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Moscow-typeNN potentials and three-nucleon bound states
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A detailed description of Moscow~M!-type potential models for theNN interaction is given. The micro-
scopic foundation of these models, which appear as a consequence of the composite quark structure of nucle-
ons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound
or bag-like six-quark states, strongly coupled to theNN channel, are eliminated from the complete multiquark
wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introduc-
ing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost
on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local
repulsive core~M-type models!, is generated. The predictions of these interaction models for 3N systems are
analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding of the 3N
system than the original phase-equivalent model with nodeless wave functions. An analysis of the 3N system
with the new versions of the MoscowNN potential describing also the higher even partial waves is presented.
Large deviations from conventionalNN force models are found for the momentum distribution in the high
momentum region. In particular, the Coulomb displacement energyEB(3He)2EB(3H)—when EB(3H) is
extrapolated to the experimental value displays a promising agreement with experiment:DEC.740 KeV. The
validity and limits of two-body NN potentials in nuclei is discussed in the light of our analysis.
@S0556-2813~98!02402-9#
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I. INTRODUCTION

It has been known for a long time that standardNN in-
teraction models based on one-meson exchange@1–5#, meet
significant difficulties in explaining standard properties
few-nucleon systems, ordinary nuclei, as well as nucl
matter@2,3#. In a number of cases, difficulties arise even
the well investigated area of low energies (;3210 MeV!
@6–8#. In order to reach agreement between theory and
periment for some key observables~binding energy, mag-
netic moments, etc.! 3N forces and meson-exchange curre
~MEC! are very often introduced. However, in practical a
plications, the values of cutoff masses are sometimes inc
patible with those used in the initial two-body interactio
model @2#.

These discrepancies have resulted in a revival of inte
in nonlocal nuclear force models~see, e.g.,@9,10#!. The latter
give predictions closer to experiment than those of conv
tional local models@9#. In fact, from the viewpoint of the
more fundamental level of quantum chromodynamics~QCD!
and the quark model, theNN interaction must be strongly
nonlocal at small distances@11,12# due to quark exchange
between the nucleons~three-quark clusters! @11–13#. A num-
ber of nonlocal models for theNN interaction, either phe-
nomenological@14,15# or microscopic @11,13,16–19#, in-
cluding both meson and quark degrees of freedom h
already been suggested. However, most of them lead
rather complicated and bulky momentum-dependentNN in-
teraction operators that can hardly be used for practical
culations in nuclear many-body systems. This explains
lack of qualitative studies of the structure of few-nucleo
systems using quark degrees of freedom. Such studies w
570556-2813/98/57~2!/535~20!/$15.00
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be extremely important for nuclear physics in general.
Therefore, it is a rather urgent to develop a simp

NN-interaction model whichsimultaneouslytakes into ac-
count both meson and quark degrees of freedom, and w
is applicable to few- and many-nucleon systems. Having
our disposal a reasonably simple and realisticNN interaction
model of the above hybrid type, we can study its qualitat
and quantitative consequences in the many-body problem

The purpose of this work is to do just that. At first, w
develop a simple nonlocalNN interaction model that is
based on the quark structure of the nucleon. We then st
its predictions for the three-body bound state problem a
compare these predictions with those of conventional fo
models. An additional argument in favor of our approach
that quark degrees of freedom are not explicitly seen in
energy region (Elab

NN<300 MeV!. Only rather indirect signals
of these hidden degrees of freedom can be studied. One
indirect quark effect considered in the present work is
internal fermization of the nuclear wave functions@20#. Such
an ‘‘internal’’ fermization changes the wave function of th
system mainly, but not exclusively, at small distances a
leads to the occurrence of additional internal nodes in
wave functions at about the same place where the repul
core of conventional force models is situated.

From a formal point of view, the elimination of quar
degrees of freedom results in additional orthogonality con
tions for theNN channel in conformity with the classica
Feshbach method for projecting onto mutually orthogo
channels@21#. As a result, the orthogonality constraints le
to additional internal nodes in the wave functions@22,23#.
Therefore, the height of the local repulsive core can
strongly reduced~see Secs. III and IV!. We emphasize that a
535 © 1998 The American Physical Society
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536 57V. I. KUKULIN et al.
large part of the repulsion in lowest partial waves is not d
to the local core produced by vector meson (v and r) ex-
change but comes from these additional orthogonality co
tions. As will become clearer later on, this leads to a s
stantial increase of the average nucleon kinetic and pote
energy, which in turn has numerous consequences for
structure of the nucleus. Below we point out only the m
important differences between conventional nuclear fo
models and Moscow~M!-type models.

Because of the additional orthogonality constraints,
strength of the repulsive core, mainly due tov-meson ex-
change, can be considerably reduced down to values,
tated by SU~3! symmetry@2#, i.e., gvNN

2 /4p;5. As a result,
the attractive part of the potential is considerably deeper t
that of conventional force models. However, this does
cause any discrepancy with experiment because the a
tional orthogonality conditions lead to an effective reducti
of the local attraction at intermediate distances.

Due to the sharp increase of kinetic energies in theNN
channel at small distancesr NN,1 fm, the relative impor-
tance of nonlocal and energy-dependent terms in theNN
interaction operator coming from meson retardation effe
@2# or 6q bags are strongly suppressed. As a result, all co
plicated and nonstatic short-range nonlocalities originat
from different sources are replaced by a very simple nonlo
separablepotential. This nonlocal separable potential has
form of a projection operator and effectively describes
additional orthogonality conditions@24#. This allows us to
drastically simplify the description of theNN interaction,
especially at small internucleon distances.

An important difference is also thelocal character of the
deep attractive potential which is universal for all part
waves. This universality can be interpreted as a consequ
of pseudoscalarp, h, and scalars exchanges betwee
nucleons. Here, the scalars-exchange, gives a strong attra
tion ~depth;500 MeV @11#! between nucleons at interme
diate distances.

For sake of brevity, we shall callNN-force models, which
are characterized by~i! a strongly reduced local repulsiv
core~or even by the full absence of it!, ~ii ! a strong attraction
in the intermediate range and additional orthogonality con
tions, as Moscow-type models. For a substantiation of th
models it is important to recall the following relatively ne
results.

In a number of recent studies@25,26# it was established
that a limiting case of such models, which does not inclu
any repulsive core at all, nearly coincides with the supersy
metric~SUSY! partner of the Reid-soft-core~RSC! potential.
Thus, both types of interaction models, conventional fo
models with a local repulsive core and M-type force mode
are related by purely algebraic symmetry transformatio
For a pedagogical discussion of this point see Ref.@27#.

Recently Nakaichi-Maeda@28# has found that the phe
nomenological separableNN potential of Tabakin@29#, lead-
ing to internal nodes in the radial deuteron a
NN-scattering wave functions, is a simple unitary-pole a
proximation~UPA! to the above MoscowNN potential, i.e.,
in the UPA-approach both models coincide with high ac
racy.

These results, established by independent groups, are
accidental; rather they are indicative of the quark dynam
e
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underlying the MoscowNN potential. One of the main pur
poses of the present work is to explain this in greater de
and to study the qualitative behavior of M-typeNN interac-
tion models in the nuclear three-body problem.

This work is organized as follows. In Sec. II we provide
substantiation of M-type models within the framework of t
quark model. Section III presents a pedagogicial introduct
to the main physical ideas underlying the Moscow mod
We study a simple scalar interaction and investigate its qu
tative predictions for the three-nucleon bound state. Sec
IV discusses the more complete model including ten
forces for positive parity partial waves. In Sec. V these m
realistic models are applied to the three-nucleon bound-s
problem. We emphasize the important contribution of t
tensor force to the 3N binding energy. The interference o
central and tensor forces inherent in these models is q
different from conventional force models. The differences
predictions between traditional force models and M-ty
models are pointed out. In the conclusion our main findin
are summarized.

II. ORIGIN OF NN INTERACTION MODELS
WITH ADDITIONAL ORTHOGONALITY CONDITIONS:

M-TYPE MODELS

A. Six-quark permutational symmetries
and the NN interaction

Consider a two-nucleon system that is described in
framework of the nonrelativistic quark model@12,13#. The
quark HamiltonianH consists of the following components

H5H01VOGE1Vconf1VOME, ~1!

whereH05( i 51
6 @mi1pi

2/(2mi)# is the kinetic energy of the
6q system. The interactionVOGE accounts for one-gluon ex
change, and the confinement interactionVconf takes the stan-
dard form@11,13#. In the one-meson exchange potential b
tween quarksVOME we include, as usual,p- and s-meson
exchange potentials@13,18#.

The totally antisymmetric~denoted by subscriptA) wave
function CA(x1 , . . . ,x6) can be expanded into a sum of i
reducible representations~IR! of the symmetry groupS6
@30,31#. The sum extends over all allowed IR of the symm
try groupS6, characterized by Young schemes@ f #, that lie in
the outer product spaceS3^ S3:

CA~x1 , . . . ,x6!5
1

Anf
(
@ f #r

F~@ f #r ;rW1 , . . . ,rW6!xCST~@ f̃ # r̃ !,

~2!

where the coordinatesx1 , . . . ,x6 collectively stand for the
position, and the spin, isospin, and color quantum numb
of the six quarks. Here,F(@ f #r ;rW1 , . . . ,rW6) is the orbital part
of the total six-quark wave function, andxCST(@ f̃ # r̃ ) is its
color-spin-isospin part. The Young scheme of the space
of the six-quark wave function is denoted by@ f #r , wherer is
the corresponding Yamanouchi symbol. The Young sche

@ f̃ # r̃ stands for the unique irreducible representation
spin-isospin-color space which is adjoint to@ f #r . For brevity
we omit the Young symbols @ f #C , @ f #S , @ f #T ,
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57 537MOSCOW-TYPENN POTENTIALS AND THREE-NUCLEON . . .
relating separately to the color, spin and isospin parts of
function xCST. Furthermore,nf is the dimension of the IR
corresponding to the Young scheme@ f #.

One can easily see that, according to the Littlewood th
rem @31#, the allowed Young schemes, which describe
permutational symmetry of six-quark orbital (X) wave func-
tions F(@ f #r ), are

@3#X3@3#X5@6#X1@42#X1@51#X1@33#X , ~3!

where the first two terms correspond to even orbital ang
momenta~with positive parity!, and the last two terms to od
orbital angular momenta~with negative parity! of the relative
NN wave function. Thus, for even partial waves in the re
tive NN wave function, the allowed space symmetries
@6#X or @42#X , whereas for odd ones, they are@51#X or
@33#X . Using the two-center shell model basis with distan
R between the two centers, one can show@32# that all al-
lowed six-quark wave functions of the typeuS1

3 S2
3 @ f #LST&

approach the usual shell model configuratio
usmpn@ f #LST& (m1n56) in the limit R→0. Thus, theNN
state with the totally symmetric Young scheme@ f #X5@6#X
corresponds to the six-quark stateus6@6#X@23#CSL50,ST&
while the NN state with mixed symmetry configuratio
@42#X corresponds to a six-quark state with two excit
p-shell quarks:

us4p2@42#X@ f #CSL50,ST&,

where @ f #CS5@42#,@321#,@23#,@313#,@244# are the possible
Young schemes appearing in the Clebsch-Gordan decom
sition of the internal product@23#C@42#S .

In a series of works by many different authors@13,16,33–
35#, it was shown that, with a quark Hamiltonian of the for
of Eq. ~1!, the excited six-quark configuration
u(0s)5(1s)@42#X& andu(0s)4(0p)2@42#X& which are compat-
ible with S-wave relativeNN motion, are admixed with large
weights to the fully symmetric six-quark configuratio
u(0s)6@6#X&. The color-magnetic term;li•lj si•sj is
mainly responsible for this. Thus, in lowest partial waves
the relativeNN wave function, there is a superposition
two different 6q-space symmetries: the fully symmetr
u(0s)6@6#X& and the mixed symmetricu(0s)4(0p)2@42#X&
for S waves, and similarly theu(0s)5(0p)@51#X& and
u(0s)3(0p)3@33#X& for P waves. It is important to remark
that the above superpositions include the excitedp3/2 single-
quark states.

In recent work@13#, it was shown that six-quark compo
nents with different space symmetries play a very differ
role in theNN interaction. For example, the totally symme
ric six-quark componentsu(0s)6@6#X& are projected onto the
NN cluster channel with rathersmall weights, whereas they
have large projections onto theDD and hidden-color chan
nels. In contrast, the mixed symmetry compone
us4p2@42#X& ~in S waves! have large projections onto both
the clusterNN channel and the nucleon-isobar chann
N1* N2* .

Thus, there is a natural separation of the complete
quark wave function into two mutually orthogonal parts o
different physical nature:
e
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CA5C6q1Cclust, ~4!

where C6q is the baglike component, which can be co
structed from square integrable functionsw i corresponding
to various six-quark bag states. These are the states
maximal space symmetry, i.e.,s6 for relative S waves and
s5p for relativeP waves:

C6q5(
i 51

N

Ciw i , ~5!

whereN is the number of six-quark states. For the clus
component we use the standard resonating group me
~RGM! ansatz

Cclust~j1 ,j2 ,R!5A$wN~j1!wN~j2! x̃ ~R!%, ~6!

where A is the antisymmetrizer with respect to the s
quarks. Here,wN(ji) is the three-quark wave function of
single nucleon where the internal coordinates are collectiv
denoted byji , and x̃ (R) is the relative motion wave func
tion of two three-quark clusters.

B. Two-phase model for theNN interaction

Our approach differs from the majority of hybridNN in-
teraction models which are also based on a decompositio
the form of Eq.~4!. In contrast to, for example, the quar
compound bag~QCB! model by Simonov@14#, we require
the mutual orthogonality of the componentsC6q andCclust:

^C6quCclust&50. ~7!

Moreover, we require that the cluster component be ortho
nal to all baglike statesw i from which the componentC6q is
constructed:

^w i uCclust&50, i 51, . . . ,N. ~8!

When combined with Eqs.~4!–~6!, this leads to correspond
ing orthogonality conditions for the RGM relative motio
function x̃ (R):

^gi u x̃ &50, i 51, . . . ,N, ~9!

where

gi~R!5^w i~j1 ,j2 ,R!uwN~j1!wN~j2!& ~10!

are projections of six-quark baglike functions onto theNN
channel. To emphasize the importance of orthogonality c
ditions in our approach we put a tilde over the relative m
tion wave functionx. We point out that a similar model with
mutually orthogonal 6q and NN channels in configuration
space has been suggested by Lomon@19#. The model of
Lomon is similar in spirit to our model but different in rea
ization. It is obvious that at intermediate and large distanc
where the clusterlike components dominate, theNN dynam-
ics should be rather well described by a meson-excha
@one-boson-exchange~OBE! and two-pion exchange~TPE!#
model. Explicit quark and gluon degrees of freedom are
important here. On the contrary, in the short-distance regi
with maximal overlap of the nucleon wave functions, expli
quark-gluon degrees of freedom, described by the compo
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538 57V. I. KUKULIN et al.
statesw i should play a decisive role. In this way we arrive
what could be called aduality principle for the baryon-
baryon interaction which can be formulated as follows. T
total six-quark wave function naturally separates into t
mutually orthogonal~i.e., nonoverlapping! components.

One component has a three-quark cluster structure w
the baryons~including isobars! can be considered as separa
entities, and where the dominant dynamical mechanism
meson exchange between the clusters, while the quark-g
degrees of freedom are only of minor significance.

The other component has a six-quark bag structure.
dynamics is governed by explicit quark-gluon degrees
freedom. This component is sensitive to, for example,
particular form of confinement, the value of the scalar qu
condensatêq q̄&, etc., and depends only weakly on the ‘‘e
ternal’’ meson dynamics.

Therefore, when constructing a properNN interaction po-
tential, the baglike components should be somehow exclu
from the very beginning, because these components are
hard to describe by any reasonableNN potential. For this
component one should use a different formalism. This is
complete analogy to the optical potential model in nucl
physics, which is not at all applicable in situations, where
nucleon-nucleus scattering proceeds via isolated compo
states of the nucleus. In this analogy the optical nucle
nucleus potential corresponds to the meson exchange dy
ics between nucleons while the nucleon-nucleus compo
states correspond to the six-quark bags inNN scattering.

Projecting the total six-quark Schro¨dinger equation

HC5EC

onto the six-quark statesw i and onto theNN cluster channel
we obtain, using the orthogonality conditions~8!, the follow-
ing set of coupled equations:

H (
j

(Ĥ i j 2Ed i j )Cj1^ f i u x̃ &50, ~11!

(
j

Cj f j1(ĤRGM2EN̂) x̃50. ~12!
J

Here, we have introduced the following abbreviations:

Ĥ i j 5^w i uHuw i&, ~13!

f i~R!5^w i uHuwNwN&. ~14!

ĤRGM andN̂ are integral operators with kernels

HRGM~R,R8!5^wNwNuHAuwNwN&, ~15!

N~R,R8!5^wNwNuAuwNwN&. ~16!

Solving the linear algebraic equations~11! with respect to
the coefficientsCi and substituting its solution

Ci5(
j

~E2Ĥ ! i j
21^ f i u x̃ & ~17!

into Eq. ~12!, we find the equation of motion for theNN

relative wave functionx̃ :
t

e

re
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f
e
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d

S ĤRGM2EN̂1(
i j

u f i&~E2Ĥ ! i j
21^ f i u D x̃50. ~18!

This equation must be solved together with the additio
orthogonality conditions~9!. After that one can calculate th
coefficientsCi via Eq.~17! and hence the total wave functio
C. Equation~18! constitutes our two-phase model for th
NN interaction.

Due to the appearance of the norm kernelN, the RGM
relative motion wave functionx̃ in Eq. ~18! cannot yet be
interpreted as the probability amplitude for finding the nuc
ons at a relative distanceR. In order to obtain aNN relative
motion wave function that can be interpreted in the us

sense, we define a renormalized functionx̂̃5N 1/2x̃ and a
corresponding effective nucleon-nucleon interaction

~TR1Veff2E! x̂̃50, ~19!

where

Veff5N 1/2ĤRGMN 1/22TR1(
i j

u f̂ i&~E2Ĥ ! i j
21^ f̂ i u,

~20!

f̂ i5N̂ 1/2f i .

The effect of the overlap kernelN(R,R8) for theNN system
can be reasonably well approximated by the expression@13#

N~R,R8!.
1

10
d~R2R8!, ~21!

which differs from the usual localNN potential just by a
combinatorial factor. Thus, the effective interaction can
cast into the form

Veff5Vdir1Vex1VNqN , ~22!

where Vdir is the direct~folding! potential, including one-
meson exchanges between three-quark clusters only, i.e.
one-meson-exchange nucleon-nucleon potential. Becaus
one-gluon exchange operator is diagonal with respec
quark permutations between nucleons it does not contrib
to Vdir . Vex is the nonlocal short-range exchange potent
andVNqN is an effective potential due to the coupling ofNN
and 6q channels:

VNqN510(
i j

u f i&~E2Ĥ ! i j
21^ f j u. ~23!

The effective two-nucleon Schro¨dinger equation for the
orthogonalized and renormalized relative motion wave fu
tion x̃ (R):

H ~TR1Vdir1Vex1VNqN2E! x̂̃50

^gi u x̂̃ &50, i 51, . . . ,N
~24!

provides the basis for the justification ofNN-interaction
models of Moscow type.
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The main point is that the solution of Eq.~24! is defined
only in thesubspace orthogonalto the functionsgi . Due to
this orthogonality requirement, we inevitably introdu
nodes in theNN scattering wave functions at small distanc
@22,23,33–36#. The node positions are very stable as theNN
scattering energyE is increased@13,22#. This behavior of
scattering wave functions can be quite naturally formula
in the language of interaction potentials that have a v
deep attractive well (;1 GeV! @23# with additional deep-
lying bound states. In fact, compared to the deep attrac
well with uV0u'1 GeV, the relative scattering energyE is
negligible. Therefore, the position of the innermost no
r node is basically determined by the well depthV0:

AmN ~E2V0! r node'AmN uV0u r node'p.

Thus, the inner node of the scattering wave function is
most stationary for center of mass energies up to;2 GeV in
the laboratory frame in nonrelativistic kinematics. Inserti
the numerical values for the nucleon mass, andV0 we find
that the stationary node is located atRn.0.6 fm in the case
of relativeS waves (Rn.0.9 fm in the case ofP waves!. We
point out that this node plays the role of the repulsive core
the NN interaction.

Because the nodal solutions of the basic equation~24!
with orthogonality conditions correspond to very large
netic energies, the short-range nonlocal potentialVex, which
includes the quark exchange diagrams, plays only a m
role in the subspace of nodal wave functions. This is in an
ogy to the nuclear orthogonality condition model~OCM! of
Saito @36#. Therefore,Vex can be omitted from Eq.~24! in
good approximation.

Finally, we take the last step in the substantiation of
model. In absence of the vector (r andv) meson contribu-
tion in the total Hamiltonian~1!, the meson-exchange pote
tial Vdir in Eq. ~24! corresponds top- and s-meson ex-
change. Therefore, it is strongly attractive with a depth of
central potential of about;500 MeV. Together with the
nonlocal attractive~for E,E1) part VNqN , it results in an
effective deep (;1 GeV! attractive potential, which was
found in our initial attempts@23#, and has since been justifie
@13,22,27,37# within the framework of the quark model. I
fact, we have found out only quite recently@38# that the
combination of the local attractives-meson exchange poten
tial ~with a depth of about 500 MeV! and the nonlocal attrac
tion VNqN , representing the coupling of theNN and
6q-baglike channels, is exactly phase-shift equivalent to
deep (;1 GeV! effectiveattractivepotential ofM type.

The Moscow potential is the simplest local model, whi
ensures the orthogonality of its solutions to a functionw0
that approximately describes the projection of the fully sy
metric (0s)6 six-quark state onto theNN channel ~in S
waves!. We emphasize that the occurrence of unobserva
deep-lying bound states in Eq.~24! poses no problem, be
cause the equation for theNN channel wave function is con
sidered in the appropriate subspace of nodal wave functi
which isorthogonalto the nodeless bound states. Addition
extra deeply bound states arise only in the solution of
appropriate Schro¨dinger equation in thecompletespace.

In order to understand the reasons for the occurrenc
deep-lying bound states, it is very instructive to recolle
d
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@13# that, the weight of theNN configuration~with unexcited
nucleons! in symmetric baglike six-quark state
us6@6#X@23#CSL50,ST& is very small; whereas the weight o
the DD channel is appreciably larger and the main contrib
tion comes from hidden colorCC channels, whose wave
functions are localized~because of confinement! at small dis-
tances@39#. As a result of the strong coupling of the initia
NN channel and the baglike six-quark channels, the pr
ability for finding anNN configuration with unexcited nucle
ons vanishes almost completely at small distances.1 Thus, at
very small distances, where the extra deeply bound states
localized, there is basically no nucleon-nucleon configu
tion. In this regime, the 2N system can be viewed as thoug
‘‘being dissolved’’ in a quark ‘‘soup.’’ Remembering th
Cheshire Cat smile, it is appropriate to name these de
lying bound states ‘‘Cheshire-Cat bound states~CCBS!.’’

In applications of the model to many-nucleon systems
should be kept in mind that the Moscow potential describ
in an effective way the single-channel system, i.e., theN
system withunexcitednucleons, while the real 2N system
should be described by the above two-component mo
Thus the description of three-nucleon systems given by
Moscowpotentialmodel must be supplemented with an a
ditional 6q1N contribution which is expected to be strong
attractive. Before we discuss the MoscowNN potential in
greater detail, we explain the main ideas of our appro
within the framework of a simple toy model.

III. A SIMPLE M-TYPE MODEL
FOR THE NN INTERACTION

A. General considerations

In this section we compare two alternative models for
NN interaction. For clarity, we use the simplest possible
ample, i.e., two spinless nucleons interacting via a sc
potentialV(r ):

V~r !5gR VR~r !1gA VA~r !. ~25!

The potential includes a short-range repulsive c
gR VR(r ), and a long-range attractiongA VA(r ). The cou-
pling constantsgR and gA are chosen such that the syste
has a single bound state with energy«0 ~‘‘deuteron’’! and
scattering phase shiftsd l(E), l 50,1, . . . .

Let us try to find a modified potentialV8(r )
5g8R VR(r )1gA VA(r ) with a reduced strength of the re
pulsive core, but simultaneously introduce an additional c
straint that ensures the orthogonality of the solution of
Schrödinger equation to some functionw0 localized in the
core area:

H „Tr1V8~r !2«…c̃~r !50, ~26a!

^w0uc̃~r !&50. ~26b!

1A similar conclusion concerning the suppression of theNN chan-
nel in favor of theDD and other isobar channels can possibly
derived in a formalism based on meson Lagrangians@40# without
any reference to the quark model.
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The physical meaning of the additional orthogonality co
straint has already been discussed and partly been elucid
above. Here, we consider this orthogonality condition a
formal constraint that the solution has to satisfy.

Equation~26a! with the additional condition~26b! can be
rewritten in the form of a single equation with the nonloc
interaction~see@36#!

@Tr1V8~r !2«#uc̃~r !&5uw0&^w0uTr1V8~r !uc̃~r !&.
~27!

The solutions of this equation are, as one can easily
orthogonal tow0 for any «Þ0. Only for «50, the required
orthogonality is not guaranteed and Eq.~27! gives an incor-
rect behavior for the corresponding off-shellt matrix.

One can apply a more convenient approach, known as
method of orthogonalizing pseudopotentials~OPP! @24#. In
this approach, the additional orthogonality condition~26b! is
taken into account via the projection operatorG5uw0&^w0u
which projects onto the ‘‘forbidden’’ subspace with a lar
coupling constantm:

„Tr1V8~r !1muw0&^w0u2«…uc̃m~r !&m→`50. ~28!

In our example, the forbidden subspace is just a o
dimensional subspace spanned by the vectorw0. In the limit
m→`, the solutions of Eq.~28! c̃m(r ) have been shown@24#
to be rigorously orthogonal tow0, i.e.,

lim
m→`

^w0uc̃m&50.

For «Þ0 the solutionc̃m coincides with the solution of the
Saito equation ~27!. The projection operato
G5uw0&^w0udefines a ‘‘forbidden’’ subspaceHG of the full
two-particle Hilbert spaceH which can be decomposed as

HG %HQ5H,

whereHQ is the orthogonal complement toHG .
Thus, we consider the problem of finding a modified p

tential V8(r ) that is phase-shift equivalent to the initial p
tentialV(r ) of Eq. ~25! and which has the bound state at t
same energy«0 in thesubspaceHQ orthogonal tow0. For an
arbitraryw0, rigorous solutions of such an inverse scatter
problem are, to our knowledge, not available. Therefore,
search for approximate solutions. In order to further elu
date the relation of M-type models and conventionalNN
force models, we are interested in such solutions that con
a repulsive core that is weaker than that in the initial pot
tial V(r ). Although the modified potentialV8(r ) becomes
deeper when the core is weakened, the introduction of
additional orthogonality constraint of Eq.~26b! renders the
Hamiltonian effectivelyweaker. Due to this compensatio
both the phase shifts and the bound state energies remai
same, albeit with some error.

On the other hand, if we use the OPP method@24,36# the
modified pseudopotential has the form

Ṽ8~r ! 5
m→`

V8~r !1muw0&^w0u. ~29!
-
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Using this method, it is possible to workin the total space
instead of only in the subspace. This is one of the pract
advantages of the OPP method. Thus, in the OPP approa
part of thelocal short-range repulsion is replaced by a sep
rable repulsive potential with an infinite coupling constantm
~29!. If w0 is a bound-state solution of the potentialV8(r ),
the potentialsV8 and Ṽ8 are completely phase-shift equiva
lent. For this case, the solution of the inverse problem, i
the transition to a phase-shift equivalent potential with a
cal repulsive corewithout a deep-lying bound state, is we
known. This is a supersymmetrical~SUSY! transformation
@25,26#. However, when extra bound states~numbern) are
eliminated, a SUSY transformation always introduces a
pulsive core of centrifugal type, i.e.,vs(r ) ;

r→0
n(n11)/r 2,

instead of the usual Yukawa-type core in local OBEP mo
els. Furthermore, the invariance of phase shifts unde
SUSY transformation holds only for agivenpartial wave.

Here, we want to consider the more general case o
repulsive core of intermediate strength. Furthermore,
want to preserve the invariance of the phase shifts in sev
not just in one partial waves. Most importantly, we do n
want to introduce any superfluous bound states into
model from the very beginning. Therefore, we refrain fro
using the rigorous results of SUSY transformations and
look for a potential that is close to the phase-equivalent
tential in the subspaceHQ orthogonal to a given bound state

B. The Malfliet-Tjon potential

To be specific let us consider a particular example. As
initial potential we take the Malfliet-Tjon potential MT-V
@41#. The MT-V potential is a simple scalar model for th
NN interaction, which yields an average deuteron bind
energy of20.4136 MeV and describes theaverage3S1 and
1S0 NN-phase shifts reasonably well up to energies of ab
300 MeV:

VMT -V~r !5gR

exp~2mRr !

mRr
1gA

exp~2mAr !

mAr
, ~30a!

where the parameters take the values

gR51458.05 MeV, gA52578.09 MeV,

mR53.11 fm, mA51.55 fm. ~30b!

Next, we introduce an orthogonality condition to the functi
w0(r ) of Gaussian form:

w0~r !5NexpS 2
r 2

2r 0
2D . ~31!

This ~0s) harmonic oscillator~HO! function approximates
quite well the projection of the six-quark bagus6@6#& onto
theNN channel@13,23,27,39#. For various values of the HO
radius r 0 we now determine the coupling constantsgR8 and
gA8 of the modified potential

V8~r !5gR8
exp~2mRr !

mRr
1gA8

exp~2mAr !

mAr
~32!
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TABLE I. The parameters of the modified potentials reproducing theS-wave phase shifts for the initia
MT-V potential with different values of the ‘‘projector radius’’r 0 and properties of the wave function.

r 0

@fm#
gR8

@MeV#
gA8

@MeV#
r node

@fm#
b

~1 Mev!
x2(deg2)
per point

e0

@MeV#
ẽ

@MeV#

0.00 1458.1 2578.1 0.00 20.4136
0.15 992.0 2511.0 0.25 0.03 0.40 22.51 20.385
0.18 673.8 2468.6 0.28 0.06 1.07 27.55 20.370
0.20 433.0 2438.0 0.30 0.07 1.70 236.06 20.364
0.25 25.0 2389.0 0.35 0.16 2.50 2430.30 20.399
0.30 263.6 2403.0 0.40 0.28 1.60 2683.70 20.611
0.40 2106.2 2494.0 0.50 0.47 0.05 2528.00 20.919
0.50 2287.2 2582.5 0.60 0.63 0.10 2378.80 20.880
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acting in the subspaceHQ , which ensure the best fit to th
S-wave phase shift for theinitial potential MT-V ~30a!, act-
ing in thefull spaceH. For the sake of simplicity we do no
change the inverse radii of the core,mR , and of the attractive
potentialmA .

The results of this fit for different values of radiusr 0 are
presented in Table I. It can be seen that a fit is possible for 0
lying in the interval 0.15–0.5 fm. Thus, in thesubspaceHQ
orthogonal tow0(r ), the partialS-wave phase shifts for the
potentialV8(r ) of Eq. ~32! reproduce fairly well the corre
sponding phase shifts of the initial potential~30a! in the
energy range 0–300 MeV~see thex2 values in Table I!. We
do not present here the respective figures because the d
ence between the phase shifts of the initial potential MT
and those ofV8(r ) is almost indistinguishable in the graph

It should be noted that the local core disappears alread
r 050.2 fm. A further increase inr 0 results in an increase o
the radiusr nodeof the internal node in the wave function an
of the amplitude of internal loop specified by the ratiob of
absolute values of the wave function in the first and in s
ond maxima~see the fifth column in the Table I!. After such
a modification of the potential, the bound state energy«0 ~in
the full space! varies from22.51 up to2600 MeV. How-
ever, if we require the orthogonality tow0, i.e., if we are
operatingin the orthogonal subspace, the bound-state energ
«̃ 0 in Table I remains almost constant that is of the order
1 MeV.

Thus, we obtain a series of approximately spectr
equivalent Hamiltonians.2 The best~i.e., the smallest! value
of x2 is obtained forr 050.4 fm when there are two boun
states in the potentialV8(r ): the first one is deep lying with
the energy«052528 MeV~see the third row in Table I! and
the second one is close to theNN threshold at the energ
«1520.4 MeV, the eigenfunction of the deep bound st
being very close to the HO functionw0(r ). In other words,
we arrive again at a deep attractive potentialwithout any
local repulsive core but with an eigenstate projector, tha
a construction very similar to the Moscow potential mod

2In contrast to trivially spectral-equivalent Hamiltonians that a
obtained as a result of the unitary transformationH85U21HU and
which have been investigated in detail in the literature@42#, our
transformed potentials do not include any velocity dependen
Most importantly however, they have a different physical meani
er-

at

-

f

l-

e

s,
.

Thus, there are two extreme cases:~i! the deep purely attrac
tive potential with the ‘‘extra’’ deep-lying state at«05
2528 MeV corresponding tor 050.4 fm, and~ii ! the initial
MT-V potential which does not contain the ‘‘extra’’ deep
lying bound state state ate052528 MeV but has a loca
repulsive core instead.

These two phase shift equivalent potentials are appr
mate supersymmetric partners. All other cases in Table I
be considered as intermediate variants, lying between th
extremes.3 By changing the ‘‘projector radius’’r 0 from zero
to 0.4 fm, we perform a continuous transformation from o
extreme model to the other. In doing so, the positionr nodeof
internal node of wave function changes and the amplitude
the internal loop of the wave function increases. This can
seen in Fig. 1, which shows the scattering wave function
1 MeV for three potentials: the initial local MT-V~dashed
line 1!, the intermediate nonlocal potential withr 050.2 fm
~solid curve 2! and the potential having an approxima
eigenstate projector withr 050.4 fm ~dotted curve 3!.

We emphasize again that, the second extreme case
r 050.4 fm involves an almost exact eigenstate projector, i
for the given values of the coupling constantsgR8 andgA8 ~see
Table I! the modified potential~32! leads to a deep-lying
bound state with with energy«0.2528 MeV. The corre-
sponding eigenfunction is very close tow0(r ) at r 050.4 fm.
Because the Hamiltonian is Hermitian, all scattering wa
functions, and also the eigenfunction of the second~near-
threshold! bound state at«1520.41 MeV are automatically
orthogonal to the wave function of the deep-lying lev
Hence, there is no need for any additional orthogonality c
ditions.

As a result, the supersymmetric partners arelocal poten-
tials, while all phase-equivalent intermediate cases co
spond tononlocal interactions in the full space, or alterna
tively, to local interactionsin the subspaceHQ . However,
according to our intention, we would like to obtain a goo
description not only in partialS waves, but also inD waves
and possibly in other even partial waves. In a realistic hyb
model of the baryon-baryon interaction, a quark bag
formed only in the lowest partial waves. Therefore, the a

e.
.

3Such an intermediate model may be relevant for modelling
physicalv-meson exchange interaction with a reducedvNN cou-
pling strength.
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ditional orthogonality condition must be included only
lowest partial waves (S and P), whereasthe same Hamil-
tonianwithout any additional orthogonality constraints is e
pected to correctly describe the phase shifts in higher pa
waves.

Thus, we attempt to find a modified potential~32! acting
in the subspaceHQ that simultaneouslydescribes theS- and
D-wave phase shifts for the initial MT-V potential. This
possible with acceptable accuracy for various values ofr 0.
Table II presents several variants of the modified poten
~32! with different valuesr 0 that are fitted to theS- and
D-wave phase shifts under the condition that these are
thogonal to theS-wave functionw0. Because we intend to
use the above potentials in three-body calculations,
present here the versions for which the ‘‘deuteron’’ bindi
energies are practically identical ([0.413 MeV!. The results
of three-body calculations with these potentials are a
given in the Table II and are discussed below.

Figures 2 and 3 show a comparison of theS- andD-wave

FIG. 1. The scattering wave functions atElab51 MeV for three
S-wave phase shift equivalent potentials: initial local MT-V~curve
1!, the intermediate nonlocal potential withr 050.2 fm ~curve 2!,
and the purely attractive potential with the projector close to
eigenprojector withr 050.4 fm ~curve 3!.
al

l

r-

e

o

phase shifts in the energy range 0–400 MeV for three po
tials: ~i! the initial local MT-V model,~ii ! a modified nonlo-
cal potentialV8(r ) with r 050.2475 fm~i.e., a potential with-
out a repulsive core that is close to the SUSY partner of
MT-V !, and ~iii ! a modified nonlocal potentialV8(r ) with
r 050.15 fm ~an intermediate variant!. It is clearly seen that
the potential with the strongly reduced repulsive core act
in the subspaceHQ provides a satisfactory description o
both S- andD-wave phase shifts of the initial MT-V poten
tial acting in the full spaceH.

In this way, our simple toy model shows that the intr
duction of an additional condition which ensures orthogon
ity to some localized statew0 enables us to perform acon-
tinuous transitionbetween the local core model and th
model with ‘‘extra’’ bound states but no core. Both altern
tives describe the interaction between composite nucle
equally well. The extreme models happen to be SUSY p
ners. In between, one has a series of almost phase

e

FIG. 2. NN S-wave phase shifts for center of mass energ
between 0–400 MeV for the initial MT-V potential~dashed line!
and for two modified potentialsV8(r ) fitted to S- and D-wave
phase shifts~see Table II!: ~i! with r 050.15 fm ~solid line! and~ii !
with r 050.2475 fm~dotted line!.
ody

TABLE II. Variants of the MT-V potential with different values of the ‘‘projector radius’’r 0, fitted toS- andD-wave phase shifts of the

original MT-V potential and the two-body bound state energy«0520.4136 MeV, together with the corresponding results for the three-b
calculations.

r 0 gR8 gA8 E3 T3 %S %D 'E3
rep qmin qmax Fmax

fm MeV MeV MeV MeV MeV fm22 fm22

MT-V 1458.05 2578.09 28.25 30.6 99.0 0.75 27.52 19 24.0 4.831024

0.15 999.36 2514.00 28.42 40.3 98.5 1.1 26.73 19 24.0 5.431024

0.18 800.00 2497.76 28.45 44.3 98.0 1.3 26.11 18 23.5 6.031024

0.20 445.80 2443.30 28.82 51.8 97.8 1.7 25.96 19 25.0 6.031024

0.25 0.00 2388.67 -8.99 74.6 97.0 2.0 25.36 20 25.0 5.931024

0.30 271.50 2394.50 28.02 115.0 95.0 3.0 24.20 21 27.0 4.031024

0.40 269.87 2464.90 27.02 189.0 89.0 5.8 23.20 24 31.0 1.731024



b

.

ys

’

as
e
b

e
ve
in
3
ev
d

h
m
a

e
is
n
ia
wi

r
n

e

ed,
ify

e
the

he

the
er
or-

ive

lsive
u-

ap-
tial
rnal
A

ow

-

en
arly
-
rks

i

en

le.
g-
f.

ble

.

th
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equivalent potentials, differing by the core strength and
the spatial extension (r 0) of the statew0.

C. Consequences for three-nucleon bound states

Next we discuss, how the properties of the 3N-system
change when going from oneNN-force model to the other
In Table II we compare the 3N predictions of the initial
MT-V model Eqs.~30a! and~30b! with those of the different
variants of the orthogonalized model. Table II displa
bound-state energiesE3, kinetic energiesT3, and also the
minimum and secondary maximum position of the3H
charge form factor together with its valueFmax in the sec-
ondary maximum for different variants of the potential~32!
and different functions~i.e., different values ofr 0) w0(r ).

One can see that an increase in the ‘‘projector radius’r 0
from 0 up to 0.25 fm leads toan increaseof the three-body
binding energy from 8.25 up to 8.99 MeV. Asr 0 increases
further up to 0.4 fm the binding energy begins to decre
again. These results contradict the results of Nakaichi-Ma
@43#, who showed that the replacement of the local core
the orthogonality condition leads always to areductionof the
three-particle bound-state energy. According to@43#, the
‘‘stronger’’ the imposed orthogonality condition, i.e., th
larger the amplitude of the inner loop in the radial wa
functions, the more pronounced the reduction of the bind
energy. At first sight, our results seem to contradict theN
calculations with the Moscow potential, undertaken by s
eral groups~see, e.g.,@44–46#!. These calculations showe
that the replacement of the local repulsive coreNN potential
~for example, the Reid potential! by the MoscowNN poten-
tial leads to areductionof the binding energy from 7 down
to 4.5 MeV @44#.

The difference between our results and the Nakaic
Maeda findings is explained as follows. The transition fro
the local core to the orthogonality condition causes a sh
increase in the kinetic energy of the 3N system~see the fifth
column in Table II!. This in turn leads to an increase of th
contributions of higher partial waves. The main role
played by an attraction inD waves—see the seventh colum
in Table II. It should be emphasized that the MT-V potent
is central and therefore does not mix three-body states

FIG. 3. D-wave phase shifts for the same three variants of
interaction potential as in Fig. 2.
y
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different values of the total angular momentumL. We con-
sider here the mixingwithin a state of given total angula
momentumL ~e.g.,L50!. By higher partial waves, we mea
states withl5 l 52,4, . . . ,wherel and l are angular mo-
menta associated with the Jacobi coordinatesr andr, respec-
tively.

The change in the 3N binding energy thus depends on th
magnitude and sign of theD-wave interaction: if this inter-
action is strongly attractive, the binding energy is increas
if it is repulsive the binding energy is decreased. To ver
this statement, we have carried out 3N calculations with
strong repulsion inD-wave interactions, while keeping th
S-wave interaction fixed. The results are presented in
eighth column of Table II (E3

rep). With increasingr 0, i.e.,
with a strengthening of the orthogonality constraints, t
contribution of the internalD wave grows and the binding
energyE3

rep with repulsiveD-wave interaction monotonically
decreases.

The calculations of Nakaichi-Maeda@43# and Hahnet al.
@44# were based on the Faddeev equations and ignored
usually small contribution of higher partial waves. Und
these restrictions, our calculation also shows that the
thogonality condition always leads to a stronger effect
repulsion than the original local repulsive core model.4 As a
result, without the higher partial waves the binding of the 3N
system becomes weaker as one goes from the local repu
core model to an M-type model. If we include the contrib
tion of higher partial waves in pair subsystems~for a fixed
value of the total orbital angular momentumL), the 3N
binding energy changes in the way described above. An
preciable increase of the contribution of the higher par
waves in pair subsystems due to the increase of the inte
kinetic energy is the distinctive feature of M-type models.
more detailed discussion of this property is given bel
when we consider a more realistic model.

IV. THE MOSCOW POTENTIAL MODEL

A. One-channel model

Early attempts to construct anNN-potential with an addi-
tional ‘‘forbidden’’ state, i.e., a model of M type, were un
dertaken already in the middle of the 1970’s@23#. However,
in these early works only central potentials and only ev
partial waves were considered. We point out that these e
attempts were undertaken yetbeforethe color degree of free
dom quark was fully established. But for colorless qua
~fermions!, the lowest~as it then seemed! six-quark configu-
ration u(0s)6@6#XL50,ST& is strictly forbidden by the Paul
principle. Therefore, theseNN potentials were interpreted in
complete analogy with the effective potentials betwe
nuclear clusters~e.g., thea-a potential!, in other words, as
potentials with bound states forbidden by the Pauli princip

The first version of a realistic Moscow potential was su
gested in 1983@47# and further details can be found in Re
@48#. This version describes theNN interaction only in the

4This is probably due to the fact that the radius of the separa
repulsive core in the pseudo-potentialmuw0&^w0u ~for m→`), is
much greater than the radius of the original local repulsive core

e
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1S0 and 3S1- 3D1 channels. Later on the description w
extended to the lowest odd parity partial waves (3P0, 3P1,
3P2- 3F2) @49#. A new and improved version of the Mosco
potential ~version 86! was published in@50#. This version
still had a node in the deuteronD wave for which there is no
evidence in microscopic quark models@11,13,16#. Finally, in
1990, we have changed the truncation of the tensor O
potential @27#, which eliminated theD-wave node~version
90!.

The main difference between the Moscow potential a
standard models for theNN interaction is the absence of
local repulsive core at small distances. Instead of the c
the interaction is described by a deep attractive poten
V0exp(2hr2) plus an appropriate condition of orthogonali
to an extra deeply bound state. Owing to the deep-ly
bound state, the physicalNN wave functions have a node a
small distances. The position of this node at around;0.6 fm
is almost stationary with increasing energy. In our approa
this stationary node plays the role of the repulsive core
standard models, and provides the correct behavior of
NN scattering phase shifts. The physical meaning of
‘‘extra’’ bound states in the lowest partial waves has be
repeatedly discussed in the literature@22,27,37#. They either
simulate six-quark bag compound states, for exam
us6@6#X& in S waves, andus5p@51#X& in relative P waves,
which cannot be adequately described in terms of nucl
degrees of freedom only@13,15,17,22#; or they describe
bound states in the nucleon plus Roper resona
NN* ~1440! channel@37#. We recall that the interaction in
the NN* ~1440! channel must be very similar to the origin
NN interaction because the Roper resonance has the s
quantum numbers as the nucleon.

Because we are mainly interested in the predictions
Moscow-typeNN potentials for 3N systems, a more com
plete version of such potentials including even partial wa
with l<4 is necessary. Here, we present a few new vers
for evenpartial waves. The form of the interaction for od
partial waves~for version 86! is discussed in@50#. An up-
dated version of the Moscow potential for odd partial wav
will be considered in a future publication. In accordance w
general expectations, six-quark bags appear mainly in
lowest S and P partial waves~for Elab<800 MeV!. There-
fore, the extra bound states describing the projections
these six-quark states onto theNN channel can occur only in
these lowest partial waves.

In the higher partial waves there are no extra bound st
and correspondingly no nodes in the wave function. Ho
ever, an interaction that has in the lowest partial wave o
an attractive local potential and a repulsive projector mu
plied by a large positive constant, is too strong for high
partial waves. In order to take into account the short-ra
repulsion generated byv-meson exchange, and in order
retain the universal form of the interaction in all parti
waves, we add a repulsive core in the same separable
with a Gaussian form factor, as in the lowest partial wav
but with a finite positive coupling constant. We will the
arrive at someintermediatemodel of the type discussed i
the previous section.

The final Moscow potential consists of two parts. First
local l -independent part, which explicitly includes the on
pion-exchange~OPE! potential and a deep attractive we
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V0exp(2hr2) that depends on the spin and parity of theNN
system. Second, a state-dependent separable repulsive
with Gaussian form factor, which provides the corre
D-wave phase shifts. This form of the potential is not on
universal, but it is also convenient for three-body variation
calculations, because it is possible to calculate all of the m
trix elements of the Hamiltonian analytically@51–53#. The
separable core providing the short-range repulsion depe
on l andJ. Therefore, it is not necessary to explicitly includ
a spin-orbit interaction for even partial waves.

The OPE potential is truncated in a suitable way at sm
distances~see below!. The tensor interaction which couple
partial waves with angular momental and l 62 is in all
partial waves quite reasonably described by the trunca
OPE potential. Thus, the channel coupling is easily c
trolled by the truncation parameter. For partial waves w
l>4, the repulsive core is not required~for Elab,400 MeV!
since the phase shifts withl>4 are completely determine
by the long-range OPE tail of the interaction. Thus, theNN
potential for even partial waves has the form

VNN5Vloc1Vsep, ~33!

where Vloc is a local l -independentpart of the interaction
which, however, depends on spin and parity:

Vloc~r !5VC~r !1VT~r !Ŝ12, ~34!

VC~r !5V0exp~2hr 2!1VC
OPE~r ! f tr~r !, ~35!

VT~r !5VT
OPE~r !@ f tr~r !#n, ~36!

where the cutoff factor is

f tr~r !512exp~2ar !. ~37!

The exponentn is different for various versions of the
model. The OPE potentialsVC

OPE andVT
OPE have the standard

form

VC
OPE~r !5V0

OPEexp~2x!/x, x5mr ,

VT
OPE~r !5V0

OPE~113/x13/x2!exp~2x!/x.

We use an averagedp-meson massm and apNN coupling
constantgpNN

2 /4p513.8 @27,48,50#

V0
OPE52

gpNN
2

4p

m3

4MN
2 5210.69 MeV, m50.6995 fm21.

The separable repulsive coreVsephas the form~for l 52 and
3!

Vsep5luw&^wu, ~38!

w5Nrl 11expF2
1

2S r

r 0
D 2G , E w2dr51. ~39!

The strength constantsl for the separable core vary fo
differentJ and l , whereas the radius of the repulsive corer 0
varies only slightly from state to state~see Table III!. For l
>4 the termVsepis absent. Parameters for several variants
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TABLE III. Parameters of the MoscowNN potentials.

variant parameter values parameter values ofr 0 @fm#, l @MeV#

n V0 @MeV# h @fm22# a @fm21# for particular channels
triplet channels 3S1

3D2
3D3

A 3 2466.7 1.600 3.000 0.448 ` 0.4600 251.0 0.300 `

B 3 21329.0 2.296 1.884 0.445 ` 0.4061 427.2 0.276 `

C 7 21459.2 2.372 2.610 0.454 ` 0.4199 353.8 0.289 `

singlet channels 1S0
1D2

a 21106.2 1.600 3.000 0.4998 ` 0.4472 229.0
b 21220.0 1.753 1.884 0.4815 ` 0.4103 303.7
c 21222.0 1.738 1.000 0.4825 ` 0.4071 321.8
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theNN potential differing in the truncation of the tensor pa
in triplet-even channels are given in Table III. We ha
found ~see Sec. IV! that the properties ofNN and 3N sys-
tems calculated with M-type potentials~this is also true for
conventionalNN potentials@2,6–8,54# strongly depend on
the behavior of the tensor potential at small distances!. In the
1986 version of the Moscow potential@variant ~A! in Table
III #, an exponential truncation of the tensor part@see Eq.
~37!# with a valuen53 and an inverse radius of truncatio
a53 fm21 was used. In that case, the tensor potential tr
cated according to Eqs.~36! and~37! corresponds to a larg
negative constant at the origin@VT(0)525500 MeV#.
Therefore, there is a very strong coupling of the3S1- 3D1
channels at small distances. This coupling results in a la
loop in the deuteronD wave, as well as in a largeD-state
admixturePD of 6.4%. The relative amplitude of this loo
Aloop

D compared to the maximum value of theD-wave func-
tion is given in Table III.

However, in view of the relatively weak quark-quark te
sor force, it is desirable to have an interaction variant,
which the node in the deuteronD wave is absent. Such
variant was found in our previous work@27#, where a step
factor

f tr5
~pr !6

11~pr !6

has been used for the truncation. The steplike trunca
leads, however, to technical difficulties when used in a thr
body calculation. Therefore, we present here some alte
tive variants of the triplet-even potential which still have
exponential truncation factor@12exp(2ar)#n with n.3, for
which the relative magnitude of theD-wave loop varies from
0.5 down to 0.02. It is important to note that the stronger
truncation of the tensor potential, i.e., the weaker the ten
interaction at small distances, the larger the 3N binding en-
ergy ~see the subsequent section!.

The dependence of all observables on the truncation
tor of the central partVC

OPE is very weak. For example,
stronger truncation inVC

OPE is easily compensated by a co
responding strengthening of the central attractive~Gaussian!
part of the interaction. Therefore, in the present three-b
calculations, we have used only one of the new variants
the singlet potential presented in Table III~namely, variant
-

e

r

n
-
a-

e
or

c-

y
r

c!. In addition, we have found that a fit to the experimen
phase shifts in the interval 0–400 MeV does not uniqu
determine the widthh and depthV0 of the deep potential in
the central part of theNN interaction~35!. Any variation of
the width h can always be compensated by an appropr
variation of the depthV0, without changing the quality of the
phase shift fit. As a result, it is possible to choose the sa
width for the triplet 3S1- 3D1 (h t) and the singlet1S0 (hs)
channels. Alternatively, it is possible to choose the sa
values of the depthV0 in triplet and singlet channels. In thi
case the widthhs andh t would be different.

We emphasize that the equalityhs5h t is impossible to
reach in simple conventional potential models@1#. In other
words, the width of the triplet potential is always differe
from that of the singlet potential. Both parameters~i.e., width
and depth! of the conventional potential model areuniquely
determined by the values of the low-energy effective ran
parameters, i.e., by the scattering length and effective ra
It was recently found@55# that owing to some freedom in th
choice of the three main parameters of the interaction,
width h, depth V0, and the truncation radius of the OP
potentiala, the values of the width parametersh anda2 can
be taken to be equal, i.e.,h5a2. We then obtain the simples
two-parameter model of the Moscow potential, where o
two parameters~width and depth! are fitted to the scattering
length and effective range of the1S0 partial wave. However,

FIG. 4. The deuteronS-wave (l 50) andD-wave (l 52) func-
tions for model B. The deuteron wave functions calculated with
Paris potential@5# are shown for comparison.
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FIG. 5. The even parity phase shifts for the new version of theNN Moscow potential~variant B! are compared with the data of th
energy-dependent phase-shift analysis by Arndtet al. @57# ~triangles, dotted line for«1). For «1 we also show the Nijmegen phase-sh
analysis PWA93@58# ~dashed line! and the single energy phase-shift analysis by Arndtet al. @57# ~circles!.
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six-
unlike conventional force models~see Ref.@1#, Chap. 2!, we
obtain with this simplest two-parameter model an excell
description of the3S1- 3D1 and 1S0-wave phase shifts in a
large interval of 0–500 MeV instead of a good fit only in th
range between 0–15 MeV typical for conventional mode
Simultaneously, we obtain a good description of the m
static properties of the deuteron@55#, including the quadru-
pole moment, charge rms radius and the asymptotic norm
izationsAS andAD .
nt

e
s.
in

al-

We attribute this success to the choice of the proper
grees of freedom for a potential description. Conventio
models try to describe both, the short-range six-quark
the long-distance one-boson exchange aspects of theNN in-
teraction. This leads to a complicated energy and momen
dependence of the resultingNN potential. We claim that the
Moscow potential model is so simple, because we do no
to cast the six-quark aspects of theNN interaction into the
same formalism as the asymptotic long-range part. The
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FIG. 5. ~Continued.!
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quark aspects in theNN sector are more adequately d
scribed by an orthogonality condition, rather than by a lo
repulsiveNN potential.

The parameters of the Moscow potential model are lis
in Table III. The deuteron wave function calculated wi
model B is shown in Fig. 4. In Fig. 5, the phase shifts of t
evenpartial waves for variant~B! are compared with the
experimental ones@57#. The description of theNN phase
shifts is for all variants listed in Table III quite reasonab
However, our description of the mixing parametere1 espe-
cially for energiesE.400 MeV, is not yet satisfactory. Th
mixing parametere1 is determined by the value of the matr
element^CSuVTuCD&. Our overestimation ofe1 at higher
energies is a consequence of the behavior of the3S1 and
3D1 eigenfunctions at short distances. While theS wave has
a node and a rather pronounced loop, there is almost no
in the D wave. This leads to a rather sharp increase ofe1 at
higher energies.5 In the more complete two-channel mode
the short-rangeS-wave loop should be significantly reduce
and we expect a flatter behavior ofe1 in better agreemen
with modern data.

5In contrast to this, in the first version of the Moscow potent
model@48#, there were two coinciding nodes and loops in both
S andD waves and a rather satisfactory fit toe1 was obtained.
l

d

.

op

B. Exclusion of the deep-lying bound state

The ‘‘extra’’ bound states inS and P waves have to be
excluded if the potential is used in few-nucleon calculatio
As was already discussed in Sec. II, this is most convenie
done by means of the orthogonalizing pseudopoten
~OPP!:

VOPP5lG, G5uw f&^w f u ~40!

with a large positive value of the strength constantl @24,59#.
In practice a value ofl;1052106 MeV is quite sufficient.
In the case of coupled channels3S1- 3D1 and 3P2- 3F2 the
function w f in Eq. ~40! has two components. Therefore, it
necessary to use a two-channelmatrix projector of the form

Ĝ25S uw f
1&^w f

1u uw f
1&^w f

2u

uw f
2&^w f

1u uw f
2&^w f

2u D , ~41!

where uw f
1& and uw f

2& are the upper and lower entries of
two-component column vector, corresponding to the ‘‘extr
bound state. However, the matrix projector considera
complicates three-body calculations. Therefore, we use
stead a one-component projector:

Ĝ2→Ĝ15S uw̃ f&^w̃ f u 0

0 0
D ~42!

l
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acting on the ‘‘main’’ channel, i.e., on the channel posse
ing highest weight in the ‘‘extra’’ state. In other words,
3S1- 3D1 channels we use only anS-wave projector. In this
case the functionw̃ f is selected so that the inclusion of th
above one-component projector into the Hamiltonian give
result that is as close as possible to the action of thetwo-
componenteigenprojectorG2. Strictly speaking, the replace
ment of the matrix projector~41! by a single-channel projec
tor ~42! should cause some modification of the appropri
NN phase shifts. We have found, however, that this repla
ment influences the description of the phase shifts in coup
channels only very weakly. Moreover, employment of t
simple Gaussian function with suitable values ofr 0 in w̃ f can
ensure a quite reasonable and accurate description of sc
ing phase shifts.

We will show, in particular, how the approximateS-wave
projectorG5uw̃ f&^w̃ f u acts in the coupled3S1- 3D1 channels.
The dependence of the first two energy levels on the
thogonalizing coupling constantl for the 3S1- 3D1 channels
is shown in Figs. 6~a! and 6~b! for the potential~B!. If the
projector is absent, there are two bound states: the ‘‘ext
ground state with energyE052599 MeV with a D-wave
probability of 6.3%, and the second bound state describ
the physical deuteron withE1522.2245 MeV and a
D-wave probability of PD55.75%. If the exact two-
component statew0 is used inG1, the energy of the ground
stateE0 is shifted by an amountl whenl is varied, whereas
the deuteron energyE1 does not vary at all~by definition!.
The deviation of the curvesE0(l) and E1(l) from the
straight line characterizes the difference between the ap
cation of the approximate~single-channel! S-wave projector

and the exact matrix eigenprojectorĜ2. As one can see, thi
difference is only important in the narrow range of valu
l56852690 MeV, where the energiesE0 and E1 of both
states come close to each other and the states are m
strongly due to approximate orthogonality ofw̃ f and w1

~their overlap beinĝ w̃ f uw1&50.001). Forl.690 MeV, the
deuteron state becomes the new ground state and its en
grows very slowly withl approaching the limiting value
E(`)522.2246 MeV. On the other hand, the origin
ground state energyE0(l) continues to rise and finally trans
forms into a narrow resonance. In the case of the exact ei
projector, it would be transformed into a bound state emb
ded into the continuum with the positive energyE01l. This
resonance strongly distorts the phase shifts only in a nar
energy range nearEc.m.5E01l. But since the values forl
used in the present three-nucleon calculation are of the o
of l;106 MeV, this distortion is far away from the phys
cally relevant region. It is worth to note that if one takes on
the S component of theexactwave functionw0 as w̃ f in the
single-channel projector~42!, the result turns out to be muc
worse. In other words, the result of the application of t
projectoruw0

(1)&^w0
(1)u, i.e.,using the exactfirst component of

two-component vector, differs much more from the mat
eigenprojectorĜ2, than theapproximateprojectoruw̃ f&^w̃ f u.
This is explained by the fact that the orthogonality conditi

which is automatically satisfied for the eigenprojectorĜ2 is

^F0uF1&5^w0
~1!uw1

~1!&1^w0
~2!uw1

~2!&50. ~43!
-
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From here it does not follow, in general, that^w0

(1)uw1
(1)&

50. At the same time it is possible to make the overlap
the deuteron with some approximate functionw̃ f arbitrarily
small. Then the energyE1 will not depend onl, as in the

case of the application of the exact eigenprojectorĜ2. How-
ever, it is impossible to choose a simple approximate fun
tion that will be orthogonal to the scattering wave function
of the continuous spectrum forall energies. Therefore, due to
the employment of the approximate projector, the scatter
phase shifts are inevitably distorted in some small ener
interval.

Bearing in mind the use of the potential in the three
nucleon system, where large values of the constantl are
needed, we restrict ourselves to the approximate projec

FIG. 6. ~a! Effect of the approximateS-wave projector on the
discrete spectra of 2N and 3N systems.E0 andE1 are the energies
of the first two 2N states,E3N is the energy of 3N ground state,l
is the 3S1-wave projector coupling constant.~b! The dotted line
shows the dependence of the 3N-bound state onl for the casels

5l t .
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with a simple Gaussian form factor. Then the addition
pseudopotentialVsephas the form of Eq.~40! in all channels.
For S- and P-partial waves, the constantsl have to be suf-
ficiently large (;1052106 MeV! in order to ensure the ex
clusion of ‘‘extra’’ bound states, while their values inD
waves are determined by fitting the experimental ph
shifts. The corresponding values ofr 0 for the approximate
projector are also given in Table III. In the3D1 channel and
in all higher partial waves withl .3, the termVsep is absent.

V. PROPERTIES OF THE THREE-NUCLEON BOUND
STATE

Here, we discuss the predictions of the new versions
the Moscow model described in Sec. IV. The 3N calcula-
tions have been done by a variational method on a v
large, nonminimal and nonorthogonal Gaussian basis@52,60#
and are, in general, rather similar to the very accurateN
calculations of Kameyamaet al. @53#. With this basis the
absoluteaccuracy for the eigenenergy is about 100 keV. T
relative accuracy for the Coulomb displacement energy
even higher.

As follows from many previous 3N bound state calcula
tions, the total contribution of odd partial wave interactio
to the 3N binding energy is small and does not exceed
MeV @3#. We emphasize that odd partial waves have b
included in our variational basis for the 3N bound state cal-
culation but we did not take into account the contribution
the odd partial waves in theNN force. In theNN force, we
include allevenpartial waves up to total orbital angular mo
mentumL54. Our results are presented in Table V, whe
we list several static properties of3H and 3He such as bind-
ing energiesE, root-mean-square charge radiusr ch, the per-
centages ofD (PD) and P waves (PP), and the Coulomb
displacement energyDCoul for the difference EB(3H)
2EB(3He). In addition, we list the average kinetic energyT
in the ground state, as well as certain characteristics of
3H charge form factor, i.e., the position of the first minimu
qmin , the second maximumqmax and the value ofuFchu in the
second maximumFmax.

A. Dependence on the projection constants

First, we discuss the dependence of the three-nuc
properties found with the above force model on the proj
tion constantsl. In Figs. 6~a! and 6~b! we show the depen

TABLE IV. Deuteron predictions for the different versions o
the triplet-even MoscowNN potentials.D loop is the amplitude of
the D-wave loop. The deuteron matter radius is defined asr m

2

51/4*0
`drr 2@u2(r )1w2(r )#. For the most recent value of the de

teron matter radius see Ref.@56#. Here,h is the asymptoticD/S
ratio. In impulse approximation~model B! the deuteron magnetic
moment ismd50.847 mN , the quadrupole moment isQd50.271
fm2, and the charge radius isr ch52.112 fm.

Variant x2 D loop Ed @MeV# PD% h r m @fm#

A 118 0.50 22.2244 6.59 0.0267 1.96
B 56 0.30 22.2246 5.75 0.0258 1.95
C 126 0.02 22.2246 6.14 0.0262 1.94
l

e

f

ry

e
s

2
n

f

e

on
-

dence of the 3N ground state energyE3N on the value
l(3S1) multiplying the projectorG, projecting onto an ‘‘ex-
tra’’ bound state in the3S1 channel. The two-body stat
energiesE0(l) and E1(l) shown in Fig. 6 were already
discussed in Sec. IV. All other parameters of the potent
are fixed, including the constantsl for the other channels
For l,680 MeV the 3N system remains unbound and th
variational valueE3N practically coincides with the energ
of the two-body ground stateE0. When l is increased be-
yond 682 MeV, the system becomes bound withE3N526
MeV. If l is increased further the three-nucleon binding e
ergy decreases very slowly approaching its limiting va
E3N(`)525.74 MeV, because these test calculations w
done in a comparatively small basis. The saturation occ
for l51052106 MeV. For higher values ofl the numerical
results become unstable. The convergence of variational
culations with respect tol was investigated in some detail i
Ref. @61#. The physical deuteron becomes the ground stat
the two-nucleon subsystem forl.688 MeV whenuE3Nu is
already less than 6 MeV.

These results clearly show that it is impossible to fit t
binding energy of the three-body system to the experime
value by adjusting the parameterl. It is interesting to note
that the system becomes bound when the repulsion in
subsystems increases.6 The reason of this interesting phe
nomenon is the following. When the projection constant
the singlet channel is chosen as, e.g.,ls5106 MeV and the
one in the triplet channels as, e.g.,l t!106 MeV ~and vary-
ing!, the almost complete space symmetry of the thr
nucleon system is broken, and the weight of wave funct
components with mixed orbital permutational symme
@21#X is increased.

On the other hand, if the constantsl(3S1) and l(1S0)
evolve simultaneously, we find a different behaviorẼ3N(l)
that is shown by the dashed line in Fig. 6~b!. Now, the 3N
system remains bound for alll. However, for the allowed
values ofl that is when both ‘‘extra’’ bound states in th
triplet and singlet channels are pushed sufficiently h
above the physical state, the three-nucleon binding ene
uE3Nu appears at a value less than 7 MeV. So, in this cas
is also impossible to fit the three-nucleon binding energy
shifting the ‘‘extra’’ two-body state to the positive energ
region. Therefore, all results for the three-nucleon syst
discussed below have been calculated with sufficiently la
valuesls andl t(;1052106 MeV! for which complete satu-
ration has been reached, and the results are, in some senl
independent.

B. Binding energy of 3H and 3He

All variants of the model studied here differ only in th
form of the truncation factor for the OPEP-tensor force
small distances and lead to overall similar results~see Tables
III–V ! except for one previous version of our model@50#
~variant A in Tables III–V!. In the course of the calculation
we have found that the stronger the cutoff in OPEP ten

6Certainly, the absolute value of three-body binding energy
creases in the process, however, the energy of the two-body th
old decreases still more quickly.
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TABLE V. Three-nucleon properties with the A, B, and C versions of the Moscow potential.

variant of E(3H) T(3H) PD PP r ch(
3H) DCoul r ch(

3He) qmin
2 qmax

2 Fch(
3H)max

potential MeV MeV % % fm MeV fm fm22 fm22

A 25.07 143.7 7.8 0.03 2.15 0.612 2.41 13 18 1.231023

B 26.03 162.4 7.4 0.03 2.01 0.670 2.24 16 22 9.631024

C 26.03 162.8 8.1 0.05 2.01 0.667 2.25 16 22 9.631024

extrapol. 28.48 175.1 8.5 0.06 1.88 0.737 2.07 17 23 1.031023

to Eexp

experiment 28.48 1.76 0.764 1.96 13 18 431023
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force, the larger the 3N binding energy~see Tables III–V!.
In this respect our results are very similar to those found
Sasakawa and Ishikawa@54#. In their 3N studies with the
Reid-soft-core~RSC! NN potential using various truncatio
factors of the tensor force they found that when the ten
force is cut off more strongly at short distances~and the
central attractive part is correspondingly increased in orde
keep the deuteron binding energy invariant!, the 3N binding
risesas well.

However, there is an important difference between
present results and those in Ref.@54#. In our case, the partia
replacement of the short-range tensor force by a central f
does not lead to a noticeable reduction of the tensor mix
parameter«1. In fact as the truncation is increased, the m
ing parameter does not tend to zero, but, instead of thi
rises more sharply for largern. This is related to the essen
tially different character of interference between tensor a
central force~both in 2N and 3N systems! in our case as
compared to the traditional nuclear force models~see the last
paragraph in Sec. IV A!. However, we do not expect drast
effects of oure1 description on the 3N binding energy, at
least not within the corridor given by the different versio
of our model. In fact, the difference ine1 values between the
RSC and the Paris potential model is of the same size as
between the present version and experiment@62#.

The 3H binding energies obtained in the present stud
(;6.05 MeV! for the two most realistic variants of the po
tential ~B and C! are much higher than the value of;4.5
MeV obtained by Hahnet al. @44# in their first 3N calcula-
tion with the earlier version of the Moscow potential. Th
large difference is caused by the following reasons.

~i! In the Hahnet al. @44# calculation and also in the earl
1983 version of the Moscow potential an old version of t
singlet 1S0 potential fitted to the 1983 phase shift analy
@63# was employed. Our new singlet potential is fitted to t
SAID database of 1995@57# and resulted in some increase
3N binding ~about;0.2 MeV!.

~ii ! Another, more important reason for the present i
provement of the 3N results is the use of a stronger trunc
tion of the short-range OPEP tensor force and the respec
reduction ofPD in the deuteron and 3N systems—see the
versions B, C, and D in Table IV. The sharper truncati
removes or suppresses to a significant degree the inner
and the respective loop in theD wave at short distances.

~iii ! A very restricted configuration space of only five b
sic channels3S1- 3D1 and 1S0 was employed in the Faddee
calculation of Hahnet al. @44# and the contribution of alll
.2 higher partial waves was neglected. The latter contri
y
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tions are quite important in our case especially in t
Faddeev-like 3N approach.

We have previously emphasized the extremely import
contribution of higher partial waves as manifested by a sh
increase of the average 3N kinetic energy. Compare the thir
column in Table V with the corresponding results@10,64# for
traditional force models, in particular for model B:

Ekin
3N~Paris!542.6 MeV, Ekin

3N~RSC!549.3 MeV,

while

Ekin
3N~Moscow!.150 MeV

is more than three times higher. It is worth to recall here t
the modest 20% increase in the average kinetic energy in
RSC potential as compared with the Paris potential, res
already in an enhancement of the contribution of higher p
tial waves to the binding energy by as much as a factor
2.5. Thus, one can easily imagine how large a contribut
from higher partial waves may result in our case. A mo
detailed analysis of these results will be carried out el
where.

We must keep in mind that, contrary to conventional for
models, ourNN potential corresponds only to a one-chann
approximation of the complete two-phase model, that is
the definition of theNN potential, only the effectiveNN
channel with unexcited nucleons. As was argued above,
effective channel potential is phase-shift equivalent to
initial two-phase interaction model of hybrid type@see Eqs.
~19! and~24!# and the replacement of the local repulsive co
by a two-channel interaction model~e.g., as in case of QCB
model by Simonov@15#! will lead to some additional binding
of the order of some;0.8–0.9 MeV@65#, simply because of
the presenceof the second channel. There is an addition
reason for extra-binding in 3N and generally in many-
nucleon systems if the full two-phase interaction model
considered. One has to take into account the interaction
tween the six-quark bag and the spectator nucleon. This
namical 6q-N channel coupling can be considered as so
kind of three-body force that will also increase th
3N-binding energy. We expect that these effects will main
change theabsolutevalues of the energies while therelative
energies, which will be discussed in the following, will b
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influenced only weakly. This is because the weights of th
q-bag components in3H and 3He are small and have almo
equal magnititude.

C. Coulomb displacement energy, charge radii,
and form factors

As follows from the results displayed in Table V, th
Coulomb displacement energy

DCoul5EB~3H!2EB~3He!

~for variants B and C withn55 and 7 for the OPEP tenso
force truncation! equals

DCoul.670 keV

for EB(3H)56.05 MeV. For a more careful test of th
model, it is important, however, to find the value ofDCoul
when EB(3H) is scaled to its experimental value28.48
MeV since the larger the 3N binding energy the smaller th
rms charge radius and the higher the Coulomb energy
3He. Thus, we slightly increase~by ;2%) the strength of
the central~triplet and singlet! potential well to fit the experi-
mental value ofEB(3H), and for this case we analyze th
Coulomb energy of3He and the rms charge radii of3H and
3He with our model~see the two last rows in Table V!.

The extrapolated Coulomb displacement energy turns
to be

DCoul
extra5737 keV

which is only 27 keV less than the experimental value. He
we note in passing that in the full two-phase model calcu
tion the magnitude ofDCoul would increase further becaus
the second channel comprises the more tightly packedq
1N configuration.

The most likely reason for this improvement in the pr
diction of DCoul

extra is the appearance of the inner radial nod
and corresponding short-range loops along every inter
ticle r i j coordinate~and also along both Jacobi coordinate!
in our 3N wave functions. The inner loops along ther i j
coordinates have only a minor influence on the rms radi
the charge or matter distribution because the latter are d
mined mainly byone-particlecoordinatesr i ~as measured
from the center of mass!. Contrary to this, the Coulomb po
tential between two protons in3He is maximal just at zero
interparticle separationr i j where we have some enhanceme
of particle density due to the presence of the inner loop
our wave functions.

This naturally explains why conventional force mode
leading to a short-range suppression of the wave funct
along every interparticle distance miss some 100 keV in
Coulomb energy of3He, whereas our model, due to the inn
loops leads to a prediction that is close to the experime
value. Although our result is still qualitative in the sense th
6

of

ut

,
-

-
s
r-

f
er-

t
in

s
e

al
t

it involves an extrapolation to the empirical binding energ
the observation that the inner wave function loops are
tremely important for the Coulomb displacement energy
likely to survive. Moreover, if the force model presente
here is corroborated in subsequent studies, it would sug
that inner loops are ubiquitous in nuclear wave functions

The recent quantitative explanation of the Coulomb d
placement energy in the literature@66# using a force model
with a repulsive core is based on the assumption of a ra
strong charge symmetry breaking~CSB! term VCSB ~differ-
ence between thenp andnn strong interactions!. With VCSB
added to the ArgonneV18 potential, one can almost com
pletely explain the 100 keV difference inDCoul between3He
and 3H. However, the sameVCSB leads to a strong overest
mation of the Coulomb energy difference in the6Be-6He
system. Therefore, it is conceivable that the contribution
the charge symmetry breaking termVCSB in Ref. @66# is ac-
tually smaller. In any case, it is evident from the discuss
above that the assumption of a strong charge symmm
breaking interactionVCSB is not the only mechanism that ca
explain the 100 keV Coulomb energy difference in the 3N
system.

The values of the extrapolated charge radii of3H and 3He
~see last row in Table V! turn out to be larger than the cor
responding experimental values. However, it should be e
phasized once again that the 3N calculations with the one-
component force model presented here, i.e., carried out
in the NN ~or 3N) sector, corresponds just to the projectio
of the total two-phase model wave function onto the pureN
component. The two-phase solution includes also compa
q1N components with a sizeable probability, which m
considerably reduce the 3N charge radius. Similarly, the ful
two-phase model will lead to important modifications in t
charge form factors of3H and 3He. Our results for the3H
charge form factors calculated with the one-phase Mosc

FIG. 7. The charge form factor of3H for different versions of
the MoscowNN potential: the previous version~A! ~short-dashed
line!, the present version~variant B! ~dashed line!, and the potential
extrapolated toEexp(

3H! ~solid line!. Also shown are the previous
(h) and the new@68# (n) experimental data.
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potential are displayed in Fig. 7 together with the predictio
for the extrapolated@to experimentalEB(3H)# solution. We
see that the behavior of the form factor forq2.14 fm22 is
rather similar to predictions calculated with a conventio
force model such as the RSC potential. However, we exp
appreciable modifications forq2.14 fm22 for the original
two-phase model, in which the sign of the 6q1N component
is oppositeto that of the main 3N component@13#. Accord-
ing to Refs.@65,67# this fact should considerably improve th
description of the 3N charge form factors in the seconda
maximum.

Summarizing we conclude that the description of both
3N binding energy and some important 3N observables will
presumably improve when passing from a one-phase po
tial model to a two-phase model due to the explicit appe
ance of the 6q1N component in the three-body solution.

VI. CONCLUSION

The force model presented in this paper—referred to
the M-type model–differs in a few important aspects fro
traditionalNN interaction models currently in use.

First, M-type models necessarily incorporate additio
orthogonality condition~s! with respect to certain nodeles
functionsw0. The orthogonality condition can be interprete
as the projection of six-quark compound statesw0 with
maximal space ~or permutational! symmetry onto the
asymptoticNN channel.

Second, M-type models are characterized by the prese
of a deep attractive well while a part of the short-range
pulsive core~or the whole core! is replaced by appropriat
orthogonality conditions.7 The consequences of the differe
off-shell behavior of conventional and M-typeNN force
models can be tested usingNN bremsstrahlung@69#.

Finally, the models presented here have a physical in
pretation that is rather different from that of convention
force models. A standard force model aims at describing
NN interaction in the total configuration space in the form
some potential. Contrary to this, we start from the assum
tion that certain six-quark compound states of maximal p
mutational symmetry are present in the lowest partial wav
The latter have only very small projections onto the non
tisymmetrized asymptoticNN channel. However, at the
same time they are strongly coupled by the six-quark Ham
tonian with the clusterizedNN channel at small distancesr
,1 fm. As a result, these compound states cannot be
scribed byany reasonableNN potential. These states ca
only be described by a very complicated nonlocal a
energy-dependentNN interaction operator. However, eve

7The M-type models presented here differ from the OCM a
proach by Saito@36# in a few essential aspects: our model is bas
on another, more convenient mathematical formalism that is use
incorporate the additional orthogonality conditions. Second,
physical meaning of the ‘‘forbidden’’ subspace is quite different
our case because we start from a two-phase interaction mo
Third, we generally combine the~reduced! repulsive core and the
additional orthogonality condition.
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when utilizing such complicated interaction operators@70#
we are forced to introduce many adjustable or free para
eters to fit the data. Thus, due to the formation of the ab
compound six-quark states, the whole system cannot be
scribed by any simpleNN potential. In order to get an effi
cient potential description, it is necessary to remove
abovenonpotential piecesfrom the full interaction operator
This can be done with the help of the two-phase orthogon
ized model described in Sec. II. The exclusion of six-qua
compound states can be conveniently accomplished by
well-known Feshbach formalism. This eventually leads
the Moscow-type models with its two orthogonal channe

Our approach makes it possible to describe rather ac
rately bothNN phase shifts up to 500 MeV, and the deuter
structure with a truncated one-pion exchange potential
gether with a simple deepstaticpotential. Altogether we use
six parameters with clear physical meaning. This eviden
confirms the usefulness of the present two-phase appro
Other hybrid models which combine both quark- and mes
exchange degrees of freedom make use ofnonorthogonal
quark- and meson-exchange channels, i.e., some mixtur
both. As a result, they containnontrivial energy dependenc
and nonlocalities. In addition, most hybrid models do n
offer a microscopic interpretation of theNN channel.

A clear separation of the nonpotential pieces of theNN
interaction and the subsequent parametrization of the re
an orthogonalsubspaceis the main physical idea underlyin
our approach. Therefore, the success of the model may
taken as some evidence for the formation of six-quark co
pound states~i.e., dibaryons! at short range in low partia
waves. As a result of the elimination of 6q-compound states
the 3N, 4N, and other many-nucleon systems are und
bound.

In this work we have used only the one-phaseeffective
two-body potential component of the complete two-pha
model. In the future, it would be interesting to take the ne
step and to incorporate the second, i.e., 6q1N component in
few- and many-body calculations. In addition, it would b
interesting to include vector mesons into the theoretical
scription. Due to the additional orthogonality condition, the
effect will not be as large as in standard force models, wh
the vNN coupling constant is in contradiction with th
SU~3! prediction @2#. In our case we are able to keep th
vNN coupling constant as low as SU~3! predicts.
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