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Interquark potential model for multiquark systems
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A potential model for four interacting quarks is constructed in SU~2! from six basis states—the three
partitions into quark pairs, where the gluon field is either in its ground state or first excited state. With four
independent parameters to describe the interactions connecting these basis states, it is possible to fit 100 pieces
of data—the ground and first excited states of configurations from six different four-quark geometries calcu-
lated on a 163332 lattice.@S0556-2813~98!04006-0#

PACS number~s!: 24.85.1p, 13.75.2n, 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

Over the years there has been much progress in la
QCD. However, this has been restricted to systems with o
a few quarks—up to three in most cases. On the other h
in particle and nuclear physics there is also considerable
terest in few-hadron and multihadron systems beginning

with the possibility of boundKK̄ states. It seems unlikely
that direct results for any but the simplest of these had
systems could be obtained in the near future from lat
QCD simulations. Our approach is thus to construct a mo
that reproduces lattice results for the simplest multiqu
systems in a way that can be relatively easily extended
more complex cases. The lattice data were obtained ea
by the Helsinki group@1# ~and references therein! as energies
of four static quarks in various geometries, such as quark
the corners of squares, rectangles, and tetrahedra, and
other less symmetric geometries. These ‘‘experimental’’ d
are then to be explained by a model. The choice of geo
etries is hopefully general enough for the model to reprod
also the energies for geometries intermediate to those a
ally considered.

It should be pointed out that the ‘‘experimental’’ data a
not for full QCD. For numerical reasons, the SU~2! gauge
group is used instead of SU~3!, the use of the latter requiring
an order of magnitude increase in computer resources. H
ever, the indications are that, for the present type of disc
sion, SU~2! suffices. Another approximation is taking th
quarks to have an infinite mass. This means that our cons
ent quarks are static and that there are no sea quarks~the
so-called quenched approximation!. At present, this limit is
now being partially removed by applying the techniques
Ref. @2# to a system of two light and two heavy~static!
quarks. The sea quarks will appear through using gauge
figurations generated by the UKQCD Collaboration for f
QCD. However, in this paper, we only attempt to understa
systems with four static SU~2! quarks in the quenched ap
proximation.

Any model that can be extended to multiquark syste
must presumably depend explicitly only on the quark d
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grees of freedom, with the gluon degrees of freedom ente
only implicitly. This is the same philosophy that has be
successful for interacting multinucleon systems. In the lat
the meson fields generating the interactions are ‘‘summ
rized’’ as internucleon potentials, which take the form
two-nucleon potentials and, to a lesser extent, three-
four-nucleon potentials. However, an important differen
between multiquark and multinucleon systems is the stron
self-interacting nature of the gluon fields mediating the int
action in the former case. It is, therefore, not at all clear t
any effective model defined in terms of only quark degre
of freedom will be successful. It is the purpose of this artic
to see to what extent a model can be developed for the f
quark case. If this attempt fails, then there is no point
expecting it to work in even more complex quark problem
a successful model for four quarks is necessary but not
ficient before considering any extension to even m
quarks.

It should be added that, in spite of the problems outlin
above, many groups still consider that multiquark syste
can be treated using simply the basic two-quark poten
e.g.,@3,4#. In the opinion of the authors—and backed up
their earlier works—there seems to be no justification
such an approach.

In Sec. II three versions of the model, starting with t
simplest, are introduced and in Sec. III results are given.

II. MODEL WITH TWO, THREE, OR SIX BASIS STATES

Since the four quarks in the lattice calculation are sta
the corresponding model should not contain any kinetic
ergy. Also, because we only consider SU~2!, there is no dis-
tinction between the group properties of quarks (q) and an-
tiquarks (q̄). Four such quarks can then be partitioned
pairs in three different ways:

A5~q1q3!~q2q4!, B5~q1q4!~q2q3!,

and C5~q1q2!~q3q4!, ~2.1!

where each (qiqj ) is a color singlet. However, these thre
basis states are not orthogonal to each other. Also, rem
bering the fact that the quarks are indeed fermions gives
the weak coupling limit, the condition in the Appendix o
Ref. @5#:
3384 © 1998 The American Physical Society



to
e

de

e

t

ro

e
t

t

on
rg
e

fu

in
a-
e

this
ls

the

ing
,
s,
ou-

uc-
the

tro-

rgy

f
t a

s

el

the

ted
f the
of

ple,

ex-
oxi-
ot
sur-
sed
-

d.
e
al,

s a
lge-
for

er-

57 3385INTERQUARK POTENTIAL MODEL FOR MULTIQUARK SYSTEMS
uA1B1C&50. ~2.2!

Since^AuA&5^BuB&5^CuC&51, we get—in this limit—the
equalities^AuB&5^BuC&5^AuC&521/2.

A. Two basis states

Restricting the basis to only the two statesA andB leads
to the normalization matrix

N5S 1 21/2

21/2 1 D . ~2.3!

In addition to this there is the potential matrix

V5S VAA VAB

VBA VBB
D . ~2.4!

In the weak coupling limit—when all quarks are close
each other—we expect the potential matrix to simply b
come that form appropriate for one-gluon exchange, i.e.,

Vi j 52
1

3(i , j
t i
W
•t j
Wv i j , ~2.5!

wherev i j 52e/r i j . ThenVAA5v131v24, etc., and

VAB5VBA52
1

2
~v131v241v141v232v122v34!.

~2.6!

The object is then to compare the eigenvalues of

@V2E~4!N#50 ~2.7!

with the lattice results—the success or failure of the mo
being to what extent the two agree. HereE(4) is the total
four-quark energy. However, in practice, it is more conv
nient to deal with the four-quarkbindingenergyE defined as
E5E(4)2VAA , assuming that theA partition has the lowes
energy. A perturbative calculation toO(a2) has reproduced
this two-state model@6#.

If all three basis states are included, the model has a p
lem since the matrix in Eq.~2.7! is singular for the obvious
reason thatuA1B1C&50. In some of our earlier work this
was interpreted to mean that it was unnecessary to includ
three states and so the symmetry was broken by keeping
two states with the lowest energy, let us sayA and B. A
similar thing also occurred in the lattice simulations. There
was found that the energy of the lowest state was always
same in both a 232 and 333 description, providingA or B
had the lowest energy. In addition the energy of the sec
state was, in most cases, more or less the same—the la
difference occurring with the tetrahedral geometry. Anoth
modification to the basic model in Eqs.~2.5!–~2.7! is to re-
place the original one-gluon-exchange potential by the
two-quark potential

v i j 52e/r i j 1bsr i j 1c. ~2.8!

This is now a move away from the extreme weak coupl
limit. In principle, everything is now known, since the p
rameterse, bs , andc in v i j can be determined from the sam
-
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lattice calculation as the four-quark energies. However,
model fails badly, since it still contains the van der Waa
long range forces. The main feature of this failure is that
lowest eigenvalue (E0) is too low and the other (E1) too
high. This suggests that the off-diagonal potentialVAB is too
large. However, as we go away from the weak coupl
limit, it is expected that̂AuB& will decrease until eventually
in the extreme strong coupling limit, it would vanish. Thi
therefore, suggests that for some realistic intermediate c
pling the off-diagonal normalization matrix elementNAB
should also be reduced. This effect we simulate by introd
ing a factor f , which decreases as the distance between
quarks increases, i.e.,

^AuB&52 f /2. ~2.9!

For internal consistency, this same factor must also be in
duced intoVAB , i.e.,

VAB→ f VAB ; ~2.10!

otherwise, the eigenvalues would depend on the self-ene
term c in Eq. ~2.8!. In Ref. @1# this model had the good
feature that, when fitting the data (E0 ,E1) for a given
square, only a singlef was necessary to fit both energies. O
course, f was dependent on the size of the square, bu
reasonable parametrization was

f ~ Ia !5exp~2bskfS!, ~2.11!

wherebs was the string energy of Eq.~2.8!, S the area of the
square, andkf'0.5. The form of this parametrization wa
motivated by strong coupling ideas@7–9#. The original hope
was that, withkf determined from the squares, the mod
should automatically also fit other geometries withS being
the appropriate area contained by the four quarks. When
four quarks lie in a plane, the definition ofS is clear. How-
ever, in nonplanar cases the situation is more complica
and so here the area is simply taken to be the average o
sum of the four triangular areas defined by the positions
the four quarks, i.e., the faces of the tetrahedon. For exam
in the notation of Eq.~2.1!, the appropriate areaS(AB) for f
is

S~AB!50.5@S~431!1S~432!1S~123!1S~124!#,
~2.12!

whereS( i jk ) is the area of the triangle with corners ati , j ,
andk. For planar geometries this simply reduces to the
pected area. But for nonplanar cases this is only an appr
mation toS(AB)—a more correct area being one that is n
necessarily a combination of planar areas but of curved
faces with minimum areas. These possibilities are discus
in Ref. @10#. It would be feasible to incorporate this refine
ment here, since only a few ('50) such areas are neede
But for a general situation, in which the positions of th
quarks are integrated over, it would become impractic
since the expression for the minimum area itself involve
double integration. In contrast, the area used here is an a
braic expression and is, therefore, more readily evaluated
any geometry. The above model will be referred to as v
sion Ia.
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3386 57A. M. GREEN AND P. PENNANEN
This model has only one free parameterkf in f . Another
possibility with additional parametersf 0 andkP is

f ~ Ib !5 f 0exp~2bskfS2AbskPP! ~version Ib!,
~2.13!

whereP is the perimeter boundingS. However, as shown in
Ref. @11#, this reduces in the continuum limit to the same
version Ia—the differences atb52.4 being mainly due to
lattice artifacts.

Unfortunately, both of these models have the feature t
for regular tetrahedra, they are unable to reproduce a de
erate ground state with anonzeroenergy, since the two ei
genvalues are

E052
f /2

11 f /2
@VCC2VAA#

and

E15
f /2

12 f /2
@VCC2VAA#, ~2.14!

and for regular tetrahedraVCC5VAA .

B. Three basis states

In the previous subsection only two of the possible th
basis statesA, B, andC were used, the original reason fo
this being the condition in Eq.~2.2!. However, once the fac
tor f is introduced as in Eqs.~2.9! and ~2.10! this condition
no longer holds, so that all three states can be incorpora
This apparently leads to the need for two more factorsf 8 and
f 9 defined by

^AuC&52 f 8/2 and ^BuC&52 f 9/2. ~2.15!

However, with the parametrization off as in Eq.~2.11! or
~2.13! and the definition ofS as in Eq.~2.12!, it is seen that
f 85 f 95 f , sinceS is simply proportional to the area of th
faces of the tetrahedron defined by the four quark positi
and isindependentof the state combination used. Therefo
a 333 model has the form where theN andV matrices are

N~ f !5S 1 2 f /2 2 f /2

2 f /2 1 2 f /2

2 f /2 2 f /2 1
D ~2.16!

and

V~ f !5S VAA f VAB f VAC

f VBA VBB f VBC

f VCA f VCB VCC

D . ~2.17!

Unfortunately, this model~II ! also has some unpleasant fe
tures.

~i! Again for regular tetrahedra all three eigenvalues
zero.

~ii ! For a linear geometry, since the ‘‘appropriate’’ area
defined by Eq.~2.12! vanishes, we getf 51; i.e., we are back
to the weak coupling limit and a singular matrix.
s

t,
n-

e

d.

s
,

e

s

~iii ! For squares the model givesE152E0, whereas the
predictions of model I in Eqs.~2.14! seem to be nearer th
data.

The regular tetrahedron result is clear. There is only o
energy scale in the model, since all thev i j are the same.
Therefore, there cannot be any excitations. The positive
ture of this model is that all three states are trea
equally—a point that seems to be necessary for regular
rahedra.

C. Six basis states

The above models both have trouble in describing regu
tetrahedra. This might be considered a minor point to wo
about, since such a configuration is very special. Howev
our philosophy is that, ifany configuration cannot be fitted
then the model fails, since then there is no reason to ex
configurations not checked explicitly to be fitted. An inte
esting feature of the regular tetrahedron data is that the l
est state becomesmorebound as the tetrahedron increases
size with the magnitude ofE0 increasing from20.0202(8)
to 20.028(3) as thed3 cube containing the tetrahedron in
creases fromd52 to d54. This is opposite to what happen
with squares, where the magnitude ofE0 decreases from
20.0572(4) to20.047(3) asd increases from 2 to 5. This
indicates that there is coupling to some higher state~s! that
becomes more effective as the size increases and sug
that these higher states contain a gluon excitation with
spect to theA, B, and C configurations. Model III, intro-
duced in Ref.@11#, therefore, extends model II by addin
three more statesA* , B* , andC* , where, in analogy with
Eq. ~2.1!,

A* 5~q1q3!Eu
~q2q4!Eu

, etc. ~2.18!

Here (q1q3)Eu
denotes a state where the gluon field is e

cited to the lowest state with the symmetry of theEu repre-
sentation of the lattice symmetry groupD4h . Because it is an
odd parity excitation,A* , B* , andC* must contain two such
states in order to have the same parity asA, B, andC. The
excitation energy of anEu state over its ground state (A1g)
counterpart is'p/R for two quarks a distanceR apart. AsR
increases this excitation energy decreases making the e
of theA* , B* , andC* states more important, leading to th
effect mentioned above. Here we have assumed that t
states arise from a combination of excited states withEu .
However, it is possible that they involve other excitation
e.g.,

A* 5~q1q3!A
1g8

~q2q4!, etc., ~2.19!

where theA1g8 state is a gluonic excitation with the sam
quantum numbers as the ground state (A1g). For this case the
following formalism would be essentially the same. Anoth
possibility, which is not considered here, is that the relev
excitations are flux configurations where all four quarks,
stead of two, are involved in forming a color singlet. In th
strong coupling approximation such states would reduce
two-body singlets due to Casimir scaling of the stri
tensions—the string tension for a higher representa
would be more than double the value of the fundamen
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57 3387INTERQUARK POTENTIAL MODEL FOR MULTIQUARK SYSTEMS
string tension, thus preventing junctions of two strings in
fundamental and one in the higher representation. T
would happen both in SU~2! and SU~3!, the only exception
being the unexcitedC state in SU~3!, which would involve
an antitriplet string.

There are now several new matrix elements that nee
be discussed forN„f… andV„f….

~a! With the addition of theA* , B* , andC* states and the
antisymmetry conditionA* 1B* 1C* 50 analogous to Eq
~2.1!, there are now two more functionsf a,c defined as

^A* uB* &5^A* uC* &5^B* uC* &52 f c/2

and

^A* uB&5^A* uC&5•••52 f a/2. ~2.20!

Here it is assumed thatf a,c are both dependent onS as
defined in Eq.~2.12!. Since f c involves only the excited
states, it is reasonable to expect it has a form similar tof in
Eq. ~2.11!, i.e.,

f c5exp~2bskcS!. ~2.21!

~b! By orthogonality^AuA* &5^BuB* &5^CuC* &50.
~c! In the weak coupling limit, from theA* 1B* 1C*

50 condition, we expect̂ AuB* &5^BuC* &5•••50 at
small distances. To take this into account we parametrizf a

as

f a5~ f 1
a1bsf 2

aS!exp~2bskaS!. ~2.22!

A partial justification of this is given in Fig. 6 of Ref.@11#. In
the following fit all three parametersf 1

a , f 2
a , and ka are

varied. However, it is found thatf 1
a is always consistent with

zero—as expected from the above condition^AuB* &5•••

50. Therefore, in most of this workf 1
a is fixed at zero.

~d! For the potential matrixV„f… the diagonal matrix ele-
ments, after the lowest energyVDD among the basis states
removed, are

^A* uV2VDDuA* &5v* ~13!1v* ~24!2VDD , etc.,

wherev* ( i j ) is the potential of theEu state—a quantity also
measured on the lattice along with the four-quark energie
and

VDD5min@VAA5v~13!1v~24!,

VBB5v~14!1v~23!, VCC5v~12!1v~34!].

However, to allow more freedom in the following fits, w
introduce a parameterb0, where

^A* uV2VDDuA* &5VAA2VDD1b0VAA* ,

^B* uV2VDDuB* &5VBB2VDD1b0VBB* ,

^C* uV2VDDuC* &5VCC2VDD1b0VCC* , ~2.23!

where

VAA* 5v* ~13!1v* ~24!2VAA ,
e
is

to

VBB* 5v* ~14!1v* ~23!2VBB ,

VCC* 5v* ~12!1v* ~34!2VCC .

In the following fit b0 is expected to be of the order unit
and, indeed, fixingb051 is found to be a good assumptio

The two-quark potentialsv( i j ) are taken to be more
elaborate than the three-term form of Eq.~2.8!. They are
fitted to the lattice data using@12#

v~r i j !50.56210.0696r i j 2
0.255

r i j
2

0.045

r i j
2

. ~2.24!

Similarly, the excitation withEu symmetry is fitted by

Dv5v* ~ i j !2v~ i j !5
p

r i j
2

4.24

r i j
2

1
3.983

r i j
4

. ~2.25!

The extra terms containingr i j
22 and r i j

24 are purely for nu-
merical reasons and ensure that the fitted values ofv( i j ) and
v* ( i j ) are, on average, well within 1% of the lattice valu
for all r i j >2.

~e! There are two types of off-diagonal elements:

^A* uVuB* & and ^AuVuB* &. ~2.26!

Unlike VAB in Eq. ~2.6!, there is now no guide from the
one-gluon-exchange limit of Eq.~2.5!. Therefore, a further
assumption is necessary for the form of these matrix e
ments. Several different forms were tried, but the most s
cessful seems to be the one where the matrix elem
needed in@V2(E1VAA)N#50 are expressed as follows:

^A* uV1
f c

2
VDDuB* &52

f c

2
@VABCD1c0VABC* #

5^B* uV1
f c

2
VDDuA* &,

^A* uV1
f c

2
VDDuC* &52

f c

2
@VCABD1c0VCAB* #

5^C* uV1
f c

2
VDDuA* &,

^B* uV1
f c

2
VDDuC* &52

f c

2
@VBCAD1c0VBCA* #

5^C* uV1
f c

2
VDDuB* &, ~2.27!

where
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VABCD5VAA1VBB2VCC2VDD ,

VCABD5VCC1VAA2VBB2VDD ,

VBCAD5VBB1VCC2VAA2VDD ,

VABC* 5VAA* 1VBB* 2VCC* ,

VCAB* 5VCC* 1VAA* 2VBB* , VBCA* 5VBB* 1VCC* 2VAA* .

These are seen to be simply the generalization of Eq.~2.6! to
the interaction involving excited gluon states. Also in an
ogy with b0 in Eqs.~2.23!, c0 is a free parameter—hopefull
of order unity.
g

at
on
-

Likewise,

^AuV1
f a

2
VDDuB* &52

f a

2 FVABCD1a0

VABC*

2 G
5^A* uV1

f a

2
VDDuB&, ~2.28!

where, again in analogy withb0 in Eqs.~2.23!, a0 is a free
parameter—hopefully of order unity. However, it should
added that this hope is even less well founded than the
for c0.

In the special case of regular tetrahedraVDD5VAA
5VBB5VCC andV reduces to the form
V53
VAA 2 f VAA/2 2 f VAA/2 0 2 f aVa/2 2 f aVa/2

2 f VAA/2 VAA 2 f VAA/2 2 f aVa/2 0 2 f aVa/2

2 f VAA/2 2 f VAA/2 VAA 2 f aVa/2 2 f aVa/2 0

0 2 f aVa/2 2 f aVa/2 Vb 2 f cVc/2 2 f cVc/2

2 f aVa/2 0 2 f aVa/2 2 f cVc/2 Vb 2 f cVc/2

2 f aVa/2 2 f aVa/2 0 2 f cVc/2 2 f cVc/2 Vb

4 , ~2.29!

whereVa5VAA1a0VAA* /2, Vb5VAA1b0VAA* , andVc5VAA1c0VAA* . As with all geometries,

N53
1 2 f /2 2 f /2 0 2 f a/2 2 f a/2

2 f /2 1 2 f /2 2 f a/2 0 2 f a/2

2 f /2 2 f /2 1 2 f a/2 2 f a/2 0

0 2 f a/2 2 f a/2 1 2 f c/2 2 f c/2

2 f a/2 0 2 f a/2 2 f c/2 1 2 f c/2

2 f a/2 2 f a/2 0 2 f c/2 2 f c/2 1
4 . ~2.30!
or

ave
e-
is-
-

a-

, the
r
ark

r a

six
in-
The full 636 matrix @V2(E1VAA)N# now factorizes
into three 232 matrices, two of which are identical—givin
the observed degeneracy. These have the form

@V2~E1VAA!N#

5F 2E~11 f /2! 2 f a~E2Va!/2

2 f a~E2Va!/2 2E~11 f c/2!1Vb1 f cVc/2G50,

~2.31!

whereas the third 232 matrix is

@V2~E1VAA!N#

5F2E~12 f ! f a~E2Va!

f a~E2Va! 2E~12 f c!1Vb2 f cVcG50. ~2.32!

In this case the problem reduces to solving two quadr
equations forE. However, away from the regular tetrahedr
the complete 636 matrix needs to be treated directly.
ic

III. RESULTS

This section is in two parts. In Sec. III A the results f
the six-basis-state model atb52.4 are given. There it is
shown that only five of the possible eight parameters h
any significant influence. Also it is pointed out that the r
striction to the two-basis-state version of Sec. II A is d
tinctly inferior and that the further restriction to only two
body interactions@i.e., kf50 in Eq. ~2.11!# is for most
geometries very poor. In Sec. III B, it is shown that the p
rameters of the model do not change significantly asb in-
creases, i.e., as the continuum is approached. Therefore
parameters extracted atb52.4 could be used directly in, fo
example, a resonating group calculation of a four-qu
model of meson-meson scattering as in Ref.@4#.

A. Six-basis-state model atb52.4

In Ref. @1# four quark energies have been extracted fo
variety of geometries using a 163332 lattice withb52.4.
From these energies, only 100—distributed over
geometries—are selected for fitting. Configurations conta
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57 3389INTERQUARK POTENTIAL MODEL FOR MULTIQUARK SYSTEMS
ing flux links of less than two lattice units were not include
since they have strong lattice artifacts. In detail, we use
tetrahedra~T!, 6 squares~S!, 12 rectangles~R!, 4 quadrilat-
erals~Q!, 9 nonplanar~NP!, and 4 linear~L!. Only the lowest
two energies (E0,1) from the lattice simulation are used. Bu
as mentioned earlier before Eq.~2.8!, the values of these two
energies are more or less the same from the 232 and 333
simulations. In the latter case a third energy (E2) is in fact
also available. However, it is not expected to be very relia
due to the higher excitations it contains. Its main purpo
was to improve the estimate onE0,1 by reducing the contami
nation from the higher states. The stability of (E0,1) is un-
derstandable, since they are the lowest states of a given
metry. For example, with squares their wave functions
simply c(E0)5(A1B)/A2 andc(E1)5(A2B)/A2.

The above 100 pieces of data are fitted withMINUIT —the
Migrad option. In the model there are, in principle, eig
parameters:kf in Eq. ~2.11!, f 1

a , f 2
a , andka in Eq. ~2.22!, kc

in Eq. ~2.21!, b0 in Eqs.~2.23!, anda0 andc0 in Eqs.~2.27!
and ~2.28!. However, in practice it is less. First, two can b
fixed at the valuesf 1

a50 andb051 as expected theoreticall
without any significant deterioration in the overall fit. Als
two of the remaining parameters,f 2

a and a0, are strongly
correlated, since for some geometries they appear in
combinationa0f 2

a . It is found that fixinga0 at 4 and only
varying f 1

a is a good compromise. Finally, all fits yield
value forkc that is consistent with zero. This appears to b
common feature, suggesting thatf c'1; i.e., the excited con-
figurations interact among themselves simply through tw
body potentials without the four-quark effect introduc
when kc5” 0. In this way the data can be fitted with
x2/NDF51.03 using the parameter valueskf51.51~8!,
ka50.55~3!, f 2

a50.51~2!, andc053.9~3!, in addition to those
fixed atkc50, b051, anda054. It should be added that Re
@13# contains a preliminary fit to the above data, but with
model in which the off-diagonal matrix elements of Eq
~2.27! and ~2.28! have a slightly different form. The out
come, however, is qualitatively rather similar to the pres
results.

For comparison, model Ia with its one free parameterkf
in Eq. ~2.11! gives from MINUIT a x2/NDF of 3.16 for kf
50.571(12). Most of this increase in thex2/NDF comes
from the tetrahedral geometry—especially from the regu
tetrahedra. This was already anticipated at the end of
II C.

Another comparison is the extreme limit off 51, where
only two-quark potentials are used in model I. Here all t
parameters are fixed, so that thex2/NDF5144 is not the re-
sult of a minimization. Even so, this is clearly a very po
representation of the data. As expected, the larger the siz
the geometry, the poorer the fit, since those are the cases
need most the smaller values off . This comparison is the
basis of our statement in the Introduction that multiqua
models containing only the standard two-quark potentia
Eq. ~2.8! or even the more elaborate form in Eq.~2.24! seem
to have no justification for the cases considered here.

B. Continuum limit

The above results are forb52.4, which corresponds to
lattice spacing ofa'0.12 fm. But, in practice, if the model i
,
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to be used, for example, in some type of resonating gr
approach@4#, then it is the continuum limit that is neede
Such an extrapolation would, in principle, require repeat
the above lattice calculations with all six geometries for
series of increasing values ofb. This we do not plan to do
here. Instead we exploit the conclusions of Ref.@11#. There it
was shown that the four-quarkbinding energiesalready scale
at b52.4, even though the total two- and four-quark en
gies do not scale separately. Therefore, here we simply
sume that, if some binding energyE(b) would be scaled to
the b52.4 lattice by the transformationrE@b,r (b)/r#
→E(2.4),where r5a(2.4)/a(b), then we would find that
this scaledE(2.4) equals the binding energyE(r ) we have
calculated directly on theb52.4 lattice. Here ther (b) andr
are distances in the lattice units of the two different lattic
However, to completely specify the model at some oth
value ofb also needs a knowledge ofv( i j ,b) andDv( i j ,b)
corresponding to theb52.4 expressions in Eqs.~2.24! and
~2.25!. In Ref. @11# it was shown thatv( i j ,b) did not scale.
But this is not a problem, sincev( i j ,b) is documented in the
literature for other values ofb—see Refs.@14–16#. These
can then be scaled in the same way as theE(b) to give
v( i j ,2.4). However, as found in Ref.@11# we do not expect
thesev( i j ,2.4) to equal thev( i j ) in Eq. ~2.24!. It remains to
specifyDv( i j ,b). Here we simply assume that it scales,
that the values atb52.4 can be used directly in precisely th
same way as the binding energiesE(b). The rational behind
this last assumption is twofold.

~i! In the model it is thedifferencesDv and v( i j ,b)
2v(kl,b) that enter as in Eqs.~2.23!, ~2.27!, and ~2.28!.
Therefore, some of the lack of scaling inv* ( i j ,b) and
v( i j ,b) may well cancel—as in the four-quark binding e
ergies.

~ii ! Any lack of scaling that remains will be reflected in
lack of scaling of thea0, b0, andc0 multiplying theDv and
V* ’s.

The actual values ofb used are 2.5@14#, 2.5~denoted by
2.58), 2.635 and 2.74@15#, and 2.85@16#. In the last case, the
authors present two potentials@V(R,5) andV(`)# that are
appropriate for interquark distancesR greater than
6a(2.85)'0.17 fm. Their own preference isV(R,5)—the
one we use.

The results are shown in Table I. The main observation
that, of the free parameters, onlykf appears to be a signifi
cant function ofb—but even there all values are within th
error bars. Therefore, the final version of the model has o
four independent parameters.

A similar continuum extrapolation was carried out in Re
@11#. However, there are several major differences compa
with the above analysis.

~a! Much fewer data for each value ofb was included in
the fits, since only squares and tilted rectangles were a
lyzed. Furthermore, only theE0’s were fitted. This means
that, for eachb, there were only 17 pieces of data compar
with the present case of 100 pieces covering 6 geome
with both E0 andE1.

~b! All the two- and four-quark energies were simulated
five values ofb and interpolated to the same physical siz
As scaling was found for the binding energies, they are h
obtained directly from theb52.4 values.
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TABLE I. The values of the parameters defining the interaction fixingf 1
a5kc50, b051.0, anda054.0

for a series ofb ’s.

Parameter b52.4 b52.5 b52.58 b52.635 b52.74 b52.85

kf 1.51~8! 1.48~8! 1.50~8! 1.49~8! 1.45~8! 1.43~8!

ka 0.55~3! 0.56~3! 0.56~3! 0.56~3! 0.57~3! 0.57~3!

f 2
a 0.51~2! 0.51~2! 0.51~2! 0.51~2! 0.51~2! 0.51~2!

c0 3.9~3! 3.9~3! 3.9~3! 3.9~3! 3.9~3! 3.9~3!

x2/NDF 1.03 1.03 1.11 1.09 1.15 1.07
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~c! In order to study scaling and the effect of lattice ar
facts, the errors on the data were taken to be purely statis
and so were much smaller than the present ones.

~d! The model analysis was carried out with the 232
model. Since this results in a quadratic equation for the
ergies, the stepE0→ f could be done analytically. After this
the parameterskf , kP , and f 0 in Eq. ~2.13! were extracted
by a fitting procedure.

C. Comparison with other work

A fit with a potential model to some of the above fou
quark binding energies was attempted earlier in Ref.@17#.
However, there are several important differences compa
with the present fit.

~1! The model contained only 232 or 333 bases that
were essentially constructed fromA, B, andC.

~2! The tetrahedral data were not included.
~3! Most of the data was forb52.4. Only squares in-

cluded that fromb52.5.
~4! The overlap factor is that in Eq.~2.13! but with f 0

51.
For the four geometriesS, R, Q, andL the areaS is the

same as that used here in Eq.~2.12! and for geometry NP a
curved surface is used. However, the perimetersP are deter-
mined by the underlying lattice structure of the geometry a
not the usually expected perimeter. For example, for qua
laterals,P is the perimeter of therectangleenclosing the
quadrilateral. The reason for this choice is an attempt to t
into account lattice artifacts, which are present for the sm
est configurations. These artifacts are more important in R
@17#, since configurations containing flux lines of only on
lattice link are included. In the present work the cutoff is
two lattice links. For squares the outcome in@17# was kf
50.296(11) and kP50.080(2), compared with kf
50.571(12) using model Ia above in Sec. II A. The diffe
ence between the values of these area constants is be
the perimeter term, which is introduced to make artifact c
rections forsmall configurations, is still important for large
configurations, where rotational symmetry is restored a
their presence not needed. For example, with a square of
d55, the two terms in the exponent of Eq.~2.13! are com-
parable, even though the lattice data for this square
20.042(5) and20.047(5) for the corresponding tilte
square. In the lattice simulation the basis states have a s
lar form compared with the ones used in@17# but with the
major difference that they are fuzzed to such an extent
these underlying basis states get transformed. Therefor
@17#, for larger configurations it would be necessary to
clude many other terms with different perimeters, so that
al
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the average the usual perimeter for a particular geom
would probably be more appropriate. This latter choice w
tested in Ref.@11#, where it was found to reduce in the con
tinuum limit to the form of model Ia. Thus the perimete
term seems to measure lattice artifacts also when the ph
cal perimeter is used.

In Ref. @10#, the model in Ref.@17# is extended to include
the tetrahedral data by using an 838 basis, where now al
the states are constructed in terms of the underlying latt
This, therefore, suffers from the above problem that the
sults are always dependent on the lattice even for large c
figurations, where rotational invariance is restored.

IV. CONCLUSIONS

In this article an interquark potential model is construct
than can explain, on average, the energies of a series of f
quark systems, in which the four static quarks are in any
of six geometries. The input energies used as data for
construction@1# were calculated on a 163332 lattice for four
static SU~2! quarks withb52.4. Two or three basis state
were used in the lattice simulation, enabling reliable e
mates to be made of the lowest two energy eigenval
(E0,1). In all, 100 pieces of data were considered suitable
confronting the model. Other pieces were rejected, if th
involved configurations suspected of having strong latt
artifacts~e.g., with states constructed from less than two l
tice links! or had vanishingly small binding energies~e.g.,
elongated rectangles withr @d).

The full model utilized six basis statesA, B, C, A* , B* ,
and C* and in its most general form had eight paramete
However, in practice, only four of these (kf ,ka , f 2

a , andc0)
need be considered as free when fitting the data.

The parameters that are, perhaps, of most interest
those connected with the ranges of the various interactio
namely,kf , ka , andkc . Here we define ‘‘range’’ asr f ,a,c

5A1/bskf ,a,c. In model Ia, whereka,c are effectively infinite,
we getkf(Ia)50.57~1!, i.e.,r f(Ia)55.0 in lattice units. How-
ever, in model III as the excited statesA* , B* , andC* are
introduced, the interaction between the basic statesA, B,
and C decreases by raisingkf to 1.51, givingr f(III) 53.1.
But at the same time this loss of binding by the direct int
action betweenA, B, and C is compensated by their cou
pling to theA* , B* , andC* states. This coupling is found
to have about thesame range r a55.1 as r f(Ia) above,
whereas the direct interaction between theA* , B* , andC*
states seems, in all fits, to be satisfied with simply a tw
quark description without any four-quark correction~i.e.,
kc50!. The observation thatr f(Ia)'r a suggests that the en
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ergy density has a range dictated by the longest ra
available—namely,r a . Therefore, when theA* , B* , and
C* states are not explicitly present, as in model Ia, the o
available ranger f(Ia) has to simulate the role ofr a . In the
binding energies the contributions from theA* , B* , andC*
states rapidly dominate over those from theA, B, and C
states. For example, with squares of sideR, theA, B, andC
states contribute only 85%, 40%, and 10% to the bind
energy forR52, 4, and 6, respectively. Of course, at t
largest distances ('0.7 fm! the quenched approximation
expected to break down and the role of quark-pair creatio
become important. We therefore come to the following s
nario for the four-quark interaction. At the shortest distanc
up to about 0.2 fm, perturbation theory is reasonable with
binding being given mainly by theA, B, andC states inter-
acting simply through the two-quark potentials with litt
effect from four-quark potentials. However, for intermedia
ranges, from about 0.2 to 0.5 fm, the four-quark potent
act in such a way as to reduce the effect of theA, B, andC
e

ki,
e

y

g

to
-

s,
e

s

states so that the binding is dominated by theA* , B* , and
C* states, which now interact among themselves again s
ply through the two-quark potentialswith little effect from
four-quark potentials. At larger ranges quark-pair creatio
can no longer be neglected.

The next step in this work would be to carry out a res
nating group calculation in the spirit of Ref.@4#. This would
then test the universality of the above model by extendin
from the six geometries discussed here to general four-qu
geometries.
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