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Multiparticle Bose-Einstein correlations
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Multiparticle symmetrization effects are contributions to the spectra of Bose-symmetrized states which are
not the product of pairwise correlations. Usually they are neglected in particle interferometric calculations
which aim at determining the geometry of the boson emitting source from the measured momentum distribu-
tions. Based on a method introduced by Zajc and Pratt, we give a calculation of all multiparticle symmetriza-
tion effects to the one- and two-particle momentum spectra for a Gaussian phase-space distribution of emission
points. Our starting point is an ensemble ofN-particle Bose-symmetrized wave functions with specified
phase-space localization. In scenarios typical for relativistic heavy-ion collisions, multiparticle effects steepen
the slope of the one-particle spectrum for realistic particle phase-space densities by up to 20 MeV, and they
broaden the relative momentum dependence of the two-particle correlations. We discuss these modifications
and their consequences in quantitative detail. Also, we explain how multiparticle effects modify the normal-
ization of the two-particle correlator. The resulting normalization conserves event probabilities, which is not
the case for the commonly used pair approximation. Finally, we propose a method of calculating Bose-Einstein
weights from the output of event generators, taking multiparticle correlations into account.
@S0556-2813~98!01506-4#

PACS number~s!: 25.75.Gz, 24.10.Cn, 52.60.1h
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I. INTRODUCTION

Most hadrons are emitted in the final stage of a relativis
heavy-ion collision. They do not probe directly the hot a
dense intermediate stages where quarks and gluons ar
pected to be the relevant physical degrees of freedom
equilibration processes. The geometrical size and dynam
state of the hadronic phase space emission region, how
depends sensitively on the entire evolution of the collisi
This motivates current attempts to reconstruct its spatial
dynamical state from the experimental hadron spectra an
use it as a starting point for a dynamical back extrapolat
into the hot and dense intermediate stages@1#. Two-particle
correlations of identical particles which are sensitive to
space-time characteristics of the collision@2#, play a crucial
role in this approach. The reconstruction program based
their analysis has very good prospects: due to the increa
event multiplicities and larger statistics of the CERN S
lead beam program~and the yet better quality data expect
from the Relativistic Heavy Ion Collider RHIC at BNL!,
particle interferometric measurements start showing stat
cal errors on the few percent level. Also, systematic err
are increasingly better understood. Theoretical calculati
should aim for a similar accuracy and control necessary
proximations quantitatively.

One uncontrolled approximation used so far in almost
particle interferometric calculations is to neglect for the p
ticle momentum spectra of Bose-Einstein symmetriz
N-particle states all multiparticle correlations which cann
be written in terms of simpler pairwise ones. This reduc
the number ofN! terms contributing to the two-particle cor
relatorC(K ,q) to a manageable sum over all particle pai
Beyond this approximation, two approaches have been u
in the literature. First, Zajc has employed Monte Carlo te
niques@3# to generate events with realistic multiparticle co
570556-2813/98/57~6!/3324~16!/$15.00
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relations. This amounts to a shifting prescription$pi%→$pi8%
which modifies the momentum distribution of simulate
events according to unit weights~which themselves depen
on the space-time structure of the source!. Second, Zajc has
found @3# the first steps towards a calculational sche
brought into final form by Pratt@4#: for model distributions,
the N-particle spectra are given by a simple algorithm
volving only two types of terms:Cm and Gm . In practice,
this reduces the sums over allN! permutations, typical for
the calculation of momentum spectra, to sums over all pa
tions of N.

For both these approaches, there are first numerical ca
lations @3–5# and related analytical attempts@6–10# to con-
trol multiparticle effects to the one- and two-particle spect
but a detailed study of their momentum dependence is m
ing, even for simple models. This work aims at filling th
gap, making quantitative statements about the exten
which the slope of the one-particle spectrum and the rela
momentum dependence of the two-particle correlations
modified due to multiparticle symmetrization effects. Our i
vestigation takes the setS of phase-space emission poin
(pi ,r i ,t i) as initial condition. For notational simplicity, we
restrict the discussion to one-particle species, like-cha
pions say. To the setS, we associate a symmetrize
N-particle wave function@11#

CN~X¢ ,t !5
1

AN!
(

sPSN
S )

i 51

N

f si
~X i ,t !D , ~1.1!

where the sum runs over all permutationssPSN of the N

indices,X¢ is a shorthand for theN three-dimensional coor
dinatesX i , and the functionsf i denote single-particle wave
packets centered around (pi ,r i) at initial time t i and propa-
gated according to the free time evolution. Final-state int
actions, which imply a structure of theN-particle state dif-
3324 © 1998 The American Physical Society
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57 3325MULTIPARTICLE BOSE-EINSTEIN CORRELATIONS
ferent from Eq.~1.1!, will not be considered in the presen
work. The wave functionCN definesthe boson emitting
source. What we are interested in is the calculation of
one- and two-particle momentum spectra resulting from
~1.1!, the information they contain about the initial distrib
tion of the ‘‘emission points’’zi5(pi ,r i ,t i), the extent to
which these results modify the predictions of the pair a
proximation, and finally the algorithm which implements t
numerical calculation of multiparticle spectra from the init
distributionS.

Our work is organized as follows: Section II shortly se
up and illustrates the general formalism via which parti
momentum spectra are calculated from anN-particle state. In
Sec. III, we discuss the properties of Gaussian wave pac
which we choose for the single-particle statesf i(X i ,t) in Eq.
~1.1!. Section IV contains the main results. It gives a co
plete qualitative and quantitative analysis of multipartic
contributions to the one- and two-particle spectra for a bo
emitting source of Gaussian phase-space distribution. In
V, we discuss the implications of this model study for
algorithm which calculates the Hanbury-Brown–Twi
~HBT! radius parameters and momentum spectra for an
bitrary distribution of emission points. Results and rela
conceptual questions are summarized and discussed in
Conclusions.

II. THE FORMALISM

We want to determine for theN-particle symmetrized
wave functionCN the detection probability for measuringN
identical bosons at timet at the positionsX i and momenta
Pi . We calculate first theN-particle Wigner phase-spac
density forCN @12#

WN~X¢ ,P¢ ,t !5~2p!3NCN~X¢ ,t !

3S )
l 51

N

d~3!~Pl2P̂l !DCN* ~X¢ ,t !

5
1

N! (
s,s8PSn

)
l 51

N

Ws
l8sl

~X l ,Pl ,t !, ~2.1a!

Wi j ~X,P,t !5~2p!3f i~X,t !d~3!~P2P̂! f j* ~X,t !

5E d3ye2 iP–yf i S X1
y

2
,t D f j* S X2

y

2
,t D .

~2.1b!

Here,P̂ denotes the momentum operator acting onCN . The
one-particle pseudo-Wigner functionsWi j (X,P,t) provide
the basic building blocks for the calculation of theN-particle
momentum spectrum which is obtained by integrating E
~2.1a! over all spatial coordinates,

PN~P¢ !5NcE d3X¢WN~X¢ ,P¢ ,t !5
Nc

N! (
s,s8PSn

)
l 51

N

Fs
l8sl

~Pl !,

~2.2a!

Fi j ~P!5E d3XWi j ~X,P!5Di~P!D j* ~P!. ~2.2b!
e
.

-

ts

-

n
c.

r-
d
the

.

whereNc is a normalization constant,Nc51/^CNuCN&, en-
suring that the probability of detectingN particles is one. For
a free time evolution ofCN , the integration over the spatia
components of Eq.~2.2a! leads to a time-independent ex
pressionPN(P¢ ), since interactions between the particles a
necessary to change the momentum distribution in time
contrast, integratingWN(X¢ ,P¢ ,t) over all momenta leads to
the detection probability of theN bosons at positionsX i ,
which is a time-dependent quantity since free evolvi
bosons change their positions in time. The calculation of
N-particle momentum spectrum according to Eq.~2.2a! in-
volves a sum over (N!) 2 terms. Due to the factorization o
Fi j (P), this reduces to a sum overN! terms,

PN~P¢ !5
Nc

N! U (
sPSn

)
l 51

N

Dl~Ps~ l !!U2

. ~2.3!

In what follows, we are especially interested in the one- a
two-particle momentum spectraPN

1 (P1), PN
2 (P1 ,P2) associ-

ated with theN-particle stateCN . These are obtained b
integratingPN(P¢ ) over all but one, respectively, two mo
menta,

PN
1 ~P1!5

Nc

N! (
s,s8
Fs

18s1
~P1!)

l 52

N

f s
l8sl

, ~2.4a!

PN
2 ~P1 ,P2!5

Nc

N! (
s,s8
Fs

18s1
~P1!Fs

28s2
~P2!)

l 53

N

f s
l8sl

,

~2.4b!

f i j 5E d3PFi j ~P!. ~2.4c!

All particle momentum spectra are given in terms of t
building blocksDi(P) ~which determineFi j ) and f i j . Once
the analytical form of the single-particle wave functionsf i is
specified, these are readily calculated. In what follows, ca
tal letters denote measurable position and momentum c
dinates, small letterspi , r i , t i denote the centers of wav
packets which are not directly measurable. The only exc
tion to this is the measurable relative momentumq5P1
2P2 of the two-particle correlatorC[K5 1

2 (P11P2),q]
which we denote by a small letter.

A. The Zajc-Pratt algorithm

Dynamical correlations between particles in the sou
are reflected in correlations in the set of emission poi
(pi ,r i ,t i). If there are no correlations, then the initial distr
bution of the centers of single-particle wave packets is giv
by a one-particle probability distributionr(p,r ,t). The
n-particle spectra for a set of events with multiplicityN are
then obtained by averaging over this distribution

P̄N
n ~P1 , . . . ,Pn!5E S )

i 51

N

Dr i DPN
n ~P1 , . . . ,Pn!,

~2.5a!

Dr i5d3r id
3pidtir~pi ,r i ,t i !. ~2.5b!
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3326 57URS ACHIM WIEDEMANN
A particular model distribution with correlations which a
sumes that the emission probability of a boson is increase
there is another emission in its vicinity@10#, is obtained, e.g.,
by replacing in~2.5a!

)
i 51

N

r~pir i ,t i !→)
i 51

N

r~pi ,r i ,t i !
^CNuCN&

v~N!
. ~2.6!

Herev(N) is an averaged normalization defined below. T
technical advantage of adopting~2.6! is that the
(pi ,r i ,t i)-dependent normalization factorNC in the spectrum
PN

n of ~2.5a! is canceled. This allows us to write withou
approximation all spectra in terms of the building blocks@4#

Gm~P1 ,P2!5E S )
l 51

m

Dr i l D Di 1
* ~P1! f i 1i 2

f i 2i 3

3••• f i m21i m
Di m

~P2!, ~2.7a!

Cm5E d3PGm~P,P!. ~2.7b!

The resulting Zajc-Pratt~ZP! algorithm for the calculation of
one- and two-particle spectra reads@3,4,10#

w~N!5 (
~n,l n!N

N!

)nnl n~ l n! !
C1

l 1C2
l 2 . . . Cn

l n , ~2.8!

P̄N
1 ~P!5 (

m51

N
~N21!!

~N2m!!

w~N2m!

v~N!
Gm~P,P!, ~2.9!

P̄N
2 ~P1,P2!5 (

J52

N
~N22!!

~N2J!!

w~N2J!

v~N!

3 (
i 51

J21

@Gi~P1 ,P1!GJ2 i~P2 ,P2!

1Gi~P1 ,P2!GJ2 i~P2 ,P1!#. ~2.10!

These spectra are normalized to unity. In Appendix A,
give their derivation in some combinatorical detail. Due
the ZP algorithm, the calculation of theN-particle spectra is
reduced from sums over all permutations to sums over
partitions (n,l n)N of a set ofN points into l n subsets ofn
points,N5(nl nn. The number of partitions ofN grows as-
ymptotically like eAN. For explicit calculations with even
multiplicities in the hundreds, it is hence important to g
control over them dependence of the Pratt termsCm and
Gm . This is our strategy in Sec. IV.

B. A simple example: the Zajc model

To illustrate the above formalism, we consider a norm
ized N-particle density matrixrp

(N) for multiparticle states
ux1 , . . . ,xN&, created by repeated operation of the sing
particle creation operatorf†(x),
if

e

e

ll

t

l-

-

f†~x!5E d3k

~2p!3/2
eik•xg~k!ak

† , ~2.11a!

rp
~N!5NE dx1 . . . dxNr~x1! . . . r~xN!

3ux1 , . . . ,xN&^x1 , . . . ,xNu. ~2.11b!

This density matrix specifies in particular the one- and tw
particle spectra Tr@rp

(n)aP
†aP# and Tr[rp

(n)aP1

† aP2

† aP1
aP2

]. For

the Gaussian model distribution@3#

ug~k!u2

~2p!3
5~2pp0

2!23/2exp@2k2/2p0
2#, ~2.12a!

r~x!5~pR2!23/2exp@2x2/R2#, ~2.12b!

the effects of multiparticle correlations on the HBT-radi
parameters have been considered already by Zajc. His
cussion however is restricted to an explicit calculation
three-particle symmetrization effects and to qualitative e
mates of higher-order contributions. Here, we demonst
that the ZP algorithm allows for a complete quantitati
analysis of the Zajc model. The first step is to identify t
building blocks of the particle spectra~2.4!,

Di~P!5
g~P!

~2p!3/2
exp@ iP•xi #, ~2.13a!

f i j 5expF2
p0

2

2
~xi2xj !

2G . ~2.13b!

The calculation of the termsCm reduces then to
m-dimensional Gaussian integrations. One findsC151 and

Cm5~11p0
2R2!23~m21!/2S 12h

detBm
D 3/2

, ~2.14a!

detBm5
hm

2m21S TmS 1

hD21D ,

~2.14b!

h5
1

111/c
, c5R2p0

2 ,

whereTm denotes Chebysheff polynomials of the first kin
@13#. The momentum-dependent terms read

Gm~K ,q!5Cm

~11gK
~m!!3/2

~2pp0
2!3/2

exp@2K2gK
~m!/2p0

2#

3exp@2~R2gQ
~m!/411/8p0

2!q2# ~2.15a!

gQ
~m!5

1

4
eW 1

t Am
21eW 1 , e1

~ i !5d i11d im , ~2.15b!

gK
~m!5

c

2
eW 2

t Am
21eW 211 , e2

~ i !5d i12d im , ~2.15c!

~Am! i j 5~11c!d i j 2
c

2
~d i , j 111d i 11,j !. ~2.15d!
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57 3327MULTIPARTICLE BOSE-EINSTEIN CORRELATIONS
The main message of these involved but explicit express
is contained in them dependence of the termsgQ

(m) andgK
(m) .

These specify theK andq dependence of the building block
Gm and hence of all spectra. Here, they are functions of
phase-space volumeV5p0

3R3 only, and their behavior can
be understood by simple arguments:

The factorsgK
(m) generically increase with increasingm,

see Fig. 1. Especially, in a limiting case, one finds

lim
V→`

gK
~m!5m. ~2.16!

The reason is that Bose-Einstein symmetrization effects
hance the low momentum region of the one-particle sp
trum, leading to steeper slopes. This one-particle spect
P̄N

1 (P) is a linear superposition of Gaussian termsGm(K ,q
50), which due togK

(m) show increasingly steeper slopes.
Theq dependence ofGm governs theq dependence of the

two-particle spectrum. The termsgQ
(m) depicted in Fig. 1 de-

crease with increasingm and have the limiting values

lim
V→`

gQ
~m!5

1

m
. ~2.17!

FIG. 1. The termsgQ
(m) , gK

(m) and the remainder term (1
2h)/detBm characterize theq dependence,K dependence, and
weight of Pratt terms and hence the momentum dependence of
ticle spectra. Theirm dependence contains information about ho
higher-order multiparticle correlations affect the spectra. Results
shown for the Zajc model~2.12!.
ns

e

n-
c-
m

Zajc has concluded on the basis of this behavior that@3# ‘‘the
two-particle correlation function becomes a superposition
terms with successively broader distribution inP12P2, lead-
ing to an increasingly smaller value for the inferred radius
The reason is that Bose-Einstein symmetrization effects
hance the probability of finding bosons closer together
configuration space and hence result in broaderq distribu-
tions of the two-particle spectra.

The above arguments explain the effect of multiparti
correlations qualitatively. For a quantitative understandi
the weights of higher-order terms contributing to the on
and two-particle spectra are important. These weights
governed by the termsCm which @up to a correction factor
(12h)/detBm of order unity# essentially decrease like (m
21)th powers of the inverse phase space volume. For e
multiplicities in the hundreds, a quantitative analysis c
then be done numerically, using the analytical expressi
~2.14! and ~2.15!. We defer such a study to a slightly mor
general model in Sec. IV where certain analytical simplific
tions allow for a more transparent discussion. A short co
parison of the qualitative and quantitative properties of
models studied here and in Sec. IV is given in the text f
lowing Eq. ~4.4!.

III. GAUSSIAN WAVEPACKETS

In the example of Sec. II B, we have started from sing
particle creation operatorsf† whose momentum suppor
g(k) does not carry a labeli . As a consequence, th
N-particle states considered in Sec. II B are build up fromN
single-particle wave functions withidenticalphase-space lo
calization. We now adopt a more general setting in whic
set of N phase-space points (pi ,r i ,t i) is associated withN
Gaussian wave packetsf i , centered at initial timet i around
the points (pi ,r i) with spatial widths @14,15,11#,

f i~X,t i !5
1

~ps2!3/4
expF2

1

2s2
~X2r i !

21 ipi•XG .

~3.1!

The Fourier transform off i is proportional to exp[2s2(k
2pi)

2/22 i r i•(k2pi)] and can be compared to the mome
tum support of f† in Eq. ~2.11a!. The corresponding
N-particle symmetrized states reduce to those considere
Sec. II B for p051/s and pi505r i , when the momentum
support function becomes independent of the particle labi .

The one-boson state~3.1! is optimally localized around
(pi ,r i) in the sense that it saturates the Heisenberg un
tainty relation Dx•Dpx51, with Dxi5s at initial time t
5t i . Different choices of single-particle wave functions c
lead to different results for the calculated spectra. We h
some control over the extent to which different choices m
ter by finally checking thes dependence of our results. Th
model parameter can range betweensP@0,̀ #. In Refs.@11#
and@16#, it was argued that a realistic value fors is for pions
of the order of the Compton wavelength.

The free time evolution off i is specified by the one
particle HamiltonianH0 which acts as a multiplication op
erator in momentum space,

ar-

re
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f zi
~X,t !5~e2 iH 0~ t2t i ! f i !~X,t !

5
1

~2p!3E d3keik•X2 iEk~ t2t i ! f̃ i~k!. ~3.2!

The resulting building blocks for theN-particle spectra are

Di~P!523/2~ps2!3/4e2~s2/2!~pi2P!2
eiEPti2 iP•r i, ~3.3a!

si~P!5Fi i ~P!523~ps2!3/2e2s2~pi2P!2
. ~3.3b!

To streamline our notation, we have neglected inDi a factor
exp@ir i•pi #. The product of these factors cancels in the c
culation of the Wigner function~2.1b! and a fortiori in all
the functions derived from it. The functionsi(P)5Fi i (P)
denotes the probability that a boson in the statef i is detected
with momentum P. This measured momentumP has a
Gaussian distribution around the central momentumpi of the
wave packet.

The functionsf i j in Eq. ~2.4c! characterize the overla
between the wave packetsf i and f j and play an importan
role in the ZP algorithm. They take a particularly simp
form if all particles are emitted in a flash,

f i j }expF2
1

4s2
~r i2r j !

22
s2

4
~pi2pj !

2G
3expF2

i

2
~pi1pj !•~r i2r j !G . ~3.4!

All terms contributing toPN
1 or PN

2 contain the same numbe
of factors f i j and hence, the normalization off i j does not
matter in what follows. For notational convenience, w
change it by fixing f i i 51. The functionsf i j measure the
distanceuzi2zj u between the phase-space pointsi and j .
This distance measure depends on the wave packet wids
but leaves the phase-space volume independent ofs,

u f i j u5exp@2 1
4 uzi2zj u2#,

~3.5!

zj5
1

s
r j1 ispj .

IV. MULTIPARTICLE CORRELATIONS FOR A
GAUSSIAN MODEL

We now determine quantitatively multiparticle correlatio
effects for a source ofN identical bosons whose wave pac
ets of spatial widths are emitted instantaneously accordi
to a Gaussian phase-space distribution~2.6! with

r~p,r !5
d~ t !

p3R3D3
expF2

r2

R2
2

p2

D2G . ~4.1!

Our main aim is to study for this model the extent to whi
multiparticle correlations modify the slope of the on
particle spectrum and the width of the two-particle co
relator. To this end, we calculate first the building blocks
the ZP algorithm. Having explicit expressions forgQ

(m) ,
l-

-
f

gK
(m) , andCm in terms of simple polynomials will simplify

our discussion considerably. The corresponding first-or
Pratt terms are

C151 , ~4.2a!

G1~P1 ,P2!5~11s2D2!23/2

3expF2S s2

4
1

R2

4
D q2G

3expF2
1

D211/s2
K2G . ~4.2b!

All higher-order Pratt terms can be calculated explicitly
averages over relative and average pair distributions. De
are given in Appendix B. The momentum-independent ter
read

Cm5~h1
~m!h2

~m!!23/2S F11
s2D2

2
GF11

R2

2s2G D 23~m21!/2

,

~4.3a!

h1
~m!5 (

k50

m21 S m21
k Dak/2uhbk/2u l, ~4.3b!

h2
~m!5 (

k50

m21 S m21
k Dak/2u lbk/2uh, ~4.3c!

a5
1

112s2/R2
, b5

1

112/s2D2
. ~4.3d!

Here, k/2 u l denotes the greatest integer not larger thank/2
~floor!, andk/2 uh the least integer not smaller thank/2 ~ceil-
ing!. The notational shorthandsa andb range between 0 and
1 depending on the phase-space localization of the w
packet centers, i.e., they map the whole parameter spa
,R,`, 0,D,` of the model~4.1! onto a finite region.
The momentum-dependent terms are given by

Gm~P1 ,P2!5CmS 2p

D2
bgK

~m!D 3/2

3expF2S s2

4
1

R2

8
D gQ

~m!q2G
3expF2

2

D2
bgK

~m!K2G , ~4.4a!

gQ
~m!5h3

~m!/h2
~m! , ~4.4b!

gK
~m!5h1

~m!/h3
~m! , ~4.4c!

h3
~m!511 (

k51
~ab!kS m

2kD . ~4.4d!

The comparison of the present model calculation with
Zajc model~2.12! is not straightforward. As mentioned i
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57 3329MULTIPARTICLE BOSE-EINSTEIN CORRELATIONS
the sequel of Eq.~3.1!, the wave packets used in both mode
can be compared by setting the wave packet centerspi50
5r i . However, the integral overr(x) in Eq. ~2.11b! per-
forms an average over the positionsx, while in the model
~4.1! we do not average over the positionX but over the
centers of wave packetspi , r i . Due to these different start
ing points, the Zajc model is not a simple limiting case
Eq. ~4.1!. Nevertheless, main features of the Zajc mo
~2.12! can be reproduced qualitatively in the present mod
The leading contribution of the momentum-independ
Pratt termsCm shows again a power-law behavior. Also, t
m dependence of the termsgQ

(m) andgK
(m) of the Zajc model

is recovered in certain limiting cases,

lim
a→0

lim
b→1

gQ
~m!5

1

m
, ~4.5a!

lim
a→1

lim
b→0

gK
~m!5m. ~4.5b!

In general, however, them dependence of the termsgQ
(m) and

gK
(m) is much weaker in the present model. Especially, th

is no limit in which both gQ
(m)51/m and gK

(m)5m. These
differences between both models may provide a first i
about the extent to which the choice of the model distrib
tion affects our conclusions.

A. Weighting multiparticle contributions

The normalizationv(N) is not a direct physical observ
able, but it determines the weights with which multipartic
correlations contribute to the particle spectra. To see this
consider the one-particle spectrum,

P̄N
1 ~P!5 (

m51

N

vmGm~P,P!/Cm . ~4.6!

The mth order contributionsGm /Cm are normalized to one
and the weightsvm add up to unity,

15 (
m51

N

vm , ~4.7a!

vm5
~N21!!

~N2m!!

v~N2m!

v~N!
Cm . ~4.7b!

The lowest order contributionG1 /C1, by which the one-
particle spectrum is typically approximated, contributes
fraction v1 only, the value (12v1) characterizes the impor
tance of higher-order contributions. For a quantitative ana
sis we now determine the dependence of the normaliza
v(N) and the weightsvm on the event multiplicityN and the
phase space density of the emission region.

We consider the termsCm , the building blocks ofv(N).
For the present model, these are given in Eq.~4.3a!. The
factor (h1

(m)h2
(m)) in this equation ranges between 1 a

22(m21), and can be written as
f
l
l.
t

e

a
-

e

a

-
n

~h1
~m!h2

~m!!5 f corr
~m!~11Aab!2~m21!, ~4.8a!

f corr
~m!PFAa

b
,Ab

aG . ~4.8b!

The correction factorf corr
(m) appears only linearly in the ex

pressions forCm , rather than as anmth power, and it is of
orderO(1) ~it is exactly f corr

(m)51 for a choice of parameter
R andD such thata5b). This allows for the approximation

Cm.em21, ~4.9a!

e~R,D!5S F11
s2D2

2
GF11

R2

2s2G @11Aab#2D 23/2

,

~4.9b!

with which the normalizationv(N) takes the simple form

v~N!5 (
k51

N

SN
~k!e~N2k!5~2e!N

G~21/e 11!

G~21/e 112N!

5)
k51

N

@11e~k21!#. ~4.10!

Here, the combinatorical factorsSN
(k) denote the number o

permutations ofN elements which contain exactlyk cycles.
They are commonly referred to as Stirling numbers of
first kind. We have used their generating function in terms
G functions@17#.

We can now determine the weights of multiparticle co
tributions to the one- and two-particle spectra. For the o
particle spectrum, we find by inserting Eq.~4.11! into the ZP
algorithm

rvol :5Ne, ~4.11a!

v15
1

11e~N21!
'

1

11rvol

, ~4.11b!

vm'
rvol

m21

~11rvol!
m

. ~4.11c!

The approximation in the last line is valid for large mult
plicities, whenm!N. Similarly, the weightsum for the dif-
ferent contributions to the two-particle momentum spectr
can be calculated. Using the power-law behaviorCm
5em21, we find
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P̄N
2 ~P1 ,P2!5 (

m52

N

um (
i 51

m21

Hi ,m2 i~P1 ,P2!, ~4.12a!

Hi ,m2 i~P1,P2!5
Gi~P1 ,P1!

Ci

Gm2 i~P2 ,P2!

Cm2 i

1
Gi~P1 ,P2!

Ci

Gm2 i~P2 ,P1!

Cm2 i

,

~4.12b!

where

um5
~N22!!

~N2m!!

v~N2m!

v~N!
em22'

rvol
m22

~11rvol!
m

5
vm21

~11rvol!
.

~4.13!

Again, the approximation in the last line is valid for larg
multiplicities, whenm!N. To sum up: multiparticle corre
lations account for a fractionrvol /(11rvol) of the one-
particle spectrum. For the two-particle spectrum, they
somewhat more important: the pure pairwise correlations
ceive only a weight 1/(11rvol)

2.
For sufficiently large event multiplicities, the weightsvm

and um of multiparticle contributions are not separate fun
tions of e andN, but functions of the productrvol only. The
physics enteringrvol can be most easily illustrated in th
large phase-space volume limit, when

e'
1

~R3D3!
, for

R

s
,D•s@1 . ~4.14!

We hence callrvol a ‘‘phase-space density of emissio
points.’’ This notion should not be taken too literally: th
product of the volumes of three-dimensional spheres in
sition and momentum space is (4/3p)2R3D3, and hence,rvol
is for large sources approximately a factor 10 larger than
particle number per unit phase-space cell. Also, for reali
source sizes, the value ofe deviates significantly from the
approximation~4.14!, and a calculation ofrvol starting from
Eq. ~4.9b! is preferable.

One can ask whether in the large-N limit, the normaliza-
tion v(N) becomes a function ofrvol only. To clarify this,
we recall that a product)k51

N (11ak) with ak>0 has aN
→`-limit if and only if (k51

` ak converges. For the norma
ization ~4.10!, we find (k51

N ak 5 1
2 eN(N21), i.e., for fixed

phase-space density,

lim
N→`

v~N!urvol5fixed→`. ~4.15!

There is no physical reason whyv(N) should remain finite.
It is not an observable. What matters in a quantitative st
of multiparticle correlation effects is the phase-space den
of emission points and not the particle multiplicity, wh
matters are the weightsvm andum , and not the normaliza
tion v(N).
e
e-

-

-

e
ic

y
ty

We finally estimate realistic values for the phase-sp
densityrvol in heavy-ion collisions. For a choice of mode
parametersR'5 fm, s'1 fm, D'150 MeV say, we find
e'1022. With multiplicities of like-sign pions in the hun-
dreds, this leads torvol.1. The present static, spherical
symmetric model is however unrealistic in so far that it do
not take the strong longitudinal expansion into acco
which significantly increases the volume out of which pa
ticles are emitted. From these heuristic considerations,
expect realistic phase-space densities to lie in the range

0.1,rvol5eN,1.0 . ~4.16!

Depending on the precise value ofrvol in this range, the
importance of multiparticle contributions to the one- a
two-particle spectrum varies significantly. Forrvol51.0,
higher-order contributions start dominating, while they a
count for'10% of the signal ifrvol50.1.

B. The momentum dependence of multiparticle contributions

The two m-dependent termsgK
(m) and gQ

(m) in Eq. ~4.4!
control the dependence ofGm(P1 ,P2) on the relative pair
momentumq and the average pair momentumK . They de-
termine the momentum dependence of all particle spectra
Fig. 2, these factors are shown as a function ofb for a source
with R55 fm ands51 fm. The first message of this plot i
that even for very high multiparticle contributions~e.g., m
5100), the momentum dependence of all building bloc
Gm can be calculated exactly. Secondly, the factorsgQ

(m) and
bgK

(m) show the interesting property that irrespective of t

FIG. 2. Numerical calculation of the factorsgQ
(m) and bgK

(m)

which determine theq and K dependence of themth order Pratt
terms. For a source with spatial radiusR55 fm and a wave packe
width s51 fm, the plot showsgQ

(m) and bgK
(m) as a function ofb

51/(112/s2D2). Different lines denote different orders,m52
~dash-dotted!, m53 ~dotted!, m55 ~dashed!, m510 ~thin solid!,
andm5100 ~solid!.
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value chosen forD ~and hence forb), they rapidly converge
to anm-independent quantity. In contrast to the limiting ca
~4.5a!, them dependence ofgQ

(m) is much weaker for realistic
model parametersa, b,

gQ
~m!→gQ . ~4.17!

Analogously, for realistic model parametersa, b,

bgK
~m!→bgK , ~4.18!

while for the limit ~4.5b! of the parameter space, a strongm
dependence remains.

We have checked that the conclusions~4.17!, ~4.18! hold
for a large range of the model parameter space, including
part realistic for heavy-ion collisions. Going to small
source sizesR ~and hence to smaller values fora), the factor
gQ is found to deviate significantly from unity. Also, value
for bgK vary significantly. The rapid convergence to the lim
iting behavior~4.17!, ~4.18! however is observed for all val
uesa.0.1. For choices of the model parameters realistic
heavy-ion collisions, the factorsbgK

(m) and gQ
(m) are hence

well approximated by anm-independent constant for suffi
ciently largem. We can write the higher-order Pratt terms

Gm~P1 ,P2!5Cmf gexp@2Aq22BK2#, ~4.19a!

f g5S 2p

D2
bgKD 3/2

, ~4.19b!

A5S s2

4
1

R2

8
D gQ , ~4.19c!

B5
2b

D2
gK . ~4.19d!

In Sec. IV D, we exploit this simplem dependence of the
termsgK

(m) , gQ
(m) .

C. The one-particle spectrum

For the discussion of the one-particle spectrum, we in
duce the temperatureT via

D252MT. ~4.20!

The modelr(p,r ) in Eq. ~4.1! describes then a phase-spa
distribution of emission points with Boltzmann temperatu
T. Our aim is to determine how the slope and shape of
observed one-particle spectrumP̄N

1 (P) changes with the
slopeT of this distributionr(p,r ) and to what extent it is
affected by multiparticle correlations.P̄N

1 (P) is a superposi-
tion of Gaussians of different widths

P̄N
1 ~P!} (

m51

N

vme2EP /Teff~m!, ~4.21a!
he

r

-

e

Teff~1!5Teff
pair5T1

1

2Ms2
, ~4.21b!

Teff~m!5
T

2 bgK
~m!

m.1 , ~4.21c!

whereEP5P2/2M , andTeff(m) characterizes the slope of th
mth order contribution. According to Eq.~4.21!, the one-
particle spectrum cannot be characterized by a single s
parameter. For a qualitative understanding, we consider
the largest slope parameterTeff

pair5Teff(1) and the smalles
slope parameterTeff

mult5Teff(m@1). Here, the superscript
pair andmult stand for ‘‘pairwise’’ and ‘‘multiparticle’’ cor-
relations.

If all multiparticle contributions vanish, then the mome
tum distribution ofP̄N

1 (P) coincides with that ofG1(P,P).
The slopeTeff

pair of G1(P,P) is shown in Fig. 3~a! as a func-
tion of the model temperatureT for the pion massM5139
MeV and different wave-packet localizationss. Teff

pair is al-
ways larger than the model temperatureT. For a spatial
wave-packet widths51 fm, e.g., the term 1/2Ms2 takes a
value of 140 MeV. Even for small model temperaturesT as
input, the quantum contribution 1/2Ms2 accounts for a slope
parameterTeff

pair comparable to the Hagedorn temperature. F
this apparently leading effect, the notion ‘‘quantum tempe
ture’’ was coined@15#.

Figure 3~b! shows that multiparticle contributions ca
change this picture qualitatively, if they are dominant. T
slope parameterTeff

mult still depends significantly on the choic
of the wave-packet localization. But for model temperatu

FIG. 3. The one-particle slope parametersTeff
pair and Teff

mult char-
acterize the limiting cases of vanishing and dominant multipart
correlation effects. They are shown as functions of the model t
peratureT for different values of the wave-packet widths. The
diagonals forTeff5T ~thin solid lines! are included to guide the eye
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in the range 100 MeV,T, 200 MeV, there is always a
value for s, 0.7 fm ,s, 1 fm, such that the observe
temperatureTeff

mult coincides with the model temperatureT.
For sufficiently larges, the multiparticle effect can eve
overcompensate the broadening due to the quant
mechanical localization,Teff

mult,T. This illustrates that multi-
particle symmetrization effects tend to populate the low m
mentum region of the one-particle spectrum, there
increasing the slope of the spectrum. Both effects, this n
rowing and the broadening due to the quantum-mechan
localization, are governed by the same scales and hence
they cancel at least to some extent.

The lowest order termG1 with slope parameterTeff
pair con-

tributes a fraction 1/(11rvol) to the one-particle spectrum
only. Hence, the one-particle spectrumP̄N

1 is not monoexpo-
nential, but can be characterized by local slope parame
which specify the tangent ontoP̄N

1 at EP5P2/2M . Going to
very large values ofEP , the local slope always coincide
with that of Teff

pair, since the exponential of slowest decrea
dominates in Eq.~4.21a!. For sufficiently smallEP ~below 2
GeV say!, however, and for realistic phase-space densit
neither the pair nor the multiparticle contributions can
neglected. The local slope lies betweenTeff

pair andTeff
mult . For a

more quantitative statement, we have plotted in Fig. 4
one-particle spectrum for different phase-space densitiesrvol
as a function ofEP . Increasingrvol and hence the contribu
tion of multiparticle correlations, the local slope of the spe
trum becomes steeper. Also, the superposition of Gauss
of different width leads to a slight curvature of the spectru
Fitting the spectra in the range 0–1 GeV naively with
monoexponential thermal distribution, a variation ofrvol be-
tween 0 and 0.5 results in a change of the slope parame

DTeff'20 MeV. ~4.22!

This has to be taken properly into account in a quantita
analysis of hadron spectra.

We finally compare the spectrum~4.21a! to that of a
Bose-Einstein distribution as obtained from an arbitrary i
tial phase-space distributionr(p,r ), keeping the bosons in
box till they have equilibrated,

FIG. 4. The one-particle spectrum of a source typical for hea
ion collisions (R55 fm, T5100 MeV,s51.2 fm! becomes steepe
with increasing phase-space densityrvol of emission points. The
solid line characterizes a monoexponential behavior and is inclu
for comparison.
-
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1

e~P2/2M2m!/T21
5 (

m51

`

vBE
m e2m~P2/2M2m!/T, ~4.23a!

vBE5em/T. ~4.23b!

For the spectrumP̄N
1 in Eq. ~4.21! being of Bose-Einstein

form, the weightsvm and the Pratt termsGm would have to
show a particularm dependence,

const•vm5vBE
m, ~4.24a!

Gm~P,P!/Cm5exp@2mEP /T#. ~4.24b!

In the present model, Eq.~4.24a! is satisfied by settingvBE
5rvol /(11rvol), see Eq.~4.11b!. However, them depen-
dence of the termsGm(P,P) is in general weaker than wha
is required to match Eq.~4.24b!. For the Zajc model, them
dependence ofGm is compatible with the Bose-Einstein dis
tribution in the infinite volume limit. However, the Pra
termsCm differ significantly from a power law which indi-
cates a deviation from Eq.~4.24a!. The reason for these dif
ferences is, that our model calculations ofP̄N

1 take a particu-
lar distributionr(p,r ) as initial condition and include Bose
Einstein symmetrization, but they do not contain
equilibration mechanism: the particles are emitted and pro
gate freely. Also, theN-particle stateCN is not an equilib-
rium state. Hence, the spectrumP̄N

1 depends in contrast to
Eq. ~4.23! on r(p,r ). In general, it is not a Bose-Einstei
distribution.

D. The two-particle correlator

In this section, we first discuss the normalization of t
two-particle correlatorC(K ,q) and how it is calculated in
the so-called pair approximation. Then we turn to the stu
of multiparticle effects.

1. Normalization of the two-particle correlator

There has been some debate recently about the appr
ate normalization of the two-particle correlation functio
used in the HBT analysis of multiparticle production. For
compilation of the different normalizations used, and th
problems, see Ref.@18#. In the present work, we use th
normalization@2#

C~P1 ,P2!5
^N̂&2

^N̂~N̂21!&

spd6spp /d3P1d3P2

~d3sp /d3P1!~d3sp /d3P2!
,

~4.25!

wheresp is the total pion cross section. This originates fro
normalizing both the single- and the double-differential cro
sections to unity. Setting these cross sections proportiona
the one- and two-particle spectraP̄N

1 (P1), P̄N
2 (P1 ,P2),

-

ed
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the two-particle correlator reads

C~P1 ,P2!5
P̄N

2 ~P1 ,P2!

P̄N
1 ~P1!P̄N

1 ~P2!
. ~4.26!

The simplest way to make further progress is to assume
the approximation~4.19! for Gm is valid for all m>1. Then,
the two-particle spectrum can be written as

P̄N
2 ~P1 ,P2!5

ṽ~N!

v~N!
f ge2Aq22BK2

,

ṽ~N!5 (
J52

N
~N22!!

~N2J!!
v~N2J!(

i 51

J21

CiCJ2 i ,

~4.27!

and the correlator reads

C~P1 ,P2!5
ṽ~N!

v~N!
S 11

e22Aq222BK2

e2BP1
2
e2BP2

2 D . ~4.28!

The normalizationṽ(N)/v(N) thus obtained in this approxi
mation remains unchanged if the fullm dependence of the
Pratt termsGm is included, though the momentum depe
dence of Eq.~4.28! is then much more involved.

The structure of the normalizationṽ(N)/v(N) is impor-
tant for what follows: The termṽ(N) contains exactlyN!/2
terms, whilev(N) containsN! terms. By integrating Eq.
~2.10! over P2 and using the power-law behaviorCm
5em21, we find

v~N!2ṽ~N!5 (
J52

N
~N22!!

~N2J!!
v~N2J!(

i 51

J21

CJ ,

~4.29a!

ṽ~N!

v~N!
512e. ~4.29b!

The normalization of the correlator is smaller than unity, t
offset depends on the phase space volume occupied by
source. We shortly comment on the importance of this res

The two-particle correlator can be viewed as the fac
relating two-particle differential cross sectionssBE of the
real world~where Bose-Einstein symmetrization exists! to an
idealized world in which Bose-Einstein correlations are a
sent,

sBE~K ,q!5C~K ,q!sNO~K ,q!. ~4.30!

If C(K ,q).1 everywhere, this implies that Bose-Einste
symmetrization effects increase the total cross section.
heavy-ion collisions, there is no direct test of whether su
an enhancement exists. Ine1e2 collisions however, we
know that Bose-Einstein correlations do not affect total cr
sections appreciably, since, e.g., perturbative QCD pred
the production characteristics ofZ0 to a per mille level with-
out invoking them. In our calculation, we start from a
N-particle state and we require that after final state Bo
Einstein symmetrization,N particles are detected. Hence, w
explicitly assume that final state Bose-Einstein correlati
at

-

e
the
lt:
r

-

or
h

s
ts

-

s

do not affect the total cross sections. According to the ab
calculation, this automatically implies an offset of the no
malization of C(K ,q) below unity. The offsete in Eq.
~4.29b! measures the system size from which particles
emitted. This is intrinsically consistent: for smaller syste
sizes (e large!, the correlator shows an enhancement in
broaderq momentum region, and the normalization (12e)
is smaller. This ensures thatsBE

tot 5sNO
tot .

We finally note that irrespective of the offsetṽ(N)/v(N)
of the normalization, the correlator in Eq.~4.28! changes by
a factor 2 between the limitsq50 and q→`. This is a
consequence of the approximation~4.19! which we have jus-
tified for the present model in Sec. IV B. In general, theK
and q dependence of the Pratt termsGm leads to a more
complicated dependence of the correlatorC(K ,q) according
to Eq. ~4.12!. Depending on the model, this may affect th
intercept ofC(K ,q) at q50. Indeed, a decrease of the inte
cept with increasing event multiplicities was reported in
cent model studies@4,10#. In contrast to the present stud
these models however do not work with fixed event mu
plicities and show a significantly different physics, includin
pion lasing effects@4#. We only conclude from the presen
study that multiparticle symmetrization effect do not le
automatically to a strong decrease of the intercept param

2. The normalization in the pair approximation

We now explain why the offset (12e) of the normaliza-
tion of C(K ,q) is not obtained in conventional calculation
where multiparticle symmetrization effects are neglect
For the wave packets introduced in Sec. III, the wave-pac
overlap functionsf i j in Eq. ~3.4! shows a Gaussian decrea
with the phase-space distanceuzi2zj u. In general, the

pair approximation:f i j 5d i j ~4.31!

is an uncontrolled approximation to this Gaussian behav
It becomes exact in certain limiting cases

lim
s→0

f i j 5 lim
s→`

f i j 5d i j . ~4.32!

In the pair approximation, all higher-order Pratt terms van

Cm5Gm~K ,q!50 , m>2
~4.33!

for f i j 5d i j ,

and one regains the results of the conventional calculat
where multiparticle effects are neglected: the two-parti
correlator is normalized to unity,

v~N!5ṽ~N!51 for f i j 5d i j . ~4.34!

and~2.6! does not change the phase space distribution s
v(N)5^CNuCN&. The term G1(P1 ,P2)G1(P1 ,P2) in Eq.
~4.12! then ensures thatC(P1 ,P2).1. According to Eq.
~4.30!, this contradicts the statementsBE

tot 5sNO
tot . The origin

of this difficulty can be traced back to the integral

E d3P1d3P2G1~P1 ,P2!25C2 , ~4.35!
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which should vanish according to Eq.~4.33!. The pair ap-
proximation does not treat the integralC2 and the integrand
of Eq. ~4.35! on an equal footing. It setsC250 but uses
G1(P1 ,P2)2 for the calculation of the Bose-Einstein e
hancement. It is this inconsistency which leads to a c
relatorC(K ,q).1 everywhere.

3. The HBT-radius parameters

Once the momentum-dependent higher-order Pratt te
Gm and their weightsvm,um are known, the determination o
the two-particle correlator~4.26! is a matter of straightfor-
ward numerical calculation. FromC(K ,q), the HBT-radius
parameters are obtained by fitting the Gaussian ansatz

C~K ,q!}11lexp@2RHBT
2 q2#. ~4.36!

We restrict our discussion to this one-dimensional parame
zation ofC(K ,q) since our model~4.1! is spherically sym-
metric. The general, analytical form of the two-particle co
relator~4.26! is obtained from Eqs.~4.6! and~4.12! and it is
quite involved. For a transparent discussion, we hence
first to limiting cases. In the pair approximation, when
multiparticle effects are neglected, we obtain from Eq.~4.2b!
the well-known result@11#

RHBT
pair 25

R2

2
1

s2

2

D2s2

11D2s2
. ~4.37!

The other, equally unrealistic limiting case is that multipa
ticle contributions dominate completely. The resulting tw
particle correlator is given in Eq.~4.28! and the correspond
ing HBT-radius parameter reads

RHBT
mult 2

5
R2

4
gQ1

s2

2

gQs2D212gQ2gK

s2D212
. ~4.38!

The difference between these two expressions is signific
For a discussion of the main qualitative and quantitative
fects, we now focus on the parameter regionR2@s2 relevant
for relativistic heavy-ion collisions. In this regime, th
s2/2-dependent parts of Eqs.~4.37! and ~4.38! can be ne-
glected, and according to the study of Sec. IV B,gQ'1. We
then find the simple relation

RHBT
mult'

1

A2
RHBT

pair , for R@s. ~4.39!

This is the factor 2, obtained first by Zajc@3# in his compari-
son of the first- and second-order Pratt terms, see Eq.~2.17!.
Zajc has given an estimate that in his model, multiparti
effects change the HBT radius parameter by as much
factor 0.67 for a particle density of 1 per unit phase-sp
cell @3#. This would affect estimates of the source volume
the energy density by a factor 3. In Zajc’s model, howev
higher-order multiparticle effects (m.2) change theq de-
pendence ofC(K ,q) much more dramatically than in th
present study, wheregQ

(m) has a very weakm dependence
negligible forR2@s2.

In our model, the correlator is a weighted superposition
Gaussians inq whose widths differ by as much as a fact
r-

s

i-

-

rn
l

-
-

nt.
f-

e
a

e
r
r,

f

A2. In Fig. 5, we have plotted the resulting two-particle co
relator for relatively low phase-space densities where
lowest-order Pratt termG1 is still the leading contribution.
The result of the pair approximation describes the main
havior, but deviations due to multiparticle contributions a
fect the HBT-radius parameter on a 10% level for moder
phase-space densities. This 10% effect translates into un
estimating the volume by 30% and overestimating the co
sponding energy density by a similar amount. In mod
which show a strongerm dependence of the momentum
dependent part ofGm , the effect may be significantly stron
ger. In general, the degree to which multiparticle effe
modify HBT radius parameters depends significantly on
phase-space density of emission points.

V. MULTIPARTICLE CORRELATIONS FOR ARBITRARY
MODELS

In this section, we shortly discuss how the calculation
multiparticle correlation effects can be extended to more
alistic source distributions where the analytical techniqu
used in Sec. IV are not applicable. Pratt has shown alre
how to calculate the termsCm andGm(P1 ,P2) for continu-
oussource functions@4#: up to orderm<5, straightforward
Monte Carlo methods can be used, and an improved M
tropolis method allows to push numerical calculations up
m'20. This seems to be sufficient for all practical purpos
since according to our model study, the weightsvm , um for
m.20 are negligible for realistic phase-space densitiesrvol .

Here, we propose yet a different technique which is a
plicable to events characterized by a set ofN discretephase
space points (pi ,r i ,t i). We interpret these points as the ce
ters of Gaussian single-particle wave packets, i.e.,

~pi ,r i ,t i !→ f i . ~5.1!

An arbitrary distribution ofN discrete phase-space points
the most general ‘‘source model’’ in the present framewo
We first discuss algorithms which allow for the calculatio
of the two-particle correlator from a set (pi ,r i ,t i). Then we
comment on applications of these algorithms to event g
erators.

FIG. 5. Multiparticle symmetrization effects broaden the tw
particle correlator. For a source size ofR55 fm, the plot shows the
resulting two-particle correlator for different particle phase spa
densitiesrvol .



on

ta

ro

te

n-

s
Z

v

th

-
nt
bi
n
n

nc-
-
r
is-

n, a
o-
the

is
by

-
s

unt
r-

n

t

-

ing

e-

tudy
it

is-

57 3335MULTIPARTICLE BOSE-EINSTEIN CORRELATIONS
A. An algorithm for Bose-Einstein weights

We start with the simplest case, the pair approximati
which reduces the sum overN! terms in the two-particle
spectrum to a sum over all12 N(N21) particle pairs (i , j ).
Each pair is weighted with the pair probabilityPi j , calcu-
lated from the corresponding two-particle symmetrized s
@11#.

Pi j ~P1 ,P2!5
1

2
uDi~P1!D j~P2!1Di~P2!D j~P1!u2,

~5.2!

PN
2 ~P1 ,P2!5

2

N~N21!(~ i , j !
Pi j ~P1 ,P2!.

To compare this expression to the ZP algorithm, we int
duce the quantities

G1~P1 ,P2!5
1

N(
i 51

N

Di* ~P1!Di~P2!, ~5.3a!

Tc~P1 ,P2!5
1

N2(i 51

N

Di* ~P1!Di~P1!Di* ~P2!Di~P2!.

~5.3b!

Here,G1(P1 ,P2) is the first-order Pratt term for the discre
phase-space distribution (pi ,r i ,t i) and Tc is a finite multi-
plicity correction, correcting for the double counting of ide
tical pairs (i ,i ) in

(
~ i , j !
Pi j ~P1 ,P2!5G1~P1 ,P2!G1~P1 ,P2!

1G1~P1 ,P2!G1~P1 ,P2!22Tc~P1 ,P2!.

~5.4!

In the large multiplicity limit, whenTc can be neglected, thi
expression is equivalent to the pair approximation of the
algorithm, see, e.g. Eq.~4.12a!. The one-particle spectrumn
and the two-particle correlation obtained in this way ha
been discussed already extensively in@11#. They can be re-
written in terms of the single-particle probabilitiessi of Eq.
~3.3b!,

C~K ,q!511
e2s2q2/2u( i 51

N si~K !ei r i•qu22Tc

n~P1!n~P2!2Tc

,

~5.5a!

n~P!5(
i 51

N

si~P!,

Tc~P1 ,P2!5(
i 51

N

si~P1!si~P2!. ~5.5b!

The number of numerical operations needed to calculate
correlator grows linearly with the multiplicityN rather than
quadratic as in Eq.~5.2! and this makes it particularly suit
able for a numerical algorithm. At given observed mome
K , q, one calculates for each event the one-particle proba
ties si(K ) according to Eq.~3.3b! and performs the sums i
Eq. ~5.5!. Thesi(K ) are continuous in the measured mome
,

te

-

P

e

is

a
li-

-

tum, and hence the obtained correlator is a continuous fu
tion of K andq, i.e., no binning is required. At high multi
plicities, when the factorsTc are negligible, the correlato
~5.5! can be rewritten as a Fourier transform over an em
sion function S(x,K ), thereby regaining the well-known
starting point of most model studies,~see Refs.@11#,@16# for
further details!

C~K ,q!511
u*d4xS~x,K !eix•qu2

*d4xS~x,P1!*d4yS~y,P2!
, ~5.6a!

S~x,K !5(
i 51

`

Si~x,K !,

~5.6b!

Si~x,K !}d~ t2t i !e
2 1/s2 ~x2r i !

22s2~K2pi !
2
.

The above discussion shows that in the pair approximatio
numerical algorithm for the calculation of one- and tw
particle spectra can be based on a discrete version of
first-order Pratt termsG1. Here, we propose to extend th
approach to take multiparticle correlations into account
calculating

Cm5
~N2m!!

N! (
i 1 . . . i m

f i 1i 2
. . . f i m21i m

f i mi 1
, ~5.7a!

Gm~P1 ,P2!

5
~N2m!!

N! (
i 1 . . . i m

Di 1
* ~P1! f i 1i 2

. . . f i m21i m
Di m

~P2!.

~5.7b!

The sums in these expressions run over all sets ofm out of N
integers and over allm! permutations of each set. This im
plies that for event multiplicities in the hundreds, only term
up to orderm'5 can be calculated in a reasonable amo
of CPU time. A tentative strategy for calculating multipa
ticle correlation effects on the basis of Eq.~5.7! then pro-
ceeds as follows:

~1! Fit the calculated termsCm to a power lawCm5em21

and use the parametere thus determined for a calculatio
of the weightsvm , um in Eqs.~4.6! and ~4.12a!.

~2! Fit Gaussians inK and q to the momentum-dependen
Pratt termsGm(P1 ,P2). This allows us to extract the
termsgK

(m) andgQ
(m) which govern the momentum depen

dence of multiparticle effects.
~3! Calculate the one- and two-particle spectra by includ

up to the numerically determined order,m55 say, all
contributions exactly, approximating the momentum d
pendence of higher-order terms by settinggK

(m)5gK
(5) ,

gQ
(m)5gQ

(5) for m.5.

This scheme draws on the experience gained from the s
of the Gaussian toy model in Sec. IV. We expect that
allows to estimate multiparticle contributions for model d
tributions (pi ,r i ,t i).
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B. Bose-Einstein weights for event generators

Many event generators for the simulation of heavy-i
collisions have been developed in recent years@19–23#, and
irrespective of the large variety of physical inputs presen
their codes, the typical output of their event simulation co
tains for each event a setS of N phase space point
(pi ,r i ,t i) which one associates with the final-state partic
produced. However, a choice of interpretation is involved
comparing an event generator outputzi5(pi ,r i ,t i) to ex-
perimental data. Usually, the measured one-particle spe
are compared directly to the binned momentapi , i.e., one
implicitly interprets the simulated phase-space pointszi as
defining momentum eigenstates, whicha fortiori carry no
space-time information. For the calculation of two-partic
correlations, this interpretation is not suitable, it leads t
sharpd-like correlator@11#. Also, a classical interpretation o
zi which takes bothr i and pi as ‘‘sharp’’ information, is
problematic: ignoring the correct quantum-mechanical loc
ization leads to quantitatively and qualitatively unreliable
sults @24#. On the other hand, including a quantum
mechanical localization widths, one changes both the one
and two-particle spectrum by a prescription which has
dynamical foundation.

The origin of these difficulties in finding a consistent i
terpretation of the event generator outputzi5(pi ,r i ,t i) is
well known, see, e.g., Refs.@25#,@26#: quantum-mechanica
processes require a description in terms of amplitudes, w
event simulations are formulated in a probabilistic setti
Bose-Einstein correlations occur by symmetrizing the p
duction amplitudes of identical particles and are hence
encoded for in event generators. The mere fact that the s
lated output is a discrete phase-space distribution of emis
points without identical multiparticle correlations~rather
than a set of detected momenta which includes all multip
ticle correlations and hence all space-time information av
able from the measurement!, is the very consequence of u
ing a probabilistic language. In practice, this forces one
take recourse to an algorithm which associatesa posteriori
Bose-Einstein weights with the simulated phase-space di
bution S, rather than obtaining these correlations from t
dynamical propagation of properly~anti!-symmetrized
N-particle states. Thisa posteriorimodification of an incom-
plete quantum-dynamical evolution creates the interpr
tional problems of the outputzi5(pi ,r i ,t i). Phenomenologi-
cally motivated numerical simulations of heavy-io
collisions have remarkable success despite these funda
tal problems. It is of some interest to confront them w
experimental two-particle correlations, since this provide
test of their spatiotemporal~rather than only their
momentum-dependent! properties. We expect that the alg
rithms discussed in Sec. V A are useful in such compariso

VI. CONCLUSION

The Zajc-Pratt algorithm provides a simple technique
the calculation of multiparticle symmetrization effects
one- and two-particle spectra. Based on this algorithm,
have studied to what extent multiparticle correlations stee
the slope of the one-particle and broaden the width of
two-particle spectrum. The scale of both effects depends
sitively on the particle phase-space densityrvol in the emis-
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sion region. Multiparticle correlations contribute a fractio
rvol /(11rvol) to the one-particle spectrum and a fraction
21/(11rvol)

2 to the two-particle spectrum. Also, them de-
pendence of higher-order Pratt terms, i.e., the extent to wh
the momentum dependence of multiparticle contributionsGm
changes with increasing orderm, plays an important role. In
a Gaussian source model with instantaneous emission
moderate particle phase-space densities, the slope param
Teff of the one-particle spectrum changes by up to 20 Me
and the change in the HBT radius parameters is of the o
of 10%, if multiparticle effects are neglected.

For the reconstruction program advocated in@1#, our re-
sults indicate that neglecting multiparticle effects, one und
estimates the source temperature significantly and one o
estimates the energy density by up to 30%. Here, the ca
is however that our calculation does not include multiparti
final-state Coulomb interactions. Bose-Einstein and C
lomb effects typically arise on the same scale and comp
sate each other at least to some extent. This may significa
reduce the effect of multiparticle correlations in the me
suredp1 andp2 spectra on which most of the phenomen
logical analysis is based currently. It will hence be very
teresting to compare the slopes of the one-particle spectr
charged and neutral pions@27#. On the basis of the abov
heuristic ideas, one may expect the slope of thep0 spectrum
to be somewhat steeper, since multiparticle Coulomb in
actions cannot compensate for the multiparticle Bo
Einstein symmetrization effects.

Our analysis of multiparticle effects has also shed n
light on a recent discussion about the normalization of
two-particle correlator. Defining the correlator via Eq.~4.25!,
it is normalized for large relative momentaq to (12e), and
not to unity. The importance of this result was already d
cussed in Sec. IV D 1: the normalization~4.29b! corrects the
result of the commonly used pair approximation and lead
Bose-Einstein unit weights which conserve event probab
ties.

We close by embedding the present work into a wid
perspective: Many aspects of the dynamical evolution
relativistic heavy-ion collisions are mesoscopic, and t
makes it very difficult to decide whether certain physic
observables have a known conventional interpretation or
indicative of the new in-medium properties which the curre
experimental programs at CERN and RHIC aim for. T
physics of final-state hadrons however, though being me
scopic and hence difficult to treat, is known in principle.
allows hence for a detailed quantitative description on
basis of present day knowledge. In a second step, su
description will pave the way for quantitative statemen
about the geometry and dynamics of the final stage of
collision process, thereby setting up an experimentally m
vated starting point for a dynamical back extrapolation@1#.
We hope that the present work, by quantifying one mes
copic multiparticle effect, will prove useful in refining thi
reconstruction program and in separating known phys
from the in-medium properties we are looking for.
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APPENDIX A: DERIVATION OF THE ZP ALGORITHM

So far, there is no self-contained derivation of the Za
Pratt algorithm in the literature. For the convenience of
reader, we give here the main arguments.

Notation:We denote the termf i 1i 2
by an arrow fromi 1 to

i 2. m of these terms form a closedm cycle C̃m . The only
other structure appearing in all spectra are openm cycles
G̃m , see Fig. 6. Here,Di 1

* is represented by a cross fro

which the arrow starts,Di 1
by a cross at which the arrow

ends. The Pratt termsCm , Gm are obtained by averaging th
emission points in Fig. 6 over a model distributionr(p,r ,t).
Dots without indices attached indicate that this average
carried out, see Fig. 7.

Normalization: The normalizationw(N)5P̄N
0 sums the

products C1
l 1C2

l 2 . . . Cn
i n over all partitions (n,l n)N . Each

partition of (n,l n)N hasN!/ )nn! l n( l n!) possible realizations
These have to be multiplied by the (n21)! different ways to
combine each set ofn points to a closed cycle. This leads
the prefactorN!/ )nnl n( l n!) in Eq. ~2.8!.

There exists a simple diagrammatic prescription to c
struct from the terms ofw(N) the terms ofw(N11). One
adds to each diagram ofw(N) an (N11)th dot by

FIG. 6. Diagrammatic representation of the types of factors c
tributing to multiparticle spectra.

FIG. 7. Diagrammatic representation of the averaged total m
tiplicity w(N). The 2 cycle stands forC2, the 3 cycle forC3, etc.
-
o

n-

he
-

e
-

-
e

s

-

~1! placing the dot once disconnected from all oth
cycles.

~2! changing closedm cyclesCm into m closed (m11)
cyclesCm11.
This prescription can be checked, e.g., in Fig. 7. It autom
cally insures, thatw(N) is represented byN! diagrams, the
maximal value forw(N) is N!.

One-particle spectrum: Each term ofv(N)P̄N
1 (P) has the

structurew(N2m)Gm : it contains exactly one openm cycle
Gm(P,P), the N2m other dots being contained in close
cycles. To construct from it the terms ofv(N11)P̄N11

1 (P)
one has to use the replacement

w~N2m!Gm→w~N112m!Gm1w~N2m!mGm11 .
~A1!

Diagrammatically, this is realized by employing the two di
grammatic rules given above and supplementing them w

~3! change openm cyclesGm into m open (m11) cycles
Gm11.

The prescription can be checked, e.g., in Fig. 8. Using
recursion relation~A1!, one can prove by complete inductio
that the averaged one-particle spectrumP̄N

1 (P) takes the
form ~2.9!.

Two-particle spectrum:In v(N)P̄N
2 (P1,P2), each term

contains two open cycles of lengthsi and j , the N2 i 2 j
remaining dots being contained in closed cycles, divided
the normalizationv(N). On the endpoints of the two ope
cyclesGi andGj , the momentaP1 andP2 can be attached in
different combinations: fori 5 j , there are two possibilities
for iÞ j , there are four. This combinatorics is properly e
coded in the definition of the productGi , j 5CiCjHi , j /(1
1d i j ), see Eq.~4.12b!. An N→(N11) recursion relation for
the two-particle spectrum is obtained by using the rule
change openm cycles intom open (m11) cycles, and prop-
erly treating the combinatorics fori 5 j ,

w~N2 i 2 j !Gi , j→w~N2 i 2 j !@ i ~11d i 11,j2d i , j !Gi 11,j

1 jGi , j 11#1w~N112 i 2 j !Gi , j .

~A2!

Expression~2.10! for the two-particle spectrum then follow
from Eq. ~A2! by complete induction.

APPENDIX B: CALCULATION OF MULTIPARTICLE
EFFECTS

Here, we give details of the calculation of higher-ord
Pratt termsCm andGm for the Gaussian source model~4.1!

-

l-

FIG. 8. Diagrammatic representation of the one-particle sp
trum for multiplicitiesN51,2,3.
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in Sec. IV. Due to the structure of the functionsf i j , it is
advantageous to change to relative and average mome
variables. For an average overm phase-space points, we in
troduce the integration variables

ai5pi2pi 11 , bi5r i2r i 11 , for i P@1,m21#,
~B1a!

am5pm1p1 , bm5r m1r 1 . ~B1b!

In terms of these variables, the building blocks for themth
order Pratt terms read

f 12f 23 . . . f ~m21!m5 )
j 51

m21

e2 ~s2/4! aj
2
2 ~1/4s2! bj

2
1 ib jAj ,

~B2a!

An52
1

2(
j 51

n21

aj1
1

2 (
j 5n11

m21

aj , ~B2b!

f m15e2 ~s2/4! S (
j 51

m21

aj D 2

2 1/4s2 S (
j 51

m21

bj D 2

e2 ~ i /2! am(
j 51

m21

bj ,

~B2c!

D1~P1!Dm* ~P2!5e2s2~am/22K !22 iK (
j 51

m21

bj

3e2 ~s2/4! S q1(
j 51

m21

aj D 2

1 iq~bm/2!.

~B2d!

For the Gaussian emission probability~4.1!, the probability
r2 of having two particles with wave packets center
around phase-space points (r i ,pi), (r j ,pj ), is given by the
productr(r i ,pi)• r(r j ,pj ) and factorizes into a probability
distribution for the relative and average particle pair coor
nates,

r2~pi ,pj ,r i ,r j !5r~pi ,r i !r~pj ,r j !

5r rel~pi2pj ,r i2r j !rave~pi1pj ,r i1r j !,
~B3a!

r̄~a,b!5r rel~a,b!5rave~a,b!

5
1

~2p!3R3D3
e2 ~a2/2D2!2 ~b2/2R2!. ~B3b!

We then define the higher-order Pratt terms as averages
pair distribution probabilities
um

-

ver

Gm~P1 ,P2!5E S )
j 51

m

d3ajd
3bj r̄~aj ,bj !D

3D1~P1! f 12f 23 . . . f ~m21!mDm* ~P2!.

~B4!

This is a Gaussian integral which can be calculated ana
cally. Its exponent is diagonal in all integration variablesbi
and inam , and doing the corresponding integrals leads t

Gm~P1 ,P2!5S F11
s2D2

2
GF11

R2

2s2G D 23~m21!/2

g23/2

3e2 s2/4 ~11 R2/2s2!q2
e2 2/D2 ~12 1/g!K2

3I ~K ,q!, ~B5a!

g5
1

12b
@11ab~m21!#. ~B5b!

Here, the notational shorthandsa, b of Eq. ~4.3d! are used
again,

I ~K ,q!5p23~m21!/2E S )
j 51

m21

d3aj D
3exp@2aiM i j aj1~wi1v i !r i #, ~B6a!

wi5qsAb, ~B6b!

v i5K2sAba~2i 2m!/g, ~B6c!

M i j 5d i j 1b1ab~m2122u i 2 j u2d i j !

2
a2b2

ab~m21!11
~2i 2m!~2 j 2m!. ~B6d!

The integralI (K ,q) can be calculated explicitly@13#,

detM5
h2

~m!h3
~m!

11ab~m21!
, ~B7a!

1

4
v iM i j

21wj50 , ~B7b!

1

4
v iM i j

21v j52
~g21!h3

~m!2bgh1
~m!

D2gh3
~m!

K2, ~B7c!

1

4
wiM i j

21wj5
s2

4

1

12a

h2
~m!2h3

~m!

h2
~m!

q2. ~B7d!

The factorsh1
(m) , h2

(m) , and h3
(m) are defined in Eqs.~4.3!

and ~4.4!.
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