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Efimov effect in the distorted cluster state representation
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The Efimov effect for a three-body system was studied previously in an adiabatic representation, where the
distance between two “heavy” particles was represented,tand the third “light” particle was described by
coordinatey relative to the center of mass of the heavy ones. Whenheld fixed, an exact solution for the
light particle can be obtained if the interaction is assumed to be of separable form. The resulting adiabatic
potential between the heavy particles shows the criticalx?> behavior that leads to an infinite number of
bound states. However, subsequently the leading nonadiabatic effect was shown to generate an undesirable
correction of 1x type, the pseudo-Coulomb dised&CD). To remedy the PCD, the Efimov effect is reexam-
ined in the adiabatic state representation, but with the new Jacobi coordin®gswherer describes the
distance between one of the heavy particles and the light on®asdhe position of the other heavy particle
with respect to the center of mass of the subsystem of light-heavy particles. It is then shown that the adiabatic
potential in this distorted cluster state representation behaved & at largeR if the pair described by has
a zero-energy bound state. Moreover, in this case the leading nonadiabatic correction term does not manifest
the PCD, thus explicitly showing that the PCD is due to the “wrong” choice of coordinaigs Alterna-
tively, a particle boost factor is introduced to eliminate the PCD in the treatment with the ori{giyal
coordinates. This is shown to be equivalent to the change in coordinates, described above. Such a factor is
usually associated with high energy collisions, but for the first time shown here to play also an important role
in near zero-energy situationss0556-28138)05401-9

PACS numbd(s): 21.45+v, 21.10.Dr, 25.70-z, 33.15.Fm

[. INTRODUCTION For clarity and to introduce notation, we will first summa-
rize in Sec. Il the proof of the Efimov effect in the “conven-
The Efimov effecf1-4] states that a three body system tional” molecular coordinates, as was done in Ré#g.and
will have an arbitrarily large number of bound states if its[5], and the leading correctida] with the PCD. In Sec. llI
two-body subsystem supports a zero-energy bound state. Thee obtain the Efimov effect using the new distorted cluster
large size of the two-body bound state with an infinite scatstates 7] representatioiDCS) in the BOA. Absence of the
tering length gives rise to a long-range effective potential ofPCD in this representation is demonstrated. Section IV will
the form — 1/x°. Fonsecaet al. [4] continued the discussion show the connection between the results of Secs. Il and IlI,
of the Efimov effect within the framework of the Born- by introducing a particle boost factf8,6] (PBF). A drastic
Oppenheimer approximatioBOA). They constructed a improvement in consistency of the results on the Efimov
simple three-body model in which one light particle is boundeffect is obtained. The conclusion and discussion are pre-
simultaneously to two heavy particles. The adiabatic potensented in Sec. V.
tial obtained analytically in this solvable model exhibited
directly the desired behavidd,~—1/x2, wherex is the
relative distance between the two heavy particles. Subse-
guently it was showm5], however, that the first leading cor-
rection to the adiabatic picture contributed a term of the form We consider a “molecular model” three-body system
+ 1/, thus making the proof of Ref4] inoperative. [5,4] of two heavy and one light particles, where a two-body
An attempt is made here to improve the result of previousubsystem supports a zero-energy bound state. It was shown
works[5,4], mainly by the choice of proper adiabatic coor- in [1-3] that under these conditions an attractive potential of
dinates. In particular, we are concerned with the leading corinfinite range appears between heavy particles, giving rise to
rection to the adiabatic potential which behaves at largs  an infinite number of bound states in the three-body Hamil-
+1/x. This pseudo-Coulomb diseasPCD) is disastrous, tonian. This is known as the Efimov effect. Our discussion of
because the adiabatic potentiall/x? will be completely Efimov effect closely follows that of5] and [4], adopting
wiped out forx large enough. It was then suggesfsiithat  the notation of5].
(a) the PCD was due to a bad choice of the coordinétgs Following Fonsecat al.[4], we choose a system of spin-
and that a properly chosen coordinate system may avoid thess particles with masses of two heavy particles 1 and 2 to
PCD difficulties altogether. Alternativelyb) the higher or- be equal toM and mass of the third light one to lne. The
der corrections to the adiabatic potential may be such as tdacobi coordinateg is for the pair(1 and 2 of heavy par-
cancel the PCD(c) Finally, the PCD may also be cured by ticles, andy for particle 3 with respect to the center of mass
introducing a particle boost factor. The poifés and(c) are  of (1 and 23, see Fig. 1a). Their conjugate momenta afe
the subject of study in this paper, while poit) will be  andp, respectively. The three-body Hamiltonian of the sys-
discussed elsewhefé]. tem is then

Il. THE EFIMOV EFFECT IN THE ADIABATIC
REPRESENTATION
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(pIf)=— )

pe+y9)’

Operator of the interaction between the light and heavy par-
ticles assumes simple form

V(yI%x =T V() T =-AT T, (5)
whereT=e'P"¥2 s the translation operator, aqdis the mo-
mentum conjugate tg.

In the lowest order Born-Oppenheimer approximation
(BOA), the wave function of this system is taken to be
W (x,Y)=xx(Y)¥(x). The “fast” part x.(y) describes the
light particle motion with respect to the center of mass of
two heavy patrticles, and(x) is the wave function of relative
“slow” motion of the two heavy particles. The initial equa-
tion for the wave function¥

(H=E)¥(x,y)=0 (6)

separates into two parts; the equation that describes the wave
function (x), as

(b)
. . . 1 1
FIG. 1. (8 The Jacobi coordinate,y) used in Refs[5] and  (x,|(H—E)|x,)#(x)= (— P?— — w2+ u+ 93— E) P(X)
[4]. (b) The alternative Jacobi coordinatésR) employed in Sec. M 2u3
Il for the distorted cluster state calculation. This choice is not
symmetric in particles 1 and 2. '

7
and the equation fox,(y) given by

1 1 X X
H:MP2+2_F’2+V1 y+§ +V, y—i +V3(x) 1 X X
M3 {Z—M[wz(x)wz]wl §+y)+Vz E—y”xx(y)=0-
=K+ h3(y,X), (1) (8)

whereK,=P%M. If ry, r,, andr are the coordinates of the The energy- »?/(2u3) that appears as the eigenvalue in Eq.
particles 1, 2, and 3 with respect to a fixed reference, then th@8) contains thex coordinate as parameter. In E¢p),

Jacobi coordinates andy are given by — w?(x)/(2u3) appears again, but due to its dependence on
X, it becomes the effective interaction energy between the
X=r1—"ry, two heavy particles. The quantitiesand »; that appear in
Eq. (7) are defined by
ry+r,
y=rs=—5— 2

1 2
) = 17 (Xl Pl xs0)

The reduced masg; of the light particle is defined by
73(X) = (xXx|Va(X) | x,) = V3. C)
1 1 1

— =4 —, (3)  The quantityu(x) is a nonadiabatic contribution to the adia-
p3 2M - m batic interaction potentiat- w?/2u3, while 75 is neglected

) L i due to its short range, without affecting the final result.
We note thaths(y,x) is a two-body Hamiltonian in which We briefly review the previous results of Refs,4], and

the 4=(1+2) subsystem is frozen; 43 is then regarded as giscyss the conditions that lead to the Efimov effect, all
a two body.V, represents interaction between particles 2 anqyithin the adiabatic picture. The Efimov effect states that
3,V is between the 1 and 3, aid is between the 1 and 2. \yhen a two-body subsystem supports a zero-energy bound
All interactions are assumed to be of short range. The parsiate there can be an infinite number of bound states involv-
ticular form of interaction was chosen so thais separable  jnq the third particle. But this has been interpreted differently
[5.4], i.e., Vi=—\[f;)(fi|, wherei=1,2,3 is the pair index py gifferent authors. The approach of Fonsetal. [4] con-

(1 for pair of particles 2 and 3, ejc.The coupling strength  sjgers a pseudo two-body subsystem, say 1 and 3, in which
is positive andf) is of the form the variables(x,y) are retained but the reduced mass is
changed. On the other hand, the approach of Giraud and
Hahn, in[5], takes simplyhs(y,x) as it appears in Eq1),
which is also effectively a “two-body” Hamiltonian in

e_yy
f = _l = H
(ylf) y Y |yl
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which one body is (% 2) and the other is particle 3. Thus, 2=
in order to literally conform to the original definition of the
Efimov effect within adiabatic picture, Fonseetal. in [4]
introduced a two-body subsystem+B) Hamiltonian, as

, (10

1
H®) == p?— A|f)(f
2., P AN

where the reduced masgs, is given by

log, o(w(x))

1 1 1

It is important to note that () still contains the coordinate
in |f), and p is conjugate toy. The only change from
hs(y,Xx) in Eq. (1) is to replacews; by u, and keeping only -12
V,. Obviously this does not make the Hamiltonian truly two
body.[See Sec. Il for a correct two-body Hamiltonian de- log,o(x)

scribing (m+M), with the variablesr and R.] Therefore , i ,

H® is not physical. Nevertheless (2 is useful in clarifying FIG. 2. Numerical solution fow= w(X) in log-log scale, from
the role played by the reduced mass, as shown below. Sinc%ﬂ'l(é% Tlg?evaluzslgsgd for parameters are 1 and mass ratio
H® is used here only for illustrating the importancesofin =~ <~ an '
Eqg. (1), the final conclusion of the Efimov effect is unaf-

0 3 6 9 12 15 18

fected; within the picture with, where 1+2=4 is frozen, 42 1 _ 1 2ye” "+ [(0®— y*)x—2yle”
the two-body picture of 4 3 is sufficient and introduction of ~ u3 ¥°  Y(y+ w)? yx(y?— 0)? '
H®) is not needed although convenient for discussion. (16)
The condition on the coupling strength th#{?) supports
a zero-energy bound state is then Equation(16) can be solved numerically fap for different
values ofx, using the ratiqu,/u5 as a parameter. We have,
1 1 5 with e=m/M,
ZMZA - ,y3 . (l )
& _ €

On the other hand, Eq8) describes the state of the light
particle in the system of two heavy particles, which act as a
frozen single particle. We have

i L2t e an

Different solutions foro=w(x) are shown in Fig. 2, for
2, .2 1 a1 _ various values of the mass ratioand for parametety=1.
(%4 ™= 2 [T T S+ T TDxx(y) =0, The main feature of the solutian(x) is that, with respect to
its behavior as function of the heavy particle separatipn
there are three regions, separated by two characteristic dis-
tancesx,, andXq, Xp<Xg. FOrx<x, the solutionw(x) is
not important because the short-range effects of the potential
V3(x) in Eg. (7), acting between the two heavy particles,
2\ cannot be neglected. In the regigp<x<xq, the solution
xx(P)= 2—32 [T T Yo + T HOE Tl of Eq. (16) is w(x)=c/x+O(x~2), wherec is the solution
Pt w of the transcendental equatien®=c. In the regionxy<<x,
14 the solution of Eq(16) is w(X)=ye/2. While characteristic
distancex,, depends mainly on the range of potentiglx)
and parametey, a simple analysis shows that the character-
_ > istic distancex, can be approximated by,=2c/ ye.
state with energy- »“(x) The main problem of the approach of Fonsetal. [4]
) usingH® now becomes apparent. Having the parameter
1 _ ¢ T°+1 |]c (15 >0 at this stage of the analysis prevents any progress. If
213\ p?+w? | >0 for values ofx such thatx>Xx, the attractive potential
— w?/(2u3) in Eq. (7) has an unphysical constant value of
To further clarify the role of reduced mags, and us, we  — y?€?/(8u3) rather than having a physical dependence.
impose that the coupling strength of Eq. (12) in the two-  This leads then to the requirement that— w3, or equiva-
body Hamiltonian and the coupling strengttof Eq. (15) in lently e has to be zero, which makes this approach equivalent
the three-body Hamiltonian, are the same. This conditiorio the approach of the Giraud and Hali} whereH(?) was
yields, after the integration of Eq15), never introduced but stayed withy and Eq.(1). That is, in

whereT=¢'P¥? s a translational factor arlis the momen-
tum conjugate tg/. In momentum space its solution can be
written implicitly as

Using the symmetry of the ground statéf|T 1|y
=(f|T|xx), we obtain the condition for existence of a bound
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Ref.[5], a two-body subsystem is described by the effective The main purpose of the present paper is to address this
two-body Hamiltonian of the form problem by first showing that a proper choice of coordinate
system can cure the PC(3ec. Ill). Alternatively, a correc-
tive factor on the wave functioly, in terms of a particle
boost factor(PBF can also remedy the disease asymptoti-

1
Hgf)ZZ_,ug P> = A'TIf)(f[ T t=hy(y,x)—V;— V.
(18 cally (Sec. V).

Compared to the Hamiltoniaid ®) of Eq. (10) used by Fon- L. DISTORTED CLUSTER STATES

secaet al. [4], we see that the reduced mass of the light

particle must bews; and notu,. With the choice(18), the As one of possible resolutior$] of the PCD problem,

reduced masg, in Egs.(10)—(17) is replaced by reduced we consider changing the coordinates. A new set of Jacobi

massug, as it should, in accordance with Ed.). coordinates for a three-body system, as shown in Rig). i%
We now impose the condition that the coupling strength

A" in the HamiltonianH$) of Eq. (18) is the same as the r=ri—rs,

coupling strength\ introduced in the three-body Hamil-

tonian, Eq.(8). The functionw= w(x) in Eq. (7) is then the mrz+Mr,

solution to the transcendental equation T TMEm 2 (23
1 1 I 2ye” (0’ y)x—2yle yx_ These new coordinatd3] are different from the earlier set
Y y(ytw)? YX(¥*— 0%)* (x,y) in the most critical way, as will become clear later. We

(19 especially note that this new set treats particles 1 and 2 dif-
ferently. The adiabatic states generated for the pair 13
Sare termed distorted cluster stat&Cs). By symmetry, we
can also easily consider thé=r,—r5 for the (2+3) bound
pair. In fact, the choic€23) treats the pair (* 3) differently
c from the other pair (2 3). This can be easily remedied by
w(X)=—-+0(x"?), (200  constructig a 2 by 2matrix equation[7] of the Faddeev

X type. However, we retain this asymmetric form to illustrate
the main point of this section. That is, the pair«{3) is
treated here by a new coordinate, while the pait-@ is

For the values of the large heavy particles separation di
tancex, i.e., x>y~ !, the solution foro=w(x) is of the
form

wherec is again the solution of the equati@ °=c. The
attractive potential that appears in the Ef), that describes  yoateq in nearly identical way as in the original coordinates

the slow coordinatex, is of the form __“’2/(21“3)2 _ (x,y). Therefore, the PCD disappears, as will be shown be-
—?/(23)x 2. This potential has all the desired properties; o for pair (14 3) but not for (2+ 3)

it is attractive and it goes to zero for large values of the 'Iihe Hamiltonian in the lab system. is

heavy particle separation distancelf nonadiabatic correc-

tion u in Eq. (7) is neglected, this results in an infinite num- 1 1

ber of the bound states, the Efimov effect. One important  Hy=— =— (V2 +V2)— —— V2 +V,;+V,+ Vs,
distinction is the fact that the “two-body” bound states here 2M ! 2 2m s

implies the fixed cluster (£2), to be counted as one par-
ticle.

Our next concern is the calculation of the nonadiabati
correctionu in Eqg. (7), as discussed in Ref5]. Using the
solution for w as a function ok, the heavy particle separa-
tion distance, Eq(7) describes the two heavy particles in the

(24)

where we sefi=1. In the new coordinate system, the total
%inetic energy in Eq(24) is separable; neglecting the total
center of mass motion, we have

: X ! . ; 1 1
adiabatic potential generated by the light particle, as H=— T V2 0 V24V, +V,o+ Vs, (25)
1, 1¢
IV 210 2 Futms—EJ4(x)=0, (2)  where M= M(M+m)/(2M+m) and p,=Mm/(M+m).
In the following we again choose separable potentiald/for
where the nonadiabatic correctionis included. andVy:

As shown in Ref[5], potentialu can be evaluated within

the adiabatic model. In the lowest order it was found that
V1=V1(|r2—r3|)=V1( R- M+m r )
1 € cy s, 1
“(X):M_2+e—(1+c)x+o(x ), (22) = —ATalfANfAl TR S, (26)
which describes the pseudo-Coulomb dise6®€D). This Vo=Vo(|ri—r3)) =Vo(|r[)=—N[f)(f]. (27)

term makes the proof of the existence of Efimov effect

within the adiabatic model incomplete, because the correcV; is a short-range potential between heavy particles 1 and 2,
tion u(x) to the adiabatic potential is not small at largeas  and is neglected herd., is coordinate translation operator
compared to— w2(X)/2u3. andA is a mass ratio, defined by
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igR
Ta= exr{ A}

B M
S M+m’

and

(28)

andq is now the momentum conjugate toNote that from
the definition of A, 1/2<A<1 for m=sM. The potential
form factorf is given explicitly by

_exq yrA] B 1
(falr)=—"—F— (fA|Q>—m, (29
(flr)= —yr] (fla >_m (30
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1 2e7Ra)/A
a=) {ywm)z * ROZ— ) (A= D) 4'
(37)
2e—Rw/A
A=A [yAf‘(yAw)Z At R= D) (A= D) “}'
(39)

Solutions of the system of two equatiof&) and(38) give
conditions om\’ and on the adiabatic energy To the low-
est order and in the limits dR— o and w—0, the coupling
term becomes small and we have

In the adiabatic approximation the three-body wave function

W(R,r) is again set in the BOA for¥ (R,r)= xr(r) #(R).
Then, H—E)|¥)=0 may be cadt5] into a set of two equa-

! 0
NP (a)
1 1 p|=0 39
0 =5
N yCA
That is, the critical values fol’ are A\j=v> and \}

=A% Note thatA<1, so that\;=\,. This is reasonable

tions; first we introduce the distorted cluster state functionbecause the strength of the interaction can be smaller when

[7] defined by

2
{_LVZ @

7 —7\(TA|fA><fA|TA +[)(F) }XR(") 0.

(31
By projecting with the normalize@yg|, we also have fof)

2

"; + (Xl Valxr) — E|#(R)

1
[_2_ Va+(xrl VaIxr)) —
=0. (32)
Equation(31) in momentum space assumes the form

a BTa
9°+ ¥ A(q2+ V°A?)|’

)\/

(9*+ 0?) xr(Q) =

} (33

where\'=2u,\, (flxg)=a and(fa|Tx|xg)=8. This is
to be compared with Eq(14). In the Fourier transformed
space, Eq(33) becomes

!

@ " BTa
9*+y" A(G*+y°A%)

(P + w?)
so that explicitly

!

_ 3
J‘dq'w%q2+aFXq2+75

N BTa
A(G*+y*A?) |’
(35

o
9*+
= f d3q A
A+ )+ 1A

B
T AP+ 2AY) |

aT,t
9’ +y

(36)

The integrals in Eq935) and(36) are evaluated in Appendix
A, and the coupled equatiori85) and (36) become

one of the particles in the zero-energy bound state is much
heavier. The same result is obtained for the two particles
(heavy-ligh}. Thus, at the critical values fax', we have

either
1 _fdg f2(q) 1
N q P Y3
or
1 fa@ 1
— | g3 -
The next order in power of B and w gives
2w zewa/A
P © Ry'AZ
zefa)R/A 2w =0, (41)
R’}/4A2 ’}/4A6

or wR/IA=e"“RA As before, the solution of this equation is
a constant=0.5671. The “slow” BOA equation now be-
comes

[ 1 c?A?

El¢(R)=0, (42

-+
2R%u, 7

where the adiabatic potentiab?A%/2u,R? will give
the Efimov effect, provided that the correction
u’=—(1/2M)(xr| V3l xr) to the adiabatic potential does
not show the PCD. The short-range potentia}’
=(xr|V3|xr)—0 faster than R? asR— .

Before we proceed with the evaluation of this correction,
we first normalizeyr as(xr|xg)=1 for each fixedR. (Here
we assume that the binding energy of the sjates slightly
negative. Otherwise, it is not normalizable in the limit of
zero energy.Then,
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NP 1 1
(XrIXR)= P d°q (P+ 022 (P+ 12A2)
o? 1 @ Tat+tTat
"B @A B (@ AGE A
2 2 1
=\"?pB? - § dq (qz_(:wz)z AZ(q%+ 2A2)
Y | a 2AeiaRA)
+ &

B2 (@292 " BiqR(@+ D) (P+ 12AY)”

wherea/B is R dependent an@,=e'9 R/A,
By contour integrations and in the limit dR—o and
w—0, we obtain

a? 2ca

4
120227 a_ (& =% =
AB T2 r <B2+A3,8+A6

N )

and the normalizedyr(q) then has the formygr(Q)
=N(R)¢(a,R), where

(1)1/2’y2
N(R)= ——, (44)
a 1 Ta

HORI=Tzra?) | B a7 2 AP A7)

We note that

(é(a,R)|é(a,R)=N"?
and

VR(N™%)=2(&(q,R)|VRE(Q,R)). (46)

Furthermore,

(xrl(— VR xr) = NXVrE VrE) — 2(£|(VrN)|VRE)
+(&(-VaN)|&)

2
+NA(VRE VrE).

(47

1
NZ | dR

The quantitiesy/ 8,N(R), £(q,R) depend on the critical val-
ues for\’. So we consider the following two cases.

(i) \"=\,=y3A5; the weak coupling. For this value of

N’ we have in the limit ofR—
2 1 2
<XR|_VR|XR>:_W+N (VRE|VRE), (48)

with the explicit expressions for the quantities in EG&4)
and (45

-1 a 2A%w
“Miml BT LAYy
,y2A3 C (1/2) 1
N(R)= =l T=m

The integralN*(V z&|Vgé&) for \ is evaluated in Appendix
B, and the correctiom’ to the adiabatic potential assumes
the form

1 c

TOM TR

(49

Thus, this case is similar to the previous result summarized
in Sec. Il, and needM>m in order to suppress, and to
save the Efimov effect. That is, the new choigceR) has
failed to remedy the PCD. This is as expected, because the
choice (23) for r treats heavy particle 1 and 2 differently.
Apparently A5 corresponds to bound state associated with
particles 2+ 3, not 1+ 3.

(i) N'=N;=9% the strong coupling. In the limit of
R— o, we now have

@ (1-A%y 2y%A2 3 a
8= omte » NRETAam e =g

and thus

9
<XR|_V§|XR>:_W+N2<VR§|VR§>- (50

The integralN?(Vgé|Vr¢) is evaluated in Appendix B, and
the correction term is

1
u1:8./\/l—R2. (51)
Therefore, withx; and its solution, the PCD is eliminated.
We emphasize that the case with is for the pair 3, for
whichr is the proper coordinate. This is the main difference
between the two different choices of the adiabatic coordi-
nates. The resultt9) and(51) further support our assertion
that the PCD is caused by the “bad” choice of coordinates;
the new asymmetric coordinatésR) correct for the pair 1
+3, but not for 2+ 3.

Finally, we then have

Lz, Lo A Eluri=o
oM VR BMRE 2R, 7 E|YR=
(52)
or
L V2 o’ 5+ 75 —E[¢(R)=0
ToM VR 24, +7n'—E|#(R)=0.
The sign of the expression = (1—(1/4c?)[m(m

+2M)/M?])=1—€(2+ €)/4c? depends on the mass ratio
e=m/M; for e<s—1+1+4c?=0.51 it is positive. So, for
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€<0.51, we have the correct sign and proper behavior for the 1 1 1

effective potential. As noted earlier, potentigl represents H=T 'HT= Vi PZ+ v PP p

the case in which the particle 2 is stationary, and the result 2

(49) is thus similar to Eq(22), with the PCD. —N(T 2 )| T2+ F)(F)]). (53

By a symmetric treatment of both particles 1 and 2, as
shown in Ref[7], we should be able to completely eliminate The Hamiltonian  differs from the initial three-body
the PCD. Finally, we emphasize that the positivB?¢on-  Hamiltonian H, Eq. (1), in the mass polarization term
tribution of u, is still not very satisfactory, because it modi- (1/M)p-P and in the reduced mass of the light particle
fies the adiabatic potential. A more complete treatment of alivhich becomesu, instead ofu;.
nonadiabatic corrections is therefore needed to fully resolve The transformed Hamiltoniafi?, Eq. (53), immediately
the problem(6]. This is of course a more difficult task, be- suggests an improved ansatz for the wave function, i.e., we
cause the simple BOA ansa2(x,y)=xx(y)#(x) must be take WB=y(x)T 1x,(y), where x4(y) is the solution
extended 7] by including more terms for configuration mix- of [(1/2u,)(p?+ w?) =N (T|)(F| T2+ T )| T) Ixx(Y)
ing. =0; it differs from yx,(y) in reduced mass, here it |8,
The result of this section in an unsymmetrized formwhile in Eq.(8) it is u3. Then,
should be especially useful in treating asymmetric system

with different heavy particles 1 and 2, corresponding to a 1 o o—1 , 1
“heteronuclear molecular” system. (T X HIT S x0 () =(T Xx|m Pery PP

2
IV. PARTICLE BOOST FACTOR w 1
~ o AT w0 (54

We return to the original adiabatic coordinatiesy) of
Sec. I, and analyze the situation with regard to the PCDye show below that the nonadiabatic contribution in Eq.
employing the earlier suggestido) in Ref.[5]; that is, the  (54) exhibits the desired behavior, i.e., it is of the order of
introduction of a suitable particle boost fact®BF) may  1/x2 or smaller, thus no PCD. If the operafbr ! in Eq. (54)
remedy the PCD associated with the adiabatic representatiop. gjlowed to operate oft{, then we should get back td
The discussion below is mathematically less rigorous thagith h,, and the mass polarization term disappears. How-
the treatment given in Sec. lll, but brings out the physicsgyer  is a solution ofh; with reduced masg replaced by
more clearly. As it will be seen below, the two approaches,uz; the difference is a smati>-dependent term which, when

are nevertheless similar, as they should be. The PBF is to hg,5|,ated with respect |2, gives a It contribution. To
introduced to the BOA wave function because the originaly,eid this complication, we ,require that L operates ory

form is such that the light particle 3 may not be “following” ather than orf. The following calculation is carried out
particle 1 or 2 when the motion of the heavy particles are,sing explicitly this boosted functiofi~Ly.
included byy{x). We recall that the disease similar to this  jrot \ve examine the adiabatic potential. From the trans-

was found earlier in connection with high-energy ion-atom, Hamiltonian, we choose as a fast Hamiltonian
charge exchange collisioi8]. A similar difficulty will be s (v,%)
3 ]

shown to appear here also in the near-zero energy case.
The particle boost factor for the light partic, may _ 1

assume a simple fori,=e'""V at largex, wherev is an ha(y,x)=5— p2— N/ (T 2| f)(F|T2+|f){(f]). (55

adjustable parameter and the conjugated variablegyaug M2

and(x,P), for fast and slow, respectively. This form W is : .

arrived at by examining, for example, the asymptotic behav:rl;gh ?nrngu;:seflﬂm ass, in Eq. (59 consists of all prefactors to

ior of the wave function¥(r,R) for the (1+3)+2; as ' '

R—e, 1_1+1_1+1)+1 -
V(1 R) = ()[R, p2 ps 2M o im o 2M)2M

where y describes the bound pair ¢13). The plane wave The conditiong5,4] for Efimov effect are now imposed to

part may be expressed, using E¢B. and (23), as this fast Hamiltoniarhs, i.e., strength of the potential’ has

the critical value\, so that the two body subsystem has a
zero-energy bound state. Our new coordinatey+ x/2 al-
lows us, as it was shown in Sec. Ill, to choose

eiP-R:eiP-xeiP-ye

where R=[2(M+m)/2(M+m)]x+[m/(M+m)]y. The

second factor is identified %/ and the new wave function in 2uoN =95, (57)
the Born-Oppenheimer approximation is given mF° . ) . )
= (X)Wyxy(y), Wherey, is a solution of Eq(8). Existence of the eigenstaf€ " x,) with the energy- w* for

The need for such a term also arises if we examine théhe Hamiltonianh; leads to the condition for the depen-
Hamiltonian obtained as{=T 'HT, whereT is a trans- dence orx, equivalent to Eq(19):
lation operator given byr=e'?*2, j.e., for the transforma- B s B
tion of coordinates such that—y+x/2(=r). (It can be 1 1 N 2ye” "+ [ (0= y)x—2y]e”
shown that we get exactly the same result if we consider y° y(y+w)? yx(y°— w?)? '
transformationy—y—x/2.) We have (58
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with the solution WhenU is combined with— w%(x), a total resulting po-
tential U is
c
w(X)==+0(x"?), (59)
X U0=T(0 w?(X) ( ¢ 1 2-c\1 Lo
X)=U(X)— ==\t —| = X3,

wherec satisfiese °=c. We have thus obtained the desired 242 2uz  2M 1+c) X
behavior of the potentiat w?(x), which is long range and (65)

attractive. Note that, unlike in Sec. Il and E@6), we do not

have the spurious behavior afx) at largex in the present where the coefficient of the- 1/x? part is positive because
case, because in Eq&4) and(55), only u, arises. Thisisa ¢=0.5671k2. Hence both, the infinite range and the attrac-
direct consequence of the fact thatis used in Eq.54), tiveness for all distances are present, resulting in the Efi-

instead ofy. _ mov effect, although the strength of the potential is some-
The unnormalized eigenstdt€) of thehs with the energy  What changed. A direct comparison of E§5) with that in
—w? is given as Eq. (52) is difficult because two different variablesand R
are involved.
o 1+T2 We emphasize that the result of this section using the
T x~[s)= PP w? ). (60 modified BO ansatz is similar to the treatment given in Sec.

Ill, mainly because the transformatidh changes the vari-

The leading nonadiabatic correction comes from two contri-@blesy to r=y+x/2. Therefore, the DCS approach adopts
butions, a term proportional 8% and a term proportional to the (r,R) set, while in Sec. IV we have effectivelfr x)

P.-p. We name theri(x) andw(x), respectively. We have rather than the sdy x) used in Sec. Il and in previous work.
The mixed sefr,x) obviously introduces the mass polariza-

T00= 1 &P = 1 ((VS|V,s)  [(5]Vs)|? tion term.
METETEMTER) T GR)Y?
1 1 V. CONCLUSION
M{s[s) (y+w) (62) We have reexamined the Efimov effect within the frame-
work of the adiabatic state representation, where the neces-
and sary effective potential with the- 1/x?> behavior is obtained
. - explicitly in the lowest order of the approximation. However,
W(x) = 1 (T~ 5P-p| T )= 1 (s[=ip|Vys) it is important to make sure that the nonadiabatic correction
M X XM (s[s) term does not affect this general behavior of the adiabatic
’ ) s o potential. In Ref[5], the leading correction term was shown
__ £~ 1 " 2y°+ 207+ (0"~ ¥ X to exhibit the pseudo-Coulomb disea@@CD), although it
M(sTs) | (y+w)? ex(y*— 0?)? ' may be cancelled by the higher order correctiféis
62) We have shown in Sec. Il that a proper choice of the

Jacobi coordinates improved the behavior of the leading
The terms that appear in Eq6.1) and(62) have the follow- ~Nnonadiabatic correction potential and thus eliminated the

ing forms in the limit wherx— oe: PCD. In Sec. IV it was further shown that by giving a boost
to the “conventional” adiabatic system, i.e., by allowing the

1 1 3c y heavy particles to move from their fixed position via the

(),Jr—w)ef ?— WJFO(X )s particle boost factofPBF), the model has been improved

again and the PCD disappeared. Of course these two ap-
2(1+c) proachegDCS and PBFare related; the PBF is effectively
— x+0(x9), similar to the choice of new coordinates from Sec. lll.

Cy It is surprising that such a PBF is needed in the present
case of nearly zero-energy collision. In fact, the energy scale
involved here for the motion of the heavy patrticles relative to
the near-zero energy of the pair may be such that the relative
_ smallness is the essential factor; the energy of the heavy
The total potential nonadiabatic potentld(x) is then the particle motion is still “high” relative to the small near-zero

(sls)y=

29’4+ 2w+ (w’—y?)wx (2-c)c N
ewxx( ,}/2_ w2)3 - ’}/4)(

O(x?). (63

sum of Egqs(61) and (62), binding energy for the pair.

Note added in proofThe nonlocal model studied here and
~ _ _ 1 29y?+20%+ (0?— y?) ox in Refs.[4] and [5] requires careful analysis, because the
U (%) =u(x) +w(x)=— M(S[S) (72— w?)? long range aspect of the problem is crucial. A numerical

study of this important question has been carried out recently
1 2-c1 3 [9]. The discussion on the reduced mass in the fast Hamil-
=T oM Itcx2 O(x) 64 tonian in that paper is consistent with the discussion given in

Sec. Il of the present paper, in that, in order to obtain a
which no longer exhibits the g/behavior, i.e., the PCD is consistent solution, the same reduced magther u, or u3)
absent. should be used in the fast Hamiltonian and in the definition
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of the coupling constant for the two-body zero-energy boundvhich is transformed into a contour integral
state.

2\ q aq Beliar/A)
— &d + - .
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APPENDIX A: @ AND B INTEGRALS ) .
Next, the constanB is defined by
The adiabatic wave functiogg(q) defined by Eq(33) in
the momentum space is explicitly evaluated. It involves two B=(f |-|-—1| )
. X . AllA IXR
constantsy and 8. First, « is defined as
, f i N aTy?t
@ = U a2 2025 282 | m25 2
a=(flxa)= | & A+ D)@+ A |7ty
(flxr) q (Pt o)) (GP+ ) | P+ 7
B
BTa Sy vowamwyvidf (A5)
A A(g°+ y°A
+A(q2+y2A2) : (A1) (q°+y°A%)
The angular integration gives By comparison of Eq(A5) with Eq. (A1) we see that the
substitutions\' —\'/A, aSBIA, ySyA, make the inte-
VAN fwd q? 2a gral for B exactly as that fow. We thus have immediately
7 Jo O0 (@ 2@+ ) |07 a
A ( B . 2aA elmoRA)
(igRIA) _ o= (iqRIA) =— .
ple e (A2) A YA Ay )2 T TR (A= o)) (- o))
iQR(Q*+»°A%) [’ (A6)

APPENDIX B: EVALUATION OF THE INTEGRAL  (Vgé&|VRé)

The leading nonadiabatic correction given by E@®), (42) contains an integrdlV €| Vr£€) which is evaluated here in the
two cases, the “weak” and “strong” couplings.
(i) "= y3A% “weak” We have from Eqs(35), (36),

o 2A%w *y2A3 c\2
b= aomy MR=TE(E
R _ o 1 TA Bl
f(q, )_(q2+w2) Eq2+,y2+A(q2+,yZA2) ’ ( )
o ® R 202 1 Ta 20°R g 5
R B (@A (@@ d) | R e?) R T AGE 2RO o) (R o) T A B
Thus the integral becomes
VoV _f e o 1 2w? 1\1?
(Vré|VRE) = q [—3 (P+ (0 + 0d) | RGP+ D) R
de a 20%(Tp+TRY 20> 1
T ] B RAGTE A (@ )P+ A | R(@P ) R
fd3 a iq-R(Ta—TxY 202 1
") 9B R A )@ PR R+ ?) R
+f d? ! 4ot + q2 B3
q AZR(q2+W2)2(q2+ ’}/ZAZ)Z RZ(q2+w2)2 A2 . ( )

After performing an angular integration, E@®3) can be expressed in a form involving contour integrals
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q
B (4*+ ¥ (9°+ w?) (R(q2+w2) )
q e|qR/A) 1
*4”?€ BAR(q2+yz)(q2+w2)2(q2+72A2) R( 2+w2> ﬁ)

|
=
T
b

(VeéVre)=2m 35 dq[g

q
1
R(q2+w R

tam § 49 5 R(q7+ 7)) (@2 @) (G2 72A)
) qe|qR/A) 1
87 fﬁ 99 5 RA P+ ) (P D a2+ 7AD) R(q2+w ﬁ)
qZ 4LL) q2
27 § 49 A T (R2< 7o >2+/?)' (59

In the limit of R— o, the main contribution is given by the last integral in BH84) and all other terms go to zero faster. Thus,

1 ¢
<VR§|VR§>EW YR (B5)
(i) N'=9° “strong” In this case, we have
@ (1-A%y 2y°A
B oAk, - NRITTaTan o (89
R . (44 1 TA
§(q,R)= (Pt od | B q2+y2+ A(qZT 12+ AD) |
R R 202 AN Ta ( 20X |q .
RER= G @A o?) |R@Zre?) TR T ARG AR ed) (X2 e?) A B
Therefore, the integral becomes
e et I o |
RETR U8 @A @+ R+
fdg a 204(To+Toh 2w? +£
1B RAGZ+ ) (07 + 0D A2+ 1?AP) | R(gP+0?) " R
f " iq-R(TA—TaY 202 1
45 R PR | R oD R
" 1 4" q2 B8
f q APR(P+ 02)A(q2+ v2A%)2 | R(? +wz)z AZ): (B8)
After performing an angular integration, this integral can be expressed as a contour integral,
<V |V >_2 %d [a q ( 2w2 N 1) 2
REVRE=2T 49 B @72t o) | R )
q e|qR/A
tam fﬁ 995 ARG+ /(07 @D 2o+ 12AD) (R(q + 2) )
qe|qR/A
+4”3gdqﬁ|R2<q2+yz><q 2+ ) X(q7+ yPA%) ( R(q +w2> )
® qe|qR/A
8T 3§ 95 IR%(qZ+ YD (P + DA GET 77AD) | R ( (q +w2) )
q2 4(1) q2
+2m § dqg AZR(G%+ 09)2(q%+ 72A%)2 | RA(Q2+ 0?)? t Azl (B9)
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In the limit of R— o, the main contribution is given by the first integral in EB9), and all others go to zero. Thus

1 2
<VR§|VR§>EW@- (B10
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