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A detailed description of MoscouM)-type potential models for thBIN interaction is given. The micro-
scopic foundation of these models, which appear as a consequence of the composite quark structure of nucle-
ons, is discussed. M-type models are shown to arise naturally in a coupled channel approach when compound
or bag-like six-quark states, strongly coupled to Wig channel, are eliminated from the complete multiquark
wave function. The role of the deep-lying bound states that appear in these models is elucidated. By introduc-
ing additional conditions of orthogonality to these compound six-quark states, a continuous series of almost
on-shell equivalent nonlocal interaction models, characterized by a strong reduction or full absence of a local
repulsive cordM-type models, is generated. The predictions of these interaction modelsNosystems are
analyzed in detail. It is shown that M-type models give, under certain conditions, a stronger binding f the 3
system than the original phase-equivalent model with nodeless wave functions. An analysis Nfdhstén
with the new versions of the MoscoWN potential describing also the higher even partial waves is presented.
Large deviations from convention&IN force models are found for the momentum distribution in the high
momentum region. In particular, the Coulomb displacement ené&xgyHe)— Ez(*H)—when Eg(3H) is
extrapolated to the experimental value displays a promising agreement with expediignt:740 KeV. The
validity and limits of two-body NN potentials in nuclei is discussed in the light of our analysis.
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I. INTRODUCTION be extremely important for nuclear physics in general.
Therefore, it is a rather urgent to develop a simple

It has been known for a long time that stand&ftl in-  NN-interaction model whictsimultaneouslytakes into ac-
teraction models based on one-meson exchahgg], meet  count both meson and quark degrees of freedom, and which
significant difficulties in explaining standard properties ofis applicable to few- and many-nucleon systems. Having at
few-nucleon systems, ordinary nuclei, as well as nucleapur disposal a reasonably simple and realibti¢ interaction
matter[2,3]. In a number of cases, difficulties arise even inmodel of the above hybrid type, we can study its qualitative
the well investigated area of low energies §—10 MeV)  and quantitative consequences in the many-body problem.
[6—8]. In order to reach agreement between theory and ex- The purpose of this work is to do just that. At first, we
periment for some key observablésinding energy, mag- develop a simple nonlocaNN interaction model that is
netic moments, etg3N forces and meson-exchange currentsbased on the quark structure of the nucleon. We then study
(MEC) are very often introduced. However, in practical ap-its predictions for the three-body bound state problem and
plications, the values of cutoff masses are sometimes incongompare these predictions with those of conventional force
patible with those used in the initial two-body interaction models. An additional argument in favor of our approach is
model[2]. that quark degrees of freedom are not explicitly seen in the

These discrepancies have resulted in a revival of interestnergy region Eg{;'s:*»oo MeV). Only rather indirect signals
in nonlocal nuclear force mode(see, e.9.,9,10)). The latter  of these hidden degrees of freedom can be studied. One such
give predictions closer to experiment than those of convenindirect quark effect considered in the present work is the
tional local modelg9]. In fact, from the viewpoint of the internal fermization of the nuclear wave functid@]. Such
more fundamental level of quantum chromodynani@€D) an “internal” fermization changes the wave function of the
and the quark model, thEN interaction must be strongly system mainly, but not exclusively, at small distances and
nonlocal at small distancd41,17 due to quark exchanges leads to the occurrence of additional internal nodes in the
between the nucleorfthree-quark clustey$11-13. Anum-  wave functions at about the same place where the repulsive
ber of nonlocal models for th&IN interaction, either phe- core of conventional force models is situated.
nomenological[14,15 or microscopic[11,13,16-19 in- From a formal point of view, the elimination of quark
cluding both meson and quark degrees of freedom havdegrees of freedom results in additional orthogonality condi-
already been suggested. However, most of them lead ttions for theNN channel in conformity with the classical
rather complicated and bulky momentum-dependéNtin-  Feshbach method for projecting onto mutually orthogonal
teraction operators that can hardly be used for practical cakhanneld21]. As a result, the orthogonality constraints lead
culations in nuclear many-body systems. This explains théo additional internal nodes in the wave functidri2?,23).
lack of qualitative studies of the structure of few-nucleon Therefore, the height of the local repulsive core can be
systems using quark degrees of freedom. Such studies wousdrongly reducedsee Secs. Il and I\ We emphasize that a
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large part of the repulsion in lowest partial waves is not duainderlying the MoscowNN potential. One of the main pur-
to the local core produced by vector mesan 4ndp) ex-  poses of the present work is to explain this in greater detail
change but comes from these additional orthogonality condiand to study the qualitative behavior of M-typN interac-
tions. As will become clearer later on, this leads to a subtion models in the nuclear three-body problem.
stantial increase of the average nucleon kinetic and potential This work is organized as follows. In Sec. Il we provide a
energy, which in turn has numerous consequences for thgubstantiation of M-type models within the framework of the
structure of the nucleus. Below we point out only the mostquark model. Section Ill presents a pedagogicial introduction
important differences between conventional nuclear forcdo the main physical ideas underlying the Moscow model.
models and MoscowM)-type models. We study a simple scalar interaction and investigate its quali-
Because of the additional orthogonality constraints, thdative predictions for the three-nucleon bound state. Section
strength of the repulsive core, mainly due demeson ex- [V discusses the more complete model including tensor
change, can be considerably reduced down to values, didorces for positive parity partial waves. In Sec. V these more
tated by SW3) symmetry[2], i.e., giNN/47T~5' As a result, realistic models are applied to the three-nucleon bound-state
the attractive part of the potential is considerably deeper thaRroblem. We emphasize the important contribution of the
that of conventional force models. However, this does notensor force to the 8 binding energy. The interference of
cause any discrepancy with experiment because the addientral and tensor forces inherent in these models is quite
tional orthogonality conditions lead to an effective reductiondifferent from conventional force models. The differences in
of the local attraction at intermediate distances. predictions between traditional force models and M-type
Due to the sharp increase of kinetic energies in e models are _pointed out. In the conclusion our main findings
channel at small distances,y<1 fm, the relative impor- ~ are summarized.
tance of nonlocal and energy-dependent terms in N

interaction operator coming from meson retardation effects Il. ORIGIN OF NN INTERACTION MODELS
[2] or 69 bags are strongly suppressed. As a result, all com-WITH ADDITIONAL ORTHOGONALITY CONDITIONS:
plicated and nonstatic short-range nonlocalities originating M-TYPE MODELS

from different sources are replaced by a very simple nonlocal
separablepotential. This nonlocal separable potential has the
form of a projection operator and effectively describes the

A. Six-quark permutational symmetries
and the NN interaction

additional orthogonality conditiong24]. This allows us to Consider a two-nucleon system that is described in the

drastically simplify the description of th&IN interaction, framework of the nonrelativistic quark modgl2,13. The

especially at small internucleon distances. quark HamiltoniarH consists of the following components:
An important difference is also thecal character of the

deep attractive potential which is universal for all partial H=Ho+Vocet Veonrt Vome: (1)

waves. This universality can be interpreted as a consequence 6 ) _ o
of pseudoscalarr, 7, and scalare exchanges between WhereHo=Z27 ;[m;+p{/(2m;)] is the kinetic energy of the
nucleons. Here, the scalarexchange, gives a strong attrac- 60 System. The interactiodogg accounts for one-gluon ex-
tion (depth~500 MeV [11]) between nucleons at interme- change, and the confinement interactity,; takes the stan-
diate distances. dard form[11,13. In the one-meson exchange potential be-
For sake of brevity, we shall calN-force models, which  tween quarksVoye we include, as usualy- and o-meson
are characterized b{i) a strongly reduced local repulsive €xchange potentials3,18].
core(or even by the full absence oftii) a strong attraction The totally antisymmetri¢denoted by subscript) wave
in the intermediate range and additional orthogonality condifunction ¥o(xy, . . . Xs) can be expanded into a sum of ir-
tions, as Moscow-type models. For a substantiation of theseeducible representationdR) of the symmetry groupSs
models it is important to recall the following relatively new [30,31. The sum extends over all allowed IR of the symme-
results. try groupSg, characterized by Young schenjég, that lie in
In a number of recent studi¢&5,26 it was established the outer product spac&® S;:
that a limiting case of such models, which does not include

any repulsive core at all, nearly coincides with the supersym- 1 - - ——
metric (SUSY) partner of the Reid-soft-cot®RSQ potential. Y a(X1, ... Xe)= f - O([f]riry, ... re)xcstlf1r),
Thus, both types of interaction models, conventional force AL @)
models with a local repulsive core and M-type force models,

are related by purely algebraic symmetry transformationsy here the coordinates; , . . . x5 collectively stand for the

For a pedagogical discussion of this point see 1], position, and the spin, isospin, and color quantum numbers
Recently Nakaichi-Maed$28] has found that the phe- fthe si ks. H rer 7 is the orbital part

nomenological separabMN potential of Tabakir29], lead- otthe six qugr s. Herep([f]riry, e To) IS € orbl 6_‘ par

ing to internal nodes in the radial deuteron and©f the total six-quark wave function, angs<([ f]r) is its

NN-scattering wave functions, is a simple unitary-pole ap-Color-spin-isospin part. The Young scheme of the space part

proximation(UPA) to the above MoscowN potential, i.e., Of the six-quark wave function is denoted [iir, wherer is

in the UPA-approach both models coincide with high accuthe corresponding Yamanouchi symbol. The Young scheme

racy. [f]r stands for the unigue irreducible representation in
These results, established by independent groups, are ngpin-isospin-color space which is adjoint[to]r. For brevity

accidental; rather they are indicative of the quark dynamicsve omit the Young symbols[f]c, [fls, [flr.
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relating separately to the color, spin and isospin parts of the Wa=Veat Vst (4
function ycst. Furthermorep; is the dimension of the IR
corresponding to the Young scheifnfg. where W, is the baglike component, which can be con-

One can easily see that, according to the Littlewood theostructed from square integrable functiops corresponding
rem [31], the allowed Young schemes, which describe thelo various six-quark bag states. These are the states with
permutational symmetry of six-quark orbitaXY wave func- maximal space symmetry, i.es® for relative S waves and
tionsd([f]r), are s°p for relative P waves:

N
[31xX¥[3]x=[6]x+[42]x+[51]x+[33]x, () '\II6q:E Cioi, (5)
=1

where the first two terms correspond to even orbital angul
momentawith positive parity, and the last two terms to odd
orbital angular moment@with negative parity of the relative
NN wave function. Thus, for even partial waves in the rela-
tive NN wave function, the allowed space symmetries are — =

[6]x or [42],, whereas for odd ones, they af6l], or Voust €1,62,R) = Al en( &) en(E2) X (R)}, (6)
[33]x. Using the two-center shell model basis with distancewhere A is the antisymmetrizer with respect to the six
R between the two centers, one can sh@&] that all al-  quarks. Herepy (&) is the three-quark wave function of a
lowed six-quark wave functions of the typg2 S3[f]LST)  single nucleon where the internal coordinates are collectively
approach  the usual shell model configurationsdenoted by , and’y(R) is the relative motion wave func-
|STp "[fILST) (m+n=6) in the limit R—0. Thus, theNN  tion of two three-quark clusters.

state with the totally symmetric Young schelfdx=[6]x

corresponds to the six-quark sta[6]x[2°]cdL=0,ST) B. Two-phase model for theNN interaction

while the NN state with mixed symmetry configuration
[42]x corresponds to a six-quark state with two excite
p-shell quarks:

AvhereN is the number of six-quark states. For the cluster
component we use the standard resonating group method
(RGM) ansatz

d Our approach differs from the majority of hybridN in-
teraction models which are also based on a decomposition of
the form of Eq.(4). In contrast to, for example, the quark

4.2 _ compound bagQCB) model by Simono\14], we require

|s*p?[42]x[f]cL =0,ST), the mutual orthogonality of the componenitg, and ¥ ¢,q:

where[ f]cs=[42],[321],[2%],[31%],[ 24*] are the possible (Woql W ousy =0. (7)

Young schemes appearing in the Clebsch-Gordan decompo- )

sition of the internal produdt2®]c[42]s. Moreover, we require that the clqster component be or_thogo-
In a series of works by many different auth$is8,16,33— nal to all baglike stateg; from which the componen¥ g is

35], it was shown that, with a quark Hamiltonian of the form constructed:

of Eg. (1), the excited six-quark configurations _ _ -

|(0s)%(1s)[42]y) and|(0s)*(0p)?[42]x) which are compat- (@il Wousd =0, i=1,... N. ®

ible with S-wave relativeN N motion, are admixed with large  When combined with Eqg4)—(6), this leads to correspond-

weights to the fully symmetric six-quark configuration ing orthogonality conditions for the RGM relative motion

|(0s)°[6]x). The color-magnetic term~\;-\; oi- o is function x(R):

mainly responsible for this. Thus, in lowest partial waves of

the relativeNN wave function, there is a superposition of (gilx)=0, i=1,...N

two different @j-space symmetries: the fully symmetric

|(0s)%[6]x) and the mixed symmetri¢£}03)4(0p)2[42]X) where

for S waves, and similarly the|(0s)>(0p)[51]x) and _

|(0s)3(0p)3[33]y) for P waves. It is important to>remark 9i(R)=(ei(&1.& R)lon(£) enl£) (10

that the above superpositions include the excfiggsingle-  are projections of six-quark baglike functions onto tal

quark states. channel. To emphasize the importance of orthogonality con-
In recent work[13], it was shown that six-quark compo- ditions in our approach we put a tilde over the relative mo-

nents with different space symmetries play a very differention wave functiony. We point out that a similar model with

role in theNN interaction. For example, the totally symmet- mutually orthogonal § and NN channels in configuration

ric six-quark component0s)®[6]x) are projected onto the space has been suggested by Lonfia8]. The model of

NN cluster channel with rathesmall weightswhereas they Lomon is similar in spirit to our model but different in real-

have large projections onto thieA and hidden-color chan- ization. It is obvious that at intermediate and large distances,

nels. In contrast, the mixed symmetry componentsyhere the clusterlike components dominate, ¢ dynam-

|s*p?[42]x) (in S waves havelarge projections onto both ics should be rather well described by a meson-exchange

the clusterNN channel and the nucleon-isobar channel§one-boson-exchang©BE) and two-pion exchang€rPE)]

N7 N3 . model. Explicit quark and gluon degrees of freedom are un-
Thus, there is a natural separation of the complete siximportant here. On the contrary, in the short-distance regime,

guark wave function into two mutually orthogonal parts of awith maximal overlap of the nucleon wave functions, explicit

different physical nature: quark-gluon degrees of freedom, described by the compound

, €)
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statesp; should play a decisive role. In this way we arrive at
what could be called aluality principle for the baryon-
baryon interaction which can be formulated as follows. The

total six-quark wave function naturally separates into tWothjs equation must be solved together with the additional
mutually orthogonali.e., nonoverlappingcomponents. orthogonality condition9). After that one can calculate the

One component has a three-quark cluster structure whetgefficientsC, via Eq.(17) and hence the total wave function
the baryondincluding isobarscan be considered as separatey, Equation(18) constitutes our two-phase model for the
entities, and where the dominant dynamical mechanism gy interaction.

meson exchange between the clusters, while the quark-gluon Due to the appearance of the norm kernélthe RGM
degrees of freedom are only of minor significance.

The other component has a six-quark bag structure. Itgelative motion wave fun_c.tion( n _Eq. (18) cannot yet be
dynamics is governed by explicit quark-gluon degrees 0]mterpreted as the probablhty amplitude for.flndmg the'nucle-
freedom. This component is sensitive to, for example, thé)ns_at a relatl\]fe dls_tand:. In ord%r tq obtain a\(IjN. relﬁtlve |
particular form of confinement, the value of the scalar quarIJnOt'On wave function that can be interpreted In the usua

condensatéqq), etc., and depends only weakly on the “ex- Sense, we define a renormalized functipr Ny and a
ternal” meson dynamics. corresponding effective nucleon-nucleon interaction
Therefore, when constructing a prog¢N interaction po-
tential, the baglike components should be somehow excluded
from the very beginning, because these components are very
hard to describe by any reasonalNél potential. For this Where
component one should use a different formalism. This is in
complete analogy to the optical potential model in nuclear
physics, which is not at all applicable in situations, where the
nucleon-nucleus scattering proceeds via isolated compound-
states of the nucleus. In this analogy the optical nucleon-
nucleus potential corresponds to the meson exchange dynam-
ics between nucleons while the nucleon-nucleus compound
states correspond to the six-quark bag&\iN scattering. The effect of the overlap kernél(R,R’) for the NN system
Projecting the total six-quark Schdimger equation can be reasonably well approximated by the expredsigh

HEM—EN+ 2 [f)(E-F); (fi| |x=0. (18
1]

(Tr+Ver—E)x=0, (19)

Veﬁ:Nllzf_[RGMNllz_TR+Z |fi>(E_|:|)i—jl<%i|,
ij
(20

?i:./’\\/'llzfi .

HY=EV 1
/\/(R,R’)zl—oa(R—R’), (21
onto the six-quark states;, and onto theN N cluster channel
we obtain, using the orthogonality conditiof@, the follow-

. \ which differs from the usual locaNN potential just by a
ing set of coupled equations:

combinatorial factor. Thus, the effective interaction can be
cast into the form

0. —ES:C +(f.|v) =
% (Hy=EaCi+tib)=0, D Ver=Varr+Vert Vaan, @2

> Cifj+(HRM—EA) Y =0. (12)
J

Here, we have introduced the following abbreviations:

Hij:<(Pi|H|<Pi>! (13
fi(R)=(¢i|H|onen)- (14

HRCM and \ are integral operators with kernels
HROMR,R') =(enenHAlonen), (15)
MR,R")=(onenlAlenen). (16)

Solving the linear algebraic equatiotisl) with respect to
the coefficientEC; and substituting its solution

ci=2j (E—R); Xfilx) (17)

into Eq. (12), we find the equation of motion for thN
relative wave functiony:

where V;, is the direct(folding) potential, including one-
meson exchanges between three-quark clusters only, i.e., the
one-meson-exchange nucleon-nucleon potential. Because the
one-gluon exchange operator is diagonal with respect to
quark permutations between nucleons it does not contribute
to V- Ve IS the nonlocal short-range exchange potential,
andVyqn is an effective potential due to the couplingN

and &y channels:

quN=1o; [ (E—H); K. (23

The effective two-nucleon Schdimger equation for the
orthogonalized and renormalized relative motion wave func-

tion ¥(R):

(Tr+ Vairt+ Vext Vygn—E)x=0
<gi|;>zov

provides the basis for the justification ®fN-interaction
models of Moscow type.

(24)
i=1,...N
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The main point is that the solution of E(4) is defined  [13] that, the weight of th& N configuration(with unexcited
only in thesubspace orthogonab the functionsg;. Due to  nycleons in symmetric  baglike six-quark states
this orthogonality requirement, we inevitably introduce |s8[6]5[2%]csL =0,ST) is very small; whereas the weight of
nodes in theN N scattering wave functions at small distancesine AA channel is appreciably larger and the main contribu-
[22,23,33—36 The node positions are very stable asi®  tion comes from hidden coloEC channels, whose wave
scattering energf is increased13,22. This behavior of  fynctions are localizetbecause of confinemerat small dis-
scattering wave functions can be quite naturally formulateqances[:;g]_ As a result of the strong coupling of the initial
in the language of interaction potentials that have a veryyN channel and the baglike six-quark channels, the prob-
deep attractive well {1 GeV) [23] with additional deep-  gapjlity for finding anNN configuration with unexcited nucle-
lying bound states. In fact, compared to the deep attractivgns vanishes almost completely at small distaricBsus, at
well with [Vo|~1 GeV, the relative scattering ener@yis  very small distances, where the extra deeply bound states are
negligible. Therefore, the position of the innermost nodegcalized, there is basically no nucleon-nucleon configura-

M'node IS basically determined by the well depih: tion. In this regime, the 12 system can be viewed as though
“being dissolved” in a quark “soup.” Remembering the
VM (E=Vo) Tnoge= VM Vo Tnoge™ 7 Cheshire Cat smile, it is appropriate to name these deep-

lying bound states “Cheshire-Cat bound stat€é€BS.”

Thus, the inner node of the Scattering wave function is al- In app“cations of the model to many-nuc]eon systems, it
most stationary for center of mass energies up®GeV in  should be kept in mind that the Moscow potential describes
the laboratory frame in nonrelativistic kinematics. Insertingin an effective way the single-channel system, i.e., the 2
the numerical values for the nucleon mass, afgdwe find  system withunexcitednucleons, while the real 2 system
that the stationary node is locatedRy{=0.6 fm in the case should be described by the above two-component model.
of relativeS waves R,~0.9 fm in the case oP waves. We  Thus the description of three-nucleon systems given by the
point out that this node plays the role of the repulsive core invioscow potentialmodel must be supplemented with an ad-
the NN interaction. ditional 6g+ N contribution which is expected to be strongly

Because the nodal solutions of the basic equat@®  attractive Before we discuss the MoscoWN potential in
with orthogonality conditions correspond to very large ki- greater detail, we explain the main ideas of our approach

netic energies, the short-range nonlocal poteMigl which  within the framework of a simple toy model.
includes the quark exchange diagrams, plays only a minor

role in the subspace of nodal wave functions. This is in anal-

ogy to the nuclear orthogonality condition mod€CM) of . A SIMPLE M-TYPE MODEL
Saito[36]. Therefore,V,, can be omitted from Eq24) in FOR THE NN INTERACTION
good approximation. _ o A. General considerations
Finally, we take the last step in the substantiation of the } ] .
model. In absence of the vectgs @nd ») meson contribu- In this section we compare two alternative models for the

tion in the total Hamiltoniar{1), the meson-exchange poten- NN inte(action. For _clarity, we use th.e simpl_est pqssible ex-
tial Vg, in Eq. (24) corresponds tor- and o-meson ex- ampleZ i.e., two spinless nucleons interacting via a scalar
change. Therefore, it is strongly attractive with a depth of thg?otentialV(r):
central potential of about-500 MeV. Together with the

nonlocal attractive(for E<E;) part Vg, it results in an

effectivedeep (1 GeV) attractive potential, which was

found in our initial attempt§23], and has since been justified The potential includes a short-range repulsive core
[13,22,27,37 within the framework of the quark model. In 9r Vr(r), and a long-range attractiog Va(r). The cou-
fact, we have found out only quite recen{lg8] that the pling constantgr andg, are chosen such that the system
combination of the local attractive-meson exchange poten- has a single bound state with energy (“deuteron”) and

tial (with a depth of about 500 MeMand the nonlocal attrac- Scattering phase shif§(E), 1=0,1, ... .

V(r)=gr Vr(r)+ga Va(r). (25

tion Vygn, representing the coupling of th&lN and Let us try to find a modified potentialV’(r)
6q-baglike channels, is exactly phase-shift equivalent to the=9'r Vr(r) +9a Va(r) with a reduced strength of the re-
deep 1 Ge\) effectiveattractive potential ofM type. pulsive core, but simultaneously introduce an additional con-

The Moscow potential is the simplest local model, whichstraint that ensures the orthogonality of the solution of the
ensures the orthogonality of its solutions to a functipn ~ Schralinger equation to some functiap, localized in the
that approximately describes the projection of the fully sym-COre area:
metric (0s)® six-quark state onto th&N channel(in S

waves. We emphasize that the occurrence of unobservable T +V' (1) =e)d(r)=0 26
deep-lying bound states in E¢R4) poses no problem, be- (T _ (r)=2)¥(r)=0, (269
cause the equation for tiéN channel wave function is con- (@ol(r))=0. (26b)

sidered in the appropriate subspace of nodal wave functions,

which isorthogonalto the nodeless bound states. Additional

extra deeply bound states arise only in the solution of the *A similar conclusion concerning the suppression ofitHé chan-

appropriate Schiinger equation in theompletespace. nel in favor of theAA and other isobar channels can possibly be
In order to understand the reasons for the occurrence aferived in a formalism based on meson Lagrangiaitg without

deep-lying bound states, it is very instructive to recollectany reference to the quark model.
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The physical meaning of the additional orthogonality con-Using this method, it is possible to woik the total space
straint has already been discussed and partly been elucidatettead of only in the subspace. This is one of the practical
above. Here, we consider this orthogonality condition as advantages of the OPP method. Thus, in the OPP approach, a
formal constraint that the solution has to satisfy. part of thelocal short-range repulsion is replaced by a sepa-
Equation(26@ with the additional conditiori26b) can be  rable repulsive potential with an infinite coupling constant
rewritten in the form of a single equation with the nonlocal (29). If ¢, is a bound-state solution of the potenti&l(r),

interaction(see[36]) the potentialsv’ andV’ are completely phase-shift equiva-
_ . lent. For this case, the solution of the inverse problem, i.e.,
[T+ V(1) —ellg(r)=po){@ol T+ V' (r)[e(r)). the transition to a phase-shift equivalent potential with a lo-

27 cal repulsive coravithout a deep-lying bound state, is well
] ] ] ) known. This is a supersymmetricé6USY) transformation
The solutions of this equation are, as one can easily Se@»5,26. However, when extra bound stat@aimbern) are
orthogonal tog, for any £#0. Only for 6 =0, the required  gjiminated, a SUSY transformation always introduces a re-

orthogonality is not guaranteed and Eg87) gives an incor- pulsive core of centrifugal type, i.eu(r) ~ n(n+1)/r2,
rect behavior for the corresponding off-shelnatrix. r0

One can apply a more convenient approach, known as th@stead of the usual Yukawa-type core in local OBEP mod-
method of orthogonalizing pseudopotenti@®PP [24]. In  els. Furthermore, the invariance of phase shifts under a
this approach, the additional orthogonality conditi@éb) is ~ SUSY transformation holds only for givenpartial wave.

taken into account via the projection operafor | o) (o Here, we want to consider the more general case of a
which projects onto the “forbidden” subspace with a large repulsive core of intermediate strength. Furthermore, we
coupling constanj: want to preserve the invariance of the phase shifts in several

not just in one partial waves. Most importantly, we do not
(T4 V' () + pl o) @ol =€) ¥,(r)), ..=0. (28)  want to introduce any superfluous bound states into our
model from the very beginning. Therefore, we refrain from

In our example, the forbidden subspace is just a oneusing the rigorous results of SUSY transformations and we
dimensional subspace spanned by the vegtorin the limit ook for a potential that is close to the phase-equivalent po-

u—o, the solutions of Eq(28) ',z#(r) have been showj4]  tential in the subspackq orthogonal to a given bound state.

to be rigorously orthogonal tg,, i.e.,
B. The Malfliet-Tjon potential

lim (ol ¥,)=0. To be specific let us consider a particular example. As the
p initial potential we take the Malfliet-Tjon potential MT-V
o~ o ] ] [41]. The MT-V potential is a simple scalar model for the
Fore#0 the solutiony,, coincides with the solution of the N interaction, which yields an average deuteron binding
Saito  equation (27). ~The  projection  operator energy of—0.4136 MeV and describes tawerageS; and

I'=[¢o){¢o|defines a “forbidden” subspact of the full 15 NN-phase shifts reasonably well up to energies of about
two-particle Hilbert spacét which can be decomposed as 30 MeV:

Hre&Ho=H, exp(— wgl) exp( — ual)
Vur v(r)=0r +0a , (3038
RN 2774

whereHg is the orthogonal complement tdr .
Thus, we consider the problem of finding a modified po-yhere the parameters take the values
tential V' (r) that is phase-shift equivalent to the initial po-

tential V(r) of Eq. (25) and which has the bound state at the gr=1458.05 MeV, ga=—578.09 MeV,
same energy, in the subspacéi orthogonal top,. For an
arbitrary ¢, rigorous solutions of such an inverse scattering ur=3.11 fm,  ua=1.55 fm. (30b)

problem are, to our knowledge, not available. Therefore, we

search for approximate solutions. In order to further eluci-Next, we introduce an orthogonality condition to the function
date the relation of M-type models and conventiohtl  ¢(r) of Gaussian form:
force models, we are interested in such solutions that contain

a repulsive core that is weaker than that in the initial poten- r2
tial V(r). Although the modified potentiaV’(r) becomes goo(r)=Nex;{
deeper when the core is weakened, the introduction of the

additional orthogonality constraint of ER6b) renders the
Hamiltonian effectivelyweaker. Due to this compensation,

. ; : ite well the projection of the six-quark bag’[6]) onto
ggg:ethglggszatihlsfgsmaengrtrg? bound state energies remain t 8e NN channel13,23,27,3% For various values of the HO

On the other hand, if we use the OPP metfi24,36| the radiusry we now determi_ne the coupling constamgts and
modified pseudopotential has the form ga of the modified potential

-—. (31)
o

This (0s) harmonic oscillator(HO) function approximates

V(1) = V'(1)+ leo)eol- (29 V(1= g SR HRD) | SRR o
p—ee RN Al
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TABLE I. The parameters of the modified potentials reproducingStveave phase shifts for the initial
MT-V potential with different values of the “projector radiug’yy and properties of the wave function.

) gl,?{ g,A I node B Xz(deg?) €0 ;
[fm] [MeV] [MeV] [fm] (1 Mev) per point [MeV] [MeV]
0.00 1458.1 —-578.1 0.00 —0.4136

0.15 992.0 —511.0 0.25 0.03 0.40 -2.51 —0.385
0.18 673.8 —468.6 0.28 0.06 1.07 —7.55 —0.370
0.20 433.0 —438.0 0.30 0.07 1.70 —36.06 —0.364
0.25 -5.0 —389.0 0.35 0.16 2.50 —430.30 —0.399
0.30 —63.6 —403.0 0.40 0.28 1.60 —683.70 —-0.611
0.40 —106.2 —494.0 0.50 0.47 0.05 —528.00 —-0.919
0.50 —287.2 —582.5 0.60 0.63 0.10 —378.80 —0.880

acting in the subspac®{g, which ensure the best fit to the Thus, there are two extreme casg@sthe deep purely attrac-

S-wave phase shift for thimitial potential MT-V (303, act-  tive potential with the “extra” deep-lying state at,=

ing in thefull spaceH. For the sake of simplicity we do not —528 MeV corresponding to,=0.4 fm, and(ii) the initial

change the inverse radii of the cogez, and of the attractive MT-V potential which does not contain the “extra” deep-

potentialwp - lying bound state state at,=—528 MeV but has a local
The results of this fit for different values of radiugare  repulsive core instead.

presented in Table I. It can be seen that a fit is pOSSibIBOfOI’ These two phase shift equiva|ent potentiajs are approxi_

lying in the interval 0.15-0.5 fm. Thus, in treeibspace’,  mate supersymmetric partners. All other cases in Table | can

orthogonal topy(r), the partialS-wave phase shifts for the pe considered as intermediate variants, lying between these

potential V' (r) of Eq. (32) reproduce fairly well the corre-  extremes. By changing the “projector radiust, from zero

sponding phase shifts of the initial potenti@0ad in the o 0.4 fm, we perform a continuous transformation from one

energy range 0-300 Meléee they” values in Table)l We  extreme model to the other. In doing so, the positigg, of

do not present here the respective figures because the diffgfternal node of wave function changes and the amplitude of

ence between the phase shifts of the initial potential MT-Vthe internal loop of the wave function increases. This can be

and those oW’ (r) is almost indistinguishable in the graph. seen in Fig. 1, which shows the scattering wave functions at
It should be noted that the local core disappears already at MeV for three potentials: the initial local MT-Vdashed

ro=0.2 fm. A further increase ing results in an increase of |ine 1), the intermediate nonlocal potential witg=0.2 fm

the radius ,,4¢ Of the internal node in the wave function and (solid curve 2 and the potential having an approximate

of the amplitude of internal loop specified by the rgicof eigenstate projector withy=0.4 fm (dotted curve B

absolute values of the wave function in the first and in sec- We emphasize again that, the second extreme case with

ond maxima(see the fifth column in the Table. IAfter such  r;=0.4 fm involves an almost exact eigenstate projector, i.e.,

a modification of the potential, the bound state enerYin for the given values of the Coup"ng Constagggandg)& (See

the full spacg varies from—2.51 up to—600 MeV. How-  Taple |) the modified potential32) leads to a deep-lying

ever, if we require the orthogonality too, i.e., if we are  pound state with with energy,=—528 MeV. The corre-

operatingn the orthogonal subspagthe bound-state energy sponding eigenfunction is very close ¢g(r) atro=0.4 fm.

€o in Table | remains almost constant that is of the order ofBecause the Hamiltonian is Hermitian, all scattering wave

1 MeV. functions, and also the eigenfunction of the secdnear-
Thus, we obtain a series of approximately spectralthreshold bound state at;=—0.41 MeV are automatically

equivalent Hamiltoniand.The best(i.e., the smallegtvalue  orthogonal to the wave function of the deep-lying level.

of x? is obtained forr;=0.4 fm when there are two bound Hence, there is no need for any additional orthogonality con-

states in the potentidl’(r): the first one is deep lying with ditions.

the energy o= — 528 MeV (see the third row in Table knd As a result, the supersymmetric partners laml poten-

the second one is close to tiNN threshold at the energy tials, while all phase-equivalent intermediate cases corre-

g,=—0.4 MeV, the eigenfunction of the deep bound statespond tononlocal interactions in the full space, or alterna-

being very close to the HO functiopy(r). In other words, tively, to local interactionsin the subspacé{,. However,

we arrive again at a deep attractive potentiathout any  according to our intention, we would like to obtain a good

local repulsive core but with an eigenstate projector, that isgescription not only in partiad waves, but also iD waves

a construction very similar to the Moscow potential model.and possibly in other even partial waves. In a realistic hybrid

model of the baryon-baryon interaction, a quark bag is
formed only in the lowest partial waves. Therefore, the ad-
2In contrast to trivially spectral-equivalent Hamiltonians that are

obtained as a result of the unitary transformatibh=U "*HU and

which have been investigated in detail in the literat[4&], our 3Such an intermediate model may be relevant for modelling the

transformed potentials do not include any velocity dependencephysicalw-meson exchange interaction with a reduegdN cou-

Most importantly however, they have a different physical meaningpling strength.
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FIG. 1. The scattering wave functionsB&t,=1 MeV for three

S-wave phase shift equivalent potentials: initial local MT&Urve between 0-400 MeV for the initial MT-V potentigiashed ling

1), the intermediate nonlocal potential witg=0.2 fm (curve 3, and for two modified potentialy/’(r) fitted to S- and D-wave

and the purely attractive potential with the projector close to the . AP - . -
eigenprojector with ;=0.4 fm (curve 3. phase shift§see Table I} (i) with r;=0.15 fm(solid line) and(ii)

with r,=0.2475 fm(dotted ling.

FIG. 2. NN Swave phase shifts for center of mass energies

ditional orthogonality condition must be included only in
lowest partial waves§ and P), whereasthe same Hamil-
tonianwithout any additional orthogonality constraints is ex-
pected to correctly describe the phase shifts in higher parti
waves.

phase shifts in the energy range 0—400 MeV for three poten-
tials: (i) the initial local MT-V model,(ii) a modified nonlo-
eﬁal potentialV’ (r) with ry=0.2475 fm(i.e., a potential with-
out a repulsive core that is close to the SUSY partner of the

Thus, we attempt to find a modified potentiad) acting  M1-Y), and(iii) a modified nonlocal potentia¥’(r) with
in the subspace{,, that simultaneouslylescribes th&- and ro=0.15 fm (an intermediate variatit is clearly seen that
D-wave phase shifts for the initial MT-V potential. This is he potential with the strongly reduced repulsive core acting
possible with acceptable accuracy for various values,of N the subspacé{y provides a satisfactory description of
Table Il presents several variants of the modified potentiaPoth S- andD-wave phase shifts of the initial MT-V poten-
(32) with different valuesr, that are fitted to thes- and tial acting in the full spacét.
D-wave phase shifts under the condition that these are or- In this way, our simple toy model shows that the intro-
thogonal to theS-wave functione,. Because we intend to duction of an additional condition which ensures orthogonal-
use the above potentials in three-body calculations, wéty to some localized state, enables us to perform eon-
present here the versions for which the “deuteron” bindingtinuous transitionbetween the local core model and the
energies are practically identica=(0.413 Me\). The results  model with “extra” bound states but no core. Both alterna-
of three-body calculations with these potentials are alsdives describe the interaction between composite nucleons
given in the Table Il and are discussed below. equally well. The extreme models happen to be SUSY part-

Figures 2 and 3 show a comparison of ieandD-wave  ners. In between, one has a series of almost phase shift

TABLE IlI. Variants of the MT-V potential with different values of the “projector radiusy, fitted toS- andD-wave phase shifts of the
original MT-V potential and the two-body bound state enesgy —0.4136 MeV, together with the corresponding results for the three-body
calculations.

I’O gI/R g,/A E3 T3 %S %D aErsep qmin Qmax Fmax
fm MeV MeV MeV MeV MeV fm ~2 fm—2

MT-V 1458.05 —578.09 —8.25 30.6 99.0 075 —7.52 19 24.0 481074
0.15 999.36 —514.00 —8.42 40.3 98.5 1.1 -6.73 19 24.0 5.410°*
0.18 800.00 —497.76 —8.45 443 98.0 1.3 -6.11 18 235 6.810°*
0.20 445.80 —443.30 -8.82 51.8 97.8 1.7 —5.96 19 25.0 6.810*
0.25 0.00 —388.67 -8.99 74.6 97.0 20 —5.36 20 25.0 5810*
0.30 —71.50 —394.50 -8.02 115.0 95.0 3.0 —4.20 21 27.0 4310°°

0.40 —69.87 —464.90 —7.02 189.0 89.0 5.8 -3.20 24 31.0 1.%10°4
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257 different values of the total angular momentimWe con-
? ] sider here the mixingvithin a state of given total angular
® 20 momentunL (e.g.,L=0). By higher partial waves, we mean
& ] states with\=1=2,4, ... ,where\ andl| are angular mo-
o ] menta associated with the Jacobi coordinatasdp, respec-
:‘15‘_ tively.
= ] The change in thel8 binding energy thus depends on the
% 104 magnitude and sign of thB-wave interaction: if this inter-
o action is strongly attractive, the binding energy is increased,
@ if it is repulsive the binding energy is decreased. To verify
o this statement, we have carried ouN Jalculations with
A ] strong repulsion irD-wave interactions, while keeping the

o —— —— S-wave interaction fixed. The results are presented in the

T T 1
0 50 100 150 200 250 300 350 400 eighth column of Table Il EZP). With increasingry, i.e.,

E [MeV] with a strengthening of the orthogonality constraints, the
FIG. 3. D-wave phase shifts for the same three variants of thecontribution of the internaD wave grows and the binding
interaction potential as in Fig. 2. energyE5® with repulsiveD-wave interaction monotonically
decreases.
equivalent potentials, differing by the core strength and by The calculations of Nakaichi-Maedd3] and Hahret al.
the spatial extensiorr §) of the statep,. [44] were based on the Faddeev equations and ignored the

usually small contribution of higher partial waves. Under
these restrictions, our calculation also shows that the or-
thogonality condition always leads to a stronger effective
Next we discuss, how the properties of thdl-8ystem  repulsion than the original local repulsive core motiaks a
change when going from orléN-force model to the other. result, without the higher partial waves the binding of tié 3
In Table Il we compare the I8 predictions of the initial System becomes weaker as one goes from the local repulsive
MT-V model Egs.(309 and(30b) with those of the different core model to an M-type model. If we include the contribu-
variants of the orthogonalized model. Table Il displaystion of higher partial waves in pair subsysteffisr a fixed
bound-state energiel;, kinetic energiesTs, and also the value of the total orbital angular momentulr), the 3N
minimum and secondary maximum position of tHi binding energy changes in the way described above. An ap-
charge form factor together with its vallg,,, in the sec- preciable increase of the contribution of the higher partial
ondary maximum for different variants of the poteni{@a®  waves in pair subsystems due to the increase of the internal
and different functionsi.e., different values of 5) ¢q(r). kinetic energy is the distinctive feature of M-type models. A
One can see that an increase in the “projector radiys” more detailed discussion of this property is given below
from 0 up to 0.25 fm leads tan increaseof the three-body when we consider a more realistic model.
binding energy from 8.25 up to 8.99 MeV. Ag increases
further up to 0.4 fm the binding energy begins to decrease IV. THE MOSCOW POTENTIAL MODEL
again. These results contradict the results of Nakaichi-Maeda
[43], who showed that the replacement of the local core by
the orthogonality condition leads always toealuctionof the Early attempts to construct ahN-potential with an addi-
three-particle bound-state energy. According [#8], the tional “forbidden” state, i.e., a model of M type, were un-
“stronger” the imposed orthogonality condition, i.e., the dertaken already in the middle of the 197(28]. However,
larger the amplitude of the inner loop in the radial wavein these early works only central potentials and only even
functions, the more pronounced the reduction of the bindingpartial waves were considered. We point out that these early
energy. At first sight, our results seem to contradict the 3 attempts were undertaken ymforethe color degree of free-
calculations with the Moscow potential, undertaken by sevdom quark was fully established. But for colorless quarks
eral groups(see, e.g.[44—46). These calculations showed (fermiong, the lowest(as it then seeme@dix-quark configu-
that the replacement of the local repulsive chifd potential ~ ration|(0s)°[6]xL=0,ST) is strictly forbidden by the Pauli
(for example, the Reid potentjaby the MoscowNN poten-  principle. Therefore, thesdN potentials were interpreted in
tial leads to areductionof the binding energy from 7 down complete analogy with the effective potentials between
to 4.5 MeV[44]. nuclear clusterge.g., thea-a potentia), in other words, as
The difference between our results and the Nakaichipotentials with bound states forbidden by the Pauli principle.
Maeda findings is explained as follows. The transition from The first version of a realistic Moscow potential was sug-
the local core to the orthogonality condition causes a shargested in 198347] and further details can be found in Ref.
increase in the kinetic energy of thé\&ystem(see the fifth  [48]. This version describes tHgN interaction only in the
column in Table ). This in turn leads to an increase of the
contributions of higher partial waves. The main role is
played by an attraction iB waves—see the seventh column “This is probably due to the fact that the radius of the separable
in Table I1. It should be emphasized that the MT-V potentialrepulsive core in the pseudo-potentja ¢o){¢o| (for w—), is
is central and therefore does not mix three-body states witimuch greater than the radius of the original local repulsive core.

C. Consequences for three-nucleon bound states

A. One-channel model
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'Sy and ®S;-°D; channels. Later on the descrlpt|on was Vqexp(— 7r2) that depends on the spin and parity of sl
extended to the lowest odd parity partial wavéBq, *P;,  system. Second, a state-dependent separable repulsive core
3P,-3F,) [49]. A new and improved version of the Moscow with Gaussian form factor, which provides the correct
potential (version 86 was published if50]. This version D-wave phase shifts. This form of the potential is not only
still had a node in the deuterdh wave for which there is no  universal, but it is also convenient for three-body variational
evidence in microscopic quark mod¢lsl,13,14. Finally, in  calculations, because it is possible to calculate all of the ma-
1990, we have changed the truncation of the tensor OPEix elements of the Hamiltonian analytical[p1-53. The
potential[27], which eliminated theD-wave node(version  separable core providing the short-range repulsion depends
90). onl andJ. Therefore, it is not necessary to explicitly include
The main difference between the Moscow potential anda spin-orbit interaction for even partial waves.
standard models for th®N interaction is the absence of a  The OPE potential is truncated in a suitable way at small
local repulsive core at small distances. Instead of the corejistancegsee below The tensor interaction which couples
the interaction is described by a deep attractive potentigbartial waves with angular momentaand | £2 is in all
Voexp( 5r?) plus an appropriate condition of orthogonality partial waves quite reasonably described by the truncated
to an extra deeply bound state. Owing to the deep-lyingOPE potential. Thus, the channel coupling is easily con-
bound state, the physicBIN wave functions have a node at trolled by the truncation parameter. For partial waves with
small distances. The position of this node at arow@6 fm =4, the repulsive core is not requiréidr E,,,<400 MeV)
is almost stationary with increasing energy. In our approachsince the phase shifts with=4 are completely determined
this stationary node plays the role of the repulsive core irby the long-range OPE tail of the interaction. Thus, K
standard models, and provides the correct behavior of thpotential for even partial waves has the form
NN scattering phase shifts. The physical meaning of the
“extra” bound states in the lowest partial waves has been VN=Vioct Vsep (33)
repeatedly discussed in the literat(ig2,27,31. They either
simulate six-quark bag compound states, for example
|s®[6]x) in S waves, ands®p[51]y) in relative P waves,
which cannot be adequately described in terms of nucleon

where V|, is a locall-independenpart of the interaction
which, however, depends on spin and parity:

degrees of freedom only13,15,17,22 or they describe Viod1) =Ve(N)+ V(1) Spa, (34)
bound states in the nucleon plus Roper resonance _ 2 oP
NN* (1440 channel[37]. We recall that the interaction in Ve(r)=Voexpl = 71%) + Ve () fu(r), (39
the NN* (1440 channel must be very similar to the original

b0 Y g Va(r) = V@O 1D 36

NN interaction because the Roper resonance has the same
guantum numbers as the nucleon.

Because we are mainly interested in the predictions o
Moscow-typeNN potentials for 3 systems, a more com- fu(r)=1—exp(—ar). (37
plete version of such potentials including even partial waves
with <4 is necessary. Here, we present a few new version¥he exponentn is different for various versions of the
for evenpartial waves. The form of the interaction for odd model. The OPE potentialé2" = andVL"E have the standard
partial waves(for version 86 is discussed if50]. An up-  form
dated version of the Moscow potential for odd partial waves

¥vhere the cutoff factor is

will be considered in a future publication. In accordance with VEPE) =V fexp(—x)/x, x=pur,
general expectations, six-quark bags appear mainly in the
lowestS and P partial waves(for E;;,<800 Me\). There- VOPE(r) = VPR 1+ 3/x+ 3/x?) exp( — X)/x.

fore, the extra bound states describing the projections of
these six-quark states onto tN&\ channel can occur only in We use an averaged-meson masg and awNN coupling
these lowest partial waves. constantg?y/4m=13.8[27,48,50

In the higher partial waves there are no extra bound states
and correspondingly no nodes in the wave function. How- OPE_ ngN u®
ever, an interaction that has in the lowest partial wave only" ° 4 4MN
an attractive local potential and a repulsive projector multi-
plied by a large positive constant, is too strong for higherThe separable repulsive covge,has the form(for | =2 and
partial waves. In order to take into account the short-rang®)
repulsion generated by-meson exchange, and in order to

——=-10.69 MeV, u=0.6995 fm?

retain the universal form of the interaction in all partial Vser= M @) (¢l (38)
waves, we add a repulsive core in the same separable form

with a Gaussian form factor, as in the lowest partial waves, Nl 1fr)? 2.

but with a finite positive coupling constant. We will then e=Nr"exp -3 o] |’ f gidr=1. (39

arrive at somdantermediatemodel of the type discussed in

the previous section. The strength constants for the separable core vary for
The final Moscow potential consists of two parts. First, adifferentJ andl, whereas the radius of the repulsive coge

local |-independent part, which explicitly includes the one-varies only slightly from state to stateee Table Il). For|

pion-exchange(OPE) potential and a deep attractive well =4 the termV,is absent. Parameters for several variants of
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TABLE lll. Parameters of the MoscoMN potentials.

variant parameter values parameter valuesydfm], A [MeV]
n V, [MeV] 7 [fm 2] a [fm™1] for particular channels
triplet channels 33, D, %D,
A 3 —466.7 1.600 3.000 0.448 0 0.4600 251.0 0.300 0
B 3 —1329.0 2.296 1.884 0.445 o0 0.4061 427.2 0.276 0
C 7 —1459.2 2.372 2.610 0.454 0 0.4199 353.8 0.289 0
singlet channels 15, D,
a —1106.2 1.600 3.000 0.4998 0 0.4472 229.0
b —1220.0 1.753 1.884 0.4815 e 0.4103 303.7
c —1222.0 1.738 1.000 0.4825 0 0.4071 321.8

the NN potential differing in the truncation of the tensor part ¢). In addition, we have found that a fit to the experimental
in triplet-even channels are given in Table Ill. We havephase shifts in the interval 0—400 MeV does not uniquely
found (see Sec. IY that the properties NN and N sys-  determine the widthy and depthv, of the deep potential in
tems calculated with M-type potentialthis is also true for the central part of th&N interaction(35). Any variation of
conventionalNN potentials[2,6—8,54 strongly depend on the width » can always be compensated by an appropriate
the behavior of the tensor potential at small distaphdeshe  variation of the deptlV,, without changing the quality of the
1986 version of the Moscow potentiglariant(A) in Table  phase shift fit. As a result, it is possible to choose the same
1], an exponential truncation of the tensor psee Eq. width for the triplet3S;-3D, (7;) and the singlet'S, (7s)
(37)] with a valuen=3 and an inverse radius of truncation channels. Alternatively, it is possible to choose the same
=3 fm~! was used. In that case, the tensor potential trunvalues of the deptN, in triplet and singlet channels. In this
cated according to Eq$36) and(37) corresponds to a large case the widthys and %, would be different.
negative constant at the origipV{(0)=—5500 MeV]. We emphasize that the equali= 7, is impossible to
Therefore, there is a very strong coupling of t#8,-3D;  reach in simple conventional potential modgl3. In other
channels at small distances. This coupling results in a largeords, the width of the triplet potential is always different
loop in the deutero wave, as well as in a largp-state  from that of the singlet potential. Both parametérs., width
admixture Py of 6.4%. The relative amplitude of this loop and depth of the conventional potential model an@iquely
Afgop compared to the maximum value of tRewave func- determined by the values of the low-energy effective range
tion is given in Table IlI. parameters, i.e., by the scattering length and effective range.
However, in view of the relatively weak quark-quark ten- It was recently found55] that owing to some freedom in the
sor force, it is desirable to have an interaction variant, forchoice of the three main parameters of the interaction, i.e.,
which the node in the deuterdd wave is absent. Such a width 7, depthV,, and the truncation radius of the OPE
variant was found in our previous wof7], where a step potentiale, the values of the width parameteysand &? can

factor be taken to be equal, i.ep= . We then obtain the simplest
two-parameter model of the Moscow potential, where only
(pr)® two parametergwidth and depthare fitted to the scattering
tr:Tpr)ﬁ length and effective range of thes, partial wave. However,
has been used for the truncation. The steplike truncation 05 b — Moscow E
leads, however, to technical difficulties when used in a three- : -—-- Paris ]
body calculation. Therefore, we present here some alterna- 04 ¢ E
tive variants of the triplet-even potential which still have an 03 F 1=0
exponential truncation factgl — exp(— ar)]" with n>3, for S on ;
which the relative magnitude of tH2-wave loop varies from R
0.5 down to 0.02. It is important to note that the stronger the § 0L E;
truncation of the tensor potential, i.e., the weaker the tensor = ¢ k
interaction at small distances, the larger th¢ Binding en- ol
ergy (see the subsequent secjion )
The dependence of all observables on the truncation fac- -02 |
tor of the central parv27F is very weak. For example, a o3 M

0.0 1.0 20 30 40 50 60 70 80

stronger truncation ir\/gpE is easily compensated by a cor- " [fm]

responding strengthening of the central attracti@aussian
part of the interaction. Therefore, in the present three-body FIG. 4. The deuteroS-wave (=0) andD-wave (=2) func-
calculations, we have used only one of the new variants fotions for model B. The deuteron wave functions calculated with the
the singlet potential presented in Table (Hamely, variant Paris potentia[5] are shown for comparison.
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FIG. 5. The even parity phase shifts for the new version ofNiNeMoscow potentialvariant B are compared with the data of the
energy-dependent phase-shift analysis by Awtdal. [57] (triangles, dotted line foe;). For £; we also show the Nijmegen phase-shift
analysis PWA9358] (dashed lingand the single energy phase-shift analysis by Aetdil. [57] (circles.

unlike conventional force modelsee Ref[1], Chap. 2, we We attribute this success to the choice of the proper de-
obtain with this simplest two-parameter model an excellengrees of freedom for a potential description. Conventional
description of the®S;-3D; and 'S,-wave phase shifts in a models try to describe both, the short-range six-quark and
large interval of 0—500 MeV instead of a good fit only in the the long-distance one-boson exchange aspects dfl bhin-
range between 0-15 MeV typical for conventional modelsteraction. This leads to a complicated energy and momentum
Simultaneously, we obtain a good description of the maindependence of the resultifgN potential. We claim that the
static properties of the deuter¢B5], including the quadru- Moscow potential model is so simple, because we do not try
pole moment, charge rms radius and the asymptotic normate cast the six-quark aspects of tNe\ interaction into the
izationsAg andAp . same formalism as the asymptotic long-range part. The six-
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FIG. 5. (Continued)
quark aspects in th&lN sector are more adequately de- B. Exclusion of the deep-lying bound state
scribed by an orthogonality condition, rather than by a local The “extra” bound states ir§ and P waves have to be
repulsiveNN potential. excluded if the potential is used in few-nucleon calculations.

The parameters of the Moscow potential model are listeths as already discussed in Sec. II, this is most conveniently

in Table 1ll. The deuteron wave function calculated with yone by means of the orthogonalizing pseudopotential
model B is shown in Fig. 4. In Fig. 5, the phase shifts of the opp.

evenpartial waves for variantB) are compared with the
experimental one$57]. The description of theNN phase Vop= A",  T'=|¢:){¢sl (40)
shifts is for all variants listed in Table Il quite reasonable.
However, our description of the mixing parametgrespe-  With a large positive value of the strength constarn4,59.
cially for energiesE >400 MeV, is not yet satisfactory. The In practice a value ok ~10°—10° MeV is quite sufficient.
mixing parametee; is determined by the value of the matrix In the case of coupled channel$,-°D; and °P,-°F; the -
element(W ¢ V{|¥p). Our overestimation of; at higher function ¢y in Eq. (40) has two components. Therefore, it is
energies is a Consequence of the behavior of 3]:5? and necessary to use a two-channedhtrix prOjeCtor of the form
3D, eigenfunctions at short distances. While Sieave has L, 1 L, 2
a node and a rather pronounced loop, there is almost no loop lor)eil  ler)(eil
lef) (il e){¢f

in the D wave. This leads to a rather sharp increaseoht

higher energies.In the more complete two-channel model,

the short-rang&-wave loop should be significantly reduced Where|¢t) and|¢?) are the upper and lower entries of a

and we expect a flatter behavior ef in better agreement two-component column vector, corresponding to the “extra”

with modern data. bound state. However, the matrix projector considerably
complicates three-body calculations. Therefore, we use in-
stead a one-component projector:

o) (ol 0)

2= , (42

5In contrast to this, in the first version of the Moscow potential
model[48], there were two coinciding nodes and loops in both the 1:2_)121:

42
S andD waves and a rather satisfactory fitép was obtained. 42

0 0




548 V. I. KUKULIN et al. 57

acting on the “main” channel, i.e., on the channel possess
ing highest weight in the “extra” state. In other words, in 0
335,-3D; channels we use only a®&wave projector. In this

case the functiorp is selected so that the inclusion of the

above one-component projector into the Hamiltonian gives i _2
result that is as close as possible to the action oftiim
componeneigenprojectoll,. Strictly speaking, the replace-

E,

Eo

ment of the matrix projectof1) by a single-channel projec- 4
tor (42) should cause some modification of the appropriate =
NN phase shifts. We have found, however, that this replace
ment influences the description of the phase shifts in couple - 6 Ean
channels only very weakly. Moreover, employment of the
simple Gaussian function with suitable values gfn ¢; can
ensure a quite reasonable and accurate description of scatt _8
ing phase shifts. (a)
We will show, in particular, how the approximafewave
projectorl’ = |¢;)(¢;| acts in the coupledS;-3D; channels. P/ . - .
The dependence of the first two energy levels on the or 676 682 688 694 700
thogonalizing coupling constait for the 3S;-3D; channels A [MeV]

is shown in Figs. @) and &b) for the potential(B). If the

projector is absent, there are two bound states: the “extra’
ground state with energf,=—599 MeV with aD-wave 0
probability of 6.3%, and the second bound state describin

the physical deuteron withE;=—2.2245 MeV and a

D-wave probability of Pp=5.75%. If the exact two- -20
component state, is used inl';, the energy of the ground
statek, is shifted by an amourk when\ is varied, whereas
the deuteron energlf, does not vary at al{by definition.
The deviation of the curveg&y(\) and E;(\) from the =
straight line characterizes the difference between the appl =
cation of the approximatésingle-channglS-wave projector -60

and the exact matrix eigenprojectbs. As one can see, this
difference is only important in the narrow range of values

A =685—-690 MeV, where the energied, and E, of both -80
states come close to each other and the states are mix

strongly due to approximate orthogonality ¢f and ¢, 100
- rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrerrrrrorog

(their overlap beind ¢¢| ¢;)=0.001). ForA>690 MeV, the 600 700 800 900 1000
deuteron state becomes the new ground state and its ener A [Mev]

grows very slowly with\ approaching the limiting value ) '
E(x)=—2.2246 MeV. On the other hand, the original FIG. 6. (a) Effect of the approximat&-wave projector on t_he
ground state energ,(\) continues to rise and finally trans- discrete spectra off2 and N systemsE, andE, are the energies
forms into a narrow resonance. In the case of the exact eigef9 (e first two N states £,y is the energy of 8 ground stateh
projector, it would be transformed into a bound state embed?S (€ “Si-wave projector coupling constarib) The dotted line
ded into the continuum with the positive enefy+ \. This shows the dependence of thél-bound state o for the case\
resonance strongly distorts the phase shifts only in a narrow "'

energy range ned.n,=Eo+\. But since the values fot  From here it does not follow, in general, thap(™| )
used in the present three-nucleon calculation are of the order g At the same time it is possible to make the overlap of
of \~10° MeV, this distortion is far away from the physi-
cally relevant region. It is worth to note that if one takes only

the S component of thexactwave functiong, as ¢y in the f th licati f th . eftorH
single-channel projectdd?), the result turns out to be much ¢85¢ © the application of the exact eigenprojedtgrHow-

worse. In other words, the result of the application of the€Ver: it is impossible to choose a simple approximate func-
projector| o) (oY), i.e., using the exadiirst component of tion that will be orthogonal to the scattering wave functions

. . of the continuous spectrum fatl energies. Therefore, due to
two-component vector, differs much more from the matrix : : ;
the employment of the approximate projector, the scattering

>
0
=

(b)

the deuteron with some approximate functigp arbitrarily
small. Then the energi, will not depend on\, as in the

eigenprojectoil 5, than theapproximateprojector|e)(gy|. phase shifts are inevitably distorted in some small energy
This is explained by the fact that the orthogonality conditionjnteryal.
which is automatically satisfied for the eigenprojedioris Bearing in mind the use of the potential in the three-

W (D) @1 (2 nucleon system, where large values of the conskarre
(PolP1)=(e5 @1 )+ (s |#1”)=0. (43 needed, we restrict ourselves to the approximate projector
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TABLE IV. Deuteron predictior)s for the_different vgrsions of dence of the Bl ground state energ¥sy on the value
the triplet-even MoscovNN potentials.D g, is the_ ampl_ltude of \(3S;) multiplying the projectorl”, projecting onto an “ex-
the D-o\!vavg I(;op. Th2e deuteron matter radius is definedrZs tra” bound state in the®S; channel. The two-body state
=1/4fydrr<[u (r_)+w (r)]. For the most_recent value of _the deu- energiesEq(\) and E;(\) shown in Fig. 6 were already
teron matter radius See.R@G]' Here, 5 is the asymptotldD/S. discussed in Sec. IV. All other parameters of the potentials
ratio. In impulse approximatiofmodel B the deuteron magnetic are fixed, including the constanis for the other channels
moment iSpg=0.847 uy , the quadrupole moment Qy=0.271 For A <680 MeV t%e 3 system remains unbound and the
fm<, and the charge radius Is,=2.112 fm. A ) e )

Y ® variational valueEsy practically coincides with the energy
Variant  x2 D, E [MeV] Pp% r [fm] of the two-body ground state,. When\ is increased be-
oop d D n m -
yond 682 MeV, the system becomes bound vty = —6

A 118 050 -—2.2244 659 00267 196  MeV. If \ is increased further the three-nucleon binding en-
B 56 030 -22246 575 00258 195 ergy decreases very slowly approaching its limiting value
c 126 0.02 -22246 6.14 0.0262 1.94  Ez(»)=-5.74 MeV, because these test calculations were

done in a comparatively small basis. The saturation occurs
for A=10°—10° MeV. For higher values ok the numerical
with a simple Gaussian form factor. Then the additionalresults become unstable. The convergence of variational cal-
pseudopotentiaVsephas the form of Eq(40) in all channels.  cuylations with respect th was investigated in some detail in
For S- and P-partial waves, the constanishave to be suf- Ref.[61]. The physical deuteron becomes the ground state of
ficiently large (~10°—10° MeV) in order to ensure the ex- the two-nucleon subsystem far>688 MeV when|Ezy| is
clusion of “extra” bound states, while their values D already less than 6 MeV.
waves are determined by fitting the experimental phase These results clearly show that it is impossible to fit the
shifts. The corresponding values of for the approximate binding energy of the three-body system to the experimental
projector are also given in Table Iil. In th®D; channel and  value by adjusting the parameter It is interesting to note
in all higher partial waves with>3, the termVe,is absent.  that the system becomes bound when the repulsion in pair
subsystems increas®sThe reason of this interesting phe-
V. PROPERTIES OF THE THREE-NUCLEON BOUND nomenon is the following. When the projection constant in
STATE the singlet channel is chosen as, exg+10° MeV and the
one in the triplet channels as, e.§,<10° MeV (and vary-
Here, we discuss the predictions of the new versions ofng), the almost complete space symmetry of the three-
the Moscow model described in Sec. IV. Th&l Zalcula-  nucleon system is broken, and the weight of wave function
tions have been done by a variational method on a vergomponents with mixed orbital permutational symmetry
large, nonminimal and nonorthogonal Gaussian H&ds60 [21]y is increased.
and are, in general, rather similar to the very accurdte 3  On the other hand, if the constant§®S;) and \ (1S)
calculations of Kameyamat al. [53]. With this basis the o, glve simultaneously, we find a different behavigy,(\)
absoluteaccuracy for the eigenenergy is about 100 keV. Thepat is shown by the dashed line in FighB Now, the 3
relative accuracy for the Coulomb displacement energy issystem remains bound for all. However, for the allowed

even Tgflher' . _ oule. ValUes of\ that is when both “extra” bound states in the
_As ﬁ OwsS Irom WS‘”Y pre\fnogzls bqulnd state calcula- 16t and singlet channels are pushed sufficiently high
tions, the total contribution of odd partial wave interactions,pove the physical state, the three-nucleon binding energy

to the N binding energy is small and Fioes not exceed 0.%3'\" appears at a value less than 7 MeV. So, in this case it
MeV [3]. We emphasize that odd partial waves have beety 554 impossible to fit the three-nucleon binding energy by
included in our variational basis for theN3bound state cal- shifting the “extra” two-body state to the positive energy

culation but we did not take into account the contribution Ofregion. Therefore, all results for the three-nucleon system

the odd partial waves in theN force. In theNN force, we  giscyssed below have been calculated with sufficiently large
include allevenpartial waves up to total orbital angular mo- | 5| ,es\ and\(~ 10°— 10° MeV) for which complete satu-
S

mentumL =4. Our results are presented in Table V, Where,4(ion has been reached, and the results are, in some aense,
we list several static properties 8H and *He such as bind- independent.

ing energiek, root-mean-square charge radiyg, the per-
centages oD (Pp) and P waves fp), and the Coulomb
displacement energyAc,, for the difference Eg(®H)
—Eg(®He). In addition, we list the average kinetic eneffjy All variants of the model studied here differ only in the
in the ground state, as well as certain characteristics of th&orm of the truncation factor for the OPEP-tensor force at
3H charge form factor, i.e., the position of the first minimum small distances and lead to overall similar res(gtse Tables

Omin» the second maximum,.,and the value ofF | inthe  1lI-V) except for one previous version of our mod&D]
second MaximunF . (variant A in Tables llI-V. In the course of the calculations

we have found that the stronger the cutoff in OPEP tensor

B. Binding energy of *H and 3He

A. Dependence on the projection constants

First, we discuss the dependence of the three-nucleonfCertainly, the absolute value of three-body binding energy de-
properties found with the above force model on the projecereases in the process, however, the energy of the two-body thresh-
tion constants\. In Figs. §a) and &b) we show the depen- old decreases still more quickly.



550 V. I. KUKULIN et al. 57

TABLE V. Three-nucleon properties with the A, B, and C versions of the Moscow potential.

variant of E(SH) T(SH) I:)D I:)P rch(?}H) ACoul rch(?’He) qain q%ax Fch(SH)max
potential MeV MeV % % fm MeV fm fm 2 fm~—2

A —5.07 143.7 7.8 0.03 2.15 0.612 241 13 18 X1D~3
B -6.03 162.4 7.4 0.03 2.01 0.670 2.24 16 22 014
C —6.03 162.8 8.1 0.05 2.01 0.667 2.25 16 22 0104
extrapol. —8.48 175.1 8.5 0.06 1.88 0.737 2.07 17 23 Xam3
t0 Egyp

experiment —8.48 1.76 0.764 1.96 13 18 41073

force, the larger the 18 binding energy(see Tables IlI-Y.  tions are quite important in our case especially in the
In this respect our results are very similar to those found byraddeev-like 8l approach.
Sasakawa and Ishikaw®4]. In their 3N studies with the We have previously emphasized the extremely important
Reid-soft-cor RSO NN potential using various truncation contribution of higher partial waves as manifested by a sharp
factors of the tensor force they found that when the tensoincrease of the averageNinetic energy. Compare the third
force is cut off more strongly at short distance@mnd the column in Table V with the corresponding result®),64 for
central attractive part is correspondingly increased in order t&raditional force models, in particular for model B:
keep the deuteron binding energy invarjatite 3\ binding
risesas well. 3N ] N
However, there is an important difference between the Ekin(Parisg=42.6 MeV, Ej(RSQ=49.3 MeV,
present results and those in Rg4]. In our case, the partial
replacement of the short-range tensor force by a central force, .
. : . ‘While
does not lead to a noticeable reduction of the tensor mixing
parameteg,. In fact as the truncation is increased, the mix-
ing parameter does not tend to zero, but, instead of this, it
rises more sharply for larger. This is related to the essen- EN(Moscow =150 MeV
tially different character of interference between tensor and
central force(both in 2N and 3\ systems$ in our case as
compared to the traditional nuclear force modelse the last is more than three times higher. It is worth to recall here that
paragraph in Sec. IV A However, we do not expect drastic the modest 20% increase in the average kinetic energy in the
effects of oure; description on the B binding energy, at RSC potential as compared with the Paris potential, results
least not within the corridor given by the different versionsalready in an enhancement of the contribution of higher par-
of our model. In fact, the difference iy values between the tial waves to the binding energy by as much as a factor of
RSC and the Paris potential model is of the same size as that5. Thus, one can easily imagine how large a contribution
between the present version and experiniéat. from higher partial waves may result in our case. A more
The 3H binding energies obtained in the present study detailed analysis of these results will be carried out else-
(~6.05 MeV) for the two most realistic variants of the po- where.
tential (B and Q are much higher than the value 6f4.5 We must keep in mind that, contrary to conventional force
MeV obtained by Hahret al. [44] in their first 3N calcula- models, ouNN potential corresponds only to a one-channel
tion with the earlier version of the Moscow potential. This approximation of the complete two-phase model, that is by
large difference is caused by the following reasons. the definition of theNN potential, only the effectiveNN
(i) In the Hahret al.[44] calculation and also in the early channel with unexcited nucleons. As was argued above, the
1983 version of the Moscow potential an old version of theeffective channel potential is phase-shift equivalent to the
singlet 1S, potential fitted to the 1983 phase shift analysisinitial two-phase interaction model of hybrid typsee Egs.
[63] was employed. Our new singlet potential is fitted to the(19) and(24)] and the replacement of the local repulsive core
SAID database of 199567] and resulted in some increased by a two-channel interaction mod@d.g., as in case of QCB
3N binding (about~0.2 MeV). model by Simonoy15]) will lead to some additional binding
(ii) Another, more important reason for the present im-of the order of some-0.8—0.9 MeV[65], simply because of
provement of the B results is the use of a stronger trunca- the presenceof the second channel. There is an additional
tion of the short-range OPEP tensor force and the respectiveason for extra-binding in I8 and generally in many-
reduction of Py in the deuteron and 8 systems—see the nucleon systems if the full two-phase interaction model is
versions B, C, and D in Table IV. The sharper truncationconsidered. One has to take into account the interaction be-
removes or suppresses to a significant degree the inner notlgeen the six-quark bag and the spectator nucleon. This dy-
and the respective loop in tH2 wave at short distances. namical &-N channel coupling can be considered as some
(iii) A very restricted configuration space of only five ba- kind of three-body force that will also increase the
sic channels’s,;-3D; and 'S, was employed in the Faddeev 3N-binding energy. We expect that these effects will mainly
calculation of Hahret al. [44] and the contribution of all change thebsolutevalues of the energies while thmelative
>2 higher partial waves was neglected. The latter contribuenergies, which will be discussed in the following, will be
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influenced only weakly. This is because the weights of the 6t involves an extrapolation to the empirical binding energy,
g-bag components ifH and *He are small and have almost the observation that the inner wave function loops are ex-

equal magnititude. tremely important for the Coulomb displacement energy is
likely to survive. Moreover, if the force model presented
C. Coulomb displacement energy, charge radii, here is corroborated in subsequent studies, it would suggest
and form factors that inner loops are ubiquitous in nuclear wave functions.

The recent quantitative explanation of the Coulomb dis-
placement energy in the literatufé6] using a force model
with a repulsive core is based on the assumption of a rather
strong charge symmetry breakifi@SB) term Vg (differ-

—E_(3H)—FE.(3 ence between thep andnn strong interactions With Vg
Acou=Ep("H) ~Es("He) added to the Argonn&/,g potential, one can almost com-
pletely explain the 100 keV difference i, between®He
(for variants B and C witm=5 and 7 for the OPEP tensor @nd °H. However, the sam¥csg leads to a strong overesti-
force truncatioh equals mation of the Coulomb energy difference in thBe-°He
system. Therefore, it is conceivable that the contribution of
the charge symmetry breaking teiggg in Ref.[66] is ac-
Acou=670 keV tually smaller. In any case, it is evident from the discussion
above that the assumption of a strong charge symmmetry
breaking interactioiVgg is not the only mechanism that can
for Eg(®H)=6.05 MeV. For a more careful test of the explain the 100 keV Coulomb energy difference in th¢ 3
model, it is important, however, to find the value &f,,  system.
when Eg(3H) is scaled to its experimental value 8.48 The values of the extrapolated charge radifbfand 3He
MeV since the larger thel8 binding energy the smaller the (see last row in Table Vturn out to be larger than the cor-
rms charge radius and the higher the Coulomb energy ofesponding experimental values. However, it should be em-
3He. Thus, we slightly increaséby ~2%) the strength of phasized once again that th&l Zalculations with the one-
the centraltriplet and singletpotential well to fit the experi- component force model presented here, i.e., carried out only
mental value ofEg(®H), and for this case we analyze the in the NN (or 3N) sector, corresponds just to the projection
Coulomb energy ofHe and the rms charge radii 8H and  of the total two-phase model wave function onto the puxe 3

As follows from the results displayed in Table V, the
Coulomb displacement energy

3He with our model(see the two last rows in Table)V component. The two-phase solution includes also compact 6
The extrapolated Coulomb displacement energy turns ou+N components with a sizeable probability, which may
to be considerably reduce theN3charge radius. Similarly, the full

two-phase model will lead to important modifications in the
charge form factors ofH and 3He. Our results for thelH
AZ=737 keV charge form factors calculated with the one-phase Moscow

1

which is only 27 keV less than the experimental value. Here,

we note in passing that in the full two-phase model calcula-

tion the magnitude of -, would increase further because 10!
the second channel comprises the more tightly pacled 6
+N configuration.

The most likely reason for this improvement in the pre-
diction of A2 s the appearance of the inner radial nodes
and corresponding short-range loops along every interparcﬁ;
ticle r; coordinate(and also along both Jacobi coordinates =~
in our 3N wave functions. The inner loops along ting
coordinates have only a minor influence on the rms radii of
the charge or matter distribution because the latter are detel
mined mainly byone-particlecoordinatesr; (as measured 10~
from the center of magsContrary to this, the Coulomb po-
tential between two protons ifHe is maximal just at zero
interparticle separation; where we have some enhancement 10 - !
of particle density due to the presence of the inner loops in P A
our wave functions. 2 [tm?]

This naturally explains why conventional force models E
leading to a short-range suppression of the wave functions F|G. 7. The charge form factor GH for different versions of
along every interparticle distance miss some 100 keV in théne MoscowNN potential: the previous versiof) (short-dashed
Coulomb energy ofHe, whereas our model, due to the inner line), the present versiofvariant B (dashed ling and the potential
loops leads to a prediction that is close to the experimentadxtrapolated tdE,,*H) (solid line). Also shown are the previous
value. Although our result is still qualitative in the sense that((d) and the new68] (A) experimental data.

10 %

-3
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potential are displayed in Fig. 7 together with the predictionsvhen utilizing such complicated interaction operatpre]

for the extrapolatedito experimentaEg(®H)] solution. We  we are forced to introduce many adjustable or free param-
see that the behavior of the form factor fgpt>14 fm 2 is  eters to fit the data. Thus, due to the formation of the above
rather similar to predictions calculated with a conventionalcompound six-quark states, the whole system cannot be de-
force model such as the RSC potential. However, we expedcribed by any simpl& N potential. In order to get an effi-
appreciable modifications fay?>14 fm 2 for the original ~ cient potential description, it is necessary to remove the
two-phase model, in which the sign of the-6N component abovenonpotential piecefom the full interaction operator.

is oppositeto that of the main B componen{13]. Accord-  This can be done with the help of the two-phase orthogonal-
ing to Refs[65,67] this fact should considerably improve the ized model described in Sec. Il. The exclusion of six-quark
description of the B charge form factors in the secondary compound states can be conveniently accomplished by the

maximum. well-known Feshbach formalism. This eventually leads to
Summarizing we conclude that the description of both theéhe Moscow-type models with its two orthogonal channels.
3N binding energy and some importartl dbservables will Our approach makes it possible to describe rather accu-

presumably improve when passing from a one-phase potemately bothNN phase shifts up to 500 MeV, and the deuteron
tial model to a two-phase model due to the explicit appearstructure with a truncated one-pion exchange potential to-
ance of the §+ N component in the three-body solution.  gether with a simple deegtatic potential. Altogether we use

six parameters with clear physical meaning. This evidently
confirms the usefulness of the present two-phase approach.
Other hybrid models which combine both quark- and meson-
exchange degrees of freedom make usenafiorthogonal
quark- and meson-exchange channels, i.e., some mixture of

The force model presented in this paper—referred to a§oth. As a result, they contaimontrivial energy dependence
the M-type model—differs in a few important aspects fromand nonlocalities. In addition, most hybrid models do not
traditional NN interaction models currently in use. offer a microscopic interpretation of tiéN channel.

First, M-type models necessarily incorporate additional A clear separation of the nonpotential pieces of Mg
orthogonality conditiofs) with respect to certain nodeless interaction and the subsequent parametrization of the rest in
functionsg,. The orthogonality condition can be interpreted an orthogonasubspaces the main physical idea underlying
as the projection of six-quark compound states with ~ our approach. Therefore, the success of the model may be
maximal space (or permutationa| Symmetry onto the taken as some evidence for the formation of SiX-quark com-
asymptoticNN channel. pound stategi.e., dibaryong at short range in low partial

Second, M_type models are characterized by the presendéaves. As a result of the elimination Of]ﬁlompound states,
of a deep attractive well while a part of the short-range rethe 3N, 4N, and other many-nucleon systems are under-
pulsive core(or the whole coris replaced by appropriate bound.
orthogonality conditioné.The consequences of the different  In this work we have used only the one-phastective
off-shell behavior of conventional and M-typeN force  two-body potential component of the complete two-phase
models can be tested usifgN bremsstrahlung69]. model. In the future, it would be interesting to take the next

Finally, the models presented here have a physical inteStep and to incorporate the second, i.€;-\ component in
pretation that is rather different from that of conventionalfew- and many-body calculations. In addition, it would be
force models. A standard force model aims at describing théteresting to include vector mesons into the theoretical de-
NN interaction in the total configuration space in the form ofScription. Due to the additional orthogonality condition, their
some potential. Contrary to this, we start from the assumpeffect will not be as large as in standard force models, where
tion that certain six-quark compound states of maximal perthe @NN coupling constant is in contradiction with the
mutational symmetry are present in the lowest partial wavesSU(3) prediction[2]. In our case we are able to keep the
The latter have only very small projections onto the nonan«NN coupling constant as low as &) predicts.
tisymmetrized asymptotidNN channel. However, at the
same time they are strongly coupled by the six-quark Hamil-
tonian with the clusterizedIN channel at small distances
<1 fm. As a result, these compound states cannot be de-
scribed byany reasonableNN potential. These states can ~ We are thankful to many of our colleagues in Moscow
only be described by a very complicated nonlocal andand Tibingen for long term fruitful discussions on the topics
energy-dependerfiN interaction operator. However, even of the present study, especially to Professor E. W. Schmid,
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