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Pion-nucleon scattering in a new approach to chiral perturbation theory
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We study pion-nucleon scattering with a chiral Lagrangian of pions, nucleons @&ubars. The scattering
amplitude is evaluated to one-lo@p order, whereQ is a generic small momentum, using an approach which
is equivalent to heavy baryon chiral perturbation theory. We obtain a good fit to the experimental phase shifts
for pion center-of-mass kinetic energies up to 100 MeVoAerm greater than 45 MeV is favored, but the
value is not well determinedS0556-28138)05606-4

PACS numbses): 11.30.Rd, 12.39.Fe, 13.75.Gx, 13.85.Dz

I. INTRODUCTION tion. In Sec. lll we describe our method of separating out the
soft contributions, which need to be calculated, from the hard
The pion and the nucleon play a central role in low-contributions, which are subsumed in the parameters. Fer-
energy physics and there is a wealth of scattering data whichion loops and the implications for power counting are also
allow us to test the application of effective Lagrangians. Sev4discussed here. The formalism folN scattering is given in
eral relativistic phenomenological modé¢ls-6] exist, which ~ Sec. IV, with a listing of the expressions for the loop dia-
provide reasonably good fits to the experimentdl phase grams relegated to the Appendix. The calculated phase shifts
shifts. In these models either the Bethe-Salpeter equation &e compared with the data in Sec. V, where we also discuss
solved approximately or thi€-matrix method is used to uni- the effectivewNN and #NA couplings as well as the pion-
tarize the tree amplitudes. Such models, however, do ndiucleono term. Our conclusions are given in Sec. VI.
offer a systematic approximation scheme.
_ Chiral perturbation theorﬁChPD [7,8] is a more attrac- Il EEEECTIVE LAGRANGIAN
tive approach because it not only embodies chiral symmetry,
which is fundamental to low-energy physics, but it also of- Before writing down an effective chiral Lagrangian we
fers a systematic expansion in powers of the momentunmeed to define our notation, much of which is fairly standard.
Further it ensures unitarity order by order. Gasser andhe Goldstone pion fields?(x), with a=1, 2, and 3, form
Leutwyler [8] have shown that ChPT works nicely for me- an isotriplet that can be written in terms of an @Umatrix:
sons; however, the power counting fails when baryons are
introduced 9]. The power counting can be restored in heavy U(x)=2=expi m(x)/f ), (]
baryon chiral perturbation theoydBChPT) [10] where the

heavy components of the baryon fields are integrated oufwheref,~93 MeV is the pion decay constant and the pion
Here we shall adopt a different approddi] which effec- field is compactly written asr(x)=m(x)- 17, with 7 being

tively removes the heavy fields after constructing the Feyn;[he Pauli matrices. The matrld is the standard exponential

man diagrams. This approach preserves the power countin . “ # o

. . ; presentation and the “square root” representation in terms
and gives results in agreement with HBChPT, at least to the "~ . . : . . :
order considered of ¢ is particularly convenient for including heavy fields in

Peccei[12] used a chiral Lagrangian to calculate thethe chiral lagrangian. The isodoublet nucleon field is repre-

7N scattering lengths near threshold. Calculations with théSented by a column matrix

more modern approach of HBChPT are discussed by Ber-

nardet al. in a review[13] and in Refs[14,15. Particularly N= ( p) )
interesting is the recent calculation by Migjz [16] of the n)’

full amplitude to@(Q?®), with Q a generic small momentum

scale. Mojis employs just pion and nucleon fields. Since where p and n are the proton and neutron fields, respec-

there are a number of unknown parameters, scatterinfyvely. TheA is a spin and isospin; particle represented by
lengths and effective ranges alone are not a stringent test @h isoquadruplet field:

the approach. We mention that Datta and PakyaZahave

recently used the results of Migzto discuss low-energy A*H

scattering. However a fit to the phase shifts out to center-of- #

mass(c.m, energies in the\ resonance region is desirable. A;

This requires explicit consideration of th# field itself, A= A | 3)
along with the pion and nucleon fields. Here we shall carry ®

out this program by evaluating all diagrams up to one-loop A,

QS order.

The organization of this paper is as follows. In Sec. Il welt is convenient to introduce an isovector fiedd,=TA , in
write down our effective Lagrangian and establish our notaterms of the standard>24 isospin3 to 3 transition matrix:
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<%t|T|%tA>E§ (In3t)3ty)e, 4)

where the isospin spherical unit vectors agee, ande.
= I(extiey)/\/i. Explicitly, the components are

A1+iA2=i ﬁAz) (5)
Al—iA2=—i( JEA’T). (6)
2(A)
A= \@(A’é)- @
o

Following Callanet al.[18] we define a nonlinear realiza-
tion of the chiral group SU(2)2 SU(2)g such that, for arbi-
trary global matriced € SU(2), andRe SU(2)z, we have
the mapping

Le&R: (£N,A,)—(& N A}, (8)
where
£ (x)=L&x)h'(x)=h(x)€x)RT, C)
N’ (x) =h(x)N(x), (10
Al (x)=3htr (hshT7)-A,(x). (11

As usual, the matrixJ transforms as)’(x)=LU(x)R". The
second equality in Eq9) definesh(x) implicitly as a func-
tion of L, R, and the local pion fieldh(x) =h(a(x),L,R).
The pseudoscalar nature of the pion field implieé&x)

e SU(2),, with SU(2), the unbroken vector subgroup of
SU(2), ®SU(2)z. The nucleon transforms linearly under
SU(2), as an isodoublet. While the isodoublet component:
of the isovectold , transform linearly in the same way as the
nucleon field, the isovector itself is further rotated by the
O(3) transformatior} tr (h7h'7).

Interaction terms invariant under the nonlinear chiral
transformation may be conveniently constructed in terms o
an axial vector fielda,(x) and a polar vector field ,(x)
defined as

Eé’##

i
a,=—5(£'9,6-¢3,8")=a,=3a, 1=

—3?77[77,(9 T+, (12
_ o t_1 o m?
UM=—§(§ &M§+§&M§ )—UM—EUMW'——F 1—F
X[m,d,m]+ -, (13
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v!,=ho hT=ihg,h", (14)
a,=ha,h'. (15)

To maintain chiral invariance, instead of an ordinary de-
rivative ¢, one uses a covariant derivative, on the
nucleon andA fields. These are defined by

D,N=3d,N+iv N, (16)
(17)

We also use the following definitions involving two and
three derivatives on the pion field:

D,A,=d,A,+iv,A,~v,XA,.

Vu=0d,0,—dv,tilv,,v,]=—i[a,,a,], (18
D,a,=d,a,ti[v,,.a,], (19
Dovuv:ﬁnvuv+i[v(r!vﬂv]! (20)

all of which transform homogeneously in the same way as
a, in Eq. (15).

To write a general effective Lagrangian, we need an or-
ganizational scheme for the interaction terms. We organize
the Lagrangian in increasing powers of the fields and their
derivatives. Specifically, as in Ref$,19], we assign to each
interaction term a size of ord€&“ with

n
a=d+ -,

5 (21)

whered is the number of derivatives on the pion field or pion
mass (n,) factors, andch is the number of fermion fields in
the interaction term. That is a characteristic of the interac-
tion term is suggested by Weinberg's power countiag],
which we discuss in Sec. lll below. Derivatives on the
nucleon fields are not counted thbecause they will gener-
ally be associated with the nucleon mass and not with the
small momentunQ. In fact, as Kraus¢21] has argued, it is
ID—M that is of O(Q?). Krause also countg,, ys to be of
O(Q% and a single factor ofys to be of O(Q'). We
adopt this counting for organizing the Lagrangian, although
we have argue@6] that counting a singless factor to be of
p(Ql) is not precise. Our scheme allows a uniform organi-
zation of the pion self-interaction terms and those involving
the heavy fermions. It_differs from the “standard labeling”
of Gasser, Sainio, andvarc [9] where the number of fer-
mion fields is not included.

Taking into account chiral symmetry, Lorentz invariance,
and parity conservation, we may write the Lagrangian
through quartic order¢=<4) as the sum of the ord€?, Q3,
andQ* parts:

£:£2+£3+£4+A£, (22)
where AL represents the counterterms, which can also be
organized in powers o@. We will adopt the counterterm
method of renormalization, so we start with the physical
masses and couplings and add the necessary counterterms.

both of which contain one derivative. The polar vector fieldFor simplicity, in this first investigation we will not explic-
transforms inhomogeneously and the axial vector field transitly identify the finite and divergent pieces of the various
forms homogeneously: counterterms. The ordé? part of the Lagrangian is
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L=N(iD+gay"ysa,—M)N+ 32 tr (9,UT9U) + mZf2r(U+UT—2)+ ASALZAD +ha(A,-a*N+Na*-A,)
+NaA2y"ysa, A%, (23)

where the isospin indicea,b=1, 2, and, 3, the trace is taken over the isospin matrices, and the kernel tensorAn the
kinetic-energy term is

AR'=—(iD—M )G +i (YD "+ y*"DH) — y*(iD+My) 7", (29

suppressing isospin indices. Here we have chosen the standard parAmetdr, because it can be modified by redefinition
of the A field with no physical consequencg2?]. In the wNA interaction of Eq(23) we have chosen the standard off-shell
Z parameter to have the convenient value-of. The value ofZ has no physical significance since modifications can be
absorbed in the other parameters in the Lagrand&h Similarly we simplify thewAA interaction by choosing the off-shell
parameters defined in RgR3] to beZ,=—3 andZ;=0.

With the notation

D,=D,~(d,~iv,), (25)

we may write the orde®® andQ* parts of £ as follows:

_B3n TghU) = —TNp 0" "N+ —2 iNy BN tr (aka”)+ —2mZNN t_o 2
£3_ﬁ tr (9,U%9 U)_V V0 +W2| v, DN tr (a a)+mm7 tr(U+U"—-2)+.- -, (26)

_)\1 237 t )\2— LAY )\3 2 “ t )\4 — - P
£4—meNy5(U—U JN+ WN’y D U/“/N'F WmﬂNyﬂ[a ,JU—UT]N+ WINUP#DVN tr (a’D*a”)

As = = = v Ne 5 ; T Nt i T
+WIN’YP{DM,DV}TaN tr (73[DPa*,a”]) + Wmﬁ{AM-tr[m“(U—U )7FIN+Nt[io“(U—UD)7]-A }+ -,

(27)

In Egs.(26) and(27) the ellipsis represents terms that do not lll. CHIRAL PERTURBATION THEORY WITH BARYONS
contribute to therN scattering amplitude. For example, the
ellipsis in £, includes the usual pion self-interaction terms

with four derivatives. Then? factors inL, are introduced to ! . ;
correctly count the order of the symmetry-breaking termsMan r_u_Ies _and carry out perturbative calculations of physical
quantities in the standard way. However, as shown by Gas-

prevzer, It appears Zthat counterterms of the above formye, “sainio, and@rc[9], the loop expansion no longer cor-
with m? replaced bys” are needed even in the chiral limit responds directly to the momentum expansion when we have
(m,=0). Here 5=M,—M s the A-nucleon mass differ- heavy fermions. One way to overcome this difficulty is
ence. We have applied naive dimensional analyk#24 to = HBChPT [10], where the heavy components of the fermion
the terms in Egs(26) and (27) so as to expose the dimen- fields are integrated out so that their effects on physical
sional factors. As a result, we expect the parameters to be ofuantities only show up in the parameters of the Lagrangian.
order unity. Alternatively one can construct an explicitly nonrelativistic
Using the pion and nucleon equations of motionLagrangian20]. o
[20,25,26, we have also simplified the contact terms listed We propose a different procedure here which involves
in Ref. [9]. For example, we reduce thé@(Q%) term Manipulating the Feynman diagrams themselgee also the
NﬁﬂﬁvN r (a#a”) to the sum of thed(Q3) «, term, the recent discussion of Gasged7]). First we obtain the Feyn-

2 . ) . man rules in the standard way. Then we separate the loop
O(Q’) A4 term, and hlgher-order terms Wh'Ch we omit. AS @ conribytions into those from soft and hard momenta. We
result we have the minimum number of independent term

- e . ) 3 Reep the soft contributions explicitly. These will have both
contributing to thewN scattering amplitude up t0(Q%).  real and imaginary parts in general, the latter being needed to
Note that the isoscalar-scalgrand isovector-vectos fields  maintain unitarity order by order. As for the hard contribu-
given in Ref.[19] have been integrated out. Their effects tions, we implicitly absorb them into the coefficients of the
show up in the contact term@,, «,, and\,. For example, Lagrangian. As we will see this procedure preserves a sys-
in terms of thep 7 coupling @,~~) and thepNN coupling  tematic power counting scheme.

(9,), the rho gives a contribution to the, parameter of Specifically, we represent the hard momentum scale by
~29,.,9,M?f2/m). the nucleon mas#1. Other quantities of this order include

A. Hard and soft contributions

Given the effective Lagrangian, one can derive the Feyn-
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the A massM, and the factor 4 f , with 47 coming from a LT T .
loop integral[28]. The soft momentum scale is denoted by k \
Q, whereQ<M. Quantities of this order are the pion mass — - i

m,, the pion momentum, and the mass splittifidpetween
the nucleon and tha isobar. Also, as in HBChPT, we are  FIG. 1. A one-loop nucleon self-energy diagram. The dashed
interested in applications where the three-momenta of théne represents a pion propagator and the solid line a nucleon propa-
external nucleons are of ordéy. gator.
For the present we consider any loop diagram without
fermion loops: we shall consider diagrams with fermionbe soft. Since we assumeto be nearly on shell, we can
loops later. We obtain the unrenormalized soft part of thenake a covariant expansion of the nucleon propagator as
diagram by applying the following rules to the loop integral:
(1) Take the loop momenta of the pion lines to be of order

Q G(k+ /)=

2k /- MZ+ig KM+

(2) Make a covarianQ/M expansion of the integrand.

(3) Exchange the order of the integration and summation
of the power series. Z2(k+M)
Rule 1 ensures that the exchanged pions have soft momenta. T K KM+
As a result internal baryon lines will be nearly on shell €

throughout the diagram. Rule 2 implies that a covariant ex- o o i )

pansion of the baryon propagators in the integrand is maddlere the_contrlbutlon_flrlsm_g from first term in the square
which maintains the Lorentz invariance of the soft part. InPrackets is of ordeQ -, while that due to the second and
Rule 3 the exchange of the order of integration and summadhird terms is of ordeQ ™ ~x (Q/M). Subsequent terms will
tion changes the result in general. Indeed the purpose of thi§volve higher powers oQ/M. The precise way this expan-
maneuver is to remove the poles in the baryon propagators &ton is carried out has to be tailored to the case at hanzd. For
hard loop momenta of ordev. Clearly this is achieved be- ©€xample, inmN scattering we havé=(p+q) where p
cause after application of Rule 2 the only poles in individual=M? and g?=m7. Then we may letk—p and
terms of the series are located in the soft momentum regiod — (/' +4) in Eq. (30).

of O(Q). Of course the soft part obtained from our rules still  Exchanging the order of the summation and integration in
contains ultraviolet divergences in the form of polesdat Eds.(28) and(30) then yields the soft part:

=4 in dimensional regularization. We remove these diver-

(30

gences with the standard method of renormalization. For- 2 %
mally, if we denoteAthe original integral ki, the unrenor- & k)= E%-M4—dJ d’/
malized soft part bySZ and the renormalization operator by 42 (2m)¢
R, the final renormalized soft part RSZ. This is the physi- ,
cal loop contribution. As discussed in the next section, the x 2k-/4 —(k+M)/? L.,
;oft loop contributions allow for a systematic power count- (/z—mfr+ie)(2k~/+ k?—M2?+ie€)
ing.
gAs for the part of the original integrdl that is discarded, (31

namelyZ— RSZ, we call it the hard part. This hard part con- » . o
tains contributions from poles of the integrand at hard moliere we explicitly show the leading contribution to the soft
menta. Thus, we should be able to absorb this part into thpart S .\ which is of orderQ®M?, as would be expected
coefficients of the Lagrangian. As Lepaf®9] has argued from Weinberg’s power counting. The ellipsis represents
from the uncertainty principle, large momenta correspond tdiigher-order terms. For illustrative purposes, it is useful to
short distances that are tiny compared with the wavelengthsum up the series of soft contributions. This can be carried
of the external particles, so the interactions must be local. out by noting that in the present case, after our exchange of
At this stage a concrete example is useful. Thus, wehe integration and summation, aff in the numerator of
evaluate the nucleon self-energy diagram shown in Fig. lany integrand can be replaced witif. in dimensional regu-
From standard Feynman rules we obtain the self-energy: larization. Then the exact soft part of the one-loop self-
energy diagram is

303 d £ysG(k+NAy
S =m0 [ ST LY g sG [ s
41 (2m® /°f—m_tie 5 N(k)_——AiM4_dJ
"’ 412 (2m)¢

where the free nucleon propagator
1 (2k-/+m2) 4/ —(k+M)m2

= - X .

k—M+ie’ 9 (/P—mi+ie)(2k-/+k2—M2+mi+ie)

G(k)

and u is the scale of dimensional regularization. We obtain (32
the soft part ot ,\ by first making a covarian®/M expan-
sion of the integrand, while taking the pion momentdnto  Introducing
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1 which is of orderQ, the integral of Eq.(32) in the case
w= k2—MZ2+m?2) , 33 <m, can be written
2\/F( ™) 33 ol
|
. 3g2 [ m? k2—M?2 ® —w 3¢5 [K-Mm?
SS K =—"— = (k+M)— ——wk —ymi—w? cos | —| |- m2—2w?)k
o 2(477f7,)2(\/E2( TR 2 T m. )| sty K2
i 3T(k+|\/|) (32 2L+1 mi) (34)
T n—y,
Kz n?
where
L= ! 2 1-In4 35
“32n2aa Ty IAT] (39

with Euler's constanty=0.577 . . .

In the modified minimal subtractionMS) renormalization scheme, we obtain the renormalized soft IAEASE;WN by
including counterterm contributiof€TC'’s) to remove the term proportional toin Eq. (34). We can further ensure that the
pole of the nucleon propagator is at the physical mass with unit residue by additional on-shell mass and wave-function
counterterm subtractions as detailed in E¢)) below. These CTC'’s can clearly be expanded in an infinite power series in
(k—M)/M. Thus, the divergences appear to all orders inQihkl expansion. The divergences can be removed by introducing

counterterms of the form ("~ Y)N(i4—M)"N with n an integer. However, we note that we may use the nucleon equation
of motion[20,25,28 to eliminate the above counterterms in favor of interaction terms involving multiple pions and nucleons.
We may obtain the leading ord€3 M? contribution to Eq.(34) by approximatingw=(k?—M?)/(2M) and settingyk?
=M in the denominators. It is not possible to expand this leading-order expression further since the square root and inverse
cosine functions in the equation involéeandm,. which are of the same order. Thus, we cannot absorb this soft part into the
parameters of the Lagrangian. This result is consistent with the expectation that the parameters should contain only high-
energy contributions.
The hard part of the self-energy can also be evaluated directly. We find

. 3Gh. , 4 4 (4= K)(£ ~M) (£ ~K) 303 k2+M?2
(1=8)3 (k)= 7 i’ “f Ry Ceowiirmiaie” aant MM ek
4 §2 (2m)9 (/2—M?+ie)(2k-/—K2—=M2+mi+ie) 4(4mf ) 2
M?2 394 k?—M? m M?2
x| 32m2L+In )+— kK2—w)| —5— ok— —=(k+M) || 3272L+In ——1
u? 4(47wa)2(\/— 7k N u?
S22 (0?-md)
- . 36
IZ12'—1<JF—<»>2' %
|
Notice that the integral in the first equation @) is domi- ity v, such thatk,=Mv,+q, with v,0*=1. Projecting

nated by poles at momenta 6I(M). The final result can onto the light components by inserting the projection opera-
indeed be expanded in powers d<{M)/M and thereby tors 1 (1+#)=[(1+4)]? fore and aft, and noting that
removed by CTC's. If this were not done the power counting

would be spoiled since the first term of the result i<M)
and the second is @(Q?/M), which can be contrasted with
O(Q3/M?) for the soft part.

While our procedure is plausible, a general proof would
require consideration of diagrams of arbitrary complexity., - 1
Here we restrict ourselves to one-loop order for which it i55(1+¢)SEﬁN(k)5(l+‘é)
easy to see that our procedure gives the same result as HB- 392 qd/ (/9?2
ChPT. Indeed, the expansion of the baryon propagator in Eq. — %(1+$)—Ai,u4_df ~ - —

(30) generates the same effects as integrating out the heavy f2 (27)d /2—mw+|e
components of the baryon fields in HBChPT. For our ex-

ample of the nucleon self-energy we can make the connec- % 1 ST (38)
tion with HBChPT by introducing in Eg31) the four veloc- v-q—v-/+ie

1(1+6) ys3(1+8)=2/-SE(1+¥), (37)

whereS, = 3iyso,,v", we find

ko
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FIG. 2. Sample diagrams with baryon loops not directly con-
nected to external baryon lines.
This is a well-known expression which follows directly from
the Feynman rules of HBChPT13,16. Our expression for FIG. 4. Diagrams which yield Fig. 3 when the heavy boson
the soft part, Eq(34), when projected onto the light compo- propagators, represented by wiggly lines, are shrunk to a point.
nents yields in leading orddpr equivalently in the infinite
nucleon mass limjtthe result of Bernaret al. [13,31] ob-  lines to points. Since the momentum transfers through the
tained in HBChPT. boson lines must be small if it is feasible to integrate out the
Mojzis [16] has recently calculated diagrams feiN heavy bosons, the arguments given in connection with Fig. 2
scattering using HBChPT with just pions and nucleons up ta@an also be applied here. Therefore the soft parts vanish.
one-loopQ?® order. The results of our calculation, given in Alternatively, this may be shown directly by taking the loop
the Appendix, agree with hisnodulo differences in the pa- momenta to be o®(Q), using Eqs(30) and(39), together
rametrization ofU and the treatment of finite terms arising with the relation
from the product of aq—4) factor with the 1/—4) pole,
see beloyl For simplicity our examples have involved the (/3Hm
nucleon propagator, but we emphasize thatdh@opagator J dd/m=
appearing in loop diagram{glenoted by an open box in Figs. ’
9 and 10 belowis treated in exactly the same way. This is

0, (40)

necessary to preserve the power counting and it gives resulfé1eré @ is independent of”. Equation(40) is valid in di-

which agree with the HBChPT approach of Hemmnetral. mensional regularization for any integarsandn (see Ref.
[32]. [30], for example.

Finally, we need to consider the special case where an
N-baryon scattering process contains Msbaryon interme-
diate state. A simple example is given in Fig. 5. We note that

Fermion loops were not discussed in the preceding sedf we consider the four-fermion interaction in terms of the
tion. We notice that there are no fermion loops in HBChPTexchange of a heavy boson, as before, this diagram will not
after integrating out the heavy-field components. Here wesontain a baryon loop. As Weinberg noticig], there is an
show that fermion loops have vanishing soft parts in ourinfrared divergence in Fig. 5 for on-shell nucleons at zero
approach so that they can be ignored. First consider fermiokinetic energy. Indeed, the amplitude is proportional to
loops that are not directly connected to external fermion

B. Fermion loops and power counting

lines, such as those in Fig. 2. We will work with nucleons for » / ‘

simplicity, although similar arguments can be given A0s. f d*/Py(/)G(p1+/)G(p2—7)

If we generalize our previous rules by taking the loop mo- ;

mentum to be of0(Q), we can expand the propagators in _ f oy P,(©) 1

the form ) T T 2py/+pi—M2+ie 2p,-/+ps—M2—ie

(42)

) 1 /? +...
G(/)=—W(/+M) 1+W+--~>. (39 '

_ _ o - where P,(#) and P,(/) are polynomials in the loop mo-
In dimensional regularizatioffd’//"=0 so the soft part mentum/. We have taken’ to be of ordelQ and expanded
vanishes. Alternatively, a direct calculation of the loop inte-the integrand in the manner of E¢0). The contour of in-
grals with the standard Feynman rules can be used to showigration is pinched between the two poles/gt= +ie for
that the contributions of the diagrams can be expanded in g, = p,=(M,0), and so cannot be distorted to avoid these
power series in terms of small pion mome(@&Q/M expan-  singularities. Of course, this just signals that our expansion
sion) and can thus be absorbed in the Lagrangian. In othefails. The way out of this difficulty has also been given by
words there is no soft part. Weinberg: we should consider onl-baryon irreducible

Next we discuss fermion loops generated from féor  giagrams forN-baryon scattering processes. The reducible
more fermion vertices, such as those in Fig. 3. These can be

considered to arise from Fig. 4 by shrinking the heavy boson p
1
_>_
P,
FIG. 3. Sample diagrams with baryon loops involving four  FIG. 5. A two-baryon reducible diagram that needs special treat-
baryon vertices. ment.
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(@) (b)

FIG. 6. Tree-level diagrams farN scattering(a) contact inter-

actions;(b) nucleon exchange with the cross diagram suppressed.

diagrams are summed up with tiN-body Bethe-Salpeter

equation, the kernel of which is obtained from the irreducible

diagrams.

Even in one-baryon processes, suchrkscattering, sin-
gular behavior can arise when an intermediAtggoes on
shell. A similar remedy is followed: first calculate the irre-

ducible self-energy diagrams to a certain order, then sum up
the string of reducible diagrams containing arbitary numbers

of self-energy insertiongsee Sec. V.

We can now discuss the power counting for irreducible
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going nucleons are labelg@andp’, respectively. The am-
plitudesA* andB™ are functions of the Mandelstam invari-

antss=(p+q)? t=(q—q’)? andu=(p—q’)%

A. Tree-level contact terms and nucleon exchange

In Fig. 6 we show the tree-level Feynman diagrams aris-
ing from the contact terms and from one nucleon exchange,
with the crossed diagram for the latter suppressed. The ver-
tex in Fig. 6a) arises from any of the interactions iy and
L, (except for the\; and\ g termg, as well as the Weinberg

term —Wy”vMN. It is straightforward to obtain the ampli-
tudes arising from the contact terms. The results are

1 A
E=—5 28, (2m2—t)— 4x,m2+ Es—l\/‘l‘z(s—u)2 ,

diagrams that do not contain fermion loops. According to Eq.

(30) the leading order of a baryon propagatorQs* and
according to Rule 1 the loop momentum is of or@erThus
all the power-counting arguments of Weinbd20] carry

< M2
(45)
.1
Bczw(KrZM)(S—U), (46)
Ag=— T 4
— 1 1 2
BCZE(1+4KW)—MTf§T §A2t+4)\3mw
N5 )
- s—u)“|. 48
16M2( ) (48)

over. It follows that the leading order of a Feynman diagramThe parameters here will absorb the divergences arising from

with L loops, Ey external baryon lines iQ” with

v=2+2L—3Ey+ > Vi(di+3n,-2), (42)
I

whereV; is the number of vertices of typecharacterized by
n; baryon fields andl; pion derivatives om,, factors.(We
used the quantity;+ in; to characterize terms in the La-
grangian in Sec. I}.In general each diagram may contribute
at orders beyond the leadir®y” order.

IV. PION-NUCLEON SCATTERING

We apply our formalism torN scattering and calculate
the T matrix to O(Q?%). The Q3 amplitude is obtained from
tree diagrams constructed from our Lagrangifp+ L
+ £, and one-loop diagrams constructed fram Following
the standard notation of Her [33] and Ericson and Weise
[34] we write theT matrix as

Toa=( | T|7a) =T Sapt 3[ 75, 7al T~ (43

where the isospin symmetric and antisymmetric amplitude

are
T =A"+3(4+4")B". (44)

Here, as shown in Fig.(6), q andq’ are the c.m. momenta
of the incoming and outgoing pions with isospin lab&land

the one-loop diagrams. They depend on the scale of dimen-
sional regularizatiorn. in such a way that the complete
matrix is u independent. The contributions from nucleon ex-
change shown in Fig.(B) are well known, see for example
Ref.[33]. Including the crossed diagrams, we have

A,jzsz, (49)
2
9a 1 1
+_ZAN2 _
BN fi_ (U_MZ S_MZ)! (50)
Ay=0, (51
2 2
- gA gA 2 1 1
NS 2 (s_—mf+u_—mf- 52

Here we have used the exact nucleon propagator, although it
could be expanded in chiral orders as in Ré&6]. The dif-
ference would appear beyor®(Q®) which is the level of
?)recision of the present calculation. Note that identification
of what is to be included i¥(Q?%) is model dependent since
the hard momentum scale could b&, M,, the average

massM, or 47f .. Results obtained with different choices
will differ at O(Q*) and beyond, but this should not affect
the quality of the fit to the data so that we shall simply write

b, respectively. The c.m. momenta of the incoming and out-our expressions in convenient form.
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\ 7 Y ~
4 1 y 1 ~
[ —- ] [ ] ~
FIG. 7. One-loopA self-energy diagrams. The open box repre-
sents the freeé\ propagator.
P Pd
B. A exchange -7

When theA appears as an intermediate state#dt scat- FIG. 8. TheA exchange diagram with the dressed propagator
tering, the tree-levell matrix diverges aBzMi so the  represented by a solid box.
power counting fails. As argued earlier, we expect the power
counting to work only for irreducible diagrams. Thus we 0 0 o0 0 <Ao0 < 70
evaluate the one-particle irreducible self-energy diagrams G =Gyt GG, + G XM G, 2 G”V+"';5
which, to one-loop order, are those of Fig. 7. Diagrams con- (57
taining one or more self-energy insertions are then summed
to replace the free propagator by the dressed propagatwhere (k) is the A self-energy. Slncey“G (k) and

which is finite. kf‘GfL (k) do not contain a pole @?=M3, we conclude
We start by writing down the freA propagator from Eq. (57) that the tensor terms i ,,(k) constructed
from v* andk” generate nonpole terms in the dressed propa-
GO (k)= | —g,,+iy,y gatorG,,,. It is not hard to see that these terms start to
mr K—=M,+ie| “Z#v 27877 contribute to theT matrix at orderQ®. We can thus greatly
1 2k k., simplify our calculations by noting that in th® self-energy
+ M(‘Y,ukv_ 7vk,u,) + 3'\;;Ii ) . (53) tensor
This may be recast in terms of the spin projection operators 2 (K=24K) gyt - -, (58)
[35,36 as

the aforementioned tensor terms, represented by the ellipsis,
can be neglected. Renormalizilg, in the MS scheme we

obtain 3 Y. We make additional on-shell mass and wave-

function counterterm subtractions such that, when the imagi-
nary part of the self-energy is neglected, the pole of she

( P1/2 1/2) v

G0~ mmy e P s

1/2
2 (P22) s (54) propagator lies at the physical mass with unit residue. Thus,
the final renormalized self-energy is
where
1 2 \\’/ \“ ,‘ \‘ - (: ~ \\‘ ~ \\‘
(PS/Z)[LV: g,u,v_ % ‘y,u')/v+ _2( '}/,uk /Lyv)k 2 k[uk l’)‘\ l)"\ ,’,\" S A0 A
3k 3k g / K S
(a) (b (© (d) (e) ()
(P1D =3 —i( yk— 2k
37,4171/ 3k2 7,4/, ,u7v k2 YIAN /B ] ,\ N \\\ X s\\ \\\ \\\
(P1D) == (— KK+ 7,K,K), (55 7 ’ ' 4 / g
V3k @ (h) ) ) (k) M
12y _ T - N\ N R IR
(P ) v \/§k2(k“k”_kﬂy"k)’ N B * N ' \‘l N ‘\| : .,
1 s .
(PL2 =k, (m) (n) (0) @ (@ (r)
k2
The spin projection operators obey the orthogonality rela- N N R
tions S L
(Pi) u(Pi) "= 813 8Py, (56) ® W

The dressed\ propagator contains any number of irre-  FIG. 9. A set of one-loop diagrams which contributal¥Q%).
ducible self-energy insertions: Crossed diagrams fdd)—(n) are not shown.
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S k) =3 ¥S(k) — Re (k) ~ T Res (k)
k=my K k=M,
X (k—M,), (59

where Re refers to the real part. Breaking theelf-energy into real and imaginary parts we obtain the dreAspbpagator

K+ M,
k2= M3 — Tz ( 70 +iM zT A (K?)

G, (K)=— (P¥?),,— —=—(P1%+P3D), vy <k+MA>(P1’2 (60)

1
VaMm,
We have ignored?(Q?%) contributions to the nonpole terms which invol#? since, as we have remarked, they do not
contribute to thewrN T matrix until O(Q®). Also in the numerator of the pole term in EGO) we have neglected terms of
O(Q3), which contribute tolhe-rN T matrix atO(Q%). It is_convenient to write the real part of the “polarization” as a
function of 7,=2(k?—M?)/M, with the mean baryon madd =1(M+M,). To O(Q?) the two diagrams of Fig. 7 yield

hiM 2 25 hZM
Ha(70= =5 (g y2| (e MI(m) = (2= m2)3(8) - [353(5) 287+ mi+mZIn —7 | (=6 )] 27#{[%
m2
—8)2—m2)I(p— 8) — mmi—mi| 1+In ;Tg)(”k_ 5)}, (61)

where the function] is defined in the Appendix. For the energies considered here the imaginary part arises from the first
diagram of Fig. 7 which gives

2
™

12M \k* (47rf

y(kd)= )2\k2+M +2MM )[ (K2—M?)2— (k?+3M?)m2] (k2 — M?)?— 4k®’mZ. (62)

We have evaluatell, up to O(Q*) because this significantly improves the accuracy ofAhgecay widthI", (k?>= Mi). In
fact the error is negligible when compared with an exact evaluation using tree-level coupling=haM/f . (for the
coupling toO(Q?) see Eq(83) below). Specifically this if33]

3
l_,ixachﬂ'NA |Q| (M+ /|a|2+M2), (63)

127 M

where|q|?=(4M2—m2) (52— m2)/(4M?3).
Using the dressed propagator of Eq(60), the A exchange contribution to the real part of fhanatrix, pictured in Fig.
8, is

(5ab——[rb ra])W%M AR(S)S[ a1(s,t) + ay(s,t)g]— (s— M2+ m2)[M(s—M?)+ (M +2M ,)m2

+(s—M2+2MM+m2)d41}, (64)
|
where we defing;=1(s—M?2)/M and the real part of tha . (s—M?+ m?2)
propagator is ay(s,t)=2M[mZ—3t—3(s—M?)]- BT —
, X[M(s—M2)+m2(M+2M,)],
s=Mi—1I(7)
AR(S): 2 > 22 . (65) 2 2
—M2— — (s—M“+m))
[s—Mi—II(n)]°+M3I'L(s) az(s,t)=§mi—%t+§MM—( 5
We do not expand the propagator for the reason given at the X(s=MZ+2MM+m2). (66)

end of Sec. IV A. The definitions of the functiomg and a»
are To this should be added the result for the cross diagram
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which is obtained from the above by the replacen®gntu 94 dd/
and the interchanges—b andgq— —q’. u(p)TS8u(p)=— l6f4 i dj e
a

C. One-loop diagrams

A set of one-loop diagrams that contribute to thdl T Xz —mZtie u(p')4 y57°G(p' +/)
matrix atO(Q?3) is shown in Fig. 9. Here we can use the free b
A propagator since no singularities are generated inTthe Xq' ys7°G(p+a+/)gysT
matrix. A covariant expansion of th& propagators, as well XG(p+ )4 ys7°u(p). (67)

as the nucleon propagators, is made in the manner discussed
in Sec. lll A so that the denominators are of or@@erThese Noting thatpl’Lz Put qM—ql’L, and thatg, g’, and/ are of

A propagators are denoted by open boxes in Fig. 9. order Q, we can expand the nucleon propagators as in Eq.
As an illustration, we calculate the matrix for Fig. 9e). (30) and select the leading terms. Then the contribution to
Using the standard Feynman rules, we find O(Qd% is

— 30a d?/ u(p )/ (P —M)d' (p+M)G(p—M) /(50— 3[, T""])U(p)
U(p")Tagu(p) =~ grin® ™ f 3 (68)
(2m) (/?—mi+ie)(2p-/+ie)?(2p-/+2p-q+ie)
As in Sec. Ill, we can cast this in HBChPT form. Settipg=Muv , for the incoming nucleon, we easily obtain
— 39 d?/ u(p')(/-9)%(q’-9)(g-)(8**— 5[, ~]u(p)
u(p')To2u(p) = — —¢-im*” “f R S Y - —. (69)
f (2m)° (/7 f—mi+tie)(v-/+ie)(v-/+v-qtie)

It is tedious, but straightforward to evaluate the numeratorsére now cases where tidecan go on shell for which we use
of Egs.(68) or (69) and carry out the integration using the the dressed propagator of E§Q), as indicated by the solid
results in the Appendix. We use the modified minimal sub-box. For the diagrams in Fig. 4i® and 1@j) the contribu-
traction schemeNIS) to remove the singularities and the tions proportional toAg(s) vanish at the pole whers
resulting real part of th& matrix is listed in Eq(A20). Note  =M3 (and son=45). As a result, at the pole there are im-
that divergent terms proportional to @i/¢ 4) involve poly-  portant contributions to th& matrix coming from the imagi-
nomials in the variables and so they can be absorbed into theary part of thewNA vertex. These contributions actually
contact-term contributions. For the same reason, we can alare of O(Q') for energies very close to th& resonance
sorb finite polynomial terms obtained from the product of a(| — §|<m_,). Thus, we keep the leading-order pole correc-
1/(d—4) singularity and §—4) factors. The latter may be tions in Egs.(A41) and(A42). We have also considered the
generated frond-dimensionaly-matrix algebra or from in-  next-to-leading ordef @(Q?)] pole corrections for Figs.
tegration of tensor factors such 43/, in the numerator of  10(i) and 1Gj), as well as the leading(Q®) pole correction
the integrand. The above simplification has been exercise@ the A exchange diagram of Fig. 8. These gave a very
for the results listed in the Appendix. small effect and were not included in the final fit. The ex-

The real parts of th& matrix for the remaining diagrams pressions for the vertex modification contributions to The

of Fig. 9 are evaluated in like fashion @&(Q?%) and listed in
the Appendix. Note that the diagrams in Fign and 9n) . |

involve the nucleon one-loop self-energy which is real for o J ' ' K
the energies of interest here. As with the we renormalize

in the MS scheme to obtai® M and make additional on- -~
shell mass and wave- functlon counterterm subtractions () (b) © (d) @) ()
Thus, the renormalized self-energy is

S k) =3 NS(k) — EMS(Io 2MS<> (k—M). ’ ’ ’ ’

. .
.
(70) . . 4 . . .
. . - . . .

. . . . o h i j k 1
Since these diagrams do not give singular contributions to ® M ® W ) O
the T matrix we do not sum the self-energy insertions.  FiG. 10. Diagrams with one-loop vertices which contribute at
We also n_eed_to evaluate the vertex modification dia-¥(Q3). Crossed diagrams are not shown. The solid circl@jirand
grams shown in Fig. 10. Thie propagators denoted by open (g) refers tox; and\ vertices, respectively. Each diagram implic-
boxes have the same meaning as for Fig. 9. However, theligy includes its counterpart where the lower vertex is dressed.
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Working out the nucleon self-energy up to one-ldQp or-

\ ; X der, we find
: 4k, , 3 mgh , 8 M2
@ ®) © @ © ® M=Mo= M=~ 3 (4arf )2 mat3 (4mf )2
m2
S IO T N X[ (62—m2)J(8)+3mis |nM—’2’, (73

where the function) is defined in the Appendix anil, is
the “bare” nucleon mass defined to be independent of the
pion mass. Note that, as in HBChPT, contact terms propor-

FIG. 11. One-loop diagrams which either vani&—(f), or do tional to &° are ne_Eded tQ absorb the divergences and
not contribute at’(Q?), (g)—(1). Crossed diagrams and diagrams dependence associated with thedegrees of freedom. We

with the time ordering reversed are not explicitly shown. have not specified these explicitly, hence by depends on
5 and u. The o term up toO(Q?) is then
matrix are also listed in the Appendix. We reiterate that our
expressions for diagrams that do not involve the@ropaga-
tor agree with those recently given by Migjz [16]. Finally
we show in Fig. 11 a set of one-loop diagrams which do not
need to be considered. The top row, Figs(al11(f), is
identically zero due to the vertex structure or to violation of
isospin conservation. The lower row, Figs.(d@t11(), does
not contribute to?(Q?%). This is a welcome simplification.
From the real part of th& matrix the real part of the
elastic-scattering amplitudg, is obtained by the standard
partial wave expansiofi37]. Here the isospin-spin partial
wave channels are labeled ly=(l,21,2J) with | being the
orbital angular momentuml, being the total isospin, and

® (h) () @ (k) @

4y, , 9 TOA 5, 8 ham?2
M " 4 (anf )2 " 3 (4ntf,)?

X[8—23(5)].

o(0)=—

(74)

Note that thew dependence id(5) may be absorbed ir,
so thato is independent of.

The isospin even on-shell amplitud®*(»,t) at the
Cheng-Dashen point can be related to th&l o term,
o(2m?), as follows[38]:

J=1=1 being the total angular momentum. The phase shifts 2D (v=0, t=2m3)=c(2m2)+O(m%), (79
8, are then given by
1 wherev=(s—u)/(4M) and D* is obtained from
Refa=H sin §,C0S 48, . (77
DY (v,t)=A"(v,t)+vB*(1,1) (76)

D. Pion-nucleono term . .
by the subtraction of the nucleon pole term which comes

from the tree diagram in Fig.(B) and the one-loop diagrams
in Figs. 1Ga)—1Qf). At the Cheng-Dashen point only Figs.
8, 9a), 9(b), and Figs. &)—9(u) contribute to thes term.

We may obtain the nucleoo term from the Feynman-
Hellman theorem,

oM
a(0)=m?

2 —, (72) Using the results for th& matrix as given in the Appendix,
amz we find
|
mga . haml 2 him? [

3
2y _ —_ - ™ _ _ 2_ 2
o(2m;)—o(0) 7 (4wfﬂ)2m”+ 3Mi5+3 (4”f7)2[(w 4)6—4+6c—mZ In

28°

5 52 )
— =1
m, m?,

S+82—m2(1—2x+2x?)

1
+f dx In
0 JE—mE(1-2x+2x2)  6— P —mA(1—2x+2x2)

: (77)

Note that since we courtt to be of orderQ the second term on the right is of the sa@®order as the other terms. Equation
(77) agrees with the result of Bernaed al.[13,39 who obtain this expression from HBChPT and dispersion relatidreir
integral is in a form which is slightly different from ours, but both integrals give the same numerical)result.

E. #NN and #NA couplings

The 7NN vertex up to one-loop order consists of the tree vertex generated from theagxiaim in the Lagrangian and
the one-loop diagrams shown in the upper part of Figga)AQf). Following our procedure, we can straightforwardly
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calculate the one-loop vertex functidif(k,k’,q), wherek (k') is the incoming(outgoing momentum of the nucleon and
g=k’ —k is the momentum transfer. TheN N coupling for on-shell nucleons is obtained by sandwiching this vertex function

between nucleon spinors:

u(k)HTak,k’,q)u(k) =g (g2 u(k’) ysr2u(k).

We find

9.nn(0%) =g.nn(0)+O(G%Q2),

(78

(79

which implies that the difference between the on-shell pion cou@i,l;}g\,(mi) andg,nyn(0) is of O(Q%). This justifies the
usual assumption of a small variation @.yn(g?) betweeng?=0 and qzszr when the Goldberger-Treiman relation is

derived[40]. To O(Q?) we obtain

Mga 2x, m2 1 m2 m2 g2 2 3 md 64 hi s %
9O = 7 g M2 3 (a7 " 6 (@t 2 T 2" 2] T 276 (a7 T (O T M)
1 2] 200 hzh 3 m2
o L P L\ S P 3, My 5
+ 2m,,5 In 2 + 203, (anf.)? 25°—m;—383(9) > M In 2 +0(Q%) ;. (80

Notice that\,; absorbs the divergences apddependence arising from the one-loop vertices. With the parameters obtained
from fits to thewN phase shifts Eq(80) allows a test of the Goldberger-Treiman relation.

Similarly, we can calculate theNA vertex from the tree-levei, term and the one-loop diagrams shown in the upper part
of Figs. 1dg)—-10Q(1). Here, in the vertex functioh#2(k,k’,q) the labelk now refers to the incoming momentum. TherNA
coupling is obtained by sandwiching this vertex function between the nucleon spinor aadstsieor,u,,(k):

u(k)I#3(k,k",q)u,(K) = gana(aPu(k’)g#T2u (k). (81)
We find
Uana(0%)=0ana(0) +O(0%Q%), (82
where
O_MhAlzxemil m2 Im,zT 2 1 2 1o 28N G o 125I m?2
gﬂ'NA( )_ f7r _h_AW_§(4’7Tfﬂ.)2 n7+3_5(477f77)2 gA+§ A+§L A ( _m']T) ( )+§mﬂ' n?
27 1 25. 25 gah,m? m2\ 1 2mi
T 421 TTR2 3_ " ™ _ _m - 2 1K2 2_ ~21\3/2 3
38 (47Tf7r)2 gA+ 81hA)m77 54(47Tf77)2 In MZ +35(47Tfﬂ_)2(29A+9hA)(5 mﬂ') +O(Q) .
(83

Here \g plays a similar role to\; for g,nyn. The value of

optimizing the fit of our calculate- and P-wave phase

0.na IS complex because the intermediate pion and nucleoshifts to thewN scattering data of Arndi42]. Because neg-

states for Figs. 1@ and 1@j) can go on shell.

V. RESULTS

ligible error bars are given in the data at low energies, we
assign all the data points the same relative weight in a least-
squares fit. We fit the data for pion c.m. kinetic energies
between 10 and 100 MeV.

As fixed input parameters, we use the standard baryon and The fit obtained for theS- and P-wave phase shifts as a

pion massesM =939 MeV, M ,=1232 MeV, andnm_=139
MeV. We also takd41] f.=92.4 MeV from charged pion
decay,ga=1.26 from neutror3 decay, anch,=1.46 from
Eq. (63) with g ,nya=haM/f . and the central value of th&

function of the pion c.m. kinetic energy is indicated by the
solid line in Fig. 12. Here the renormalization scale is chosen
to be 1 GeV and the corresponding parameters aré $en
Table I. The experimental data points of Arrid2] to which

width I'y=120+5 MeV. The physical results should be in- e fit are displayed as triangles in Fig. 12; we also display
dependent of the scale of dimensional regularization. To contere the older data of Buggt5] (squares and Koch and
firm that this is indeed the case we carry out calculationsijetariner{46] (circles. The solid line shows a good fit up to

with three values of the scale, namgl=M,, u=1 GeV,

100 MeV pion c.m. kinetic energy, slightly below the

and 4=0.75 GeV. We then have 11 free parameters leftresonance at 127 MeV. It is remarkable that a good fit is
B, Kz, K1, K2, ha, andX to \g. These are obtained by achieved, even with 11 parameters, since Theatrix con-
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FIG. 12. TheS- andP-wave phase shifts as a function of the pion c.m. kinetic energy. The solid, dashed, and dotted curves are calculated

with parameters sesl (u=1 GeV), A2 (u=1.232 GeV, andA3 (u=0.75 GeV, respectively. The data are from Arnd2] (triangles,
Bugg[45] (squares and Koch and Pietarindd6] (circles.

tains a number of complicated nonpolynomial functions ofneeded. The deviations are most noticeableStg; and p13

the invariant variables. The agreement for most of the phasehich suggests that they are the most sensitive to higher-
shifts extends beyond 100 MeV, bdks; starts to deviate order contributions. We remark that similar fits can be ob-
markedly. Extending the range of c.m. energies used for th@ined with values of the renormalization scale as small as
fitting does not change the situation significantly. Howeverm_. In Fig. 12 there is a small gap in th#3; phase shift
O(Q* contributions may become significant above approxi-ust below 100 MeV. Here unitarity is slightly violated and a
mately 100 MeV. This assertion is supported by test calcuphase shift cannot be determined. The point is made in Fig.
lations in which we have included a few selected contribu-13 where} sin 25p53 is plotted for SeA1 (solid curve. The
tions of this order. However, without considering @{Q*) maximum magnitude of is exceeded in a 10 MeV energy
contributions no definitive statement can be made. A betteregion by <10%. This is a small violation and the salient
strategy is to examine the renormalization scale dependengmint is that sensible results are obtained without resorting to
of the phase shifts. The dashed and dotted curves in Fig. 12 phenomenologicdf-matrix approach to enforce unitarity.
display results obtained with=M, and x=0.75 GeV re- While we expect the parameters of Table | to be natural,
spectively; the corresponding parameters are labeledA2ets i.e., of order unity, some of them are close to 10. There could
and A3 in Table I. They? values for the three different be several reasons for this. First, we have no definite pre-
values of the scale are similar and the phase shifts agree wggription for assigning factors of 2 in the definition of the
to 100 MeV. Beyond this energy a dependence on the scalgarameters. Second, the phase shifts are derived frorm the
starts to appear indicating tha®(Q%) contributions are matrix where there are strong cancellations among the vari-
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TABLE |. Parameter sets obtained from fitting thé\ phase shifts for various values of the renormal-
ization scaleu. The deducedrNN and wNA couplings and the nucleas term are also given.

Al A2 A3 B1 c1
w(Gev) 1.00 1.232 0.75 1.00 1.00
B. —3.5790 —4.2084 ~1.9714 —3.1385 —3.1641
K, 2.3219 3.5370 0.1993 1.9697 2.3169
K1 5.6578 6.5464 1.5485 4.6914 5.2765
Ky —2.3683 —2.5845 —2.1417 —1.993F —1.6286
A —2.6652 ~1.9338 —4.2176 —2.2503 —9.7605
A, —6.4822 —4.5533 —7.7712 ~8.2178 —11.7498
s 11.0504 11.9228 4.6877 10.7125 15.2134
A —4.4304 —2.5495 —6.3775 ~6.1955 —9.6040
s 4.9702 3.5669 4.1456 5.3523 8.0874
e 9.3759 9.2927 4.8363 7.3192 7.4099
Fia 1.6243 1.4418 1.0986 1.6779 2.4626
o(0)(MeV) 106 109 108 75 45
9.un/(GaMIF ) 1.0445 1.0378 1.0409 1.0091 0.9585
|9l (NAM/F ) 0.9898 1.0134 1.0337 1.0532 1.1294

Fixed so as to obtain the listed value ®f0).

ous terms. This suggests that the parameters have significdate the nucleorr term calculated from Eq74). Essentially
uncertainties. Third, we note that the parameters are scatde same value is obtained for Sét$, A2, andA3 so theor
dependent. They appear more natural for 88t with . term is renormalization scale independent, as it should be.
=0.75 GeV than for Setd1 andA2. An example of thisis  The magnitude of 108 MeV, however, is much larger than
the parameteig which contributes to the effectiverNA the generally accepted value of 4B due to Gasseet al.
coupling, see Eq83). In fact the last row of the table shows [43]. It is only slightly reduced to 92 MeV when we fit to the
that the effectiverNA couplings obtained from sefsl, A2,  gjder data of Koch and Pietarinefd6]. The value of

and A3 are quite similar and show a very small deviation o(2m2) — 0(0)=15.7 MeV depends only og, andh, and

from the tree—IeveI.vaIue. Thus, we should not be undulyiS uncontroversial13,15,43. Thus our predicted(2m2) is
concerned by the size of some of the parameters. T

In Table | we also show the value of the effectivélN also much larger than the value of 68 MeV obtained 47]

coupling, which remains close to the tree-level value. Theising dispersion relations. In order to see how sensitive our

7NN coupling compares quite well with the determination 1t IS t0 the o term, we make two other fits in whia(0) is

of Amndt et al.[44] of g.nn/(9aM/f ) =1.03. We also tabu- constrained to be 75 and 45 MeV, respectively. This is
achieved by fixingk, via Eq. (74), while allowing the re-

maining parameters to vary. We choose the scale of dimen-
sional regularization to bge=1 GeV. The parameters thus
038 obtained are, respectively, label&l andC1 in Table I.
The corresponding phase shifts are denoted by dashed and
dotted lines in Fig. 14 and these can be compared with the
solid curve obtained with Sét1. The value ofy? for SetB1
is 50% larger than for Sedl and only thesss; phase shift
shows any visible difference between the two cases for c.m.
energies below 100 MeV. TheNN and7NA couplings are
also similar. However, for s&1 x? is more than a factor of
2 greater than for SeA1l and larger differences appear for
the phase shifts, particularly th® waves, and couplings.
Clearly o(0) is not well determined, although values larger
than 45 MeV are suggested. Note that M®jZ 16] obtained
T T o0 a0 w0 0 100 Do 10 100 180 200 a value of 59 MeV by fitting to the threshold parameters, the
e (MeV) 7NN coupling, and ther term. The parameters for Seid,,
B1, andC1 show some significant differences indicating, as

FIG. 13. The dependence &fsin 2555 upon the pion c.m. ki- Mentioned earlier, that they are not well determined by fit-
netic energy. The phase-shift data from Arfu2] are indicated by ~ ting the phase-shift data alone. We also note that Fig. 13
the triangles. The solid, dashed, and dotted curves are calculat&ows that Set81 andC1 violate unitarity at about 150
with parameters setdl, B1, andC1, respectively. MeV c.m. energy, although here, as we have remarked, we

1.0

sin2 6P33

1
2

-0.8




3370 PAUL J. ELLIS AND HUA-BIN TANG 57

0 14
2 (o]
2 A
1z qg
4 o -
10 05
—~ 6 —_~ O i
=11] &) 9,
L g £ L & o
= rd =)
~— o Y —
~ -0 Lt = 6
] 2
< Ag <
S g 4
14 o@%
2
16
g
-18 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
140

dp3; (deg)
0p3; (deg)

20 40 60 80 100 120 140 o 20 40 60 80 100 120 140

Op13 (deg)
Opy; (deg)

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
€ (MeV)

FIG. 14. TheS- andP-wave phase shifts as a function of the pion c.m. kinetic energy. The solid, dashed, and dotted curves are calculated
with parameters set&l, B1, andC1, respectively. The data are as in Fig. 12.

expectO(Q?*) effects to be important. However, it may be in agreement and somewhat larger in magnitude than our
significant that just below 100 MeV S€1 gives a larger predicted value of-0.082, virtually independent of param-
violation of unitarity than the other parameter sets. eter set. The value db, from Ref.[42] is consistent with

It is also interesting to examine the thresh@l@nishing  zero, while Refs[46,48 give —0.010+0.003 and—0.008
pion kinetic energy S-wave scattering lengths,) and the +0.007. Our parameter sefsl, B1, andC1 give 0.003,
P-wave scattering volumesy, ;). The experimental values —0.013, and— 0.023, respectively. From this result, and the
were not used in the fit and they are compared with ouothers that we have discussed, we conclude that parameter
predictions with Seté&1, B1, andC1 in Table Il. The agree- setC1 is less favored than the other sets. Note that we do not
ment for theP waves is reasonable with not too much sen-show the scattering lengths and volumes for $e&tsandA3
sitivity to the parameter set, although; does become rather because they differ negligibly from Sel, indicating u
small for SetC1. For theS waves it is instructive to examine independence. We make the obvious remark that the accu-
the isoscalar and isovector scattering lengthsg  racy of the predicted scattering lengths and volumes can be
=(a;+2a,)/3 andb;=(a;—a;)/3. For b;, Refs.[42,46, improved by including them in the fit at the expense of a
and a recent determination by Siggal. [48] give —0.091, poorer fit to the phase shifts. In the case of S¢his reduces
—0.091+0.002, and- 0.096+ 0.007, respectively. These are the o term by about 10%.
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TABLE Il. The calculatedS-wave scattering lengths afttwave scattering volumes, in units mf,l and
m_ 3, respectively, are compared with the data of RE4€] and[46].

Length/volume Al B1 C1 Ref.[42] Ref.[46]

a; 0.168 0.152 0.142 0.175 0.1#®.003

as —0.080 —0.095 —0.105 —0.087 —0.101+=0.004
a —0.078 —0.075 —0.070 —0.068 —0.081x0.002
a3 —0.026 —0.026 —0.025 —0.022 —0.030+0.002
az; —0.035 —0.036 —0.035 —0.039 —0.045-0.002
azz 0.201 0.188 0.171 0.209 0.214.002

VI. CONCLUSIONS when the currently accepted value @{0)=45 MeV was

We have introduced an approach to chiral perturbationadOpted’ so that a somewnhat larger value appears to be fa-

; T . : vored from the analysis here. However this might indicate
theory with baryons which involves manipulating the Feyn- 4 . .
. : : . that O(Q") effects need to be calculated in order to achieve
man diagrams directly, rath.er than integrating C.M the hea\{)én accurate one-loop result, as Ecker has recently argued
components of the baryon fields at the Lagrangian level as i Y9]. It would be interesting t’o attempt to constrain the pa-

HBChPT. Our approach preserves Weinberg’'s power count: ;
. . S ; meters further and to compare with the parameters found at
ing so that a systematic expansion in powers of a generic soff

momentum scal€ remains valid. We can maintain relativ- zero energ){15,16. The latter would involve disentangling

- . the A contributions as well as other effects that, for simplic-
istic covariance and apply the standard Feynman rules an

. . . ity, we have absorbed in the contact terms.
y-matrix algebra. At one-loop order we obtain equivalent
results to HBChPT; it would be interesting to compare the
approaches in higher order. ACKNOWLEDGMENTS
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uted to theT matrix. Next, there were the well-known
nucleon and\ exchange diagrams. The former was straight-
forward, but the latter was singular at tree level whenshe
went on shell. The problem was solved by summing up We first list the integrals we need. Using dimensional
O(Q3) self-energy insertions in the propagator to all ordersyregularization we obtain

The resulting amplitude thef@@pproximately obeyed unitar-

ity for pion c.m. energies up to at least 140 MeV. Finally, we f dd/ 1

i 4—d
2m)d (72—mi+ie)[(/+Q)°—mi+ie]

APPENDIX

needed to evaluate the large number of one-loop diagrams iu
which could be constructed with the, N, andA vertices.

We have performed a least-squares fit to ®eand 1
P-wave phase shift data to determine the parameters in- =92l —
volved. We were able to obtain a good fit up to 100 MeV (47)?
pion c.m. kinetic energy, slightly below th& resonance.
Our predictions for the zero-energy scattering lengths wergherelL, defined in Eq(35), is singular and the finite part
also reasonable. These results were independent of the renor-

malization scaleu, as they should be. Sincge/M is an m2 \/ am7  J1-4mi/x+1
expansion parameter and at tie resonance it becomes 1(x)=1-In u? 1= X In J1—4m2/ix—1
8/M=0.27, one might expedd(Q*) effects to become im- "

portant beyond th& resonance energy. This was supported for x<0. (A2)
by the scale dependence of our results in that energy region.

Though straightforward in principle, it would be very tedious The next integral to consider is

to include the®(Q*) corrections. The fit that we have ob-

1(Q?), (A1)

tained here contained an unavoidably large number of pa- dd/ 1

rameters, but it must be borne in mind that thenatrix is a i,u“—df / ———— ; ,

much more complicated function of the invariant variables (2m) (/F—m+ie)(2p-/+ztie)

when loops are present than at tree level. Thus we regard the _

fit that we have achieved as a vindication of the basic ap- _ iL— 1 3 z 1

proach. It seems, however, that one cannot determine the p2  (4m)2Jp? \2\p?] 16mp?
parameters with great accuracy using the phase-shift data

alone. In particular we were able to obtain very similar fits X 6(2) 6(22— 4p?m?)\[Z2— 4p?mZ, (A3)

with parameters that corresponded to a nucleoterm of
105 and 75 MeV. We judge that the fit was slightly degradedvhere 6 denotes the Heaviside step function and
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2 2 2
m 1+ (yxc—m2)/x
X—Xx In —2-7T— \/xz—m In - ( X >mﬂ-)
Iz T 1= (Yx2—m2)/x .

J(x)= 5 (A4)
m?2 X
x—x In 7—2\/mi—x2 cosl(—m—) ([x[<m).

m

Note thatJ(0)= —7m, . The next integral we need is finite:

_ A_df dd/ 1 B 1 ) A
W) G Ol QM el2p -/ tie) | 16m PR (A9
where
=1/1 Amy in~t ! for x<0 A6
S(x) = L Sin \/1—4mi/x or x<0. (AB6)

Finally we require the finite integral

_ 4_df d?/ 1 Jl
| = —
K 2m)d (/2—m2+ie)[(/+Q)2—mi+ie](2p-/+M2—M3+ie) 32m2MéJo

dxK(x), (A7)

where
2__ 2 _ 2
> ! In O\ mgﬂ(l 0Q (82—m2+x(1—x)Q?>0)
VE—m2+x(1-x)Q%  6— &~ mi+x(1-x)Q?
K= 2 Vm2 —x(1—x)Q?— §? (A9)
N amwemres 62tan‘l T 5 (82—m2+x(1—x)Q?<0).
m;—X(1-x)Q°—

In Ref.[16] the expressions for the integrals of E¢Al), (A3), and(A5) are written— IO(Q_Z), —Jo(z/\J4p?) 1 J4p?, and

—K(0,Q%)//4p?; they agree with our results above. Our expressions are written in teris 6f and » and we recall the
definitions for reference

— s—M?
M=3(M+M,), 6=M—M, n=—+. (A9)
2M
It is useful to define the functions
2
m7T
Fi(7n,6)= = o7 (72—m2)J(5)+(26°—37p6+m2)I(6)+(n— 5)(252—m§,— m§|n7”, (A10)
Fa(7,0)= ;[(nz—mzw(m—(ﬁz—mz>nJ(6>+ am3(n—4)] (A11)
20T né(n—9) " v i '
1 2 2 2 2 1.2 mi
Fa(n,0)= P (n°—m2)I(7)—(6°—m2)I(5)+s;m (n— 5)In7 : (A12)
These functions are finite, for example,
n—6 mi
Fa(7,8) — 38J(8)—25%+ mf,+§miln—2. (A13)
o

Then the contributions from Figs. 9 and 10 to the real part ofTthmeatrix for N scattering are

2 2 2
. TOa ) 3(mZ—2t)(2ms—t)
R s o — 1 — +
9a 12&(477“)2 (14ms,—12t)m; e S(t) |, (A14)

w
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ga 1

Tgazlszr (4mf_)?

2
[—77(8m —5t)1(t)+10pm |nm§ 6mn[Md—M 5+ 1(2m2—t)][2m, + 4Am2 —tS(1)]
(A15)

Tt 2hi 1
%792 (4mf,)?

2
3(7TmZ—6t—45%)J(8) +28(mZ—2t)I (1) — (M5 —2t)(25%—2m?, +t)f dxK(x)— mi&ln%}

(A16)
4h2 1
Top= g_fgmqu M 7+ (2m2—1t)+475]13(8) +[(Md—M n+ 1 (2m2 —1)) 5+ (282~ m2 + Et) 7] (1)
2
—[(Mg—M 5+ (2m2—t))( 52— m2+ 1t) + 278( 52— m2 + t)]f dxK(x)+ 3m2 yin— ’;] (A17)
ba irb _a YU 1 2 2 mi’
TQCZ_E[T , T ]12](727m (4mw—t)l(t)—2mwlnF, (A18)
TR= (304 472,20 % ey () mlnmf’ (A19)
9d ™ 4 f2 (4 .I: ) 2| MM ,LL
4
1 _
Toa=— (8= 4[ ", rﬂ)mW(Mq—Mn+2mi—t—%nz>Fl<n,0>, (A20)
2
T3?=<aab+ﬁ[rb,ra])gfﬁ Gt 8.0 [Mé— V7§ (2mE—1)+ 347, (n21)
ba__ b 4gi 2
20n%  gah _
ba_—rba_ _1r b A ATA _ 1 2 _ _s _
Tor=Tgj= %[7,73]243fi(4wfw)2[Md M7+ z(2me— 1) ]Fa(5—6,— 8), (A23)
40hy 1 _
TS= (54 L7 7 D gg g 2P~ AIME-My—Fo(2mi —t=127)], (A24)
2 'I‘,‘]Z L
ba_ ( sab a A A _5— — 1 2_t—3p2
Tor=(5"+4[ 7, T]) T29Z (4t )2 Fi(n—6,—)[M4d—My—3(2m;—t—-375%)], (A25)
grn 1
Ton=(8%+ 3,7 a]>4f2 G Z MM+ 37°)Fa(2.0), (A26)
2 2
Ton= (80 +3[7,7 a]>3f2 Gt 2 MMyt 37))Fa(n=5,-9), (A27)
ba ir b _a S 1 2 mf"
Tgoz —Q[T , T ]Tfi mmwnlnﬁ, (A28)
2
Tha— 1 agA—z 2+3Inr A2
gp——g[T 7']8—1:2-(4 f )mﬂj] +3n—2— (A29)
ohi g 37
Toa=3[7"7%] 2-28%+363(8)+ imiin—; 2 (A30)

ofZ (4mt g™
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2 3
ba_ ba b W_gA M
Tor=Tos= =0 357 (g y2 (A31)
GhZ 2
Toa=ThHa 6ab27f2 @ 1f 52 (62— m2)J(8)+1m24in ’2* (A32)
T (4 ) - “(Ma-). (A33
a 1 92 'VE 1 me mff
TH= (0075 g p(MA- Mo+ §27)—Fin s, (A34)
ga 1 _
Tioe=— (0" 30 ™D (g y7,(MA— M7+ 277 Fo(2.0), (A35)
Tha = — (5204 L[ 2, 72]) ——7% 2g,§h—2(w Mp+ 2979 Fa(n,—8) (A36)
10d 2 ) 27f2 (4t _ )2 n 3\ 7, )
Tha = — (8% + 1[0 Ta])szgf\ h—ZA(M(t]—I\Wn—Fan)F (p—6,0) (A37)
10e 2 ’ 27f§7 (4771:”)27] 2 3 1Y)y
20thi gah _
0% = (620+ [, 72 ;L (MA— M+ L D)F4(n—5,— ), A38
10 =(87+3[7 T])243fi (47wa)27’\ 4—Mn+379)F3(n ) (A38)
8hak M-
Thg=— (=3[ 7)) 3’;26Mz[a1<s,t>+a2<s,t>mAR<s>, (A39)
ba b_ b 4h2 m2
Thgh=— (82— 3[ 7, Ta])gfz (@nf)2 wln z[al(St)"‘az(St)dﬂAR(S) (A40)
gz h3 2 f?2 M T'3(s)
ba _ b_1r b _a A T AL A
Ti=(82—z[7°, T])gfz (4,n_fﬁ)2[a1(3at)+az(S,tM]{Fs(W,O)AR(S)+ hf\’? [S—Mi—HA(n)]z-l-MiFi(s) ,
(A41)
b o 41 22 M,T3(s)
o= (8= %[, T])Ww[al(S,t)+az(S,t)Q] F3(W1—5)AR(S)+hi(n+5) (S M2 I, () P+ M2T2(5) |
(A42)
Aha
T - (- A A (f’—f)z[al 500+ (S, DAIFs( 7~ 50AK(S), (n43)
ba . cab_ 200h; hy
T5= ("= ™])555 [a1(S,t) + ax(s,1)gq]F3(7—5,— 6)AR(S). (A44)

7292 (47t )2

Notice Egs.(A33)—(A36) for Figs. 1Gg)—10(1) have been written in terms of;, «, of Eq. (66) rather than truncating these
expressions ta’(Q?). This is necessary to ensure that the resonance only contributes ®sihehannel and does not
“contaminate” the other channels. To the above contributions should be added the results for the cross diagrams where
applicable. They are obtained from the listed expressions by the replacementy— n=(u—M?)/(2M), and the inter-
changesa—b andq——q’.
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