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Pion-nucleon scattering in a new approach to chiral perturbation theory

Paul J. Ellis and Hua-Bin Tang
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

~Received 16 September 1997!

We study pion-nucleon scattering with a chiral Lagrangian of pions, nucleons, andD isobars. The scattering
amplitude is evaluated to one-loopQ3 order, whereQ is a generic small momentum, using an approach which
is equivalent to heavy baryon chiral perturbation theory. We obtain a good fit to the experimental phase shifts
for pion center-of-mass kinetic energies up to 100 MeV. As term greater than 45 MeV is favored, but the
value is not well determined.@S0556-2813~98!05606-4#

PACS number~s!: 11.30.Rd, 12.39.Fe, 13.75.Gx, 13.85.Dz
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I. INTRODUCTION

The pion and the nucleon play a central role in lo
energy physics and there is a wealth of scattering data w
allow us to test the application of effective Lagrangians. S
eral relativistic phenomenological models@1–6# exist, which
provide reasonably good fits to the experimentalpN phase
shifts. In these models either the Bethe-Salpeter equatio
solved approximately or theK-matrix method is used to uni
tarize the tree amplitudes. Such models, however, do
offer a systematic approximation scheme.

Chiral perturbation theory~ChPT! @7,8# is a more attrac-
tive approach because it not only embodies chiral symme
which is fundamental to low-energy physics, but it also
fers a systematic expansion in powers of the moment
Further it ensures unitarity order by order. Gasser a
Leutwyler @8# have shown that ChPT works nicely for m
sons; however, the power counting fails when baryons
introduced@9#. The power counting can be restored in hea
baryon chiral perturbation theory~HBChPT! @10# where the
heavy components of the baryon fields are integrated
Here we shall adopt a different approach@11# which effec-
tively removes the heavy fields after constructing the Fe
man diagrams. This approach preserves the power coun
and gives results in agreement with HBChPT, at least to
order considered.

Peccei @12# used a chiral Lagrangian to calculate t
pN scattering lengths near threshold. Calculations with
more modern approach of HBChPT are discussed by B
nardet al. in a review@13# and in Refs.@14,15#. Particularly
interesting is the recent calculation by Mojzˇiš @16# of the
full amplitude toO(Q3), with Q a generic small momentum
scale. Mojžiš employs just pion and nucleon fields. Sin
there are a number of unknown parameters, scatte
lengths and effective ranges alone are not a stringent te
the approach. We mention that Datta and Pakvasa@17# have
recently used the results of Mojzˇiš to discuss low-energy
scattering. However a fit to the phase shifts out to center
mass~c.m.! energies in theD resonance region is desirabl
This requires explicit consideration of theD field itself,
along with the pion and nucleon fields. Here we shall ca
out this program by evaluating all diagrams up to one-lo
Q3 order.

The organization of this paper is as follows. In Sec. II w
write down our effective Lagrangian and establish our no
570556-2813/98/57~6!/3356~20!/$15.00
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tion. In Sec. III we describe our method of separating out
soft contributions, which need to be calculated, from the h
contributions, which are subsumed in the parameters.
mion loops and the implications for power counting are a
discussed here. The formalism forpN scattering is given in
Sec. IV, with a listing of the expressions for the loop di
grams relegated to the Appendix. The calculated phase s
are compared with the data in Sec. V, where we also disc
the effectivepNN andpND couplings as well as the pion
nucleons term. Our conclusions are given in Sec. VI.

II. EFFECTIVE LAGRANGIAN

Before writing down an effective chiral Lagrangian w
need to define our notation, much of which is fairly standa
The Goldstone pion fieldspa(x), with a51, 2, and 3, form
an isotriplet that can be written in terms of an SU~2! matrix:

U~x![j25exp„2ip~x!/ f p…, ~1!

where f p'93 MeV is the pion decay constant and the pi

field is compactly written asp(x)[p(x)– 1
2 t, with ta being

the Pauli matrices. The matrixU is the standard exponentia
representation and the ‘‘square root’’ representation in te
of j is particularly convenient for including heavy fields
the chiral lagrangian. The isodoublet nucleon field is rep
sented by a column matrix

N5S p

nD , ~2!

where p and n are the proton and neutron fields, respe
tively. TheD is a spin-32 and isospin-32 particle represented by
an isoquadruplet field:

Dm5S Dm
11

Dm
1

Dm
0

Dm
2

D . ~3!

It is convenient to introduce an isovector fieldDm5TDm in
terms of the standard 234 isospin3

2 to 1
2 transition matrix:
3356 © 1998 The American Physical Society
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57 3357PION-NUCLEON SCATTERING IN A NEW APPROACH . . .
^ 1
2 tuTu 3

2 tD&[(
l

^1l 1
2 tu 3

2 tD&el , ~4!

where the isospin spherical unit vectors aree05ez and e61

57(ex6 iey)/A2. Explicitly, the components are

Dm
1 1 iDm

2 5
1

A3
S A2Dm

0

A6Dm
2D , ~5!

Dm
1 2 iDm

2 52
1

A3
S A6Dm

11

A2Dm
1 D , ~6!

Dm
3 5A2

3S Dm
1

Dm
0 D . ~7!

Following Callanet al. @18# we define a nonlinear realiza
tion of the chiral group SU(2)L ^ SU(2)R such that, for arbi-
trary global matricesLPSU(2)L and RPSU(2)R , we have
the mapping

L ^ R: ~j,N,Dm!→~j8,N8,Dm8 ! , ~8!

where

j8~x!5Lj~x!h†~x!5h~x!j~x!R†, ~9!

N8~x!5h~x!N~x!, ~10!

Dm8 ~x!5 1
2 h tr ~hth†t!–Dm~x!. ~11!

As usual, the matrixU transforms asU8(x)5LU(x)R†. The
second equality in Eq.~9! definesh(x) implicitly as a func-
tion of L, R, and the local pion fields:h(x)5h„p(x),L,R….
The pseudoscalar nature of the pion field impliesh(x)
PSU(2)V , with SU(2)V the unbroken vector subgroup o
SU(2)L ^ SU(2)R . The nucleon transforms linearly unde
SU(2)V as an isodoublet. While the isodoublet compone
of the isovectorDm transform linearly in the same way as th
nucleon field, the isovector itself is further rotated by t
O(3) transformation1

2 tr (hth†t).
Interaction terms invariant under the nonlinear chi

transformation may be conveniently constructed in terms
an axial vector fieldam(x) and a polar vector fieldvm(x)
defined as

am[2
i

2
~j†]mj2j]mj†!5am

† 5 1
2 am–t5

1

f p
]mp

2
1

3 f p
3 p@p,]mp#1•••, ~12!

vm[2
i

2
~j†]mj1j]mj†!5vm

† 5
1

2
vm–t52

i

2 f p
2 S 12

p2

3 f p
2 D

3@p,]mp#1•••, ~13!

both of which contain one derivative. The polar vector fie
transforms inhomogeneously and the axial vector field tra
forms homogeneously:
s

l
f

s-

vm8 5hvmh†2 ih]mh†, ~14!

am8 5hamh†. ~15!

To maintain chiral invariance, instead of an ordinary d
rivative ]m, one uses a covariant derivativeDm on the
nucleon andD fields. These are defined by

DmN5]mN1 ivmN, ~16!

DmDn5]mDn1 ivmDn2vm3Dn . ~17!

We also use the following definitions involving two an
three derivatives on the pion field:

vmn5]mvn2]nvm1 i @vm ,vn#52 i @am ,an#, ~18!

Dman5]man1 i @vm ,an#, ~19!

Dsvmn5]svmn1 i @vs ,vmn#, ~20!

all of which transform homogeneously in the same way
am in Eq. ~15!.

To write a general effective Lagrangian, we need an
ganizational scheme for the interaction terms. We organ
the Lagrangian in increasing powers of the fields and th
derivatives. Specifically, as in Refs.@6,19#, we assign to each
interaction term a size of orderQa with

a5d1
n

2
, ~21!

whered is the number of derivatives on the pion field or pio
mass (mp) factors, andn is the number of fermion fields in
the interaction term. Thata is a characteristic of the interac
tion term is suggested by Weinberg’s power counting@20#,
which we discuss in Sec. III below. Derivatives on th
nucleon fields are not counted ind because they will gener
ally be associated with the nucleon mass and not with
small momentumQ. In fact, as Krause@21# has argued, it is
iD” 2M that is ofO(Q1). Krause also countsgmg5 to be of
O(Q0) and a single factor ofg5 to be of O(Q1). We
adopt this counting for organizing the Lagrangian, althou
we have argued@6# that counting a singleg5 factor to be of
O(Q1) is not precise. Our scheme allows a uniform orga
zation of the pion self-interaction terms and those involvi
the heavy fermions. It differs from the ‘‘standard labeling
of Gasser, Sainio, and Sˇvarc @9# where the number of fer-
mion fields is not included.

Taking into account chiral symmetry, Lorentz invarianc
and parity conservation, we may write the Lagrangi
through quartic order (a<4) as the sum of the orderQ2, Q3,
andQ4 parts:

L5L21L31L41DL, ~22!

where DL represents the counterterms, which can also
organized in powers ofQ. We will adopt the counterterm
method of renormalization, so we start with the physic
masses and couplings and add the necessary countert
For simplicity, in this first investigation we will not explic
itly identify the finite and divergent pieces of the variou
counterterms. The orderQ2 part of the Lagrangian is
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L25N̄~ iD” 1gAgmg5am2M !N1 1
4 f p

2 tr ~]mU†]mU !1 1
4 mp

2 f p
2 tr~U1U†22!1D̄m

a Lab
mnDn

b1hA~D̄m–a
mN1N̄am

–Dm!

1h̃AD̄m
a gng5anDa

m , ~23!

where the isospin indicesa,b51, 2, and, 3, the trace is taken over the isospin matrices, and the kernel tensor inD
kinetic-energy term is

Lmn52~ iD” 2MD!gmn1 i ~gmD n1gnD m!2gm~ iD” 1MD!gn, ~24!

suppressing isospin indices. Here we have chosen the standard parameterA521, because it can be modified by redefinitio
of the D field with no physical consequences@22#. In thepND interaction of Eq.~23! we have chosen the standard off-sh
Z parameter to have the convenient value of2 1

2. The value ofZ has no physical significance since modifications can
absorbed in the other parameters in the Lagrangian@23#. Similarly we simplify thepDD interaction by choosing the off-she
parameters defined in Ref.@23# to beZ252 1

2 andZ350.
With the notation

DJm5Dm2~]Qm2 ivm!, ~25!

we may write the orderQ3 andQ4 parts ofL as follows:

L35
bp

M
N̄N tr ~]mU†]mU !2

kp

M
N̄vmnsmnN1

k1

2M2 iN̄gmDJnN tr ~aman!1
k2

M
mp

2 N̄N tr ~U1U†22!1•••, ~26!

L45
l1

M
mp

2 N̄g5~U2U†!N1
l2

M2N̄gmDnvmnN1
l3

M2 mp
2 N̄gm@am,U2U†#N1

l4

2M3 iN̄srmDJnN tr ~arDman!

1
l5

16M4 iN̄gr$DJm ,DJn%t
aN tr ~ta@Dram,an#!1

l6

M2 mp
2 $D̄m–tr@ i ]m~U2U†!t#N1N̄tr@ i ]m~U2U†!t#–Dm%1•••.

~27!
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In Eqs.~26! and~27! the ellipsis represents terms that do n
contribute to thepN scattering amplitude. For example, th
ellipsis in L4 includes the usual pion self-interaction term
with four derivatives. Themp

2 factors inL4 are introduced to
correctly count the order of the symmetry-breaking term
However, it appears that counterterms of the above fo
with mp

2 replaced byd2 are needed even in the chiral lim
(mp50). Here d5MD2M is the D-nucleon mass differ-
ence. We have applied naive dimensional analysis@19,24# to
the terms in Eqs.~26! and ~27! so as to expose the dimen
sional factors. As a result, we expect the parameters to b
order unity.

Using the pion and nucleon equations of moti
@20,25,26#, we have also simplified the contact terms list
in Ref. @9#. For example, we reduce theO(Q3) term
N̄DJmDJnN tr (aman) to the sum of theO(Q3) k1 term, the
O(Q4) l4 term, and higher-order terms which we omit. As
result we have the minimum number of independent te
contributing to thepN scattering amplitude up toO(Q3).
Note that the isoscalar-scalarf and isovector-vectorr fields
given in Ref. @19# have been integrated out. Their effec
show up in the contact termsbp , k2, andl2. For example,
in terms of therpp coupling (grpp) and therNN coupling
(gr), the rho gives a contribution to thel2 parameter of
22grppgrM2f p

2 /mr
4 .
t

.
m

of

s

III. CHIRAL PERTURBATION THEORY WITH BARYONS

A. Hard and soft contributions

Given the effective Lagrangian, one can derive the Fe
man rules and carry out perturbative calculations of phys
quantities in the standard way. However, as shown by G
ser, Sainio, and Sˇvarc @9#, the loop expansion no longer co
responds directly to the momentum expansion when we h
heavy fermions. One way to overcome this difficulty
HBChPT @10#, where the heavy components of the fermi
fields are integrated out so that their effects on phys
quantities only show up in the parameters of the Lagrang
Alternatively one can construct an explicitly nonrelativist
Lagrangian@20#.

We propose a different procedure here which involv
manipulating the Feynman diagrams themselves~see also the
recent discussion of Gasser@27#!. First we obtain the Feyn-
man rules in the standard way. Then we separate the
contributions into those from soft and hard momenta. W
keep the soft contributions explicitly. These will have bo
real and imaginary parts in general, the latter being neede
maintain unitarity order by order. As for the hard contrib
tions, we implicitly absorb them into the coefficients of th
Lagrangian. As we will see this procedure preserves a s
tematic power counting scheme.

Specifically, we represent the hard momentum scale
the nucleon massM . Other quantities of this order includ
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57 3359PION-NUCLEON SCATTERING IN A NEW APPROACH . . .
theD massMD and the factor 4p f p with 4p coming from a
loop integral@28#. The soft momentum scale is denoted
Q, whereQ!M . Quantities of this order are the pion ma
mp , the pion momentum, and the mass splittingd between
the nucleon and theD isobar. Also, as in HBChPT, we ar
interested in applications where the three-momenta of
external nucleons are of orderQ.

For the present we consider any loop diagram with
fermion loops: we shall consider diagrams with fermi
loops later. We obtain the unrenormalized soft part of
diagram by applying the following rules to the loop integr

~1! Take the loop momenta of the pion lines to be of ord
Q.

~2! Make a covariantQ/M expansion of the integrand.
~3! Exchange the order of the integration and summat

of the power series.
Rule 1 ensures that the exchanged pions have soft mom
As a result internal baryon lines will be nearly on sh
throughout the diagram. Rule 2 implies that a covariant
pansion of the baryon propagators in the integrand is ma
which maintains the Lorentz invariance of the soft part.
Rule 3 the exchange of the order of integration and sum
tion changes the result in general. Indeed the purpose of
maneuver is to remove the poles in the baryon propagato
hard loop momenta of orderM . Clearly this is achieved be
cause after application of Rule 2 the only poles in individu
terms of the series are located in the soft momentum reg
of O(Q). Of course the soft part obtained from our rules s
contains ultraviolet divergences in the form of poles atd
54 in dimensional regularization. We remove these div
gences with the standard method of renormalization. F
mally, if we denote the original integral byI, the unrenor-
malized soft part byŜI and the renormalization operator b
R̂, the final renormalized soft part isR̂ŜI. This is the physi-
cal loop contribution. As discussed in the next section,
soft loop contributions allow for a systematic power cou
ing.

As for the part of the original integralI that is discarded,
namelyI2R̂ŜI, we call it the hard part. This hard part co
tains contributions from poles of the integrand at hard m
menta. Thus, we should be able to absorb this part into
coefficients of the Lagrangian. As Lepage@29# has argued
from the uncertainty principle, large momenta correspond
short distances that are tiny compared with the wavelen
of the external particles, so the interactions must be loca

At this stage a concrete example is useful. Thus,
evaluate the nucleon self-energy diagram shown in Fig
From standard Feynman rules we obtain the self-energy

SpN~k!5
3gA

2

4 f p
2

im42dE ddl

~2p!d

l” g5G~k1l !l” g5

l 22mp
2 1 i e

, ~28!

where the free nucleon propagator

G~k!5
1

k”2M1 i e
, ~29!

andm is the scale of dimensional regularization. We obta
the soft part ofSpN by first making a covariantQ/M expan-
sion of the integrand, while taking the pion momentuml to
e

t

e

r

n

ta.
l
-
e,

a-
is
at

l
n

l

-
r-

e
-

-
e

o
hs

e
1.

be soft. Since we assumek to be nearly on shell, we can
make a covariant expansion of the nucleon propagator a

G~k1l !5
1

2k•l 1k22M21 i eF ~k”1M !1l”

2
l 2~k”1M !

2k•l 1k22M21 i e
1•••G . ~30!

Here the contribution arising from first term in the squa
brackets is of orderQ21, while that due to the second an
third terms is of orderQ213(Q/M ). Subsequent terms wil
involve higher powers ofQ/M . The precise way this expan
sion is carried out has to be tailored to the case at hand.
example, inpN scattering we havek5(p1q) where p2

5M2 and q25mp
2 . Then we may let k→p and

l →(l 1q) in Eq. ~30!.
Exchanging the order of the summation and integration

Eqs.~28! and ~30! then yields the soft part:

ŜSpN~k!5
3

4

gA
2

f p
2

im42dE ddl

~2p!d

3
2k•l l”2~k”1M !l 2

~ l 22mp
2 1 i e!~2k•l 1k22M21 i e!

1•••.

~31!

Here we explicitly show the leading contribution to the so
part ŜSpN which is of orderQ3/M2, as would be expected
from Weinberg’s power counting. The ellipsis represe
higher-order terms. For illustrative purposes, it is useful
sum up the series of soft contributions. This can be carr
out by noting that in the present case, after our exchang
the integration and summation, anl 2 in the numerator of
any integrand can be replaced withmp

2 in dimensional regu-
larization. Then the exact soft part of the one-loop se
energy diagram is

ŜSpN~k!5
3

4

gA
2

f p
2

im42dE ddl

~2p!d

3
~2k•l 1mp

2 !l”2~k”1M !mp
2

~ l 22mp
2 1 i e!~2k•l 1k22M21mp

2 1 i e!
.

~32!

Introducing

FIG. 1. A one-loop nucleon self-energy diagram. The dash
line represents a pion propagator and the solid line a nucleon pr
gator.
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v[
1

2Ak2
~k22M21mp

2 ! , ~33!
in

h

ld
ty
is
H
E

ea
x
e

which is of orderQ, the integral of Eq.~32! in the case
uvu,mp can be written
e
function
s in

cing
ation
leons.

d inverse
o the
nly high-
ŜSpN~k!5
3gA

2

2~4p f p!2S mp
2

Ak2
~k”1M !2

k22M2

k2 vk” D Fv2 2Amp
2 2v2 cos21S 2v

mp
D G2

3gA
2

8~4p f p!2F k22M2

k2 ~mp
2 22v2!k”

1
2vmp

2

Ak2
~k”1M !G S 32p2L1 ln

mp
2

m2 D , ~34!

where

L[
1

32p2S 2

d24
1g212 ln 4p D , ~35!

with Euler’s constantg50.577 . . . .
In the modified minimal subtraction (MS) renormalization scheme, we obtain the renormalized soft partR̂ŜSpN by

including counterterm contributions~CTC’s! to remove the term proportional toL in Eq. ~34!. We can further ensure that th
pole of the nucleon propagator is at the physical mass with unit residue by additional on-shell mass and wave-
counterterm subtractions as detailed in Eq.~70! below. These CTC’s can clearly be expanded in an infinite power serie
(k”2M )/M . Thus, the divergences appear to all orders in theQ/M expansion. The divergences can be removed by introdu
counterterms of the form (1/Mn21)N̄( i ]”2M )nN with n an integer. However, we note that we may use the nucleon equ
of motion @20,25,26# to eliminate the above counterterms in favor of interaction terms involving multiple pions and nuc

We may obtain the leading orderQ3/M2 contribution to Eq.~34! by approximatingv.(k22M2)/(2M ) and settingAk2

.M in the denominators. It is not possible to expand this leading-order expression further since the square root an
cosine functions in the equation involvev andmp which are of the same order. Thus, we cannot absorb this soft part int
parameters of the Lagrangian. This result is consistent with the expectation that the parameters should contain o
energy contributions.

The hard part of the self-energy can also be evaluated directly. We find

~12Ŝ!SpN~k!52
3

4

gA
2

f p
2

im42dE ddl

~2p!d

~ l”2k” !~ l”2M !~ l”2k” !

~ l 22M21 i e!~2k•l 2k22M21mp
2 1 i e!

52
3gA

2

4~4p f p!2
M2S M1

k21M2

2k2 k” D
3S 32p2L1 ln

M2

m2 D1
3gA

2

4~4p f p!2
~Ak22v!F k22M2

k2 vk”2
mp

2

Ak2
~k”1M !GF32p2L1 ln

M2

m2 21

1(
l 51

`
2

2l 21

~v22mp
2 ! l

~Ak22v!2l G . ~36!
ra-

Notice that the integral in the first equation of~36! is domi-
nated by poles at momenta ofO(M ). The final result can
indeed be expanded in powers of (k”2M )/M and thereby
removed by CTC’s. If this were not done the power count
would be spoiled since the first term of the result is ofO(M )
and the second is ofO(Q2/M ), which can be contrasted wit
O(Q3/M2) for the soft part.

While our procedure is plausible, a general proof wou
require consideration of diagrams of arbitrary complexi
Here we restrict ourselves to one-loop order for which it
easy to see that our procedure gives the same result as
ChPT. Indeed, the expansion of the baryon propagator in
~30! generates the same effects as integrating out the h
components of the baryon fields in HBChPT. For our e
ample of the nucleon self-energy we can make the conn
tion with HBChPT by introducing in Eq.~31! the four veloc-
g

.

B-
q.
vy
-
c-

ity vm such thatkm5Mvm1qm with vmvm51. Projecting
onto the light components by inserting the projection ope

tors 1
2 (11v” )5@ 1

2 (11v” )#2 fore and aft, and noting that

1
2 ~11v” !l” g5

1
2 ~11v” !52l •S1

2 ~11v” !, ~37!

whereSm5 1
2 ig5smnvn, we find

1
2 ~11v” !ŜSpN~k! 1

2 ~11v” !

5 1
2 ~11v” !

3gA
2

f p
2

im42dE ddl

~2p!d

~ l •S!2

l 22mp
2 1 i e

3
1

v•q2v•l 1 i e
1•••. ~38!
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This is a well-known expression which follows directly fro
the Feynman rules of HBChPT@13,16#. Our expression for
the soft part, Eq.~34!, when projected onto the light compo
nents yields in leading order~or equivalently in the infinite
nucleon mass limit! the result of Bernardet al. @13,31# ob-
tained in HBChPT.

Mojžiš @16# has recently calculated diagrams forpN
scattering using HBChPT with just pions and nucleons up
one-loopQ3 order. The results of our calculation, given
the Appendix, agree with his@modulo differences in the pa
rametrization ofU and the treatment of finite terms arisin
from the product of a (d24) factor with the 1/(d24) pole,
see below#. For simplicity our examples have involved th
nucleon propagator, but we emphasize that thed propagator
appearing in loop diagrams~denoted by an open box in Figs
9 and 10 below! is treated in exactly the same way. This
necessary to preserve the power counting and it gives re
which agree with the HBChPT approach of Hemmertet al.
@32#.

B. Fermion loops and power counting

Fermion loops were not discussed in the preceding s
tion. We notice that there are no fermion loops in HBCh
after integrating out the heavy-field components. Here
show that fermion loops have vanishing soft parts in o
approach so that they can be ignored. First consider ferm
loops that are not directly connected to external ferm
lines, such as those in Fig. 2. We will work with nucleons f
simplicity, although similar arguments can be given forD ’s.
If we generalize our previous rules by taking the loop m
mentum to be ofO(Q), we can expand the propagators
the form

G~ l !52
1

M2 ~ l”1M !S 11
l 2

M2 1••• D . ~39!

In dimensional regularization*ddl l n50 so the soft part
vanishes. Alternatively, a direct calculation of the loop in
grals with the standard Feynman rules can be used to s
that the contributions of the diagrams can be expanded
power series in terms of small pion momenta~a Q/M expan-
sion! and can thus be absorbed in the Lagrangian. In o
words there is no soft part.

Next we discuss fermion loops generated from four~or
more! fermion vertices, such as those in Fig. 3. These can
considered to arise from Fig. 4 by shrinking the heavy bo

FIG. 2. Sample diagrams with baryon loops not directly co
nected to external baryon lines.

FIG. 3. Sample diagrams with baryon loops involving fo
baryon vertices.
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lines to points. Since the momentum transfers through
boson lines must be small if it is feasible to integrate out
heavy bosons, the arguments given in connection with Fi
can also be applied here. Therefore the soft parts van
Alternatively, this may be shown directly by taking the loo
momenta to be ofO(Q), using Eqs.~30! and ~39!, together
with the relation

E ddl
~ l 2!m

~2k•l 1a1 i e!n 50, ~40!

wherea is independent ofl . Equation~40! is valid in di-
mensional regularization for any integersm andn ~see Ref.
@30#, for example!.

Finally, we need to consider the special case where
N-baryon scattering process contains anN-baryon interme-
diate state. A simple example is given in Fig. 5. We note t
if we consider the four-fermion interaction in terms of th
exchange of a heavy boson, as before, this diagram will
contain a baryon loop. As Weinberg noticed@20#, there is an
infrared divergence in Fig. 5 for on-shell nucleons at ze
kinetic energy. Indeed, the amplitude is proportional to

E d4l P1~ l !G~p11l !G~p22l !

5E d4l
P2~ l !

2p1•l 1p1
22M21 i e

1

2p2•l 1p2
22M22 i e

1•••, ~41!

where P1(l ) and P2(l ) are polynomials in the loop mo
mentuml . We have takenl to be of orderQ and expanded
the integrand in the manner of Eq.~30!. The contour of in-
tegration is pinched between the two poles atl 056 i e for
p15p25(M ,0), and so cannot be distorted to avoid the
singularities. Of course, this just signals that our expans
fails. The way out of this difficulty has also been given b
Weinberg: we should consider onlyN-baryon irreducible
diagrams forN-baryon scattering processes. The reduci

-

FIG. 4. Diagrams which yield Fig. 3 when the heavy bos
propagators, represented by wiggly lines, are shrunk to a point

FIG. 5. A two-baryon reducible diagram that needs special tre
ment.
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diagrams are summed up with theN-body Bethe-Salpete
equation, the kernel of which is obtained from the irreduci
diagrams.

Even in one-baryon processes, such aspN scattering, sin-
gular behavior can arise when an intermediateD goes on
shell. A similar remedy is followed: first calculate the irr
ducible self-energy diagrams to a certain order, then sum
the string of reducible diagrams containing arbitary numb
of self-energy insertions~see Sec. IV!.

We can now discuss the power counting for irreduci
diagrams that do not contain fermion loops. According to E
~30! the leading order of a baryon propagator isQ21 and
according to Rule 1 the loop momentum is of orderQ. Thus
all the power-counting arguments of Weinberg@20# carry
over. It follows that the leading order of a Feynman diagr
with L loops,EN external baryon lines isQn with

n5212L2 1
2 EN1(

i
Vi~di1

1
2 ni22!, ~42!

whereVi is the number of vertices of typei characterized by
ni baryon fields anddi pion derivatives ormp factors.~We
used the quantitydi1

1
2 ni to characterize terms in the La

grangian in Sec. II.! In general each diagram may contribu
at orders beyond the leadingQn order.

IV. PION-NUCLEON SCATTERING

We apply our formalism topN scattering and calculat
the T matrix toO(Q3). The Q3 amplitude is obtained from
tree diagrams constructed from our LagrangianL21L3
1L4 and one-loop diagrams constructed fromL2. Following
the standard notation of Ho¨hler @33# and Ericson and Weise
@34# we write theT matrix as

Tba[^pbuTupa&5T1dab1 1
2 @tb ,ta#T2, ~43!

where the isospin symmetric and antisymmetric amplitu
are

T65A61 1
2 ~q”1q” 8!B6. ~44!

Here, as shown in Fig. 6~a!, q andq8 are the c.m. momenta
of the incoming and outgoing pions with isospin labelsa and
b, respectively. The c.m. momenta of the incoming and o

FIG. 6. Tree-level diagrams forpN scattering.~a! contact inter-
actions;~b! nucleon exchange with the cross diagram suppress
e

p
s

.

s

t-

going nucleons are labeledp and p8, respectively. The am-
plitudesA6 andB6 are functions of the Mandelstam invar
antss5(p1q)2, t5(q2q8)2, andu5(p2q8)2.

A. Tree-level contact terms and nucleon exchange

In Fig. 6 we show the tree-level Feynman diagrams a
ing from the contact terms and from one nucleon exchan
with the crossed diagram for the latter suppressed. The
tex in Fig. 6~a! arises from any of the interactions inL3 and
L4 ~except for thel1 andl6 terms!, as well as the Weinberg
term 2N̄gmvmN. It is straightforward to obtain the ampli
tudes arising from the contact terms. The results are

AC
15

1

M f p
2 F2bp~2mp

2 2t !24k2mp
2 1

l4

8M2
~s2u!2G ,

~45!

BC
15

1

4M2f p
2 ~k122l4!~s2u!, ~46!

AC
252

kp

2M f p
2 ~s2u!, ~47!

BC
25

1

2 f p
2 ~114kp!2

1

M2f p
2 F 1

2 l2t14l3mp
2

2
l5

16M2
~s2u!2G . ~48!

The parameters here will absorb the divergences arising f
the one-loop diagrams. They depend on the scale of dim
sional regularizationm in such a way that the completeT
matrix ism independent. The contributions from nucleon e
change shown in Fig. 6~b! are well known, see for exampl
Ref. @33#. Including the crossed diagrams, we have

AN
15

gA
2

f p
2

M , ~49!

BN
15

gA
2

f p
2

M2S 1

u2M2 2
1

s2M2D , ~50!

AN
250, ~51!

BN
252

gA
2

2 f p
2

2
gA

2

f p
2

M2S 1

s2M2 1
1

u2M2D . ~52!

Here we have used the exact nucleon propagator, althou
could be expanded in chiral orders as in Ref.@16#. The dif-
ference would appear beyondO(Q3) which is the level of
precision of the present calculation. Note that identificat
of what is to be included inO(Q3) is model dependent sinc
the hard momentum scale could beM , MD , the average
massM̄ , or 4p f p . Results obtained with different choice
will differ at O(Q4) and beyond, but this should not affe
the quality of the fit to the data so that we shall simply wr
our expressions in convenient form.

.
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B. D exchange

When theD appears as an intermediate state forpN scat-
tering, the tree-levelT matrix diverges ats5MD

2 so the
power counting fails. As argued earlier, we expect the po
counting to work only for irreducible diagrams. Thus w
evaluate the one-particle irreducible self-energy diagra
which, to one-loop order, are those of Fig. 7. Diagrams c
taining one or more self-energy insertions are then summ
to replace the free propagator by the dressed propag
which is finite.

We start by writing down the freeD propagator

Gmn
0 ~k!5

1

k”2MD1 i eS 2gmn1 1
3 gmgn

1
1

3MD
~gmkn2gnkm!1

2kmkn

3MD
2 D . ~53!

This may be recast in terms of the spin projection opera
@35,36# as

Gmn
0 ~k!52

1

k”2MD1 i e
~P3/2!mn2

1

A3MD

~P12
1/21P21

1/2!mn

1
2

3MD
2 ~k”1MD!~P22

1/2!mn , ~54!

where

~P3/2!mn5gmn2 1
3 gmgn1

1

3k2
~gmkn2kmgn!k”2

2

3k2
kmkn ,

~P11
1/2!mn5 1

3 gmgn2
1

3k2
~gmkn2kmgn!k”2

1

3k2
kmkn ,

~P12
1/2!mn5

1

A3k2
~2kmkn1gmknk” !, ~55!

~P21
1/2!mn5

1

A3k2
~kmkn2kmgnk” !,

~P22
1/2!mn5

1

k2
kmkn .

The spin projection operators obey the orthogonality re
tions

~Pi j
I !mn~Pkl

J !nr5d IJd jk~Pil
I !m

r . ~56!

The dressedD propagator contains any number of irr
ducible self-energy insertions:

FIG. 7. One-loopD self-energy diagrams. The open box repr
sents the freeD propagator.
r

s
-
d

tor

rs

-

Gmn5Gmn
0 1Gml

0 SlsGsn
0 1Gml

0 SlsGst
0 StpGpn

0 1•••,
~57!

where Smn(k) is the D self-energy. SincegmGmn
0 (k) and

kmGmn
0 (k) do not contain a pole atk25MD

2 , we conclude
from Eq. ~57! that the tensor terms inSmn(k) constructed
from gm andkm generate nonpole terms in the dressed pro
gator Gmn . It is not hard to see that these terms start
contribute to theT matrix at orderQ5. We can thus greatly
simplify our calculations by noting that in theD self-energy
tensor

Smn~k![SD~k!gmn1•••, ~58!

the aforementioned tensor terms, represented by the elli
can be neglected. RenormalizingSD in the MS scheme we

obtain SD
MS. We make additional on-shell mass and wav

function counterterm subtractions such that, when the ima
nary part of the self-energy is neglected, the pole of theD
propagator lies at the physical mass with unit residue. Th
the final renormalized self-energy is

FIG. 8. TheD exchange diagram with the dressed propaga
represented by a solid box.

FIG. 9. A set of one-loop diagrams which contribute atO(Q3).
Crossed diagrams for~d!–~n! are not shown.
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SD
ren~k!5SD

MS~k!2ReSD
MS~k! U

k”5MD

2
]

]k”
ReSD

MS~k!U
k”5MD

3~k”2MD!, ~59!

where Re refers to the real part. Breaking theD self-energy into real and imaginary parts we obtain the dressedD propagator

Gmn~k!52
k”1MD

k22MD
2 2PD~hk!1 iM DGD~k2!

~P3/2!mn2
1

A3MD

~P12
1/21P21

1/2!mn1
2

3MD
2 ~k”1MD!~P22

1/2!mn . ~60!

We have ignoredO(Q3) contributions to the nonpole terms which involveP1/2 since, as we have remarked, they do n
contribute to thepN T matrix untilO(Q5). Also in the numerator of the pole term in Eq.~60! we have neglected terms o
O(Q3), which contribute to thepN T matrix atO(Q4). It is convenient to write the real part of theD ‘‘polarization’’ as a
function of hk5 1

2 (k22M2)/M̄ , with the mean baryon massM̄5 1
2 (M1MD). To O(Q3) the two diagrams of Fig. 7 yield

PD~hk!52
4

3

hA
2MD

~4p f p!2H ~hk
22mp

2 !J~hk!2~d22mp
2 !J~d!2F3dJ~d!22d21mp

2 1mp
2 ln

mp
2

m2 G~hk2d!J 2
25

27

h̃A
2MD

~4p f p!2H @~hk

2d!22mp
2 #J~hk2d!2pmp

3 2mp
2 S 11 ln

mp
2

m2 D ~hk2d!J , ~61!

where the functionJ is defined in the Appendix. For the energies considered here the imaginary part arises from t
diagram of Fig. 7 which gives

GD~k2!5
p

12MDk4

hA
2

~4p f p!2~k21M212MMD!@~k22M2!22~k213M2!mp
2 #A~k22M2!224k2mp

2 . ~62!

We have evaluatedGD up toO(Q4) because this significantly improves the accuracy of theD decay width,GD(k25MD
2 ). In

fact the error is negligible when compared with an exact evaluation using tree-level coupling,gpND5hAM / f p „for the
coupling toO(Q2) see Eq.~83! below…. Specifically this is@33#

GD
exact5

gpND
2

12p

uqW u3

M2MD

~M1AuqW u21M2!, ~63!

whereuqW u25(4M̄22mp
2 )(d22mp

2 )/(4MD
2 ).

Using the dressedD propagator of Eq.~60!, theD exchange contribution to the real part of theT matrix, pictured in Fig.
8, is

TD
ba5S dab2

1

4
@tb,ta# D hA

2

9MD
2 f p

2 s
$6MD

2 DR~s!s@a1~s,t !1a2~s,t !q” #2~s2M21mp
2 !@M ~s2M2!1~M12MD!mp

2

1~s2M212MMD1mp
2 !q” #%, ~64!
t t

am
where we defineh[ 1
2 (s2M2)/M̄ and the real part of theD

propagator is

DR~s!5
s2MD

2 2PD~h!

@s2MD
2 2PD~h!#21MD

2 GD
2 ~s!

. ~65!

We do not expand the propagator for the reason given a
end of Sec. IV A. The definitions of the functionsa1 anda2
are
he

a1~s,t !52M̄ @mp
2 2 1

2 t2 1
3 ~s2M2!#2

~s2M21mp
2 !

6s

3@M ~s2M2!1mp
2 ~M12MD!#,

a2~s,t !5 2
3 mp

2 2 1
2 t1 4

3 MM̄2
~s2M21mp

2 !

6s

3~s2M212MMD1mp
2 !. ~66!

To this should be added the result for the cross diagr
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which is obtained from the above by the replacements→u
and the interchangesa↔b andq↔2q8.

C. One-loop diagrams

A set of one-loop diagrams that contribute to thepN T
matrix atO(Q3) is shown in Fig. 9. Here we can use the fr
D propagator since no singularities are generated in thT
matrix. A covariant expansion of theD propagators, as wel
as the nucleon propagators, is made in the manner discu
in Sec. III A so that the denominators are of orderQ. These
D propagators are denoted by open boxes in Fig. 9.

As an illustration, we calculate theT matrix for Fig. 9~e!.
Using the standard Feynman rules, we find
o
e
b
e

t
a

f a

is

s

fo

-
n

ia
n

he
sed

ū~p8!T9e
bau~p!52

gA
4

16f p
4 im42dE ddl

~2p!d

3
1

l 22mp
2 1 i e

ū~p8!l” g5tcG~p81l !

3q” 8g5tbG~p1q1l !q”g5ta

3G~p1l !l” g5tcu~p!. ~67!

Noting thatpm8 5pm1qm2qm8 , and thatq, q8, andl are of
order Q, we can expand the nucleon propagators as in
~30! and select the leading terms. Then the contribution
O(Q3) is
ū~p8!T9e
bau~p!52

3gA
4

16f p
4 im42dE ddl

~2p!d

ū~p8!l” ~p” 82M !q” 8~p”1M !q” ~p”2M !l” ~dab2 1
6 @tb,ta# !u~p!

~ l 22mp
2 1 i e!~2p•l 1 i e!2~2p•l 12p•q1 i e!

. ~68!

As in Sec. III, we can cast this in HBChPT form. Settingpm5Mvm for the incoming nucleon, we easily obtain

ū~p8!T9e
bau~p!52

3gA
4

f p
4 im42dE ddl

~2p!d

ū~p8!~ l •S!2~q8•S!~q•S!~dab2 1
6 @tb,ta# !u~p!

~ l 22mp
2 1 i e!~v•l 1 i e!2~v•l 1v•q1 i e!

. ~69!
e
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c-
e
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at
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It is tedious, but straightforward to evaluate the numerat
of Eqs. ~68! or ~69! and carry out the integration using th
results in the Appendix. We use the modified minimal su
traction scheme (MS) to remove the singularities and th
resulting real part of theT matrix is listed in Eq.~A20!. Note
that divergent terms proportional to 1/(d24) involve poly-
nomials in the variables and so they can be absorbed into
contact-term contributions. For the same reason, we can
sorb finite polynomial terms obtained from the product o
1/(d24) singularity and (d24) factors. The latter may be
generated fromd-dimensionalg-matrix algebra or from in-
tegration of tensor factors such asl ml n in the numerator of
the integrand. The above simplification has been exerc
for the results listed in the Appendix.

The real parts of theT matrix for the remaining diagram
of Fig. 9 are evaluated in like fashion toO(Q3) and listed in
the Appendix. Note that the diagrams in Fig. 9~m! and 9~n!
involve the nucleon one-loop self-energy which is real
the energies of interest here. As with theD, we renormalize
in the MS scheme to obtainSN

MS and make additional on
shell mass and wave-function counterterm subtractio
Thus, the renormalized self-energy is

SN
ren~k!5SN

MS~k!2SN
MS~k! U

k”5M

2
]

]k”
SN

MS~k!U
k”5M

~k”2M !.

~70!

Since these diagrams do not give singular contributions
the T matrix we do not sum the self-energy insertions.

We also need to evaluate the vertex modification d
grams shown in Fig. 10. TheD propagators denoted by ope
boxes have the same meaning as for Fig. 9. However, t
rs

-

he
b-

ed

r

s.

to

-

re

are now cases where theD can go on shell for which we us
the dressed propagator of Eq.~60!, as indicated by the solid
box. For the diagrams in Fig. 10~i! and 10~j! the contribu-
tions proportional toDR(s) vanish at the pole wheres
5MD

2 ~and soh5d). As a result, at the pole there are im
portant contributions to theT matrix coming from the imagi-
nary part of thepND vertex. These contributions actuall
are ofO(Q1) for energies very close to theD resonance
(uh2du!mp). Thus, we keep the leading-order pole corre
tions in Eqs.~A41! and~A42!. We have also considered th
next-to-leading order@O(Q2)# pole corrections for Figs.
10~i! and 10~j!, as well as the leadingO(Q3) pole correction
to the D exchange diagram of Fig. 8. These gave a v
small effect and were not included in the final fit. The e
pressions for the vertex modification contributions to theT

FIG. 10. Diagrams with one-loop vertices which contribute
O(Q3). Crossed diagrams are not shown. The solid circle in~a! and
~g! refers tol1 andl6 vertices, respectively. Each diagram impli
itly includes its counterpart where the lower vertex is dressed.
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matrix are also listed in the Appendix. We reiterate that o
expressions for diagrams that do not involve theD propaga-
tor agree with those recently given by Mojzˇiš @16#. Finally
we show in Fig. 11 a set of one-loop diagrams which do
need to be considered. The top row, Figs. 11~a!–11~f!, is
identically zero due to the vertex structure or to violation
isospin conservation. The lower row, Figs. 11~g!–11~l!, does
not contribute toO(Q3). This is a welcome simplification.

From the real part of theT matrix the real part of the
elastic-scattering amplitudef a is obtained by the standar
partial wave expansion@37#. Here the isospin-spin partia
wave channels are labeled bya[( l ,2I ,2J) with l being the
orbital angular momentum,I being the total isospin, and
J5 l 6 1

2 being the total angular momentum. The phase sh
da are then given by

Re f a5
1

uqu
sin dacosda . ~71!

D. Pion-nucleons term

We may obtain the nucleons term from the Feynman
Hellman theorem,

s~0!5mp
2 ]M

]mp
2 . ~72!

FIG. 11. One-loop diagrams which either vanish,~a!–~f!, or do
not contribute atO(Q3), ~g!–~l!. Crossed diagrams and diagram
with the time ordering reversed are not explicitly shown.
r

t

f

ts

Working out the nucleon self-energy up to one-loopQ3 or-
der, we find

M5M02
4k2

M
mp

2 2
3

2

pgA
2

~4p f p!2 mp
3 1

8

3

hA
2

~4p f p!2

3F ~d22mp
2 !J~d!1 1

2 mp
2 d ln

mp
2

m2 G , ~73!

where the functionJ is defined in the Appendix andM0 is
the ‘‘bare’’ nucleon mass defined to be independent of
pion mass. Note that, as in HBChPT, contact terms prop
tional to d3 are needed to absorb the divergences andm
dependence associated with theD degrees of freedom. We
have not specified these explicitly, hence ourM0 depends on
d andm. Thes term up toO(Q3) is then

s~0!52
4k2

M
mp

2 2
9

4

pgA
2

~4p f p!2 mp
3 1

8

3

hA
2mp

2

~4p f p!2

3@d2 3
2 J~d!#. ~74!

Note that them dependence inJ(d) may be absorbed ink2
so thats is independent ofm.

The isospin even on-shell amplitudeD̄1(n,t) at the
Cheng-Dashen point can be related to thepN s term,
s(2mp

2 ), as follows@38#:

f p
2 D̄1~n50, t52mp

2 !5s~2mp
2 !1O~mp

4 !, ~75!

wheren5(s2u)/(4M ) and D̄1 is obtained from

D1~n,t !5A1~n,t !1nB1~n,t ! ~76!

by the subtraction of the nucleon pole term which com
from the tree diagram in Fig. 6~b! and the one-loop diagram
in Figs. 10~a!–10~f!. At the Cheng-Dashen point only Figs
8, 9~a!, 9~b!, and Figs. 9~r!–9~u! contribute to thes term.
Using the results for theT matrix as given in the Appendix
we find
n

ly
s~2mp
2 !2s~0!5

3

4

pgA
2

~4p f p!2 mp
3 1

hA
2mp

4

3MD
2 d

1
2

3

hA
2mp

2

~4p f p!2F ~p24!d24Ad22mp
2 ln S d

mp
1A d2

mp
2 21D

1E
0

1

dx
2d2

Ad22mp
2 ~122x12x2!

ln
d1Ad22mp

2 ~122x12x2!

d2Ad22mp
2 ~122x12x2!

G . ~77!

Note that since we countd to be of orderQ the second term on the right is of the sameQ3 order as the other terms. Equatio
~77! agrees with the result of Bernardet al. @13,39# who obtain this expression from HBChPT and dispersion relations.~Their
integral is in a form which is slightly different from ours, but both integrals give the same numerical result.!

E. pNN and pND couplings

The pNN vertex up to one-loop order consists of the tree vertex generated from the axialam term in the Lagrangian and
the one-loop diagrams shown in the upper part of Figs. 10~a!–10~f!. Following our procedure, we can straightforward
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calculate the one-loop vertex functionGa(k,k8,q), wherek (k8) is the incoming~outgoing! momentum of the nucleon an
q5k82k is the momentum transfer. ThepNN coupling for on-shell nucleons is obtained by sandwiching this vertex func
between nucleon spinors:

ū~k8!Ga~k,k8,q!u~k!5gpNN~q2!ū~k8!g5tau~k!. ~78!

We find

gpNN~q2!5gpNN~0!1O~q2Q2!, ~79!

which implies that the difference between the on-shell pion couplinggpNN(mp
2 ) andgpNN(0) is ofO(Q4). This justifies the

usual assumption of a small variation ingpNN(q2) betweenq250 and q25mp
2 when the Goldberger-Treiman relation

derived@40#. To O(Q2) we obtain
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Notice thatl1 absorbs the divergences andm dependence arising from the one-loop vertices. With the parameters obt
from fits to thepN phase shifts Eq.~80! allows a test of the Goldberger-Treiman relation.

Similarly, we can calculate thepND vertex from the tree-levelhA term and the one-loop diagrams shown in the upper p
of Figs. 10~g!–10~l!. Here, in the vertex functionGma(k,k8,q) the labelk now refers to the incomingD momentum. ThepND
coupling is obtained by sandwiching this vertex function between the nucleon spinor and theD spinor,um(k):

ū~k8!Gma~k,k8,q!um~k!5gpND~q2!ū~k8!qmTaum~k!. ~81!

We find

gpND~q2!5gpND~0!1O~q2Q2!, ~82!

where

gpND~0!5
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Here l6 plays a similar role tol1 for gpNN . The value of
gpND is complex because the intermediate pion and nucl
states for Figs. 10~i! and 10~j! can go on shell.

V. RESULTS

As fixed input parameters, we use the standard baryon
pion masses:M5939 MeV,MD51232 MeV, andmp5139
MeV. We also take@41# f p592.4 MeV from charged pion
decay,gA51.26 from neutronb decay, andhA51.46 from
Eq. ~63! with gpND5hAM / f p and the central value of theD
width GD512065 MeV. The physical results should be in
dependent of the scale of dimensional regularization. To c
firm that this is indeed the case we carry out calculatio
with three values of the scale, namelym5MD , m51 GeV,
and m50.75 GeV. We then have 11 free parameters l
bp , kp , k1, k2, h̃A , andl1 to l6. These are obtained b
n

nd

n-
s

t:

optimizing the fit of our calculatedS- and P-wave phase
shifts to thepN scattering data of Arndt@42#. Because neg-
ligible error bars are given in the data at low energies,
assign all the data points the same relative weight in a le
squares fit. We fit the data for pion c.m. kinetic energ
between 10 and 100 MeV.

The fit obtained for theS- and P-wave phase shifts as
function of the pion c.m. kinetic energy is indicated by t
solid line in Fig. 12. Here the renormalization scale is chos
to be 1 GeV and the corresponding parameters are SetA1 in
Table I. The experimental data points of Arndt@42# to which
we fit are displayed as triangles in Fig. 12; we also disp
there the older data of Bugg@45# ~squares! and Koch and
Pietarinen@46# ~circles!. The solid line shows a good fit up t
100 MeV pion c.m. kinetic energy, slightly below theD
resonance at 127 MeV. It is remarkable that a good fit
achieved, even with 11 parameters, since theT matrix con-
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FIG. 12. TheS- andP-wave phase shifts as a function of the pion c.m. kinetic energy. The solid, dashed, and dotted curves are c
with parameters setsA1 (m51 GeV!, A2 (m51.232 GeV!, andA3 (m50.75 GeV!, respectively. The data are from Arndt@42# ~triangles!,
Bugg @45# ~squares!, and Koch and Pietarinen@46# ~circles!.
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tains a number of complicated nonpolynomial functions
the invariant variables. The agreement for most of the ph
shifts extends beyond 100 MeV, butdS31 starts to deviate
markedly. Extending the range of c.m. energies used for
fitting does not change the situation significantly. Howev
O(Q4) contributions may become significant above appro
mately 100 MeV. This assertion is supported by test cal
lations in which we have included a few selected contrib
tions of this order. However, without considering allO(Q4)
contributions no definitive statement can be made. A be
strategy is to examine the renormalization scale depend
of the phase shifts. The dashed and dotted curves in Fig
display results obtained withm5MD andm50.75 GeV re-
spectively; the corresponding parameters are labeled SetA2
and A3 in Table I. Thex2 values for the three differen
values of the scale are similar and the phase shifts agre
to 100 MeV. Beyond this energy a dependence on the s
starts to appear indicating thatO(Q4) contributions are
f
se

e
,
-
-
-

er
ce
12

up
le

needed. The deviations are most noticeable fordS31 anddP13
which suggests that they are the most sensitive to hig
order contributions. We remark that similar fits can be o
tained with values of the renormalization scale as smal
mp . In Fig. 12 there is a small gap in thedP33 phase shift
just below 100 MeV. Here unitarity is slightly violated and
phase shift cannot be determined. The point is made in
13 where1

2 sin 2dP33 is plotted for SetA1 ~solid curve!. The
maximum magnitude of12 is exceeded in a 10 MeV energ
region by<10%. This is a small violation and the salie
point is that sensible results are obtained without resortin
a phenomenologicalK-matrix approach to enforce unitarity

While we expect the parameters of Table I to be natu
i.e., of order unity, some of them are close to 10. There co
be several reasons for this. First, we have no definite p
scription for assigning factors of 2 in the definition of th
parameters. Second, the phase shifts are derived from tT
matrix where there are strong cancellations among the v



al-

57 3369PION-NUCLEON SCATTERING IN A NEW APPROACH . . .
TABLE I. Parameter sets obtained from fitting thepN phase shifts for various values of the renorm
ization scalem. The deducedpNN andpND couplings and the nucleons term are also given.

A1 A2 A3 B1 C1
m(GeV) 1.00 1.232 0.75 1.00 1.00

bp 23.5790 24.2084 21.9714 23.1385 23.1641

kp 2.3219 3.5370 0.1993 1.9697 2.3169

k1 5.6578 6.5464 1.5485 4.6914 5.2765

k2 22.3683 22.5845 22.1417 21.9931a 21.6286a

l1 22.6652 21.9338 24.2176 22.2593 29.7605

l2 26.4822 24.5533 27.7712 28.2178 211.7498

l3 11.0504 11.9228 4.6877 10.7125 15.2134

l4 24.4304 22.5495 26.3775 26.1955 29.6040

l5 4.9702 3.5669 4.1456 5.3523 8.0874

l6 9.3759 9.2927 4.8363 7.3192 7.4099

h̃A
1.6243 1.4418 1.0986 1.6779 2.4626

s(0)(MeV) 106 109 108 75 45

gpNN /(gAM / f p) 1.0445 1.0378 1.0409 1.0091 0.9585

ugpNDu/(hAM / f p) 0.9898 1.0134 1.0337 1.0532 1.1294

aFixed so as to obtain the listed value ofs(0).
c
ca

s

on
ul

h
on

be.
an

e

our

is

en-
s

and
the

.m.

r
.
er

the

as
fit-
13

we
la
ous terms. This suggests that the parameters have signifi
uncertainties. Third, we note that the parameters are s
dependent. They appear more natural for SetA3 with m
50.75 GeV than for SetsA1 andA2. An example of this is
the parameterl6 which contributes to the effectivepND
coupling, see Eq.~83!. In fact the last row of the table show
that the effectivepND couplings obtained from setsA1, A2,
and A3 are quite similar and show a very small deviati
from the tree-level value. Thus, we should not be und
concerned by the size of some of the parameters.

In Table I we also show the value of the effectivepNN
coupling, which remains close to the tree-level value. T
pNN coupling compares quite well with the determinati
of Arndt et al. @44# of gpNN /(gAM / f p)51.03. We also tabu-

FIG. 13. The dependence of1
2 sin 2d33 upon the pion c.m. ki-

netic energy. The phase-shift data from Arndt@42# are indicated by
the triangles. The solid, dashed, and dotted curves are calcu
with parameters setsA1, B1, andC1, respectively.
ant
le

y

e

late the nucleons term calculated from Eq.~74!. Essentially
the same value is obtained for SetsA1, A2, andA3 so thes
term is renormalization scale independent, as it should
The magnitude of 108 MeV, however, is much larger th
the generally accepted value of 4568 due to Gasseret al.
@43#. It is only slightly reduced to 92 MeV when we fit to th
older data of Koch and Pietarinen@46#. The value of
s(2mp

2 )2s(0)515.7 MeV depends only ongA andhA and
is uncontroversial@13,15,43#. Thus our predicteds(2mp

2 ) is
also much larger than the value of 6468 MeV obtained@47#
using dispersion relations. In order to see how sensitive
fit is to thes term, we make two other fits in whichs(0) is
constrained to be 75 and 45 MeV, respectively. This
achieved by fixingk2 via Eq. ~74!, while allowing the re-
maining parameters to vary. We choose the scale of dim
sional regularization to bem51 GeV. The parameters thu
obtained are, respectively, labeledB1 and C1 in Table I.
The corresponding phase shifts are denoted by dashed
dotted lines in Fig. 14 and these can be compared with
solid curve obtained with SetA1. The value ofx2 for SetB1
is 50% larger than for SetA1 and only thedS31 phase shift
shows any visible difference between the two cases for c
energies below 100 MeV. ThepNN andpND couplings are
also similar. However, for setC1 x2 is more than a factor of
2 greater than for SetA1 and larger differences appear fo
the phase shifts, particularly theS waves, and couplings
Clearly s(0) is not well determined, although values larg
than 45 MeV are suggested. Note that Mojzˇiš @16# obtained
a value of 59 MeV by fitting to the threshold parameters,
pNN coupling, and thes term. The parameters for SetsA1,
B1, andC1 show some significant differences indicating,
mentioned earlier, that they are not well determined by
ting the phase-shift data alone. We also note that Fig.
shows that SetsB1 and C1 violate unitarity at about 150
MeV c.m. energy, although here, as we have remarked,

ted
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FIG. 14. TheS- andP-wave phase shifts as a function of the pion c.m. kinetic energy. The solid, dashed, and dotted curves are c
with parameters setsA1, B1, andC1, respectively. The data are as in Fig. 12.
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expectO(Q4) effects to be important. However, it may b
significant that just below 100 MeV SetC1 gives a larger
violation of unitarity than the other parameter sets.

It is also interesting to examine the threshold~vanishing
pion kinetic energy! S-wave scattering lengths (a2I) and the
P-wave scattering volumes (a2I 2J). The experimental value
were not used in the fit and they are compared with
predictions with SetsA1, B1, andC1 in Table II. The agree-
ment for theP waves is reasonable with not too much se
sitivity to the parameter set, althougha33 does become rathe
small for SetC1. For theS waves it is instructive to examin
the isoscalar and isovector scattering lengths,b0
5(a112a2)/3 and b15(a32a1)/3. For b1, Refs. @42,46#,
and a recent determination by Sigget al. @48# give 20.091,
20.09160.002, and20.09660.007, respectively. These ar
r

-

in agreement and somewhat larger in magnitude than
predicted value of20.082, virtually independent of param
eter set. The value ofb0 from Ref. @42# is consistent with
zero, while Refs.@46,48# give 20.01060.003 and20.008
60.007. Our parameter setsA1, B1, and C1 give 0.003,
20.013, and20.023, respectively. From this result, and t
others that we have discussed, we conclude that param
setC1 is less favored than the other sets. Note that we do
show the scattering lengths and volumes for SetsA2 andA3
because they differ negligibly from SetA1, indicating m
independence. We make the obvious remark that the a
racy of the predicted scattering lengths and volumes can
improved by including them in the fit at the expense of
poorer fit to the phase shifts. In the case of SetA this reduces
the s term by about 10%.
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TABLE II. The calculatedS-wave scattering lengths andP-wave scattering volumes, in units ofmp
21 and

mp
23 , respectively, are compared with the data of Refs.@42# and @46#.

Length/volume A1 B1 C1 Ref. @42# Ref. @46#

a1 0.168 0.152 0.142 0.175 0.17360.003
a3 20.080 20.095 20.105 20.087 20.10160.004
a11 20.078 20.075 20.070 20.068 20.08160.002
a13 20.026 20.026 20.025 20.022 20.03060.002
a31 20.035 20.036 20.035 20.039 20.04560.002
a33 0.201 0.188 0.171 0.209 0.21460.002
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VI. CONCLUSIONS

We have introduced an approach to chiral perturbat
theory with baryons which involves manipulating the Fey
man diagrams directly, rather than integrating out the he
components of the baryon fields at the Lagrangian level a
HBChPT. Our approach preserves Weinberg’s power co
ing so that a systematic expansion in powers of a generic
momentum scaleQ remains valid. We can maintain relativ
istic covariance and apply the standard Feynman rules
g-matrix algebra. At one-loop order we obtain equivale
results to HBChPT; it would be interesting to compare
approaches in higher order.

We have calculated theT matrix for pN scattering up to
one-loopQ3 order. There were several components to t
calculation. First, the chiral Lagrangian introduced a num
of contact terms with unknown coefficients which contri
uted to theT matrix. Next, there were the well-know
nucleon andD exchange diagrams. The former was straig
forward, but the latter was singular at tree level when theD
went on shell. The problem was solved by summing
O(Q3) self-energy insertions in the propagator to all orde
The resulting amplitude then~approximately! obeyed unitar-
ity for pion c.m. energies up to at least 140 MeV. Finally, w
needed to evaluate the large number of one-loop diagr
which could be constructed with thep, N, andD vertices.

We have performed a least-squares fit to theS- and
P-wave phase shift data to determine the parameters
volved. We were able to obtain a good fit up to 100 Me
pion c.m. kinetic energy, slightly below theD resonance.
Our predictions for the zero-energy scattering lengths w
also reasonable. These results were independent of the r
malization scale,m, as they should be. Sinceh/M̄ is an
expansion parameter and at theD resonance it become
d/M̄50.27, one might expectO(Q4) effects to become im-
portant beyond theD resonance energy. This was support
by the scale dependence of our results in that energy reg
Though straightforward in principle, it would be very tedio
to include theO(Q4) corrections. The fit that we have ob
tained here contained an unavoidably large number of
rameters, but it must be borne in mind that theT matrix is a
much more complicated function of the invariant variab
when loops are present than at tree level. Thus we regard
fit that we have achieved as a vindication of the basic
proach. It seems, however, that one cannot determine
parameters with great accuracy using the phase-shift
alone. In particular we were able to obtain very similar fi
with parameters that corresponded to a nucleons term of
105 and 75 MeV. We judge that the fit was slightly degrad
n
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t-
ft
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when the currently accepted value ofs(0)545 MeV was
adopted, so that a somewhat larger value appears to b
vored from the analysis here. However this might indica
thatO(Q4) effects need to be calculated in order to achie
an accurate one-loop result, as Ecker has recently arg
@49#. It would be interesting to attempt to constrain the p
rameters further and to compare with the parameters foun
zero energy@15,16#. The latter would involve disentangling
theD contributions as well as other effects that, for simpl
ity, we have absorbed in the contact terms.
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APPENDIX

We first list the integrals we need. Using dimension
regularization we obtain

im42dE ddl

~2p!d

1

~ l 22mp
2 1 i e!@~ l 1Q!22mp

2 1 i e#

52L2
1

~4p!2
I ~Q2!, ~A1!

whereL, defined in Eq.~35!, is singular and the finite part

I ~x!512 ln
mp

2

m22A12
4mp

2

x
ln

A124mp
2 /x11

A124mp
2 /x21

for x,0. ~A2!

The next integral to consider is

im42dE ddl

~2p!d

1

~ l 22mp
2 1 i e!~2p•l 1z1 i e!

5
z

p2
L2

1

~4p!2Ap2
JS z

2Ap2D 2
i

16pp2

3u~z!u~z224p2mp
2 !Az224p2mp

2 , ~A3!

whereu denotes the Heaviside step function and
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J~x!55 x2x ln
mp

2

m22Ax22mp
2 ln

11~Ax22mp
2 !/x

12~Ax22mp
2 !/x

~ uxu.mp!

x2x ln
mp

2

m222Amp
2 2x2 cos21S 2

x

mp
D ~ uxu,mp!.

~A4!

Note thatJ(0)52pmp . The next integral we need is finite:

im42dE ddl

~2p!d

1

~ l 22mp
2 1 i e!@~ l 1Q!22mp

2 1 i e#~2p•l 1 i e!
5

1

16pAp2~4mp
2 2Q2!

S~Q2!, ~A5!

where

S~x!5A12
4mp

2

x
sin21

1

A124mp
2 /x

for x,0. ~A6!

Finally we require the finite integral

im42dE ddl

~2p!d

1

~ l 22mp
2 1 i e!@~ l 1Q!22mp

2 1 i e#~2p•l 1M22MD
2 1 i e!

5
1

32p2M̄d
E

0

1

dxK~x!, ~A7!

where

K~x!55
1

Ad22mp
2 1x~12x!Q2

ln
d1Ad22mp

2 1x~12x!Q2

d2Ad22mp
2 1x~12x!Q2

~d22mp
2 1x~12x!Q2.0!

2

Amp
2 2x~12x!Q22d2

tan21
Amp

2 2x~12x!Q22d2

d
~d22mp

2 1x~12x!Q2,0!.

~A8!

In Ref. @16# the expressions for the integrals of Eqs.~A1!, ~A3!, and ~A5! are written2I 0(Q2), 2J0(z/A4p2)/A4p2, and
2K0(0,Q2)/A4p2; they agree with our results above. Our expressions are written in terms ofM̄ , d, andh and we recall the
definitions for reference

M̄5 1
2 ~M1MD!, d5MD2M , h5

s2M2

2M̄
. ~A9!

It is useful to define the functions

F1~h,d!5
1

~h2d!2F ~h22mp
2 !J~h!1~2d223hd1mp

2 !J~d!1~h2d!S 2d22mp
2 2mp

2 ln
mp

2

m2 D G , ~A10!

F2~h,d!5
1

hd~h2d!
@~h22mp

2 !dJ~h!2~d22mp
2 !hJ~d!1pmp

3 ~h2d!#, ~A11!

F3~h,d!5
1

h2dF ~h22mp
2 !J~h!2~d22mp

2 !J~d!1 1
2 mp

2 ~h2d!ln
mp

2

m2 G . ~A12!

These functions are finite, for example,

F3~h,d! →
h→d

3dJ~d!22d21mp
2 1 3

2 mp
2 ln

mp
2

m2
. ~A13!

Then the contributions from Figs. 9 and 10 to the real part of theT matrix for pN scattering are

T9a
1 5

pgA
2

12f p
2

1

~4p f p!2F ~14mp
2 212t !mp1

3~mp
2 22t !~2mp
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2 2t

S~ t !G , ~A14!
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Notice Eqs.~A33!–~A36! for Figs. 10~g!–10~l! have been written in terms ofa1 , a2 of Eq. ~66! rather than truncating thes
expressions toO(Q2). This is necessary to ensure that the resonance only contributes to theP33 channel and does no
‘‘contaminate’’ the other channels. To the above contributions should be added the results for the cross diagram
applicable. They are obtained from the listed expressions by the replacements→u, h→h̄[(u2M2)/(2M̄ ), and the inter-
changesa↔b andq↔2q8.
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@16# M. Mojžiš, Eur. Phys. J. C2, 181 ~1998!.
@17# A. Datta and S. Pakvasa, Phys. Rev. D56, 4322~1997!.
@18# C. Callan, S. Coleman, J. Wess, and B. Zumino, Phys. R

177, 2247~1969!.
@19# R. J. Furnstahl, H.-B. Tang, and B. D. Serot, Nucl. Ph

A615, 441 ~1997!.
@20# S. Weinberg, Phys. Lett. B251, 288~1990!; Nucl. Phys.B363,

3 ~1991!.
@21# A. Krause, Helv. Phys. Acta63, 3 ~1990!.
@22# L. M. Nath, B. Etemadi, and J. D. Kimel, Phys. Rev. D3, 2153

~1970!.
@23# H.-B. Tang and P. J. Ellis, Phys. Lett. B387, 9 ~1996!.
@24# H. Georgi, Phys. Lett. B298, 187 ~1993!.
@25# H. Georgi, Nucl. Phys.B361, 339 ~1991!.
@26# C. Arzt, Phys. Lett. B342, 189 ~1995!.
@27# J. Gasser, Workshop on Chiral Dynamics~Mainz, 1997!,

hep-ph/9711503.
@28# A. V. Manohar and H. Georgi, Nucl. Phys.B234, 189 ~1984!.
@29# G. P. Lepage, inFrom Actions to Answers~TASI-89!, edited
.

v.

.

by T. DeGrand and D. Toussaint~World Scientific, Singapore,
1989!, p. 483.

@30# J. C. Collins,Renormalization~Cambridge University Press
Cambridge, 1984!.

@31# V. Bernard, N. Kaiser, J. Kambor, and U. G. Meissner, Nu
Phys.B388, 315 ~1992!.

@32# T. R. Hemmert, B. R. Holstein, and J. Kambor, Phys. Lett.
395, 89 ~1997!.
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