisfying 2n1 l<Nmax. Once the
operatorv is determined the effective Hamiltonian can b
constructed as follows:

^gPuH2effuaP&5 (
kPK

F ^gPuk&Ek^kuaP&

1(
aQ

^gPuk&Ek^kuaQ&^aQuvuaP&G .
~14!

It should be noted thatPuk&5(aP
uaP&^aPuk& for uk&PK is

a right eigenvector of Eq.~14! with the eigenvalueEk .
This Hamiltonian, when diagonalized in a model-spa

basis, reproduces exactly the setK of dP eigenvaluesEk .
Note that the effective Hamiltonian is, in general, qua
Hermitian. It can be Hermitized by a similarity transform
tion determined from the metric operatorP(11v†v)P. The
Hermitian Hamiltonian is then given by@13#

H̄2eff5@P~11v†v!P#1/2H2eff@P~11v†v!P#21/2.
~15!

Finally, the two-body effective interaction used in th
present calculations is determined from the two-nucleon
fective Hamiltonian~15! asVeff5H̄2eff2H02.

III. APPLICATION TO THE THREE-NUCLEON PROBLEM

In this section we discuss the results of application of
formalism outlined in Sec. II for the3H system. In the cal-
culations we use the Nijmegen II nucleon-nucleon poten
@14# corrected in the 1P1 wave @15#, and the Reid93
nucleon-nucleon potential@14#. We work in the isospin for-
malism; the charge invariant potentialVN5 2

3 Vnn1 1
3 Vnp is

used for eachT51 wave@16#.
The two-body effective interaction employed in the ca

culation is derived from Eqs.~13!–~15!. Our model space is
characterized by the conditionN<Nmax, N52n1 l 12N
1L. The condition for the relative-coordinate effectiv
interaction model space is then 2n1 l<Nmax. When diago-
nalizing the two-nucleon relative-coordinate Hamiltoni
~12! in the full space we truncate the harmonic-oscilla
basis by keeping only the states withn<152. The error
caused by this truncation can be estimated, as the system
be solved as a differential equation. We found that the lo
lying eigenvalues obtained in the two calculations do n
differ by more than'1023 MeV and in most cases by muc
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57 565SHELL-MODEL CALCULATIONS FOR THE THREE-NUCLEON SYSTEM
less. The lowest eigenvalues are typically of the order of1

MeV. Note that this error decreases with increasingV. We
calculated the effective interactions up toNmax532, as re-
quired in the present application.

Once the effective interaction is found we may direc
diagonalize the non-Hermitian Hamiltonian~8! in the basis
~6! truncated byNmax and withV replaced byVeff .

On the other hand, a calculation with the Hermitiz
Hamiltonian~11! can be performed in three steps. First t
effective interaction is calculated for each relative-coordin
partial channel. Second the metricT ~9! is diagonalized for
eachN up toNmax. The physical eigenvectors correspondi
to the eigenvalue 3 are selected and used, finally, as a
basis in which the Hamiltonian~11! is diagonalized. As the
number of physical states is about a third of the numbe
all original basis states~6!, it is more efficient to diagonalize
the Hamiltonian~11! than the non-Hermitian Hamiltonia
~8!, in particular for higher values ofNmax. In fact, for

FIG. 1. Ground-state energy, in MeV, dependence on the m
mal number of harmonic-oscillator excitations allowed in the mo
space for the Nijmegen II potential. Results for\V
514,17,19,21,22,24 MeV are presented. The dotted line repres
the result27.62 MeV of the 34-channel Faddeev calculation
ported in Ref.@5#.

FIG. 2. Ground-state energy, in MeV, dependence on the m
mal number of harmonic-oscillator excitations allowed in the mo
space for the Reid93 potential. Results for\V
514,17,19,22,23,24 MeV are presented. The dotted line repres
the result27.63 MeV of the 34-channel Faddeev calculation
ported in Ref.@5#.
e

ew

f

Nmax.22 we used the Hermitian Hamiltonian only. No
that the Hamiltonians~8! and ~11! have identical spectra o
the physical states, provided that no other truncation t
N<Nmax is allowed. The unphysical eigenstates ofH̃ ~8!
have energies corresponding to the unperturbed harmonic
cillator, starting at 3\V.

In Figs. 1–4 we present the results for the ground-st
energies and point-nucleon radii, calculated from̂r 2&
5(1/A)( i 51

A ^(rW i2RW )2&, obtained with the Nijmegen II and
the Reid93 nucleon-nucleon potentials, respectively. Our
culation starts atNmax58, which corresponds to a mode
space easily accessible with the traditional shell-model
culations. In Ref.@8# we performed an 8\V calculation for
3H using a slightly different effective interaction than w
employ here but derived in an analogous way. Note that
straightforward to transform the relative-coordinate effect
interaction used in the present calculations to the tw
particle basis used for the shell-model input by the stand
transformation@17#. We used the transformed interaction
the 8\V space to test our results. The shell-model diagon
ization was performed by using the many-fermion-dynam
shell-model code@18# and we obtain the same answers fro
both the present calculation and the shell-model calculat

i-
l

nts
-

i-
l

nts
-

FIG. 3. Point-nucleon radius, in fm, dependence on the maxi
number of harmonic-oscillator excitations allowed in the mod
space for the Nijmegen II potential. Results for\V
514,17,19,21,22,24 MeV are presented.

FIG. 4. Point-nucleon radius, in fm, dependence on the maxi
number of harmonic-oscillator excitations allowed in the mod
space for the Reid93 potential. Results for\V
514,17,19,22,23,24 MeV are presented.
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566 57P. NAVRÁTIL AND B. R. BARRETT
The present calculation has, obviously, much smaller dim
sion.

As the results depend onNmax and V introduced in Eq.
~2!, we must test the convergence with regard to both
these parameters. With increasingNmax the calculations grow
tedious. We performed the calculations up toNmax532 for a
wide range of the harmonic-oscillator frequenciesV with
values typical for standard shell-model calculations vary
from \V514 MeV to\V524 MeV. In general, we observ
a slow convergence with increasingNmax. An unusual fea-
ture is the convergence from below. This is caused by the
of effective interactions instead of the free nucleon-nucle
interaction. The effective interactions we employ are t
strong. We have not reached the convergence with respe
V in the whole range studied. However, for the values\V
522224 MeV our results almost reach convergence w
Nmax532, in particular for the Reid93 potential. We no
that the traditional 34-channel Faddeev calculation, as
ported in Ref.@5#, gives the binding energies 7.62 and 7.
MeV for the Nijmegen II and the Reid93 nucleon-nucle
potentials, respectively. We present these values in Fig
and 2 as dotted lines for comparison. From the figures
apparent that we are obtaining virtually the same value
the calculations which start to converge. When compar
the results for the two different potentials used we can
larger sensitivity toV of the Reid93 calculation. On th
other hand, the calculation using the Nijmegen II potentia
slower in reaching the stability with respect toNmax. While
the ground-state energy calculation begins to stabilize for
largest values ofV employed, the radius calculation has n
reached complete stability for any of theV values within the
model spaces we used.

As a further test on the stability and convergence of
method we analyzed the ground-state wave functions
calculated the probability ofS,P,D,S8,S9 states. In Fig. 5
we show theD-state andS8-state probabilities as a functio
of Nmax for the Reid93 calculations with\V519 and 24
MeV. We observe a good stability with respect toNmax and
little dependence onV for larger model spaces. TheD-state
probability approaches 8.4%,S8-state probability percentag
reaches 1.2%. Not shown in the figure are the calcula
P-state andS9-state percentage probabilities, for which w
get 0.06 and'1025 %, respectively. The present numbe
are in agreement with those obtained using other nucle

FIG. 5. D-state andS8-state probability, in %, dependence o
the maximal number of harmonic-oscillator excitations allowed
the model space for the Reid93 potential. Results for\V519,24
MeV are presented.
n-

f

g

se
n
o
to

e-

1
is
in
g
e

s

e
t

e
nd

d

n-

nucleon potentials@4#. The D-state percentage is approx
mately 1.5 times the correspondingD-state percentage o
deuteron~5.7%!.

In addition to the calculations discussed so far, we a
computed properties of3He, with the focus on obtaining the
binding-energy difference between3H and 3He. In those cal-
culations the Coulomb potential was added to the prot
proton potential and the averaged potent
VN5 2

3 Vpp1 1
3 Vnp was eventually used for eachT51 wave

@16#. The binding-energy differences obtained using t
Reid93 potential and\V519 and 24 MeV are presented i
Fig. 6. For larger model spaces we get an alm
V-independent difference. The binding-energy splitti
shows convergence with increasingNmax. It decreases with
Nmax in correlation with increasing point-nucleon radius a
approaches 0.66 MeV. This result is again in agreement w
those obtained using other nucleon-nucleon potentials@4#.
Note that the experimental value of the binding-energy d
ference is 0.764 MeV. To test the quality of the approxim
tion used for the potential averaging and limitation toT5 1

2,
we performed anNmax58 calculation with complete isospin
breaking using proton-neutron formalism. The pres
method can be used to perform calculations with isos
breaking. For this particular calculation, however, we e
ployed the many-fermion-dynamics shell-model code. T
effective interaction was calculated separately for the prot
proton and proton-neutron systems, respectively, and tr
formed to the two-particle basis as discussed earlier in
section. In this way we found that the binding energy o
tained with and without isospin breaking differs by 11 ke
and the nucleon radius differs by less than 0.001 fm in
calculation with\V519 MeV. This confirms, that the limi-
tation toT5 1

2 together with the potential averaging provid
an excellent approximation.

We stressed before that no other basis truncation thaN
<Nmax was used. That means that we keep all the relati
coordinate channels in the basis. In most calculations, h
ever, we set the nucleon-nucleon potentialVN to zero for j
.6. We also performed calculations withVN set to zero for
j .4. The largest contribution of thej 55,6 waves to the
binding energy we observed was about 5 keV. This con
bution increases withNmax andV. Moreover, we performed
several calculations withVN nonzero up toj 59, and found
that the ground-state energy is affected by less than 0.3

FIG. 6. Dependence of the energy difference, in MeV, betwe
the binding energies of3H and 3He on the maximal number o
harmonic-oscillator excitations allowed in the model space for
Reid93 potential. Results for\V519,24 MeV are presented.
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57 567SHELL-MODEL CALCULATIONS FOR THE THREE-NUCLEON SYSTEM
compared to thej <6 calculations. Note that such a trunc
tion of VN does not imply thatV50, see Eq.~8!. Also, this
type of potential truncation is not the same as used in
traditional Faddeev calculations@2–5#. The difference is, tha
there is no truncation in the treatment ofT ~9! in the present
calculations.

It should be noted that the calculated binding energy
tained from calculations employing nucleon-nucleon pot
tials fitted to the two-nucleon scattering underbind3H by
about 0.8 MeV, as its experimental binding energy is 8
MeV. Suggested solutions to this problem include the use
three-body forces, nonlocal potentials, and relativistic c
rections@19#.

IV. CONCLUSIONS

In the present paper we have discussed the three-nuc
bound system solution by combining the shell-model
proach with the Faddeev method. The use of Faddeev’s
composition reduces the basis and allows to perform sh
model calculations in significantly larger model spaces th
in the traditional shell-model approach. We were able to c
culate with the model spaces which included up to 32\V
(Nmax532) harmonic-oscillator excitations.

We employed effective interactions, which take into a
count the two-body correlations, in the calculations. Th
effective interactions were derived in the two-particle re
tive coordinate channels from the Nijmegen II and Reid
nucleon-nucleon potentials and subsequently used in
three-body calculation.

As our results depend on the model-space size param
Nmax and on the harmonic-oscillator frequencyV, we tested
the convergence in both these parameters. Even for the
est model spaces we have not reached complete converg
with respect toV in the whole range of the used value
However, for\V522224 MeV our results start to converg
to the binding energies obtained in the standard Fadd
calculations. As we include more partial waves in t
nucleon-nucleon potential, typically up toj 56, our results
seem to confirm the statements in Ref.@4# that the 34-
channel standard Faddeev calculation converged within 0
ys

ys
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MeV. We have seen, in fact, that the higher partial waves
the nucleon-nucleon interaction are not significant. Howev
we believe a proper treatment of the metric operator~9! is
important.

We observed that the convergence was rather slow w
some dependence on the type of the nucleon-nucleon po
tial. In smaller model spaces we cannot reproduce corre
the ground-state energy and the radius at the same time
any choice ofV. The wave function probability distribution
shows good stability as well as the binding-energy differen
between3H and 3He. Our results show, that an 8\V calcu-
lation accessible by the standard shell-model approach
scribes the ground states properties within 10% of exact
ues. Modifications of effective interactions are possible
improve the description in small spaces. Examples of s
modifications can be found in Refs.@7,8#.

An unusual feature of the present approach is the con
gence from below. This is caused by the use of effect
interactions instead of the free nucleon-nucleon interactio
The effective interactions we employed were too strong. O
viously, it is possible to test convergence properties of al
native effective interactions, as discussed, e.g., in Ref.@20#.
It should be noted, however, that the effective interact
should meet the criterionVeff→V for Nmax→` in order to
converge to the exact solutions.

The formalism discussed here may be generalized
more complex systems as well. In particular, we are work
on a generalization of the formalism for theA54 system,
which relies on some results presented in this work. Also
may be used to solve the three-nucleon system bound
harmonic-oscillator well. Then, from those solutions thre
body effective interactions can be constructed. Such inte
tions, after transformation to an appropriate three-particle
sis can serve as an input to standard shell-model calculat
for light nuclei.
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