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Efimov effect in the distorted cluster state representation

Aleksandr Estrin, Marijan Kosˇtrun, and Yukap Hahn
Physics Department, University of Connecticut, Storrs, Connecticut 06269

~Received 30 April 1997!

The Efimov effect for a three-body system was studied previously in an adiabatic representation, where the
distance between two ‘‘heavy’’ particles was represented byx, and the third ‘‘light’’ particle was described by
coordinatey relative to the center of mass of the heavy ones. Whenx is held fixed, an exact solution for the
light particle can be obtained if the interaction is assumed to be of separable form. The resulting adiabatic
potential between the heavy particles shows the critical21/x2 behavior that leads to an infinite number of
bound states. However, subsequently the leading nonadiabatic effect was shown to generate an undesirable
correction of 1/x type, the pseudo-Coulomb disease~PCD!. To remedy the PCD, the Efimov effect is reexam-
ined in the adiabatic state representation, but with the new Jacobi coordinates~r ,R!, wherer describes the
distance between one of the heavy particles and the light one andR is the position of the other heavy particle
with respect to the center of mass of the subsystem of light-heavy particles. It is then shown that the adiabatic
potential in this distorted cluster state representation behaves as21/R2 at largeR if the pair described byr has
a zero-energy bound state. Moreover, in this case the leading nonadiabatic correction term does not manifest
the PCD, thus explicitly showing that the PCD is due to the ‘‘wrong’’ choice of coordinates~x,y!. Alterna-
tively, a particle boost factor is introduced to eliminate the PCD in the treatment with the original~x,y!
coordinates. This is shown to be equivalent to the change in coordinates, described above. Such a factor is
usually associated with high energy collisions, but for the first time shown here to play also an important role
in near zero-energy situations.@S0556-2813~98!05401-6#

PACS number~s!: 21.45.1v, 21.10.Dr, 25.70.2z, 33.15.Fm
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I. INTRODUCTION

The Efimov effect@1–4# states that a three body syste
will have an arbitrarily large number of bound states if
two-body subsystem supports a zero-energy bound state
large size of the two-body bound state with an infinite sc
tering length gives rise to a long-range effective potentia
the form21/x2. Fonsecaet al. @4# continued the discussio
of the Efimov effect within the framework of the Born
Oppenheimer approximation~BOA!. They constructed a
simple three-body model in which one light particle is bou
simultaneously to two heavy particles. The adiabatic pot
tial obtained analytically in this solvable model exhibite
directly the desired behaviorUa;21/x2, where x is the
relative distance between the two heavy particles. Sub
quently it was shown@5#, however, that the first leading co
rection to the adiabatic picture contributed a term of the fo
11/x, thus making the proof of Ref.@4# inoperative.

An attempt is made here to improve the result of previo
works @5,4#, mainly by the choice of proper adiabatic coo
dinates. In particular, we are concerned with the leading c
rection to the adiabatic potential which behaves at largex as
11/x. This pseudo-Coulomb disease~PCD! is disastrous,
because the adiabatic potential21/x2 will be completely
wiped out forx large enough. It was then suggested@5# that
~a! the PCD was due to a bad choice of the coordinates~x,y!
and that a properly chosen coordinate system may avoid
PCD difficulties altogether. Alternatively,~b! the higher or-
der corrections to the adiabatic potential may be such a
cancel the PCD.~c! Finally, the PCD may also be cured b
introducing a particle boost factor. The points~a! and~c! are
the subject of study in this paper, while point~b! will be
discussed elsewhere@6#.
570556-2813/98/57~1!/50~11!/$15.00
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For clarity and to introduce notation, we will first summ
rize in Sec. II the proof of the Efimov effect in the ‘‘conven
tional’’ molecular coordinates, as was done in Refs.@4# and
@5#, and the leading correction@4# with the PCD. In Sec. III
we obtain the Efimov effect using the new distorted clus
states@7# representation~DCS! in the BOA. Absence of the
PCD in this representation is demonstrated. Section IV w
show the connection between the results of Secs. II and
by introducing a particle boost factor@8,6# ~PBF!. A drastic
improvement in consistency of the results on the Efim
effect is obtained. The conclusion and discussion are p
sented in Sec. V.

II. THE EFIMOV EFFECT IN THE ADIABATIC
REPRESENTATION

We consider a ‘‘molecular model’’ three-body syste
@5,4# of two heavy and one light particles, where a two-bo
subsystem supports a zero-energy bound state. It was sh
in @1–3# that under these conditions an attractive potentia
infinite range appears between heavy particles, giving ris
an infinite number of bound states in the three-body Ham
tonian. This is known as the Efimov effect. Our discussion
Efimov effect closely follows that of@5# and @4#, adopting
the notation of@5#.

Following Fonsecaet al. @4#, we choose a system of spin
less particles with masses of two heavy particles 1 and
be equal toM and mass of the third light one to bem. The
Jacobi coordinatesx is for the pair~1 and 2! of heavy par-
ticles, andy for particle 3 with respect to the center of ma
of ~1 and 2!, see Fig. 1~a!. Their conjugate momenta areP
andp, respectively. The three-body Hamiltonian of the sy
tem is then
50 © 1998 The American Physical Society
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H5
1

M
P21

1

2m3
p21V1S y1

x

2D1V2S y2
x

2D1V3~x!

5Kx1h3~y,x!, ~1!

whereKx5P2/M . If r1 , r2 , andr3 are the coordinates of th
particles 1, 2, and 3 with respect to a fixed reference, then
Jacobi coordinatesx andy are given by

x5r12r2 ,

y5r32
r11r2

2
. ~2!

The reduced massm3 of the light particle is defined by

1

m3
5

1

2M
1

1

m
. ~3!

We note thath3(y,x) is a two-body Hamiltonian in which
the 4[(112) subsystem is frozen; 413 is then regarded a
a two body.V1 represents interaction between particles 2 a
3, V2 is between the 1 and 3, andV3 is between the 1 and 2
All interactions are assumed to be of short range. The p
ticular form of interaction was chosen so thatV is separable
@5,4#, i.e., Vi52lu f i&^ f i u, wherei 51,2,3 is the pair index
~1 for pair of particles 2 and 3, etc.!. The coupling strengthl
is positive andu f & is of the form

^yu f &5
e2gy

y
, y5uyu,

FIG. 1. ~a! The Jacobi coordinates~x,y! used in Refs.@5# and
@4#. ~b! The alternative Jacobi coordinates~r ,R! employed in Sec.
III for the distorted cluster state calculation. This choice is n
symmetric in particles 1 and 2.
he

d

r-

^pu f &5
1

p~p21g2!
. ~4!

Operator of the interaction between the light and heavy p
ticles assumes simple form

VS y7
1

2
xD5T61V~y!T7152lT61u f &^ f uT71, ~5!

whereT5eip•x/2 is the translation operator, andp is the mo-
mentum conjugate toy.

In the lowest order Born-Oppenheimer approximati
~BOA!, the wave function of this system is taken to b
C(x,y).xx(y)c(x). The ‘‘fast’’ part xx(y) describes the
light particle motion with respect to the center of mass
two heavy particles, andc~x! is the wave function of relative
‘‘slow’’ motion of the two heavy particles. The initial equa
tion for the wave functionC

~H2E!C~x,y!50 ~6!

separates into two parts; the equation that describes the w
function c~x!, as

^xxu~H2E!uxx&c~x!5S 1

M
P22

1

2m3
v21u1h32EDc~x!

50, ~7!

and the equation forxx(y) given by

F 1

2m3
@v2~x!1p2#1V1S x

2
1yD1V2S x

2
2yD Gxx~y!50.

~8!

The energy2v2/(2m3) that appears as the eigenvalue in E
~8! contains thex coordinate as parameter. In Eq.~7!,
2v2(x)/(2m3) appears again, but due to its dependence
x, it becomes the effective interaction energy between
two heavy particles. The quantitiesu andh3 that appear in
Eq. ~7! are defined by

u~x!5
1

M
^xxuP2uxx&,

h3~x!5^xxuV3~x!uxx&5V3 . ~9!

The quantityu(x) is a nonadiabatic contribution to the adi
batic interaction potential2v2/2m3 , while h3 is neglected
due to its short range, without affecting the final result.

We briefly review the previous results of Refs.@5,4#, and
discuss the conditions that lead to the Efimov effect,
within the adiabatic picture. The Efimov effect states th
when a two-body subsystem supports a zero-energy bo
state there can be an infinite number of bound states inv
ing the third particle. But this has been interpreted differen
by different authors. The approach of Fonsecaet al. @4# con-
siders a pseudo two-body subsystem, say 1 and 3, in w
the variables~x,y! are retained but the reduced mass
changed. On the other hand, the approach of Giraud
Hahn, in @5#, takes simplyh3(y,x) as it appears in Eq.~1!,
which is also effectively a ‘‘two-body’’ Hamiltonian in

t
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52 57ALEKSANDR ESTRIN, MARIJAN KOŠTRUN, AND YUKAP HAHN
which one body is (112) and the other is particle 3. Thu
in order to literally conform to the original definition of th
Efimov effect within adiabatic picture, Fonsecaet al. in @4#
introduced a two-body subsystem (113) Hamiltonian, as

H ~2!5
1

2m2
p22Lu f &^ f u, ~10!

where the reduced massm2 is given by

1

m2
5

1

m
1

1

M
. ~11!

It is important to note thatH (2) still contains the coordinatex
in u f &, and p is conjugate toy. The only change from
h3(y,x) in Eq. ~1! is to replacem3 by m2 and keeping only
V2 . Obviously this does not make the Hamiltonian truly tw
body. @See Sec. III for a correct two-body Hamiltonian d
scribing (m1M ), with the variablesr and R.# Therefore
H (2) is not physical. Nevertheless,H (2) is useful in clarifying
the role played by the reduced mass, as shown below. S
H (2) is used here only for illustrating the importance ofm3 in
Eq. ~1!, the final conclusion of the Efimov effect is una
fected; within the picture withh3 , where 112[4 is frozen,
the two-body picture of 413 is sufficient and introduction o
H (2) is not needed although convenient for discussion.

The condition on the coupling strength thatH (2) supports
a zero-energy bound state is then

1

2m2L
5

1

g3 . ~12!

On the other hand, Eq.~8! describes the state of the ligh
particle in the system of two heavy particles, which act a
frozen single particle. We have

~v21p222m3l@Tu f &^ f uT211T21u f &^ f uT# !xx~y!50,
~13!

whereT5eip•x/2 is a translational factor andp is the momen-
tum conjugate toy. In momentum space its solution can b
written implicitly as

xx~p!5
2m3l

p21v2 @Tu f &^ f uT21uxx&1T21u f &^ f uTuxx&].

~14!

Using the symmetry of the ground state,^ f uT21ux x̄&
5^ f uTux x̄&, we obtain the condition for existence of a bou
state with energy2v2(x)

1

2m3l
5 K fU T211

p21v2U f L . ~15!

To further clarify the role of reduced massm2 and m3 , we
impose that the coupling strengthL of Eq. ~12! in the two-
body Hamiltonian and the coupling strengthl of Eq. ~15! in
the three-body Hamiltonian, are the same. This condit
yields, after the integration of Eq.~15!,
ce

a

n

m2

m3

1

g3 5
1

g~g1v!2 1
2ge2vx1@~v22g2!x22g#e2gx

gx~g22v2!2 .

~16!

Equation~16! can be solved numerically forv for different
values ofx, using the ratiom2 /m3 as a parameter. We have
with e5m/M ,

m2

m3
512

e

2~11e!
. ~17!

Different solutions forv5v(x) are shown in Fig. 2, for
various values of the mass ratioe and for parameterg51.
The main feature of the solutionv(x) is that, with respect to
its behavior as function of the heavy particle separationx,
there are three regions, separated by two characteristic
tancesxm andx0 , xm,x0 . For x,xm , the solutionv(x) is
not important because the short-range effects of the pote
V3(x) in Eq. ~7!, acting between the two heavy particle
cannot be neglected. In the regionxm!x!x0 , the solution
of Eq. ~16! is v(x).c/x1O(x22), wherec is the solution
of the transcendental equatione2c5c. In the regionx0!x,
the solution of Eq.~16! is v(x).ge/2. While characteristic
distancexm depends mainly on the range of potentialV3(x)
and parameterg, a simple analysis shows that the charact
istic distancex0 can be approximated byx0.2c/ge.

The main problem of the approach of Fonsecaet al. @4#
using H (2) now becomes apparent. Having the parametee
.0 at this stage of the analysis prevents any progress.e
.0 for values ofx such thatx@x0 the attractive potentia
2v2/(2m3) in Eq. ~7! has an unphysical constant value
2g2e2/(8m3) rather than having a physicalx dependence.
This leads then to the requirement thatm2→m3 , or equiva-
lently e has to be zero, which makes this approach equiva
to the approach of the Giraud and Hahn@5# whereH (2) was
never introduced but stayed withh3 and Eq.~1!. That is, in

FIG. 2. Numerical solution forv5v(x) in log-log scale, from
Eq. ~16!. The values used for parameters areg51 and mass ratio
e51023, 1026, and 10210.
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Ref. @5#, a two-body subsystem is described by the effect
two-body Hamiltonian of the form

Heff
~2!5

1

2m3
p22L8Tu f &^ f uT215h3~y,x!2V12V3 .

~18!

Compared to the HamiltonianH (2) of Eq. ~10! used by Fon-
secaet al. @4#, we see that the reduced mass of the lig
particle must bem3 and notm2 . With the choice~18!, the
reduced massm2 in Eqs. ~10!–~17! is replaced by reduced
massm3 , as it should, in accordance with Eq.~1!.

We now impose the condition that the coupling stren
L8 in the HamiltonianHeff

(2) of Eq. ~18! is the same as the
coupling strengthl introduced in the three-body Hami
tonian, Eq.~8!. The functionv5v(x) in Eq. ~7! is then the
solution to the transcendental equation

1

g3 5
1

g~g1v!2 1
2ge2vx1@~v22g2!x22g#e2gx

gx~g22v2!2 .

~19!

For the values of the large heavy particles separation
tancex, i.e., x@g21, the solution forv5v(x) is of the
form

v~x!5
c

x
1O~x22!, ~20!

wherec is again the solution of the equatione2c5c. The
attractive potential that appears in the Eq.~7!, that describes
the slow coordinatex, is of the form 2v2/(2m3)5
2c2/(2m3)x22. This potential has all the desired propertie
it is attractive and it goes to zero for large values of t
heavy particle separation distancex. If nonadiabatic correc-
tion u in Eq. ~7! is neglected, this results in an infinite num
ber of the bound states, the Efimov effect. One import
distinction is the fact that the ‘‘two-body’’ bound states he
implies the fixed cluster (112), to be counted as one pa
ticle.

Our next concern is the calculation of the nonadiaba
correctionu in Eq. ~7!, as discussed in Ref.@5#. Using the
solution forv as a function ofx, the heavy particle separa
tion distance, Eq.~7! describes the two heavy particles in th
adiabatic potential generated by the light particle, as

S 1

M
P22

1

2m3

c2

x2 1u1h32EDc~x!50, ~21!

where the nonadiabatic correctionu is included.
As shown in Ref.@5#, potentialu can be evaluated within

the adiabatic model. In the lowest order it was found tha

u~x!5
1

M

e

21e

cg

~11c!x
1O~x22!, ~22!

which describes the pseudo-Coulomb disease~PCD!. This
term makes the proof of the existence of Efimov effe
within the adiabatic model incomplete, because the cor
tion u(x) to the adiabatic potential is not small at largex, as
compared to2v2(x)/2m3 .
e

t

h

s-

;

t

c

t
c-

The main purpose of the present paper is to address
problem by first showing that a proper choice of coordin
system can cure the PCD~Sec. III!. Alternatively, a correc-
tive factor on the wave functionxx in terms of a particle
boost factor~PBF! can also remedy the disease asympto
cally ~Sec. IV!.

III. DISTORTED CLUSTER STATES

As one of possible resolutions@5# of the PCD problem,
we consider changing the coordinates. A new set of Jac
coordinates for a three-body system, as shown in Fig. 1~b! is

r5r12r3 ,

R5
mr31M r1

M1m
2r2 . ~23!

These new coordinates@7# are different from the earlier se
~x,y! in the most critical way, as will become clear later. W
especially note that this new set treats particles 1 and 2
ferently. The adiabatic states generated for the pair (311)
are termed distorted cluster states~DCS!. By symmetry, we
can also easily consider ther 85r22r3 for the (213) bound
pair. In fact, the choice~23! treats the pair (113) differently
from the other pair (213). This can be easily remedied b
constructing a 2 by 2matrix equation@7# of the Faddeev
type. However, we retain this asymmetric form to illustra
the main point of this section. That is, the pair (113) is
treated here by a new coordinate, while the pair (213) is
treated in nearly identical way as in the original coordina
~x,y!. Therefore, the PCD disappears, as will be shown
low, for pair (113) but not for (213).

The Hamiltonian in the lab system is

H tot52
1

2M
~¹ r1

2 1¹ r2

2 !2
1

2m
¹ r3

2 1V11V21V3 ,

~24!

where we set\51. In the new coordinate system, the tot
kinetic energy in Eq.~24! is separable; neglecting the tot
center of mass motion, we have

H52
1

2M ¹R
2 2

1

2m2
¹ r

21V11V21V3 , ~25!

whereM5M (M1m)/(2M1m) and m25Mm/(M1m).
In the following we again choose separable potentials forV1
andV2 :

V15V1~ ur22r3u!5V1S UR2
M

M1m
rU D

52lTAu f A&^ f AuTA
21, ~26!

V25V2~ ur12r3u!5V2~ ur u!52lu f &^ f u. ~27!

V3 is a short-range potential between heavy particles 1 an
and is neglected here.TA is coordinate translation operato
andA is a mass ratio, defined by
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TA5expF iqR

A G
and

A5
M

M1m
, ~28!

andq is now the momentum conjugate tor . Note that from
the definition of A, 1/2<A,1 for m<M . The potential
form factor f is given explicitly by

^ f Aur &5
exp@2grA#

rA
,^ f Auq&5

1

Ap~q21g2A2!
, ~29!

^ f ur &5
exp@2gr #

r
,^ f uq&5

1

p~q21g2!
. ~30!

In the adiabatic approximation the three-body wave funct
C~R,r ! is again set in the BOA formC(R,r )>xR(r )c(R).
Then, (H2E)uC&50 may be cast@5# into a set of two equa-
tions; first we introduce the distorted cluster state funct
@7# defined by

F2
1

2m2
¹ r

21
v2

2m2
2l~TAu f A&^ f AuTA

211u f &^ f u!GxR~r !50.

~31!

By projecting with the normalized̂xRu, we also have foruc&

F2
1

2M ~¹R
2 1^xRu¹R

2 uxR&!2
v2

2m2
1^xRuV3uxR&2EGc~R!

50. ~32!

Equation~31! in momentum space assumes the form

~q21v2!xR~q!5
l8

p F a

q21g2 1
bTA

A~q21g2A2!G , ~33!

wherel852m2l, ^ f uxR&5a and ^ f AuTA
21uxR&5b. This is

to be compared with Eq.~14!. In the Fourier transformed
space, Eq.~33! becomes

xR~q!5
l8

p~q21v2! F a

q21g2 1
bTA

A~q21g2A2!G , ~34!

so that explicitly

a5E d3q
l8

p2~q21v2!~q21g2! F a

q21g2 1
bTA

A~q21g2A2!G ,
~35!

b5E d3q
l8

p2A~q21v2!~q21g2A2!
F aTA

21

q21g2

1
b

A~q21g2A2!
G . ~36!

The integrals in Eqs.~35! and~36! are evaluated in Appendix
A, and the coupled equations~35! and ~36! become
n

n

a5l8F 1

g~g1v!2 a1
2e2Rv/A

R~g22v2!~g2A22v2!
bG ,

~37!

b5l8F 1

gA3~gA1v!2 b1
2e2Rv/A

R~g22v2!~g2A22v2!
a G .

~38!

Solutions of the system of two equations~37! and ~38! give
conditions onl8 and on the adiabatic energyv. To the low-
est order and in the limits ofR→` andv→0, the coupling
term becomes small and we have

S 1

l8
2

1

g3 0

0
1

l8
2

1

g3A5

D S a
b D>0. ~39!

That is, the critical values forl8 are l185g3 and l28
5g3A5. Note thatA,1, so thatl18>l28 . This is reasonable
because the strength of the interaction can be smaller w
one of the particles in the zero-energy bound state is m
heavier. The same result is obtained for the two partic
~heavy-light!. Thus, at the critical values forl8, we have
either

1

l18
5E d3q

f 2~q!

q2 5
1

g3

or

1

l28
5E d3q

f A
2~q!

q2 5
1

g3A5 . ~40!

The next order in power of 1/R andv gives

S 2v

g4 2
2e2vR/A

Rg4A2

2
2e2vR/A

Rg4A2

2v

g4A6

D 50, ~41!

or vR/A5e2vR/A. As before, the solution of this equation
a constantc>0.5671. The ‘‘slow’’ BOA equation now be-
comes

F2
1

2M ¹R
2 1u82

c2A2

2R2m2
1h82EGc~R!50, ~42!

where the adiabatic potentialc2A2/2m2R2 will give
the Efimov effect, provided that the correctio
u852(1/2M)^xRu¹R

2 uxR& to the adiabatic potential doe
not show the PCD. The short-range potentialh8
5^xRuV3uxR&→0 faster than 1/R2 asR→`.

Before we proceed with the evaluation of this correctio
we first normalizexR as^xRuxR&51 for each fixedR. ~Here
we assume that the binding energy of the statexR is slightly
negative. Otherwise, it is not normalizable in the limit
zero energy.! Then,
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^xRuxR&5
l82b2

p2 E d3q
1

~q21v2!2

1

~q21g2A2!

1
a2

b2

1

~q21g2!2 1
a

b

TA1TA
21

~q21g2!~q21g2A2!

5l82b2
2

p R dq
q2

~q21v2!2

1

A2~q21g2A2!

1
a2

b2

1

~q21g2!2 1
a

b

2Ae~ iqR/A!

iqR~q21g2!~q21g2A2!
,

wherea/b is R dependent andTA5eiq•R/A.
By contour integrations and in the limit ofR→` and

v→0, we obtain

l82b25
vg4

G2 , G25S a2

b2 1
2c

A3

a

b
1

1

A6D , ~43!

and the normalizedxR(q) then has the formxR(q)
5N(R)j(q,R), where

N~R!5
v1/2g2

pG
, ~44!

j~q,R!5
1

~q21v2! Fab 1

q21g2 1
TA

A~q21g2A2!G . ~45!

We note that

^j~q,R!uj~q,R!&5N22

and

¹R~N22!52^j~q,R!u¹Rj~q,R!&. ~46!

Furthermore,

^xRu~2¹R
2 !uxR&5N2^¹Rju¹Rj&22^ju~¹RN!u¹Rj&

1^ju~2¹R
2N!uj&

52
1

N2 S dN

dRD 2

1N2^¹Rju¹Rj&. ~47!

The quantitiesa/b,N(R),j(q,R) depend on the critical val
ues forl8. So we consider the following two cases.

~i! l85l285g3A5; the weak coupling. For this value o
l8 we have in the limit ofR→`

^xRu2¹R
2 uxR&52

1

4R2 1N2^¹Rju¹Rj&, ~48!

with the explicit expressions for the quantities in Eqs.~44!
and ~45!
A5
M

M1m
,1,

a

b
5

2A2v

~12A5!g
,

N~R!5
g2A3

p S c

RD ~1/2!

, G5
1

A3 .

The integralN2^¹Rju¹Rj& for l28 is evaluated in Appendix
B, and the correctionu8 to the adiabatic potential assume
the form

u25
1

2M g
c

R
. ~49!

Thus, this case is similar to the previous result summari
in Sec. II, and needsM@m in order to suppressu2 and to
save the Efimov effect. That is, the new choice~r ,R! has
failed to remedy the PCD. This is as expected, because
choice ~23! for r treats heavy particle 1 and 2 differently
Apparently l28 corresponds to bound state associated w
particles 213, not 113.

~ii ! l85l185g3; the strong coupling. In the limit of
R→`, we now have

a

b
52

~12A5!g

2A2v
, N~R!5

2g2A2

p~12A5!
v3/2, G5

a

b

and thus

^xRu2¹R
2 uxR&52

9

4R2 1N2^¹Rju¹Rj&. ~50!

The integralN2^¹Rju¹Rj& is evaluated in Appendix B, and
the correction term is

u15
1

8MR2 . ~51!

Therefore, withl18 and its solution, the PCD is eliminated
We emphasize that the case withl18 is for the pair 113, for
which r is the proper coordinate. This is the main differen
between the two different choices of the adiabatic coor
nates. The results~49! and~51! further support our assertio
that the PCD is caused by the ‘‘bad’’ choice of coordinat
the new asymmetric coordinates~r ,R! correct for the pair 1
13, but not for 213.

Finally, we then have

F2
1

2M ¹
R̄

2
1

1

8MR22
c2A2

2R2m2
1h82EGc~R!50

~52!

or

F2
1

2M ¹R
2 2

v2

2m2
d1h82EGc~R!50.

The sign of the expression d5(12(1/4c2)@m(m
12M )/M2#)512e(21e)/4c2 depends on the mass rat
e5m/M ; for e<211A114c250.51 it is positive. So, for
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e<0.51, we have the correct sign and proper behavior for
effective potential. As noted earlier, potentialu8 represents
the case in which the particle 2 is stationary, and the re
~49! is thus similar to Eq.~22!, with the PCD.

By a symmetric treatment of both particles 1 and 2,
shown in Ref.@7#, we should be able to completely elimina
the PCD. Finally, we emphasize that the positive 1/R2 con-
tribution of u1 is still not very satisfactory, because it mod
fies the adiabatic potential. A more complete treatment of
nonadiabatic corrections is therefore needed to fully reso
the problem@6#. This is of course a more difficult task, be
cause the simple BOA ansatzC(x,y).xx(y)c(x) must be
extended@7# by including more terms for configuration mix
ing.

The result of this section in an unsymmetrized fo
should be especially useful in treating asymmetric sys
with different heavy particles 1 and 2, corresponding to
‘‘heteronuclear molecular’’ system.

IV. PARTICLE BOOST FACTOR

We return to the original adiabatic coordinates~x,y! of
Sec. II, and analyze the situation with regard to the P
employing the earlier suggestion~c! in Ref. @5#; that is, the
introduction of a suitable particle boost factor~PBF! may
remedy the PCD associated with the adiabatic representa
The discussion below is mathematically less rigorous t
the treatment given in Sec. III, but brings out the phys
more clearly. As it will be seen below, the two approach
are nevertheless similar, as they should be. The PBF is t
introduced to the BOA wave function because the origi
form is such that the light particle 3 may not be ‘‘following
particle 1 or 2 when the motion of the heavy particles
included byc~x!. We recall that the disease similar to th
was found earlier in connection with high-energy ion-ato
charge exchange collisions@8#. A similar difficulty will be
shown to appear here also in the near-zero energy case

The particle boost factor for the light particleWn may
assume a simple formWn5einP•y at largex, wheren is an
adjustable parameter and the conjugated variables are~y,p!
and~x,P!, for fast and slow, respectively. This form ofW is
arrived at by examining, for example, the asymptotic beh
ior of the wave functionC~r ,R! for the (113)12; as
R→`,

C~r ,R!→xx→`~r !@eiP•R1•••#,

wherex describes the bound pair (113). The plane wave
part may be expressed, using Eqs.~1! and ~23!, as

eiP•R.eiP•xeiP•ye,

where R5@2(M1m)/2(M1m)#x1@m/(M1m)#y. The
second factor is identified toW and the new wave function in
the Born-Oppenheimer approximation is given byĈBO

.c(x)Wxx(y), wherexx is a solution of Eq.~8!.
The need for such a term also arises if we examine

HamiltonianH obtained asH5T21HT, whereT is a trans-
lation operator given byT5eip•x/2, i.e., for the transforma-
tion of coordinates such thaty→y1x/2([r ). ~It can be
shown that we get exactly the same result if we consi
transformationy→y2x/2.! We have
e

lt

s

ll
e

m
a

n.
n
s
s
be
l

e

-

e

r

H5T21HT5
1

M
P21

1

M
p•P1

1

2m2
p2

2l~T22u f &^ f uT21u f &^ f u!. ~53!

The HamiltonianH differs from the initial three-body
Hamiltonian H, Eq. ~1!, in the mass polarization term
(1/M )p•P and in the reduced mass of the light partic
which becomesm2 instead ofm3 .

The transformed HamiltonianH, Eq. ~53!, immediately
suggests an improved ansatz for the wave function, i.e.,
take C̃BO.c(x)T21x̄x(y), where x̄x(y) is the solution
of @(1/2m2)(p21v2)2l8(Tu f &^ f uT211T21u f &^ f uT)#x̄x(y)
50; it differs from xx(y) in reduced mass, here it ism2
while in Eq. ~8! it is m3 . Then,

^T21x̄xuHuT21x̄x&c~x!5^T21x̄xu
1

M
P21

1

M
p•P

2
v2

2m2
uT21x̄x&c~x!. ~54!

We show below that the nonadiabatic contribution in E
~54! exhibits the desired behavior, i.e., it is of the order
1/x2 or smaller, thus no PCD. If the operatorT21 in Eq. ~54!
is allowed to operate onH, then we should get back toH
with h3 , and the mass polarization term disappears. Ho
ever,x̄ is a solution ofh3 with reduced massm3 replaced by
m2 ; the difference is a smallp2-dependent term which, whe
evaluated with respect touxu2, gives a 1/x contribution. To
avoid this complication, we require thatT21 operates onx̄
rather than onH. The following calculation is carried ou
using explicitly this boosted functionT21x̄.

First we examine the adiabatic potential. From the tra
formed HamiltonianH, we choose as a fast Hamiltonia
h̃3(y,x)

h̃3~y,x!5
1

2m2
p22l8~T22u f &^ f uT21u f &^ f u!. ~55!

The reduced massm2 in Eq. ~55! consists of all prefactors to
p2 in H, as@7#,

1

m2
5

1

m3
1

1

2M
5S 1

m
1

1

2M D1
1

2M
. ~56!

The conditions@5,4# for Efimov effect are now imposed to
this fast Hamiltonianh̃3 , i.e., strength of the potentiall8 has
the critical valuel, so that the two body subsystem has
zero-energy bound state. Our new coordinater5y1x/2 al-
lows us, as it was shown in Sec. III, to choose

2m2l85g3. ~57!

Existence of the eigenstateuT21x̄x& with the energy2v2 for
the Hamiltonianh̃3 leads to the condition for thev depen-
dence onx, equivalent to Eq.~19!:

1

g3 5
1

g~g1v!2 1
2ge2vx1@~v22g2!x22g#e2gx

gx~g22v2!2 .

~58!



d

tr

c-
-
e-

the
ec.

ts

.
a-

e-
ces-

r,
ion
atic
n

he
ing

st
e
e

d
ap-

y

ent
ale
to
tive
avy
o

d
he
cal
ntly
mil-

in
a

ion

57 57EFIMOV EFFECT IN THE DISTORTED CLUSTER . . .
with the solution

v~x!5
c

x
1O~x22!, ~59!

wherec satisfiese2c5c. We have thus obtained the desire
behavior of the potential2v2(x), which is long range and
attractive. Note that, unlike in Sec. II and Eq.~16!, we do not
have the spurious behavior ofv~x! at largex in the present
case, because in Eqs.~54! and~55!, only m2 arises. This is a
direct consequence of the fact thatx̄ is used in Eq.~54!,
instead ofx.

The unnormalized eigenstateu §̃& of the h̃3 with the energy
2v2 is given as

T21x̄;u §̃&5
11T22

p21v2 u f &. ~60!

The leading nonadiabatic correction comes from two con
butions, a term proportional toP2 and a term proportional to
P•p. We name themũ(x) andw̃(x), respectively. We have

ũ~x!5
1

M
^§̃uP2u §̃&5

1

M S ^¹x§̃u¹x§̃&

^§̃u §̃&
2

u^§̃u¹x§̃&u2

^§̃u §̃&2 D
5

1

M ^§̃u §̃&

1

~g1v!3 ~61!

and

w̃~x!5
1

M
^T21x̄uP•puT21x̄&5

1

M

^§̃u2 ipu¹x§̃&

^§̃u §̃&

52
1

M ~ §̃u §̃ ! S 1

~g1v!3 1
2g212v21~v22g2!vx

evxx~g22v2!3 D .

~62!

The terms that appear in Eqs.~61! and~62! have the follow-
ing forms in the limit whenx→`:

1

~g1v!3 5
1

g32
3c

g4x
1O~x22!,

^§̃u §̃&5
2~11c!

cg4 x1O~x0!,

2g212v21~v22g2!vx

evxx~g22v2!3 5
~22c!c

g4x
1O~x22!. ~63!

The total potential nonadiabatic potentialŨ(x) is then the
sum of Eqs.~61! and ~62!,

Ũ~x!5ũ~x!1w̃~x!52
1

M ^§̃u §̃&

2g212v21~v22g2!vx

ewxx~g22v2!3

.2
1

2M

22c

11c

1

x2 1O~x23! ~64!

which no longer exhibits the 1/x behavior, i.e., the PCD is
absent.
i-

When Ũ is combined with2v2(x), a total resulting po-
tential U is

U~x!5Ũ~x!2
v2~x!

2m2
52S c2

2m2
1

1

2M

22c

11cD 1

x2 1O~x23!,

~65!

where the coefficient of the21/x2 part is positive because
c50.5671,2. Hence both, the infinite range and the attra
tiveness for all distancesx are present, resulting in the Efi
mov effect, although the strength of the potential is som
what changed. A direct comparison of Eq.~65! with that in
Eq. ~52! is difficult because two different variablesx andR
are involved.

We emphasize that the result of this section using
modified BO ansatz is similar to the treatment given in S
III, mainly because the transformationT changes the vari-
ablesy to r5y1x/2. Therefore, the DCS approach adop
the ~r ,R! set, while in Sec. IV we have effectively~r ,x!
rather than the set~y,x! used in Sec. II and in previous work
The mixed set~r ,x! obviously introduces the mass polariz
tion term.

V. CONCLUSION

We have reexamined the Efimov effect within the fram
work of the adiabatic state representation, where the ne
sary effective potential with the21/x2 behavior is obtained
explicitly in the lowest order of the approximation. Howeve
it is important to make sure that the nonadiabatic correct
term does not affect this general behavior of the adiab
potential. In Ref.@5#, the leading correction term was show
to exhibit the pseudo-Coulomb disease~PCD!, although it
may be cancelled by the higher order corrections@6#.

We have shown in Sec. III that a proper choice of t
Jacobi coordinates improved the behavior of the lead
nonadiabatic correction potentialu and thus eliminated the
PCD. In Sec. IV it was further shown that by giving a boo
to the ‘‘conventional’’ adiabatic system, i.e., by allowing th
heavy particles to move from their fixed position via th
particle boost factor~PBF!, the model has been improve
again and the PCD disappeared. Of course these two
proaches~DCS and PBF! are related; the PBF is effectivel
similar to the choice of new coordinates from Sec. III.

It is surprising that such a PBF is needed in the pres
case of nearly zero-energy collision. In fact, the energy sc
involved here for the motion of the heavy particles relative
the near-zero energy of the pair may be such that the rela
smallness is the essential factor; the energy of the he
particle motion is still ‘‘high’’ relative to the small near-zer
binding energy for the pair.

Note added in proof. The nonlocal model studied here an
in Refs. @4# and @5# requires careful analysis, because t
long range aspect of the problem is crucial. A numeri
study of this important question has been carried out rece
@9#. The discussion on the reduced mass in the fast Ha
tonian in that paper is consistent with the discussion given
Sec. II of the present paper, in that, in order to obtain
consistent solution, the same reduced mass~eitherm2 or m3!
should be used in the fast Hamiltonian and in the definit
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of the coupling constant for the two-body zero-energy bou
state.
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APPENDIX A: a AND b INTEGRALS

The adiabatic wave functionxR(q) defined by Eq.~33! in
the momentum space is explicitly evaluated. It involves t
constantsa andb. First, a is defined as

a5^ f uxR&5E d3q
l8

p2~q21v2!~q21g2! F a

q21g2

1
bTA

A~q21g2A2!G . ~A1!

The angular integration gives

2l8

p E
0

`

dq
q2

~q21v2!~q21g2! F 2a

q21g2

1
b~e~ iqR/A!2e2~ iqR/A!!

iqR~q21g2A2! G , ~A2!
d

-

d.

o

which is transformed into a contour integral

2l8

p R dq
q

~q21v2!~q21g2! F aq

q21g2 1
be~ iqR/A!

iR~q21g2A2!G .
~A3!

The contour integration in the limit ofR→` gives

a5l8S a

g~g1v!2 1
2b

R

e~2vR/A!

~g2A22v2!~g22v2! D .

~A4!

Next, the constantb is defined by

b5^ f AuTA
21uxR&

5E d3q
l8

p2A~q21v2!~q21g2A2!
F aTA

21

q21g2

1
b

A~q21g2A2!
G . ~A5!

By comparison of Eq.~A5! with Eq. ~A1! we see that the
substitutionsl8→l8/A, a�b/A, g�gA, make the inte-
gral for b exactly as that fora. We thus have immediately

b5
l8

A S b

gA2~Ag1v!2 1
2aA

R

e~2vR/A!

~g2A22v2!~g22v2! D .

~A6!
e

APPENDIX B: EVALUATION OF THE INTEGRAL Š¹Rjz¹Rj‹

The leading nonadiabatic correction given by Eqs.~32!, ~42! contains an integral̂¹Rju¹Rj& which is evaluated here in th
two cases, the ‘‘weak’’ and ‘‘strong’’ couplings.

~i! l85g3A5 ‘‘ weak.’’ We have from Eqs.~35!, ~36!,

a

b
5

2A2v

~12A5!g
, N~R!5

g2A3

p S c

RD ~1/2!

,

j~q,R!5
1

~q21v2! Fab 1

q21g2 1
TA

A~q21g2A2!G , ~B1!

¹Rj~q,R!5
a

b

R̂

~q21g2!~q21v2! S 2v2

R~q21v2!
2

1

RD1
TA

A~q21g2A2!~q21v2!
S 2v2R̂

R~q21v2!
1

iq

A D . ~B2!

Thus the integral becomes

^¹Rju¹Rj&5E d3qH a

b

1

~q21g2!~q21v2! S 2v2

R~q21v2!
2

1

RD J 2

1E d3q
a

b

2v2~TA1TA
21!

RA~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
2

1

RD
1E d3q

a

b

iq–R̂~TA2TA
21!

A2~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
2

1

RD
1E d3q

1

A2R~q21w2!2~q21g2A2!2 S 4v4

R2~q21v2!2 1
q2

A2D . ~B3!

After performing an angular integration, Eq.~B3! can be expressed in a form involving contour integrals
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^¹Rju¹Rj&52p R dqFab q

~q21g2!~q21v2! S 2v2

R~q21v2!
2

1

RD G2

14p R dq
a

b

q2eiqR/A)

AR~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
2

1

RD
14p R dq

a

b

qeiqR/A

iR2~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
2

1

RD
18p R dq

a

b

v2qeiqR/A)

iR2~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
2

1

RD
12p R dq

q2

A2R~q21v2!2~q21g2A2!2 S 4v4

R2~q21v2!2 1
q2

A2D . ~B4!

In the limit of R→`, the main contribution is given by the last integral in Eq.~B4! and all other terms go to zero faster. Thu

^¹Rju¹Rj&>
1

N2 g
c

R
. ~B5!

~ii ! l85g3 ‘‘ strong.’’ In this case, we have

a

b
52

~12A5!g

2A2v
; N~R!5

2g2A2

p~12A5!
v3/2, ~B6!

j~q,R!5
1

~q21v2! Fab 1

q21g2 1
TA

A~q21g21A2!G ,
¹Rj~q,R!5

a

b

R̂

~q21g2!~q21v2! S 2v2

R~q21v2!
1

1

RD1
TA

A~q21g2A2!~q21v2! S 2v2x̂

x~q21v2!
1

iq

A D . ~B7!

Therefore, the integral becomes

^¹Rju¹Rj&5E d3qH a

b

1

~q21g2!~q21v2! S 2v2

R~q21v2!
1

1

RD J 2

1E d3q
a

b

2v2~TA1TA
21!

RA~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
1

1

RD
1E d3q

a

b

iq–R̂~TA2TA
21!

A2~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
1

1

RD
1E d3q

1

A2R~q21v2!2~q21g2A2!2 S 4v4

R2~q21v2!2 1
q2

A2D . ~B8!

After performing an angular integration, this integral can be expressed as a contour integral,

^¹Rju¹Rj&52p R dqFab q

~q21g2!~q21v2! S 2v2

R~q21v2!
1

1

RD G2

14p R dq
a

b

q2eiqR/A

AR~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
1

1

RD
14p R dq

a

b

qeiqR/A

iR2~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
1

1

RD
18p R dq

a

b

v2qeiqR/A

iR2~q21g2!~q21v2!2~q21g2A2! S 2v2

R~q21v2!
1

1

RD
12p R dq

q2

A2R~q21v2!2~q21g2A2!2 S 4v4

R2~q21v2!2 1
q2

A2D . ~B9!
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^¹Rju¹Rj&>
1

N2

2

R2 . ~B10!


