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Interquark potential model for multiquark systems
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A potential model for four interacting quarks is constructed in(ZUrom six basis states—the three
partitions into quark pairs, where the gluon field is either in its ground state or first excited state. With four
independent parameters to describe the interactions connecting these basis states, it is possible to fit 100 pieces
of data—the ground and first excited states of configurations from six different four-quark geometries calcu-
lated on a 18X 32 lattice.[ S0556-281@8)04006-0

PACS numbds): 24.85+p, 13.75-n, 11.15.Ha, 12.38.Gc

I. INTRODUCTION grees of freedom, with the gluon degrees of freedom entering

only implicitly. This is the same philosophy that has been

Over the years there has been much progress in latticguccessful for interacting multinucleon systems. In the latter,
QCD. However, this has been restricted to systems with onljhe meson fields generating the interactions are “summa-

a few quarks—up to three in most cases. On the other han#ized” as internucleon potentials, which take the form of
in particle and nuclear physics there is also considerable ifWo-nucleon potentials and, to a lesser extent, three- and
terest in few-hadron and multihadron systems beginning four-nucleon potentials. However, an important difference
with the possibility of bound<K states. It seems unlikely betvyeen mglnquark and muItmucqun systems Is the str_ongly
that direct results for any but the simblest of these hadro self-mtgractmg nature of the_gluon fields mediating the inter-
. . "ORction in the former case. It is, therefore, not at all clear that

system_s cou_ld be obtained in the near future from lattic ny effective model defined in terms of only quark degrees
QCD simulations. Our approach is thus to construct a model¢ treedom will be successful. It is the purpose of this article
that reproduces lattice results for the simplest multiquark, see to what extent a model can be developed for the four-
systems in a way that can be relatively easily extended tquark case. If this attempt fails, then there is no point in
more complex cases. The lattice data were obtained earli%rxpecting it to work in even more complex quark problems;
by the Helsinki groug1] (and references thergias energies  a successful model for four quarks is necessary but not suf-
of four static quarks in various geometries, such as quarks dicient before considering any extension to even more

the corners of squares, rectangles, and tetrahedra, and sogngarks.

other less symmetric geometries. These “experimental” data It should be added that, in spite of the problems outlined
are then to be explained by a model. The choice of geomabove, many groups still consider that multiquark systems
etries is hopefully general enough for the model to reproducean be treated using simply the basic two-quark potential,
also the energies for geometries intermediate to those act@-g.,[3,4]. In the opinion of the authors—and backed up by

ally considered. their earlier works—there seems to be no justification for
It should be pointed out that the “experimental” data areSuch an approach.
not for full QCD. For numerical reasons, the @Y gauge In Sec. Il three versions of the model, starting with the

group is used instead of $8), the use of the latter requiring Simplest, are introduced and in Sec. Ill results are given.
an order of magnitude increase in computer resources. How-

ever, the indications are that, for the present type of discusi. MODEL WITH TWO, THREE, OR SIX BASIS STATES
sion, SU2) suffices. Another approximation is taking the

quarks to have an infinite mass. This means that our constitu- Since the four quarks in the lattice calculation are static,
ent quarks are static and that there are no sea qudérks the corresponding model should not contain any kinetic en-

so-called quenched approximatjort present, this limit s €rgy- Also, because we only consider (@} there is no dis-
now being partially removed by applying the techniques oftinction between the group properties of quarky and an-
Ref. [2] to a system of two light and two heavgtatio  tiquarks @). Four such quarks can then be partitioned as
quarks. The sea quarks will appear through using gauge copairs in three different ways:

figurations generated by the UKQCD Collaboration for full

QCD. However, in this paper, we only attempt to understand A=(0103)(d204), B=(0104)(d203),
systems with four static S@) quarks in the quenched ap-
proximation. and C=(q192)(q304), (2.1

Any model that can be extended to multiquark systems
must presumably depend explicitly only on the quark de-where each ¢;q;) is a color singlet. However, these three
basis states are not orthogonal to each other. Also, remem-
bering the fact that the quarks are indeed fermions gives, in
*Electronic address: anthony.green@helsinki.fi the weak coupling limit, the condition in the Appendix of
Electronic address: petrus@hip.fi Ref. [5]:
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|A+B+C)=0. (2.2

Since(A|A)=(B|B)=(C|C)=1, we get—in this limit—the
equalities(A|B)=(B|C)=(A|C)=—1/2.

A. Two basis states

Restricting the basis to only the two statesndB leads
to the normalization matrix
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lattice calculation as the four-quark energies. However, this
model fails badly, since it still contains the van der Waals
long range forces. The main feature of this failure is that the
lowest eigenvalueH,) is too low and the otherH;) too
high. This suggests that the off-diagonal potentia}; is too
large. However, as we go away from the weak coupling
limit, it is expected tha{A|B) will decrease until eventually,

in the extreme strong coupling limit, it would vanish. This,
therefore, suggests that for some realistic intermediate cou-

1 —1/2 pling the off-diagonal normalization matrix elemeNt,g
N=( 1 ) (2.3 should also be reduced. This effect we simulate by introduc-
-1 1 ing a factorf, which decreases as the distance between the
In addition to this there is the potential matrix quarks increases, i.e.,
(VAA VAB) (A|B)=—f/2. (2.9
= . (2.9
Vea Ves For internal consistency, this same factor must also be intro-

In the weak coupling limit—when all quarks are close to duced intoV,g, i.e.,

each other—we expect the potential matrix to simply be- (2.10
come that form appropriate for one-gluon exchange, i.e., '

1 otherwise, the eigenvalues would depend on the self-energy

Vag—fVag:

Vijz__E ;i.;}vij, (2.5 termc in Eq. (2.9. In Ref. [1] this model had the good
35 feature that, when fitting the dateE{,E;) for a given
h _ e h _ q square, only a singlé was necessary to fit both energies. Of
wherev;;=—elr;;. ThenVaa=v13+ vy, €tC., an course,f was dependent on the size of the square, but a
1 reasonable parametrization was
Vag=Vga=— (013t Uogt U4t Uo3— V10— V3y).
AB BA 2 13 24 14 23 12 34 f(Ia) _ exq . bska), (211)
(2.6
L . wherebg was the string energy of EQ.9), S the area of the
The object is then to compare the eigenvalues of square, ank;~0.5. The form of this parametrization was
[V—E(4)N]=0 2.7) motivated by strong coupling idefg—9]. The original hope

was that, withk; determined from the squares, the model

with the lattice results—the success or failure of the modeBhould automatically also fit other geometries watbeing
being to what extent the two agree. HdEé4) is the total the appropriate area contained by the four quarks. When the
four-quark energy. However, in practice, it is more conve-four quarks lie in a plane, the definition &fis clear. How-
nient to deal with the four-quarindingenergyE defined as  €ver, in nonplanar cases the situation is more complicated
E=E(4)—Vaa, assuming that tha partition has the lowest and so here the area is simply taken to be the average of the
energy. A perturbative calculation ®(a?) has reproduced sum of the four triangular areas defined by the positions of
this two-state moddl6]. the four quarks, i.e., the faces of the tetrahedon. For example,
If all three basis states are included, the model has a protin the notation of Eq(2.1), the appropriate areé®(AB) for f
lem since the matrix in Eq2.7) is singular for the obvious IS
reason thatfA+B+C)=0. In some of our earlier work this
was interpreted to mean that it was unnecessary to include all
three states and so the symmetry was broken by keeping the (212

two states with the lowest energy, let us sayand B. A whereS(ijk) is the area of the triangle with cornersiag,

similar thing also occurred in the lattice simulations. There it dk E | tries this simpl q o th
was found that the energy of the lowest state was always th@Nd X. FOr planar geometries this simply reduces 1o the ex-
same in both a 22 and 3«3 description, providing\ or B pected area. But for nonplanar cases this is only an approxi-

had the lowest energy. In addition the energy of the seconfation to.IS(AB)—%_mot_re cofrrelct area bemg ?n? that 'Sant
state was, in most cases, more or less the same—the larg cessarily a combination of planar aréas but of curved sur-

difference occurring with the tetrahedral geometry. Anothe aces with minimum areas. These possibilities are discussed
modification to the basic model in Eq.5—(2.7) is to re- in Ref. [10]. It would be feasible to incorporate this refine-

place the original one-gluon-exchange potential by the fument here, since on.Iy a_fevw_(SO) SUCh areas are needed.
two-quark potential But for a general situation, in which the positions of the

quarks are integrated over, it would become impractical,
since the expression for the minimum area itself involves a
double integration. In contrast, the area used here is an alge-
This is now a move away from the extreme weak couplingbraic expression and is, therefore, more readily evaluated for
limit. In principle, everything is now known, since the pa- any geometry. The above model will be referred to as ver-
rameterse, bs, andc in v;; can be determined from the same sion la.

S(AB)=0.95(43D+ S(432 + S(123) + S(124) ],

vij=—e/rij+bsrij+c. (28)
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This model has only one free paramekerin f. Another (iii) For squares the model givés = —E,, whereas the
possibility with additional parameteffg andkp is predictions of model | in Eq92.14 seem to be nearer the
data.
f(1b)=foexp —bkiS— \/b—ska) (version 1b, The regular tetrahedron result is clear. There is only one

(213  energy scale in the model, since all thg are the same.
Therefore, there cannot be any excitations. The positive fea-
whereP is the perimeter boundin§. However, as shown in  ture of this model is that all three states are treated
Ref.[11], this reduces in the continuum limit to the same asequally—a point that seems to be necessary for regular tet-
version la—the differences @=2.4 being mainly due to rahedra.
lattice artifacts.
Unfortunately, both of these models have the feature that,

C. Six basis states
for regular tetrahedra, they are unable to reproduce a degen-

erate ground state with monzeroenergy, since the two ei- The above models both have trouble in describing regular
genvalues are tetrahedra. This might be considered a minor point to worry
about, since such a configuration is very special. However,
12 our philosophy is that, iiny configuration cannot be fitted,
Eo=— 7575t Vec™Vaal then the model fails, since then there is no reason to expect
and configurations not checked explicitly to be fitted. An inter-

esting feature of the regular tetrahedron data is that the low-
f/2 est state becomeao_rebound as the tgtrahedron increases in
E;=———=[Vee—Vanal, (2.14  size with the magnitude dE, increasing from—0.0202(8)
1-f/2 to —0.028(3) as thel® cube containing the tetrahedron in-
creases frond=2 tod=4. This is opposite to what happens

and for regular tetrahedidcc=Vaa- with squares, where the magnitude Bf decreases from
—0.0572(4) to—0.047(3) ad increases from 2 to 5. This
B. Three basis states indicates that there is coupling to some higher $satthat

In the previous subsection only two of the possible thre?€cOmes more effective as the size increases and suggests
basis stated\, B, andC were used, the original reason for that these higher states contain a gluon excitation with re-

this being the condition in Eq2.2). However, once the fac- SPECt 0 theA, B, and C configurations. Model lll, intro-
tor f is introduced as in Eq$2.9) and (2.10 this condition ~ duced in Ref.[ll],*theiefore, eftends model Il by adding
no longer holds, so that all three states can be incorporate{ré€ more statea™, B*, andC*, where, in analogy with
This apparently leads to the need for two more factérand Eq. (2.D),

f" defined by A*=(d103)e (d204)E,  etc. (2.18

(A|ICy=—f'/2 and (B|C)=-f"/2. (2.19
Here (@,03)g, denotes a state where the gluon field is ex-
However, with the parametrization dfas in Eq.(2.11) or  cited to the lowest state with the symmetry of thg repre-
(2.13 and the definition o6 as in Eq.(2.12), it is seen that  sentation of the lattice symmetry groOp,,. Because it is an
f'=f"=f, sinceS is simply proportional to the area of the odd parity excitationA*, B*, andC* must contain two such
faces of the tetrahedron defined by the four quark positionstates in order to have the same parity2ad3, andC. The
and isindependenof the state combination used. Therefore, excitation energy of aif, state over its ground staté\(,)
a 3x3 model has the form where ti andV matrices are  counterpart is= 7/R for two quarks a distand® apart. AsR
increases this excitation energy decreases making the effect

1 —f2 —f/2 of the A*, B*, andC* states more important, leading to the

N(f)=| —f2 1 —f/2 (2.16 effect mgntioned above. Here we have_ assumed that these
¢ (2 1 states arise from a combination of excited states \Eith
B N However, it is possible that they involve other excitations,
e.g.,
and
A* = / . etc,, 2.1

Van fVag fVac (Q1Q3)Alg(q2q4) elc (2.19
V(f)={ fVea Ves fVec]|. (2179 where theA(, state is a gluonic excitation with the same

fVea fVeg Vec quantum numbers as the ground stag,j. For this case the

following formalism would be essentially the same. Another
Unfortunately, this mode(ll) also has some unpleasant fea- possibility, which is not considered here, is that the relevant

tures. excitations are flux configurations where all four quarks, in-
(i) Again for regular tetrahedra all three eigenvalues arestead of two, are involved in forming a color singlet. In the
Zero. strong coupling approximation such states would reduce to

(i) For a linear geometry, since the “appropriate” area astwo-body singlets due to Casimir scaling of the string
defined by Eq(2.12) vanishes, we gdt=1; i.e., we are back tensions—the string tension for a higher representation
to the weak coupling limit and a singular matrix. would be more than double the value of the fundamental
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string tension, thus preventing junctions of two strings in the *e=0*(14)+v*(23)— Vgg,
fundamental and one in the higher representation. This
would happen both in S@) and SU3), the only exception
being the unexcited state in SW3), which would involve te=v*(12)+v*(34)—Vce.
an antitriplet string.

There are now several new matrix elements that need t
be discussed foN(f) andV (f).

(a) With the addition of theA* , B*, andC* states and the
antisymmetry conditiotA* +B* +C* =0 analogous to Eq.
(2.1), there are now two more functiori§:¢ defined as

fh the following fit by is expected to be of the order unity
and, indeed, fixindy=1 is found to be a good assumption.

The two-quark potentiale (ij) are taken to be more
elaborate than the three-term form of Hg.8). They are
fitted to the lattice data usind.2]

(A% [B*) =(A*|C*)=(B*|C*)= - 1912

0.255 0.045
and v(r;j)=0.562+0.0696; — —————. (2.24
ij ré
(A*|B)=(A*|C)=-..=—f2/2. (2.20 !

Here it is assumed thaft®° are both dependent o8 as  Similarly, the excitation withE, symmetry is fitted by
defined in Eg.(2.12. Since ¢ involves only the excited
states, it is reasonable to expect it has a form simildr ito

; o 4.24 3.983
Eq. (2.1)), i.e., szv*(ij)—v(ij):r———2+ - (229
i re re
fo= exp — bek.S). (2.21) o ]
(b) By orthogonality(A|A*) =(B|B*)=(C|C*)=0. The extra terms containing;? andr;;* are purely for nu-
(¢) In the weak coupling limit, from theA* +B*+C*  merical reasons and ensure that the fitted valuegigy and
=0 condition, we expecA[B*)=(B|C*)=---=0 at y*(jj) are, on average, well within 1% of the lattice values
small distances. To take this into account we parameffize for all r=2.
as (e) There are two types of off-diagonal elements:
fa=(f2+ b.f3S)exp( — bek,S). (2.22
(A*|V|B*) and (A[V|B*). (2.26

A partial justification of this is given in Fig. 6 of Ref11]. In
the following fit all three parameter], f5, and k, are
varied. However, it is found thdf is always consistent with

S
z_ero—as expec_ted from the_ abovga (_:on_dlt(dkiB )=:- assumption is necessary for the form of these matrix ele-
=0. Therefore, in most of this work, is fixed at zero. ments. Several different forms were tried, but the most suc-

(d) For the potential matri¥/(f) the diagonal matrix ele- cessful seems to be the one where the matrix elements

ments, after the lowest enerdfy,p among the basis states is eeded iV — (E+V,)N]=0 are expressed as follows:
removed, are

Unlike Vg in Eqg. (2.6), there is now no guide from the
one-gluon-exchange limit of Eq2.5). Therefore, a further

<A*|V_VDD|A*>:U*(13)+U*(24)_VDD, etC, fC fC
(A*|[V+ EVDD| B*)=— E[VABCD+ CoVascl
wherev™* (ij) is the potential of th&, state—a quantity also

measured on the lattice along with the four-quark energies— fe
and =(B*|V+ §VDD|A*>!
VDD: min[VAA: 1% ( 13) + U(24),
fe fe
Vgp=v(14)+v(23), Vcc=v(12)+v(34)]. (A*|V+ EVDD|C*>: - E[VCABD"’ CoVeagl
However, to allow more freedom in the following fits, we c
introduce a parametdr,, where =(C*|V+ EVDD|A*),
(A*|V—=Vpp|A*)=Vaa—Vpp+boVia,
fC Cc
(B*|V—Vpp|B*)=Vgg—Vpp+boVgs, (B*[V+ EVDD|C*>: - E[VBCAD_" CoVical
(C*I[V=Vpp|C*)=Vcc—Vpp+boVee, (2.23 fC

=(C*|V+ §VDD|B*>- (2.27
where

A=U*(13)+0v* (24) —Van, where



3388 A. M. GREEN AND P. PENNANEN 57

Vascp=VaatVes—Vec— Vob . Likewise,
Veasn=Veet Vaa—Ves— Voo, fé e ABC
CABD CcC AA BB DD <A|V+ EVDD|B*>:—§ VABCD+aO .
Vecap=VeetVee—Var—Vob, )
= * + J— i
Visc=Vaa+Vas—Vic, (A*[V+=Voo[B), (228
VEAs=VEctVia—Vis, Vica=Vig+tVic—Via. where, again in analogy with, in Egs.(2.23), a, is a free

parameter—hopefully of order unity. However, it should be
These are seen to be simply the generalization of E§) to  added that this hope is even less well founded than the one
the interaction involving excited gluon states. Also in anal-for c,,.

ogy withbg in EQs.(2.23, ¢ is a free parameter—hopefully In the special case of regular tetrahedvap=Vaa

of order unity. =Vgp=Vcc andV reduces to the form
|
[ Van  —fVaa2 —fVan/2 0 —faVv, /2 —faV,/2]
—fVap2  Vaa  —fVaal2 | —faVv,/2 0 —fay, /2
—fVapl2 —fVaa2  Van —favy/2 —fav,/2 0
V= 0 —faAV 2 V2|V, | V2 V2| (2.29
—fav,/2 0 —fav 2 | —foV/2 —foV/2
—fay, 2 —fav,/2 0 —foVv /2 —fV/2
whereV,=Vap+agVas/2, Vp=VaatboVias, andV =VaatcoVa,. As with all geometries,
1 —fr2 —f2| 0 —f¥2 —f32]
—f/2 1 —f/2 | =132 0 —f2/2
-2 —f/2 1 —f32 —f?32 0
N=\"0o —f72 —f2] 1 —f52 —f72| (2.30
—f2/2 0 —fa2 | —f¢2 1 —£¢/2
—f#2 —f?32 0 —f¢2 —f%2 1
|
The full 6X6 matrix [V—(E+Vaa)N] now factorizes . RESULTS

into three 22 matrices, two of which are identical—giving

the observed degeneracy. These have the form This section is in two parts. In Sec. Il A the results for

the six-basis-state model #=2.4 are given. There it is
[V—(E+Vau)N] shown that only five of the possible eight parameters have
any significant influence. Also it is pointed out that the re-
striction to the two-basis-state version of Sec. Il A is dis-
=0, tinctly inferior and that the further restriction to only two-
body interactiongli.e., k;=0 in Eq. (2.11)] is for most
2.3 geometries very poor. In Sec. Il B, it is shown that the pa-
' rameters of the model do not change significantlyBas-

—E(1+f/2) —f3E-V,)/2
—f3E-V,)/2 —E(1+f%2)+V,+fV, /2

whereas the third 2 2 matrix is creases, i.e., as the continuum is approached. Therefore, the
parameters extracted gt=2.4 could be used directly in, for
[V—(E+Van)N] example, a resonating group calculation of a four-quark

model of meson-meson scattering as in Ré4f.
—E(1-f1) fAE—-V,)

fAE-V,) —E(1—f%+Vy—foV,

=0. (2.32

A. Six-basis-state model ai=2.4

In Ref.[1] four quark energies have been extracted for a
In this case the problem reduces to solving two quadrativariety of geometries using a 4632 lattice with 8=2.4.
equations foE. However, away from the regular tetrahedron From these energies, only 100—distributed over six
the complete & 6 matrix needs to be treated directly. geometries—are selected for fitting. Configurations contain-
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ing flux links of less than two lattice units were not included, to be used, for example, in some type of resonating group
since they have strong lattice artifacts. In detail, we use 1@pproach 4], then it is the continuum limit that is needed.
tetrahedraT), 6 squaresS), 12 rectanglesR), 4 quadrilat-  Such an extrapolation would, in principle, require repeating
erals(Q), 9 nonplanafNP), and 4 linealL). Only the lowest  the above lattice calculations with all six geometries for a
two energies o ;) from the lattice simulation are used. But, series of increasing values @ This we do not plan to do

as mentioned earlier before E@.8), the values of these tWo here. Instead we exploit the conclusions of R&t]. There it
energies are more or less the same from thand 3<3 a5 shown that the four-quabinding energiesilready scale
simulations. In the latter case a third enerd) is in fact 5 B=2.4, even though the total two- and four-quark ener-
also available. However, it is not expected to be very reIiabIegieS do not scale separately. Therefore, here we simply as-
due tolthe higher exclitations it contains.. Its main PUrPOSEme that, if some binding enerdy(8) would be scaled to
was to improve the estimate @ , by reducing the contami- the B=2.4 lattice by the transformatiopE[B.r(8)/p]

nation from the higher states. The stability dfq(;) is un- _E(2.4),where p=a(2.4)/a(g), then we would find that

derstandable, since they are the lowest states of a given sym-. o
; : ; is scaledE(2.4) equals the binding enerdy(r) we have
metry. For example, with squares their wave functions ar%:halculate d di(rect?y an the=2.4 Iatticg Her%e)(ﬁ) andr

Sm.]rpr:i (gE:)E)(\)/)e::L((%+pli3(a)(/:(\a/s§ ;néjal/{;E;r)e:ﬁ(ttAe; I\?wzh;l;/uil.T—the are distances in the lattice units of the two different lattices.
Migrad option. In the model there are, in principle, eightHowever, to completely specify the model at some other

parametersk; in Eq. (2.1, f2, 3, andk, in Eq. (2.22, k. value of 8 a_Iso needs a knowledge Q(ij ,@) andAv(ij,B)
in Eq. (2.21), by in Egs.(2.23, anda, andc, in Egs.(2.27) corresponding to t.h¢3=2.4 expressions in Eq$2.24) and
and (2.28. However, in practice it is less. First, two can be (2:29- In Ref.[11] it was shown thab (ij,8) did not scale.
fixed at the value$2=0 andb,= 1 as expected theoretically But this is not a problem, sinag(ij, 8) is documented in the
without any significant deterioration in the overall fit. Also literature for other values op—see Refs[14-1G. These
two of the remaining parameter§d and a,, are strongly ~Can then be scaled in the same way as B({@) to give
correlated, since for some geometries they appear in th(ii.2.4). However, as found in Reff11] we do not expect
combinationaof2. It is found that fixinga, at 4 and only ~thesev(ij,2.4) to equal the(ij) in Eg. (2.24. It remains to

varying f§ is a good compromise. Finally, all fits yield a specify Av(i], ). Here we simply assume that it scales, so

value fork; that is consistent with zero. This appears to be athat the values g8=2.4 can be used directly in precisely the

common feature, suggesting tHfat=1; i.e., the excited con- same way as the binding energle§s). The rational behind

. . . . this last assumption is twofold.
figurations interact among themselves simply through two (i) In the model it is thedifferencesAv and v(ij.g)

body potentials without the four-quark effect introduced .
. . . —v(kl,B) that enter as in Eq92.23, (2.27), and (2.298.
when k.#0. In this way the data can be fitted with a Therefore, some of the lack of scaling it (ij,8) and

2INpe=1.03 using the parameter valuds=1.51(8), - . o)
ia=0DgE(3) fa=0 5]9(]2) and(F:)0=3 93), in addeilt?on to #lo)se v(ij,B) may well cancel—as in the four-quark binding en-
. o7 - o T ergies.
fixed atk;=0, by=1, anda,=4. It should be added that Ref. (i) Any lack of scaling that remains will be reflected in a

[13] contains a preliminary fit to the above data, but with a : _—_—
model in which the off-diagonal matrix elements of Eqs.l\ilf!;Of scaling of theag, by, andc, multiplying the Av and

(2.27 and (2.28 have a slightly different form. The out- The actual values of used are 2.514], 2.5denoted by

come, however, is qualitatively rather similar to the presenE 5, 2.635 and 2.7415], and 2 85[16] n ’thé last case. the

resIglotrs.com arison, model la with its one free paramdter authors present two potentigly/(R,5) andV(x)] that are
P ' b appropriate for interquark distance® greater than

in Eq. (2.11) gives fromMINUIT a x?/Npg of 3.16 for k; - .
=0.571(12). Most of this increase in theg?/Npr comes gﬁéz\}\f)uwsg'ﬂ fm. Their own preference ¥(R,5)—the

from the tetrahedral geometry—gspecially from the regular The results are shown in Table I. The main observation is
tetrahedra. This was already anticipated at the end of Se%h ' .
at, of the free parameters, oty appears to be a signifi-

ne. cant function ofB—but even there all values are within the

Another comparison is the extreme limit &1, where i ;
. . error bars. Therefore, the final version of the model has only
only two-quark potentials are used in model I. Here all the

parameters are fixed, so that th&/Npr= 144 is not the re- four m_de_penden_t parameters. . .
A DF. A similar continuum extrapolation was carried out in Ref.
sult of a minimization. Even so, this is clearly a very poor

representation of the data. As expected, the larger the size H’.l]' However, there are several major differences compared
W%’[h the above analysis.

the geometry, the poorer the fit, since those are the cases tha (@) Much fewer data for each value gf was included in
need most the smaller values tf This comparison is the . ; .
) . . : the fits, since only squares and tilted rectangles were ana-
basis of our statement in the Introduction that multiquark , ) i
zed. Furthermore, on were fitted. This mean
0

models containing only the standard two-quark potential Othat. for eachB, there were only 17 pieces of data compared
Eq. (2.8 or even the more elaborate form in E8.24) seem L ' y-rp . pare
with the present case of 100 pieces covering 6 geometries

to have no justification for the cases considered here. with both E, andE,.

(b) All the two- and four-quark energies were simulated at
five values ofB and interpolated to the same physical sizes.

The above results are f@g@= 2.4, which corresponds to a As scaling was found for the binding energies, they are here
lattice spacing of~0.12 fm. But, in practice, if the model is obtained directly from thgg= 2.4 values.

B. Continuum limit
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TABLE I. The values of the parameters defining the interaction fixivgk.=0, by=1.0, anday,=4.0
for a series off’s.

Parameter B=2.4 B=25 p=2.5 B=2.635 B=2.74 B=2.85
ks 1.51(8) 1.488) 1.508) 1.498) 1.458) 1.438)
Kq 0.553) 0.563) 0.563) 0.563) 0.57%3) 0.573)
f3 0.51(2) 0.51(2) 0.51(2) 0.51(2) 0.51(2) 0.51(2)
Co 3.93) 3.93) 3.93) 3.93) 3.93) 3.93)
X?INpe 1.03 1.03 1.11 1.09 1.15 1.07

(c) In order to study scaling and the effect of lattice arti- the average the usual perimeter for a particular geometry
facts, the errors on the data were taken to be purely statisticalould probably be more appropriate. This latter choice was
and so were much smaller than the present ones. tested in Ref[11], where it was found to reduce in the con-

(d) The model analysis was carried out with th&<2  tinuum limit to the form of model la. Thus the perimeter

model. Since this results in a quadratic equation for the enterm seems to measure lattice artifacts also when the physi-
ergies, the stefg,—f could be done analytically. After this cal perimeter is used.

the parameterk;, kp, andf, in Eq. (2.13 were extracted In Ref.[10], the model in Ref[17] is extended to include
by a fitting procedure. the tetrahedral data by using arx8 basis, where now all
the states are constructed in terms of the underlying lattice.
C. Comparison with other work This, therefore, suffers from the above problem that the re-

A fit with a potential model to some of the above four- Sults are always dependent on the lattice even for large con-
quark binding energies was attempted earlier in R&f).  figurations, where rotational invariance is restored.
However, there are several important differences compared

with the present fit. IV. CONCLUSIONS
(1) The model contained only 22 or 3X3 bases that ) ) ) ] )

were essentially constructed frof B, andC. In this article an interquark potential model is constructed
(2) The tetrahedral data were not included. than can explain, on average, the energies of a series of four-
(3) Most of the data was fop=2.4. Only squares in- duark systems, in which the four static quarks are in any one

cluded that fromg=2.5. of six geometries. The input energies used as data for this
(4) The overlap factor is that in Eq2.13 but with f, constructior{1] were calculated on a $& 32 lattice for four

=1. static SU2) quarks withB=2.4. Two or three basis states

For the four geometrieS, R, Q, andL the areaS is the ~ Were used in the lattice simulation, enabling reli_able esti-
same as that used here in E8.12 and for geometry NP a Mates to be mad_e of the lowest two energy elg_envalues
curved surface is used. However, the perimekeege deter-  (Eo,)- In all, 100 pieces of data were considered suitable for
mined by the underlying lattice structure of the geometry andonfronting the model. Other pieces were rejected, if they
not the usually expected perimeter. For example, for quadrilvolved configurations suspected of having strong lattice
laterals, P is the perimeter of theectangleenclosing the a}rtlfapts(e.g., with sta@es_constructed fror_n less tha_n two lat-
quadrilateral. The reason for this choice is an attempt to takl¢€ links) or had vanishingly small binding energiés.g.,
into account lattice artifacts, which are present for the small€longated rectangles witte>d).
est configurations. These artifacts are more important in Ref. The full model utilized six basis statés B, C, A*, B*,

[17], since configurations containing flux lines of only one @ndC* and in its most general form had eight parameters.
lattice link are included. In the present work the cutoff is atHowever, in practice, only four of thes&(k,,f3, andcy)

two lattice links. For squares the outcome[iti7] was k;  heed be considered as free when fitting the data.
=0.296(11) and kp=0.08Q2), compared with k; The parameters that are, perhaps, of most interest are
=0.571(12) using model la above in Sec. Il A. The differ- those connected with the ranges of the various interactions,
ence between the values of these area constants is becatgénely, ks, ki, andk.. Here we define “range” as; ,

the perimeter term, which is introduced to make artifact cor-= v1/bgks 5 c. In model la, wheré, . are effectively infinite,
rections forsmall configurations, is still important for large We getk¢(la)=0.571), i.e.,r¢(la)=>5.0 in lattice units. How-
configurations, where rotational symmetry is restored andver, in model Ill as the excited statds, B*, andC* are
their presence not needed. For example, with a square of sidetroduced, the interaction between the basic stétesB,
d=5, the two terms in the exponent of E@.13 are com- and C decreases by raisink; to 1.51, givingr(lll) =3.1.
parable, even though the lattice data for this square arBut at the same time this loss of binding by the direct inter-
—0.042(5) and—0.047(5) for the corresponding tilted action betweerA, B, andC is compensated by their cou-
square. In the lattice simulation the basis states have a simpling to theA*, B*, andC* states. This coupling is found
lar form compared with the ones used[it7] but with the to have about thesameranger,=5.1 asr¢(la) above,
major difference that they are fuzzed to such an extent thavhereas the direct interaction between &% B*, andC*
these underlying basis states get transformed. Therefore, states seems, in all fits, to be satisfied with simply a two-
[17], for larger configurations it would be necessary to in-quark description without any four-quark correctidiee.,
clude many other terms with different perimeters, so that ork,=0). The observation that;(la)~r , suggests that the en-
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ergy density has a range dictated by the longest rangstates so that the binding is dominated by &g B*, and
available—namelyy ,. Therefore, when thé*, B*, and C* states, which now interact among themselves again sim-
C* states are not explicitly present, as in model la, the onlyply through the two-quark potentialgith little effect from
available range(la) has to simulate the role of,. In the  four-quark potentials At larger ranges quark-pair creation
binding energies the contributions from tA&, B*, andC* can no longer be neglected.

states rapidly dominate over those from the B, andC The next step in this work would be to carry out a reso-
states. For example, with squares of sRlgheA, B, andC nating group calculation in the spirit of R¢#]. This would
states contribute only 85%, 40%, and 10% to the bindinghen test the universality of the above model by extending it
energy forR=2, 4, and 6, respectively. Of course, at the from the six geometries discussed here to general four-quark
largest distances~0.7 fm) the quenched approximation is geometries.
expected to break down and the role of quark-pair creation to

become important. We therefore come to the following sce-

nario for the four-quark interaction. At the shortest distances,

up to about 0.2 fm, perturbation theory is reasonable with the

binding being given mainly by tha4, B, andC states inter- The authors wish to thank Dr. S. Furui and Dr. B. Masud
acting simply through the two-quark potentials with little for useful discussions. Funding from the Finnish Academy
effect from four-quark potentials. However, for intermediateand Magnus Ehrnrooth foundatioi.P) is gratefully ac-
ranges, from about 0.2 to 0.5 fm, the four-quark potentialknowledged. Our simulations were performed on the Cray
act in such a way as to reduce the effect of )eB, andC  C94 at the Center for Scientific Computing in Espoo.
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