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Multiparticle Bose-Einstein correlations
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Multiparticle symmetrization effects are contributions to the spectra of Bose-symmetrized states which are
not the product of pairwise correlations. Usually they are neglected in particle interferometric calculations
which aim at determining the geometry of the boson emitting source from the measured momentum distribu-
tions. Based on a method introduced by Zajc and Pratt, we give a calculation of all multiparticle symmetriza-
tion effects to the one- and two-particle momentum spectra for a Gaussian phase-space distribution of emission
points. Our starting point is an ensemble Nfparticle Bose-symmetrized wave functions with specified
phase-space localization. In scenarios typical for relativistic heavy-ion collisions, multiparticle effects steepen
the slope of the one-particle spectrum for realistic particle phase-space densities by up to 20 MeV, and they
broaden the relative momentum dependence of the two-particle correlations. We discuss these modifications
and their consequences in quantitative detail. Also, we explain how multiparticle effects modify the normal-
ization of the two-particle correlator. The resulting normalization conserves event probabilities, which is not
the case for the commonly used pair approximation. Finally, we propose a method of calculating Bose-Einstein
weights from the output of event generators, taking multiparticle correlations into account.
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. INTRODUCTION relations. This amounts to a shifting prescriptign} —{p/}
which modifies the momentum distribution of simulated
Most hadrons are emitted in the final stage of a relativisticevents according to unit weigh{a/hich themselves depend
heavy-ion collision. They do not probe directly the hot andon the space-time structure of the solr&@econd, Zajc has
dense intermediate stages where quarks and gluons are deund [3] the first steps towards a calculational scheme
pected to be the relevant physical degrees of freedom fdprought into final form by Prait4]: for model distributions,
equilibration processes. The geometrical size and dynamicdine N-particle spectra are given by a simple algorithm in-
state of the hadronic phase space emission region, howevaolving only two types of termsC, and G,,. In practice,
depends sensitively on the entire evolution of the collisionthis reduces the sums over &ll permutations, typical for
This motivates current attempts to reconstruct its spatial anthe calculation of momentum spectra, to sums over all parti-
dynamical state from the experimental hadron spectra and ons of N.
use it as a starting point for a dynamical back extrapolation For both these approaches, there are first numerical calcu-
into the hot and dense intermediate staffgs Two-particle  lations[3-5] and related analytical attempits—10 to con-
correlations of identical particles which are sensitive to thetrol multiparticle effects to the one- and two-particle spectra,
space-time characteristics of the collisif#t], play a crucial ~but a detailed study of their momentum dependence is miss-
role in this approach. The reconstruction program based otlg, even for simple models. This work aims at filling this
their analysis has very good prospects: due to the increasir@@P, making quantitative statements about the extent to
event multiplicities and larger statistics of the CERN SPSwhich the slope of the one-particle spectrum and the relative
lead beam progrartand the yet better quality data expected momentum dependence of the two-particle correlations are
from the Relativistic Heavy lon Collider RHIC at BNL ~ modified due to multiparticle symmetrization effects. Our in-
particle interferometric measurements start showing statistivestigation takes the s& of phase-space emission points
cal errors on the few percent level. Also, systematic errordp; ."i,tj) asinitial condition. For notational simplicity, we
are increasingly better understood. Theoretical calculationgestrict the discussion to one-particle species, like-charge
should aim for a similar accuracy and control necessary appions say. To the se, we associate a symmetrized

proximations quantitatively. N-particle wave functiof11]

One uncontrolled approximation used so far in almost all 1 N
particle interferometric calculations is to neglect for the par- V(X )= f(X t 11
ticle momentum spectra of Bose-Einstein symmetrized N(XSH) JN! SEZSN =1 (X0 ], (1.9

N-particle states all multiparticle correlations which cannot

be written in terms of simpler pairwise ones. This reducedvhere the sum runs over all permutatiofis Sy of the N

the number oN! terms contributing to the two-particle cor- indices, X is a shorthand for th&l three-dimensional coor-
relator C(K,q) to a manageable sum over all particle pairs.dinatesX;, and the functions$; denote single-particle wave
Beyond this approximation, two approaches have been usqghckets centered aroung,(r;) at initial time t; and propa-

in the literature. First, Zajc has employed Monte Carlo techgated according to the free time evolution. Final-state inter-
niques[3] to generate events with realistic multiparticle cor- actions, which imply a structure of tHé-particle state dif-
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ferent from Eq.(1.1), will not be considered in the present where/,, is a normalization constant/,=1/(¥|¥ ), en-
work. The wave function¥ definesthe boson emitting suring that the probability of detectiryg particles is one. For
source. What we are interested in is the calculation of the free time evolution ofV', the integration over the spatial
one- and two-particle momentum spectra resulting from Eqcomponents of Eq(2.2a leads to a time-independent ex-

(1.1), the information they contain about the initial distribu- pressionPy(P), since interactions between the particles are

tion of the “emission points”z;=(p;,r;,t;), the extent to  npecessary to change the momentum distribution in time. In
which these results modify the predictions of the pair ap- ;

. ) . ! L contrast, integratin X,P,t) over all momenta leads to
proximation, and finally the algorithm which implements the 9 I )

ical calculat f multinarticl tra f the initi Ithe detection probability of th&l bosons at position¥;,
S;r::itle)r&i%ncgcualono muftiparticie spectra from the initial ey s g time-dependent quantity since free evolving

; . . bosons change their positions in time. The calculation of the
Our work is organized as follows: Section Il shortly sets 9 P

X ; , . -~ N-particle momentum spectrum according to E2.23 in-
up and illustrates the general formalism V|a'wh|ch partlclevolves a sum overN!)2 terms. Due to the factorization of
momentum spectra are calculated fromN\aparticle state. In fi'(P)' this reduces to a sum ovBH terms,

Sec. lll, we discuss the properties of Gaussian wave packets"

which we choose for the single-particle statgs; ,t) in Eq. N
(1.1). Section IV contains the main results. It gives a com- Py(P) = ¥
plete qualitative and quantitative analysis of multiparticle N!
contributions to the one- and two-particle spectra for a boson

emitting source of Gaussian phase-space distribution. In Sel? What follows, we are especially interested in the one- and
V, we discuss the implications of this model study for antwo-particle momentum spectf@y(P;), Px(P;,P,) associ-
algorithm which calculates the Hanbury-Brown—Twiss ated with theN-particle state¥y. These are obtained by
(HBT) radius parameters and momentum spectra for an aintegrating Py(P) over all but one, respectively, two mo-
bitrary distribution of emission points. Results and relatedmenta,

conceptual questions are summarized and discussed in the

2
. 2.3

N
> 11 biPey
SESn =1

Conclusions. N, N
PuPD =T 2 Fs, (PO fys, (240
IIl. THE FORMALISM | s =2
We want to determine for thé-particle symmetrized Ny N
wave function¥, the detection probability for measurifg PR(P1L,P2) = N 2 fsisl(Pl)fsész(PZ)llj[s fsrs
identical bosons at timé at the positionsX; and momenta - ss - (2.4b
P,. We calculate first theN-particle Wigner phase-space '
density fory [12]
. R fijzf d*PF;(P). (2.49
WX, P,t)=(27)3N (X, 1)

All particle momentum spectra are given in terms of the
\Ifﬁ,()?,t) building blocksD;(P) (which determineZ;;) andf;;. Once
the analytical form of the single-particle wave functidnss
1 N specified, these are readily calculated. In what follows, capi-
=— > TI Wos(X/,P, 1), (2.1a tal letters denote measurable position and momentum coor-
N! ss'es, =1 dinates, small letterg;, r;, t; denote the centers of wave
packets which are not directly measurable. The only excep-

N
x| I1 89P—P)
I=1

Wi (X,P,t)=(2m)3F;(X,1) 6 (P=P)f (X,1) tion to this is the measurable relative momentays P;
—P, of the two-particle correlatorC[K =3(P;+P,),q]
:f dSyeiP-yfi(X+ %,t f}*(x_ %t) which we denote by a small letter.
(2.1b A. The Zajc-Pratt algorithm

R Dynamical correlations between particles in the source
Here,P denotes the momentum operator actingdog. The  are reflected in correlations in the set of emission points
one-particle pseudo-Wigner functio®;(X,P,t) provide  (p, r;,t;). If there are no correlations, then the initial distri-
the basic building blocks for the calculation of tNeparticle  bution of the centers of single-particle wave packets is given
momentum spectrum which is obtained by integrating Eqby a one-particle probability distributionp(p,r,t). The
(2.13 over all spatial coordinates, n-particle spectra for a set of events with multipliclyare
then obtained by averaging over this distribution

. . .. N N
PN(P)=N¢,f d3wa(x,P,t)=N—f > I1'[1 Fers (P,

N
‘ss'es, T s _ |
(2.23 PR(PL, ... Pn) f(ﬂlpp.)m(m,...,pn),
(2.53
Fi(P1= [ W, P =DyPIDF(P. (2.2 Do = G ot p(pr s ). 25
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mx

sumes that the emission probability of a boson is increased if 3/2 g(k )ak, (2.11a

there is another emission in its vicinifg0], is obtained, e.g.,
by replacing in(2.53

A particular model distribution with correlations which as-
¢ (x)= f

pSTN)ZNf dxy ... dXyp(Xq) ... p(Xn)

=z

N
I p(pirit—11 P(pi’rivti)w- (2.6
=1 i=1 o(N)

X[Xq, o XKD, - XN (2.11b
Herew(N) is an averaged normalization defined below. The! hiS density matrix spgrecifies in particuITar Ehe one- and two-
technical advantage of adopting2.6) is that the Particle spectra Tp{"afap] and Tr[PSrn)aPlapz ap,ap,]. For
(pi.ri,t;)-dependent normalization factdfy in the spectrum the Gaussian model distributid8]

Py of (2.59 is canceled. This allows us to write without

approximation all spectra in terms of the building blo¢k$ la( )|3 — (2mpd) - Pexg—K32pZ], (2123
(2m)
m
— 2\ —3/ _v2Ip2
Gm(PlyPZ):f (II_Il Dpi, | DY (PDfii,fii, p()=(mR?)~*exi] —xIR7], (2.12b
the effects of multiparticle correlations on the HBT-radius
Xoeodi i Di (P2), (278 parameters have been considered already by Zajc. His dis-

cussion however is restricted to an explicit calculation of

three-particle symmetrization effects and to qualitative esti-

C.= | d®PG.(P.P). 2.7b mates of hlgher-order contributions. Here, we demo.nst_rate
m J m(P.P) @79 that the ZP algorithm allows for a complete quantitative

analysis of the Zajc model. The first step is to identify the
The resulting Zajc-PratZP) algorithm for the calculation of  puilding blocks of the particle spectta.4),
one- and two-particle spectra red@s4,1Q

D;(P)= (g()zlzeme X1, (2.133
_ N! 112 I
W(N)—(n%)N I TNTAC A ARES (2.8

(2.13b

N
— (N=1)! w(N—m)
PR(PI= 2 (=

Gn(P,P), (29 The calculation of the termsC, reduces then to

(N) m-dimensional Gaussian integrations. One fi@s=1 and
y 1—h |32
— (N=2)! W(N—1J) Cp=(1+ 2R2)3<m1>’2< ) . (2143
PIZ\I(P]JPZ Z (N J)' w(N) m po deBm
J-1 h™ 1
X X, [Gi(P1,P1)Gy_i(P5,Py) deBm:—zml(Tm(ﬁ)‘l)’
=1 (2.14b
+Gi(P1,P2)G;-i(P2,Py)]. (2.10 _ 1 c=R2p2
1+ikc’ Po.

These spectra are normalized to unity. In Appendix A, we
give their derivation in some combinatorical detail. Due towhereT,, denotes Chebysheff polynomials of the first kind
the ZP algorithm, the calculation of tié-particle spectrais [13]. The momentum-dependent terms read

reduced from sums over all permutations to sums over all (M) 3/2

L R (1+9x")
partitions f,l,)y of a set ofN points intol,, subsets oh Gn(K,q)=Cp———exg — K2 g /Zpo]
points,N=3l,n. The number of partitions dfl grows as- (2mwp§)3?

ymptotically like eN. For explicit calculations with event
multiplicities in the hundreds, it is hence important to get
control over them dependence of the Pratt tern®s, and

Gy,. This is our strategy in Sec. IV. ggm:% ét—%—Ar:11é>+ , eV=61+6m, (2.15H

xexd —(R?gg"/4+1/8p5)g°]  (2.153

B. A simple example: the Zajc model

c - )
(m_" gt o-1 —s _ o
To illustrate the above formalism, we consider a normal- 9k 2 € Ane-+1l, e=61=0m, (2150

ized N-particle density matrixo{™) for multiparticle states
[Xq, ... Xy), Ccreated by repeated operation of the single-

c
particle creation operatap’(x), (Am)ij=(1+€)8j = 5 (8ij+1+ disgy). (2150
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= 1.0 m=1 Zajc has concluded on the basis of this behavior[tBRtthe
‘5,00_8 two-particle correlation function becomes a superposition of
terms with successively broader distributiorAp— P,, lead-
0.6 ing to an increasingly smaller value for the inferred radius.”
0.4 m=2 The reason is that Bose-Einstein symmetrization effects en-
"r;:i hance the probability of finding bosons closer together in
02 etc. configuration space and hence result in broaglelistribu-
0 . tions of the two-particle spectra.

0 20 40 60 80 100 The above arguments explain the effect of multiparticle
5 m=5 correlations qualitatively. For a quantitative understanding,
VO§‘4 - the weights of higher-order terms contributing to the one-

and two-particle spectra are important. These weights are
3 m=3 governed by the term€,, which [up to a correction factor
» o (1—h)/deB,, of order unityl essentially decrease likem(
—1)th powers of the inverse phase space volume. For event
1 m=1 multiplicities in the hundreds, a quantitative analysis can
0 R then be done numerically, using the analytical expressions

0 20 40 60 100 ¢ (2.14 and(2.195. We defer such a study to a slightly more
£ me3 general model in Sec. IV where certain analytical simplifica-
Qoo m=2,4 tions allow for a more transparent discussion. A short com-
3 parison of the qualitative and quantitative properties of the

=15 m=> models studied here and in Sec. IV is given in the text fol-
\{-,1.0 me lowing Eq. (4.4).
m=7
0.5 s IIl. GAUSSIAN WAVEPACKETS
0% 02 04 06 08 1.0h In the example of Sec. Il B, we have started from single-

FIG. 1. The termsg{”, g{” and the remainder term (1
—h)/deB,, characterize they dependenceK dependence, and
weight of Pratt terms and hence the momentum dependence of p
ticle spectra. Theim dependence contains information about how
higher-order multiparticle correlations affect the spectra. Results aré

shown for the Zajc modgR2.12.

particle creation operatorgy’ whose momentum support
g(k) does not carry a label. As a consequence, the
N-particle states considered in Sec. Il B are build up figm

a§ing|e-|oarticle wave functions witldentical phase-space lo-

calization. We now adopt a more general setting in which a
Set of N phase-space pointg;(r;,t;) is associated withN
Gaussian wave packets, centered at initial time¢; around
the points ;,r;) with spatial widthe [14,15,11,

The main message of these involved but explicit expressions

is contained in then dependence of the terrgg“) andg,({“) .

These specify th& andq dependence of the building blocks 1 1

G, and hence of all spectra. Here, they are functions of the  f,(X,t;)= Wex;{ - —Z(X—ri)2+ipi-x .

phase-space volumé= pgR3 only, and their behavior can (7o 20

be understood by simple arguments: 3.1
The factorsgf{“) generically increase with increasimg,

see Fig. 1. Especially, in a limiting case, one finds The Fourier transform of; is proportional to expfo?(k

—p)2/2—ir;-(k—p;)] and can be compared to the momen-

tum support of ' in Eq. (2.113. The corresponding

lim gf{“)zm. (2.16 N-particle symmetrized states reduce to those considered in

Voo Sec. Il B for pp=1/0- andp;=0=r;, when the momentum

support function becomes independent of the patrticle label

The reason is that Bose-Einstein symmetrization effects en- 1he one-boson state.1) is optimally localized around
hance the low momentum region of the one-particle spectPi i) in the sense that it saturates the Heisenberg uncer-
trum, leading to steeper slopes. This one-particle spectruf@inty relationAx-Ap,=1, with Ax;=o at initial time t

P(P) is a linear superposition of Gaussian ter@g(K,q IZtid tDif;e_:f:cent cthoicelst 0‘; sirlﬁle-pe}rti(ilet v(\J/Iave fl{[”CtiS/CS ﬁa”
=0), which due tog{™ show increasingly steeper slopes. oo (0 dIfferent resutis for the caicuialed spectra. Yve have

some control over the extent to which different choices mat-
Theq dependence db,, governs they dependence of the ! .

two-particle spectrum. The terngﬁgm) depicted in Fig. 1 de- ter by finally checking ther dependence of our results. The

e . . model parameter can range betweea[0,]. In Refs.[11]
crease with increasing and have the limiting values and[16], it was argued that a realistic value f@ris for pions
of the order of the Compton wavelength.
1 The free time evolution off; is specified by the one-
lim ggm:__ (2.17  particle HamiltonianH, which acts as a multiplication op-
Voo m erator in momentum space,
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f,(X,t)= (e THot=t)f,)(X,t) g™, andCy, in terms of simple polynomials will simplify
' our discussion considerably. The corresponding first-order
Pratt terms are

fd3keik'x—iEk<t—ti>“fi(k). (3.2

(2m)° C,;=1, (4.29
The resulting building blocks for thH-particle spectra are Gy(Py,P,)=(1+ 02A2)~32
Di(P):23/2(7702)3/4e—(02/2)(pi—P)ZeiEpti—ipri, (3.39 F{ »2 R? ,
xexg —| —+—]|q
si(P)=F;i(P)=23(ma?)¥2e " i~P*  (3.3p 4
To streamline our notation, we have neglectedijra factor X ex;{ - ﬁKZ . (4.2b

exdir;-p;]- The product of these factors cancels in the cal-
culation of the Wigner functiorf2.1b and a fortiori in all
the functions derived from it. The functiog(P)=F;(P)
denotes the probability that a boson in the sfate detected
with momentumP. This measured momenturR has a
Gaussian distribution around the central momengmof the

All higher-order Pratt terms can be calculated explicitly as
averages over relative and average pair distributions. Details
are given in Appendix B. The momentum-independent terms
read

wave packet. 022 Rr2 1\ “3m-bi2
The functionsf;; in Eq. (2.49 characterize the overlap ~ C.=(h{™h{™)~%? | 1+ 1+ —; ,
between the wave packets and f; and play an important 20

role in the ZP algorithm. They take a particularly simple (4.39
form if all particles are emitted in a flash,

|
5N

m

L 2 h(lm>:k ( 1 ak/2\hbk/2|', (4.3b
2= T p—p2 -0
fiiocexr{ 40_2(r| rj) 4 (p| pj) ‘| .
i h(2m>: > (m;l ak/z\'bk/2|h, (4.39
xex;{—E(Piﬂij)'(fi—rJ’) : (3.4 =0
1 1
All terms contributing toPﬁ, or Pﬁ, contain the same number (4.30

a: —_— Y, ==
of factors f;; and hence, the normalization 6f does not 1+20%R? 1+2/0°A%
matter in what follows. For notational convenience, we
change it by fixingf;;=1. The functionsf;; measure the
distance|z —z;| between the phase-space pointand j.
This distance measure depends on the wave packet width
but leaves the phase-space volume independeat of

Here, k/2|' denotes the greatest integer not larger tkéh
(floor), andk/2|h the least integer not smaller thar? (ceil-
ing). The notational shorthandsandb range between 0 and
1 depending on the phase-space localization of the wave
packet centers, i.e., they map the whole parameter space 0
Ifi|=exd — tlz—z]], <R<®, 0<A< of the model(4.1) onto a finite region.

. : (3.5  The momentum-dependent terms are given by

1 312
Az K

Z==rt +iop;.
g 7P Gn(Py1,P2)=Cy,

IV. MULTIPARTICLE CORRELATIONS FOR A o2 R?
GAUSSIAN MODEL xexg —| —+ —|gi"qg?
4 8)™°
We now determine quantitatively multiparticle correlation
effects for a source dfl identical bosons whose wave pack- 2
oo L : xexpg — —bgi"WK? (4.43
ets of spatial widthr are emitted instantaneously according A2 K ' '
to a Gaussian phase-space distributidrd) with
(M) — (M) (M)
9o =h3"/hy", (4.4b
(o) o(t) r2 p? @.1) © B
J)=———expg ——— —|. .
PP R TR a2 g =h{™Ihym, (4.49
Our main aim is to study for this model the extent to which (m)_ W m
multiparticle correlations modify the slope of the one- hs™= 1+k21 (ab) 2k/" (4.49

particle spectrum and the width of the two-particle cor-
relator. To this end, we calculate first the building blocks ofThe comparison of the present model calculation with the
the ZP algorithm. Having explicit expressions fgf)”,  Zajc model(2.12 is not straightforward. As mentioned in
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the sequel of Eq(3.1), the wave packets used in both models (h{™h{™) =M1+ Jab)2m-1), (4.83
can be compared by setting the wave packet cemqter®
=r;. However, the integral ovep(x) in Eq. (2.11h per-
forms an average over the positionswhile in the model \/5 \ﬁ

(S T -
centers of wave packets, r;. Due to these different start- com a
ing points, the Zajc model is not a simple limiting case of
Eqg. (4.D. Nevertheless, main features of the Zajc mOdeIThe correction factof ™ appears only linearly in the ex-
The leading contribution of the momentum—independenlpress'ons fo.'c.m’ rather t(r,]n?n as amth Power, and itis of
Pratt termsC,,, shows again a power-law behavior. Also, the orderO(1) (itis exaCtlyfcorf,: 1 for a choice of par:?\met.ers
m dependence of the tern%m) andgf{“) of the Zajc model R andA such thata=b). This allows for the approximation

(4.1) we do not average over the positioh but over the f(m _ (4.8b
(2.12 can be reproduced qualitatively in the present model. corr
is recovered in certain limiting cases,

L Cp=em1, (4.99
lim limgg”=—, (453
a—0b—1 m
ZAZ 2 —-3/2
RA)=||1+ 1+ —|[1+ Vab]? ,
lim lim gg™ = m. (4.5b «(RA) ( 202! J—])
a—1b—0 (4.9n

In general, however, thm dependence of the terrgg”) and
gf{”) is much weaker in the present model. Especially, ther
is no limit in which bothg{”=1/m and g{™=m. These
differences between both models may provide a first idea

é(vith which the normalizationo(N) takes the simple form

N
about the extent to which the choice of the model distribu- _S sliNR - v F(=le+1)
tion affects our conclusions o(N)=2, Sy “=(-€)  ————
: = I'(—1/e+1—N)
I . . I N
A. Weighting multiparticle contributions _ H [1+e(k-1)]. 10
k=1

The normalizationw(N) is not a direct physical observ-
able, but it determines the weights with which multiparticle
correlations contribute to the particle spectra. To see this, w

. i Rlere, the combinatorical facto&® denote the number of
consider the one-particle spectrum,

permutations ofN elements which contain exactkycycles.
N They are commonly referred to as Stirling numbers of the
= first kind. We have used their generating function in terms of
1 —
Prn(P)= 2’1 UmGm(P,P)/Cry. (4.6 I' functions[17].

We can now determine the weights of multiparticle con-

The mth order Contributiongmlcm are normalized to one, tributions to the one- and tWO-partiCle SpeCtra. For the one-

and the weights ,, add up to unity, particle spectrum, we find by inserting Eg.11) into the ZP
algorithm
N
1= , 4.7
mE:l om “.79 puat: =Ne, 4.113
_(N=D)! w(N—m)C @
TN w(N) | L. (4.11b

U= ~ )
Y l4e(N=1) 1+pyy

The lowest order contributiots;/C,, by which the one-

particle spectrum is typically approximated, contributes a

fractionv, only, the value (+v,) characterizes the impor- pcgl
tance of higher-order contributions. For a quantitative analy- Um™ m- (4.119
vol

sis we now determine the dependence of the normalization
w(N) and the weights ,, on the event multiplicityN and the
phase space density of the emission region. The approximation in the last line is valid for large multi-

We consider the term&,,, the building blocks ofw(N).  plicities, whenm<N. Similarly, the weightsu,, for the dif-
For the present model, these are given in E433. The ferent contributions to the two-particle momentum spectrum
factor (h{™h{™) in this equation ranges between 1 andcan be calculated. Using the power-law behavioy,
22(m=1 and can be written as =eM1 we find
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N m—1
PA(P1.P2)= 2 Upn 2, Himi(P1,Py), (4.123 o
m=2 =1
o
0.
Gi(P1,P1) Gp—i(P2,Py)
Hi m-i(P1,Py)= R 0.98
Ci Cm—i
N Gi(P1,P2) Gy—i(P2,Py) 0.97
Ci Cmoi
(4.12h
Ex
where o 08 =
P =
m—2 0.6
:(N—Z)! o(N—m) 2 Pvol __Um-1 o
" (N=m)! - w(N) (1+pyo)™ (1+onl). 04 ,’;':;:/,
(4.13) 0.2 ,,”'z'://
/,:'ﬁ’ b

Again, the approximation in the last line is valid for large .
multiplicities, whenm<N. To sum up: multiparticle corre- 62 04 06 08 10

lations account for a fractiomy/(1+pyo) of the one- FIG. 2. Numerical calculation of the factogl!” and bg{{"
particle SpeCtrum' For the two—partlclg SPec”Um they AGyhich determine they and K dependence of thenth order Pratt
Somewhat more important: th2e pure pairwise correlations regrms. For a source with spatial radies=5 fm and a wave packet
ceive only a weight 1/(* pyo)*. , width o= 1 fm, the plot showg{” andbg{™ as a function ofo

For sufficiently large event multiplicities, the weights, = 1/(1+ 2/02A2). Different lines denote different ordersn=2
anduy, of multiparticle contributions are not separate func-(dash-dottey m=3 (dotted, m=5 (dashedi m= 10 (thin solid),
tions of e andN, but functions of the produgi,, only. The  andm= 100 (solid).
physics enteringp,, can be most easily illustrated in the
large phase-space volume limit, when We finally estimate realistic values for the phase-space

density p,, in heavy-ion collisions. For a choice of model
R parameterfl~5 fm, o~1 fm, A~150 MeV say, we find
e~—— for—,A-o>1. (4.14 €~ 1072, With multiplicities of like-sign pions in the hun-
(R3A3) o dreds, this leads tp,,>1. The present static, spherically
symmetric model is however unrealistic in so far that it does
We hence callp,, a “phase-space density of emission not take the strong longitudinal expansion into account
points.” This notion should not be taken too literally: the which significantly increases the volume out of which par-
product of the volumes of three-dimensional spheres in poticles are emitted. From these heuristic considerations, we
sition and momentum space is (43°R3A3, and hencep,,;  expect realistic phase-space densities to lie in the range
is for large sources approximately a factor 10 larger than the
particle number per unit phase-space cell. Also, for realistic
source sizes, the value ef deviates significantly from the
approximation(4.14), and a calculation op,, starting from
Eq. (4.9b is preferable.

One can ask whether in the lardelimit, the normaliza-
tion w(N) becomes a function g, only. To clarify this,
we recall that a produdﬂE=1(1+ak) with a,=0 has aN
—oo-limit if and only if 2;_,a, converges. For the normal-
ization (4.10, we find E{Z':lak =3eN(N—1), i.e., for fixed
phase-space density,

0.1<p,q=€eN<1.0. (4.16

Depending on the precise value pf, in this range, the
importance of multiparticle contributions to the one- and
two-particle spectrum varies significantly. Far,,=1.0,
higher-order contributions start dominating, while they ac-
count for~10% of the signal ifp,,=0.1.

B. The momentum dependence of multiparticle contributions

The two m-dependent termg{™ and g3" in Eq. (4.9
lim (N o . 41 control the dependence @m(Pl,I_DZ) on the relative pair
Nﬁxw( )|”v0"f'xed_m .19 momentumg and the average pair momentutn They de-
termine the momentum dependence of all particle spectra. In
There is no physical reason why(N) should remain finite. ~ Fig. 2, these factors are shown as a functiob éér a source
It is not an observable. What matters in a quantitative studyVith R=5 fm ando=1 fm. The first message of this plot is
of multiparticle correlation effects is the phase-space densitjhat even for very high multiparticle contributiorts.g., m
of emission points and not the particle multiplicity, what =100), the momentum dependence of all building blocks
matters are the weights,, andu,,, and not the normaliza- G, can be calculated exactly. Secondly, the facg$f¥ and
tion w(N). bg(Km) show the interesting property that irrespective of the
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value chosen foA (and hence fob), they rapidly converge > \ (a)
to anm-independent quantity. In contrast to the limiting case 2
(4.53, them dependence qjg“) is much weaker for realistic
model parameters, b,

g(Qm)—>gQ. (4.1

Analogously, for realistic model parametexsb,

0 50 100 150 200
bg™—bgx., (4.18 T in MeV

while for the limit (4.5 of the parameter space, a stramg

. -06=05f
dependence remains. % (b) P ° m
We have checked that the conclusiddsl?), (4.18 hold p Pt
: . 200 - 6=0.7 fm
for a large range of the model parameter space, including the < e e
part realistic for heavy-ion collisions. Going to smaller .~ 150 P e e c=1.0 fm
source size® (and hence to smaller values fay, the factor g% - e =20 fm

do is found to deviate significantly from unity. Also, values =100 /”/:_,——""",/

for bgk vary significantly. The rapid convergence to the lim- 50 't,x;‘,',/ ”””
iting behavior(4.17), (4.18 however is observed for all val- i

. o 0 R
uesa>_0.1. Fo_r 9h0|ces of the mo?g)l param(%t)ers realistic for o 50 100 150 200
heavy-ion collisions, the factorsgy™ and gy~ are hence T in MeV

well approximated by amn-independent constant for suffi- .
ciently largem. We can write the higher-order Pratt terms as ~ FIG. 3. The one-particle slope paramet@f§" and Tg" char-
acterize the limiting cases of vanishing and dominant multiparticle
. A2 2 correlation effects. They are shown as functions of the model tem-
Gm(P1,P2) =Cinfgexi —Ag"—BK],  (4.193 peratureT for different values of the wave-packet width The
diagonals fofT.z=T (thin solid lineg are included to guide the eye.

312
f <2ng ) (4.199
9= | 5 2PY% | . : 1
A __Tpair_
Ter(1)=TEA'=T+ YPEL (4.21b
A o + R® (4.190 T
"\ T g /% : Te(M)=——— m>1 (4.219
4 8 el 2bg™
2b whereEp=P?/2M, andT.«(m) characterizes the slope of the
B:—ng. (4.199 mth order contribution. According to Eq4.21), the one-
A

particle spectrum cannot be characterized by a single slope
parameter. For a qualitative understanding, we consider first
the largest slope paramet@fi'=T#(1) and the smallest
slope parameteﬁ'g};‘”zTeﬁ(m>1). Here, the superscripts

pair andmult stand for “pairwise” and “multiparticle” cor-

In Sec. IV D, we exploit this simplen dependence of the
termsgy”, g5

C. The one-particle spectrum relations.
For the discussion of the one-particle spectrum, we intro- I all multiparticle contributions vanish, then the momen-
duce the temperature via tum distribution ofPﬁ,(P) coincides with that ofG,(P,P).
The slopeTRE" of G4(P,P) is shown in Fig. &) as a func-
A2=2MT. (4.20  tion of the model temperature for the pion massvl =139

MeV and different wave-packet localizations TP3" is al-
The modelp(p,r) in Eq. (4.1) describes then a phase-spaceways larger than the model temperatufe For a spatial
distribution of emission points with Boltzmann temperaturewave-packet widttr=1 fm, e.g., the term 1K o2 takes a
T. Our aim is to determine how the slope and shape of thealue of 140 MeV. Even for small model temperatuiieas
observed one-particle spectruffi,(P) changes with the input, the quantum contribution V2o accounts for a slope
slope T of this distributionp(p,r) and to what extent it is parameteff53" comparable to the Hagedorn temperature. For
affected by multiparticle correlation®y(P) is a superposi- this apparently leading effect, the notion “quantum tempera-

tion of Gaussians of different widths ture” was coined 15]. o o
Figure 3b) shows that multiparticle contributions can
N change this picture qualitatively, if they are dominant. The
J— muh . . o .
Pﬁ(P)oc 2 v e Ep/Ter(m) (4.213 slope parameteF ;- still O[epe;nds significantly on the choice
m=1 of the wave-packet localization. But for model temperatures
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©

. 105“ 200 400 600 800 1 12 y
2] . il e — m_—m(P?/2M — u)/T
E ™ Ep in MeV e(P2/2M7,u)/T_ 1 mZ:1 Uge€ #I, (4.238
=1 4l N
> 10 F R
8 ' RN
':5 103_ \\\:E\\\?\ UBg=— eM/T. (423[:)
3 BN
2 NN — . o
210 RGNS For the spectruny, in Eq. (4.21) being of Bose-Einstein
I—""' ________ Pyor= 0.1 RN N form, the weightw ,, and the Pratt term&,,, would have to
ST — Proi= 0.4 NN show a particulam dependence,
—m—m———- Pvol= 0.8 N
constv,=vge™, (4.243
FIG. 4. The one-particle spectrum of a source typical for heavy-
ion collisions R=5 fm, T=100 MeV,o=1.2 fm) becomes steeper
G(P,P)/C,=exd —mEp/T]. (4.24h

with increasing phase-space density, of emission points. The
solid line characterizes a monoexponential behavior and is included

for comparison. In the present model, Eq4.243 is satisfied by setting ge
=pyvo/ (1+pyo), See Eq.(4.11h. However, them depen-
dence of the term&,(P,P) is in general weaker than what
is required to match Eq4.24h. For the Zajc model, then

in the range 100 Me\T< 200 MeV, there is always a
value for o, 0.7 fm <o< 1 fm, such that the observed

temperatureTre”f;IIt coincides with the model temperatufe ) . . . L
For sufficiently largeo, the multiparticle effect can even dt_ape_nderjce dB”.‘ IS gompatlble W_'th_ the Bose-Einstein dis-
tribution in the infinite volume limit. However, the Pratt

overcompensate the broadening due to the quantum)- . S N
mechanical localizationf ""'< T. This illustrates that multi- m[ermscm differ significantly from a power law which indi

. S cates a deviation from E4.24a. The reason for these dif-
particle symmetrization effects tend to populate the low mo- ) . .
mentum region of the one-particle spectrum, thereb erences Is, that our mo‘?'e,' .calculat_u-)nﬂzﬁ ta!<e a particu-
increasing the slope of the spectrum. Both effects, this nard' distributionp(p,r) as initial condition and include Bose-
instein  symmetrization, but they do not contain an

rowing and the broadening due to the quantum—mechanic£ L i . :
localization, are governed by the same scal@nd hence equilibration mechanism: the particles are emitted and propa-

they cancel at least to some extent gate freely. Also, the\-particle stated'y is not an equilib-

The lowest order tern®, with slope parameteTgﬁ" con- Mum state. Hence, the spectruﬁt depends in contrast to

tributes a fraction 1/(% p,) to the one-particle spectrum 59- (é23 on p(p,r). In general, it is not a Bose-Einstein

only. Hence, the one-particle spectrﬂ?h is not monoexpo- Istribution.

nential, but can be characterized by local slope parameters

which specify the tangent ontﬁh at Ep=P?/2M. Going to D. The two-particle correlator

://vei}trg t'ﬁ;?if"fggf Ssiﬂic:zg ,thtgeeiogileiltcifleo? IsVIV:v)\//Zs(t:?jlgglrizsse In this section, we first discuss the normalization of the

dominates i eg ’(4 213, F pﬁ. ientl IE, (below 2 two-particle correlatoiC(K,q) and how it is calculated in
ominates in Eqi#.213. For sutliciently Smalkp (DEIOW 2~ 0 g4 called pair approximation. Then we turn to the study

GeV say, however, and for realistic phase-space densities o
. ) S U of multiparticle effects.

neither the pair nor the multiparticle contributions can be

neglected. The local slope lies betweBl§" and Tgi". For a 1. Normalization of the two-particle correlator

more quantitative statement, we have plotted in Fig. 4 the

one-particle spectrum for different phase-space dengsitigs o ; . :
as a function oEp. Increasingp,, and hence the contribu- ate normalization of the two-particle correlation function

tion of multiparticle correlations, the local slope of the spec—used _in t_he HBT a”?'VSiS of muItipgrtic_Ie production. For a
trum becomes steeper. Also, the superposition of Gaussiaﬁ?mp'lat'on of the different normalizations used, and their
of different width leads to a slight curvature of the spectrum Problems, see Re{18]. In the present work, we use the
Fitting the spectra in the range 0—1 GeV naively with anormalization(2]
monoexponential thermal distribution, a variationef, be-
tween 0 and 0.5 results in a change of the slope parameter -

g pep PPy (Ry2 o d% . 1d3P,d%P,

ATer~20 MeV. (4.22 VT UR(N=1)) (d3o, 1d3Py) (30, /d3P,)
(4.2

There has been some debate recently about the appropri-

This has to be taken properly into account in a quantitative
analysis of hadron spectra.

We finally compare the spectrurt4.213 to that of a Whereo, is the total pion cross section. This originates from
Bose-Einstein distribution as obtained from an arbitrary ini-normalizing both the single- and the double-differential cross
tial phase-space distributign(p,r), keeping the bosons in a Sections to unity. Setting these cross sections proportional to
box till they have equilibrated, the one- and two-particle specti(P;), P%(P1,Py),
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the two-particle correlator reads do not affect the total cross sections. According to the above
_ calculation, this automatically implies an offset of the nor-
Pi(Py,P,) malization of C(K,q) below unity. The offsete in Eq.
C(Py,P)= g — (426 (4.29h measures the system size from which particles are
Pa(P1)Py(P2)

emitted. This is intrinsically consistent: for smaller system

The simplest way to make further progress is to assume th&iZ€S € large, the correlator shows an enhancement in a
the approximatiori4.19 for G, is valid for allm=1. Then, Proaderq momentum reglon,mand tf)t‘e normalization—z)
the two-particle spectrum can be written as is smaller. This ensures thage= o\ - ~
We finally note that irrespective of the offse{N)/w(N)
— »(N) _ A BK? of the normalization, the correlator in E@.28 changes by
P?V(Plvpz):m fqe ' a factor 2 between the limitg§=0 and g—~. This is a
4.27) consequence of the approximati@hl9 which we have jus-
J-1 ' tified for the present model in Sec. IV B. In general, the
w(N—J)E CiCyi, and q dependence of the Pratt ternd, leads to a more
i=1 complicated dependence of the correla®K,q) according
to Eq. (4.12. Depending on the model, this may affect the
intercept ofC(K,q) atgq=0. Indeed, a decrease of the inter-

N

- (N—=2)!
o(N=2, =3,

and the correlator reads

~ 2AQ2— 2BK2 cept with increasing event multiplicities was reported in re-
w(N)( e 2 ;

C(P,,P,)= 1+ . ~|. (4.28  cent model studief4,10]. In contrast to the present study,
w(N)\ e BP1g=BP; these models however do not work with fixed event multi-

plicities and show a significantly different physics, including
The normalizationn(N)/w(N) thus obtained in this approxi- pion lasing effect§4]. We only conclude from the present
mation remains unchanged if the fuli dependence of the study that multiparticle symmetrization effect do not lead
Pratt termsG,, is included, though the momentum depen-automatically to a strong decrease of the intercept parameter.
dence of Eq(4.28 is then much more involved.

The structure of the normalization(N)/w(N) is impor-
tant for what follows: The ternw(N) contains exactlyN!/2
terms, whilew(N) containsN! terms. By integrating Eq.
(2.10 over P, and using the power-law behavidC,,
=™ 1, we find

2. The normalization in the pair approximation

We now explain why the offset (2 ¢€) of the normaliza-
tion of C(K,q) is not obtained in conventional calculations
where multiparticle symmetrization effects are neglected.
For the wave packets introduced in Sec. lll, the wave-packet
overlap functiond; in Eq. (3.4) shows a Gaussian decrease

N -1 with the phase-space distana@g—z|. In general, the
o —aN=3 N2 N nS e
=2 (N=J)! = pair approximationf;; = &;; (4.3
(4.293
is an uncontrolled approximation to this Gaussian behavior.
»(N) It becomes exact in certain limiting cases
—=1-e. (4.29h
o(N) I|mf,J= lim fij:5ij' (4.32

o—0 o—®

The normalization of the correlator is smaller than unity, the

offset depends on the phase space volume occupied by thg the pair approximation, all higher-order Pratt terms vanish
source. We shortly comment on the importance of this result:

The two-particle correlator can be viewed as the factor Cr=Gn(K,q)=0, m=2
relating two-particle differential cross sectionge of the (4.33
real world(where Bose-Einstein symmetrization exjgtsan for f. =6
idealized world in which Bose-Einstein correlations are ab- weme
sent,

and one regains the results of the conventional calculations
(4.30 where multiparticle effects are neglected: the two-particle

oge(K,q)=C(K,q)ono(K, Q). correlator is normalized to unity,

If C(K,q)>1 everywhere, this implies that Bose-Einstein ~
symmetrization effects increase the total cross section. For o(N)=w(N)=1 for f;=4;. (4.39
heavy-ion collisions, there is no direct test of whether such

an enhancement exists. k& e~ collisions however, we and(2.6) does not change the phase space distribution since
know that Bose-Einstein correlations do not affect total cross?(N) =(W¥|¥y). The termGy(Py,P;)G1(P1,P,) in Eq.
sections appreciably, since, e.g., perturbative QCD predicte}-12 then ensures tha€(P;,P,)>1. According to Eq.

the production characteristics &f to a per mille level with- ~ (4.30, this contradicts the statemeatt= o5, The origin

out invoking them. In our calculation, we start from an of this difficulty can be traced back to the integral

N-particle state and we require that after final state Bose-
Einstein symmetrizatiorl\l particles are detected. Hence, we

3 3 2_
explicitly assume that final state Bose-Einstein correlations f d*P1d°P,G4 (P, P2) "= Co, (4.39
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which should vanish according to E.33. The pair ap-
proximation does not treat the integ@} and the integrand
of Eqg. (4.35 on an equal footing. It set€,=0 but uses
G(P;,P,)? for the calculation of the Bose-Einstein en-
hancement. It is this inconsistency which leads to a cor-
relator C(K,q)>1 everywhere.

3. The HBT-radius parameters

Once the momentum-dependent higher-order Pratt terms
G, and their weight®,,,u,,, are known, the determination of .
the two-particle correlatof4.26) is a matter of straightfor- 0 20 40 60 80
ward numerical calculation. Froi8(K,q), the HBT-radius q inMeV
parameters are obtained by fitting the Gaussian ansatz

FIG. 5. Multiparticle symmetrization effects broaden the two-
C(K,q)* 1+ exd — R3grq?]. (4.3¢  Pparticle correlator. For a source sizeR#5 fm, the plot shows the
resulting two-particle correlator for different particle phase space
We restrict our discussion to this one-dimensional parametridensitiesp,, .
zation of C(K,q) since our mode(4.1) is spherically sym-
metric. The general, analytical form of the two-particle cor-/2. In Fig. 5, we have plotted the resulting two-particle cor-
relator(4.26) is obtained from Eq94.6) and(4.12 and itis  relator for relatively low phase-space densities where the
quite involved. For a transparent discussion, we hence turlowest-order Pratt ternG, is still the leading contribution.
first to limiting cases. In the pair approximation, when all The result of the pair approximation describes the main be-
multiparticle effects are neglected, we obtain from &g2b)  havior, but deviations due to multiparticle contributions af-

the well-known resulf11] fect the HBT-radius parameter on a 10% level for moderate
phase-space densities. This 10% effect translates into under-

pair 2 R? o2 AZ%5? estimating the volume by 30% and overestimating the corre-

Rier'=—+- 22 (4.37) sponding energy density by a similar amount. In models

2 2 1+A%? X
7 which show a strongem dependence of the momentum-
The other, equally unrealistic limiting case is that multipar-dependent part o, the effect may be significantly stron-
ticle contributions dominate completely. The resulting two-9€r- In general, the degree to which multiparticle effects
particle correlator is given in Eq4.28 and the correspond- Modify HBT radius parameters depends significantly on the
ing HBT-radius parameter reads phase-space density of emission points.

2

2 2A2 _
L7 %o A"+294— 9k (438 V- MULTIPARTICLE CORRELATIONS FOR ARBITRARY

Rmultz__
2 o2A2+2 ' MODELS

HBT _4 dao

The difference between these two expressions is significant, " this section, we shortly discuss how the calculation of

For a discussion of the main qualitative and quantitative efMultiparticle correlation effects can be extended to more re-

fects, we now focus on the parameter regif o2 relevant alistic source distributions where the analytical techniques
for relativistic heavy-ion collisions. In this regime, the used in Sec. IV are not applicable. Pratt has shown already

o2/2-dependent parts of Eq&.37 and (4.38 can be ne- how to calculate. the term8,, and G,(P,P>) fqr continu-
glected, and according to the study of Sec. IVgB~1. We ous source function$4]: up to orderm<5, straightforward
then fin’d the simple relation ' Monte Carlo methods can be used, and an improved Me-

tropolis method allows to push numerical calculations up to
1 _ m=20. This seems to be sufficient for all practical purposes,
ng'{% —RPL, forR>o0. (4.39 since according to our model study, the weights, u,, for
V2 m>20 are negligible for realistic phase-space denspigs
o _ ] o _ Here, we propose yet a different technique which is ap-
This is the factor 2, obtained first by Zgj8] in his compari-  pjicable to events characterized by a seNofliscretephase
son of the first- and second-order Pratt terms, sedZEq7). space pointsg ,r; ,t;). We interpret these points as the cen-

Zajc has given an estimate that in his model, multiparticleers of Gaussian single-particle wave packets, i.e.
effects change the HBT radius parameter by as much as a

factor 0.67 for a particle density of 1 per unit phase-space
cell [3]. This would affect estimates of the source volume or (pi rint)—fi. 5.9
the energy density by a factor 3. In Zajc’s model, however,
higher-order multiparticle effects(>2) change they de-  An arbitrary distribution ofN discrete phase-space points is
pendence ofC(K,q) much more dramatically than in the the most general “source model” in the present framework.
present study, Whergg“) has a very wealn dependence, We first discuss algorithms which allow for the calculation
negligible forR?s> 2. of the two-particle correlator from a sep;(r;,t;). Then we

In our model, the correlator is a weighted superposition ofcomment on applications of these algorithms to event gen-
Gaussians g whose widths differ by as much as a factor erators.
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A. An algorithm for Bose-Einstein weights tum, and hence the obtained correlator is a continuous func-
We start with the simplest case, the pair approximationfion of K andg, i.e., no binning is required. At high multi-

which reduces the sum oved! terms in the two-particle plicities, when th_e factorg . are_negligible, the correlator
spectrum to a sum over aN(N—1) particle pairs i,j). (5.5 can be rewritten as a Fourier transform over an emis-

Each pair is weighted with the pair probabili;; , calcu- sion function S(x,K), thereby regaining the well-known

lated from the corresponding two-particle symmetrized stat§tarting point of most model studieisee Refs[11],[16] for
[11]. urther detail

1 4 K)elx d|2
P (Py,P2)= 5|D/(P1)D; (P;) + Dy(P,)D (P Ck.q=1+ —POXSIOETH_g
(5.2 Jd™xS(x,Py) [dyS(y,P,)
2
PAPL,Py) = ————> Pi(Py,P,). =
MPLP = R PP S(K)=2, Si(x,K),
i=1
To compare this expression to the ZP algorithm, we intro- I (5.6b

duce the quantities S (x.K)od(t—t)e- Lo (x 1) 2~ 2K~ py)2.

1 N
G1(Py,Py)= NZ& D (P1)Di(P2), (5.33  The above discussion shows that in the pair approximation, a
numerical algorithm for the calculation of one- and two-
1 N particle spectra can be based on a discrete version of the
T(Py,Py)= _22 D (P;)D;i(Py)D¥ (P,)D;(P,). first-order Pratt termss,. Here, we propose to extend this
N<i=1 approach to take multiparticle correlations into account by
(5.3b calculating

Here,G,(P;,P,) is the first-order Pratt term for the discrete

—m)!
phase-space distributiom;(,r;,t;) and T; is a finite multi- sz—(N m)! 2 fo...fi o fi., (57a
plicity correction, correcting for the double counting of iden- N T, L2 m-1'm 'm'1
tical pairs (,i) in
Gm(P1,P,)
“Zj) Pij(P1,P2) = G1(P1,P2)G1(P1,Py) :(N—m)!

N 2 DE(Pfi, i i Dy (Py).
+G1(P1,P2)G1(Py,Py) = 2T(P1,Py). Loeim

(5.4) (5.70

In the large multiplicity limit, whenT can be neglected, this The sums in these expressions run over all sets ofit of N
expression is equivalent to the pair approximation of the ZRntegers and over alh! permutations of each set. This im-
algorithm, see, e.g. E§4.129. The one-particle spectrum  plies that for event multiplicities in the hundreds, only terms
and the two-particle correlation obtained in this way haveup to orderm~5 can be calculated in a reasonable amount
been discussed already extensiveljjid]. They can be re- of CPU time. A tentative strategy for calculating multipar-
written in terms of the single-particle probabilitissof Eq.  ticle correlation effects on the basis of E.7) then pro-
(3.3b), ceeds as follows:

PPN ¢ ()& 2T (1) Fit the calculated termg,, to a power lawC,,= ™!
=1 ¢ and use the parametetthus determined for a calculation
of the weightsv,,, up, in Eqgs.(4.6) and(4.123.

C(K,q)=1+ :
v(P)v(P2)—Tc (5.59

N (2) Fit Gaussians irK and q to the momentum-dependent
Pratt termsG,,(P;,P,). This allows us to extract the
v(P)= ;1 si(P), termsg{"” andg$” which govern the momentum depen-
dence of multiparticle effects.
N (3) Calculate the one- and two-particle spectra by including
TC(Pl,P2)=i21 si(P1)si(Py). (5.5b up to the numerically determined orden=5 say, all

contributions exactly, approximating the momentum de-

The number of numerical operations needed to calculate this p?ngden((é()a of higher-order terms by settiglf’ =g{,
correlator grows linearly with the multiplicitil rather than 9q =9q" for m>5.

quadratic as in Eq(5.2) and this makes it particularly suit-

able for a numerical algorithm. At given observed momentarhis scheme draws on the experience gained from the study
K, g, one calculates for each event the one-particle probabilief the Gaussian toy model in Sec. IV. We expect that it
ties s;(K) according to Eq(3.3b and performs the sums in allows to estimate multiparticle contributions for model dis-
Eq. (5.5. Thes;(K) are continuous in the measured momen-tributions (@;,r;,t;).
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B. Bose-Einstein weights for event generators sion region. Multiparticle correlations contribute a fraction
Many event generators for the simulation of heavy-ionpvol/(lJr“’\/0')2 to the one-particle spectrum and a fraction 1
collisions have been developed in recent y§ass-23, and L(1+ pyol) to the two-particle spectrum. Also, thme de- .

rpendence of higher-order Pratt terms, i.e., the extent to which

irrespective of the large variety of physical inputs present i e o
their codes, the typical output of their event simulation con—the momentum dependence of multiparticle contributiags

tains for each event a s&& of N phase space points changes with increasing order, plays an important role. In

(pi.T; ;) which one associates with the final-state particlesa Gaussian source model with instantaneous emission and

produced. However, a choice of interpretation is involved inmoderate particle phase-space densities, the slope parameter
comparing an event generator outmyt (p;,ri,t;)) to ex- Teit Of the one-particle spectrum changes by up to 20 MeV,
perimental data. Usually, the measured one-particle spect d the change in the HBT radius parameters is of the order

o M
are compared directly to the binned momepta i.e., one of 10%, if multiparticle effects are neglected.

mplicity inerprets the simulated phase-space pomss o e veSeacrod M SRIEREEC S
defining momentum eigenstates, whiahfortiori carry no 9 g P ’

space-time information. For the calculation of two-particleesumates the source temperature significantly and one over-

: ) o
correlations, this interpretation is not suitable, it leads to aesUmates the energy density by up to 30%. Here, the caveat

sharpd-like correlatof 11]. Also, a classical interpretation of IS however that our ca@lculaﬂo.n does not |nc.lude'mult|part|cle
) o e . ; final-state Coulomb interactions. Bose-Einstein and Cou-
z; which takes bothr; and p; as “sharp” information, is

roblematic: ignoring the correct quantum-mechanical Iocal-Iomb effects typically arise on the same scale and compen-
prot. -19 g \né q L ; sate each other at least to some extent. This may significantly
ization leads to quantitatively and qualitatively unreliable re-

sults [24]. On the other hand, including a quantum- reduce the effect of multiparticle correlations in the mea-

+ - ; _
mechanical localization widtl-, one changes both the one- suredr ™ andm spectra on which most of the phenomeno

and two-particle spectrum by a prescriotion which has n logical analysis is based currently. It will hence be very in-
0-p p yap P Oteresting to compare the slopes of the one-particle spectra of
dynamical foundation.

. e e : . charged and neutral piori27]. On the basis of the above
The origin of these difficulties in finding a consistent in- U AR
terpretation of the event generator outgt= (p;,ri.t;) is heuristic ideas, one may expect the S.IOpe. of spectrum
. i to be somewhat steeper, since multiparticle Coulomb inter-
well known, see, e.g., Ref§25],[26]: quantum-mechanical

. pemhle . .actions cannot compensate for the multiparticle Bose-
processes require a description in terms of amplitudes, Wh”%instein symmetrization effects

event simulations are formulated in a probabilistic setting. Our analysis of multiparticle effects has also shed new

Bose-Einstein correlations occur by symmetrizing the PrO%iah di . b h lizati f th
duction amplitudes of identical particles and are hence not t on a recent discussion about the normalization of the
._two-particle correlator. Defining the correlator via E4.25),

encoded for in event generators. The mere fact that the SIMUE . 1 ormalized for large relative momentgto (1— ¢), and

lated output is a discrete phase-space distribution of emissiol " initv. The importance of this result was already dis
points without identical multiparticle correlationgather nity. p. S y
L . cussed in Sec. IV D 1: the normalizati¢.29b corrects the
than a set of detected momenta which includes all multipar- ) T
. . L . . result of the commonly used pair approximation and leads to
ticle correlations and hence all space-time information avail- . : . . . .
Bose-Einstein unit weights which conserve event probabili-
able from the measurements the very consequence of us- ties
ing a probabilistic language. In practice, this forces one to . . .
take recourse to an algorithm which associagosteriori Wwe CI.OS? by embedding the present w_ork into a_W|der
; . : : . .. perspective: Many aspects of the dynamical evolution of
Bose-Einstein weights with the simulated phase-space distrl-; " "~ d - . )

; . . relativistic heavy-ion collisions are mesoscopic, and this
bution 3, rather than obtaining these correlations from the : e . ) .
dynamical propagation of properly(ant)-symmetrized makes it very difficult to decide whether certain physical

y propag brop y observables have a known conventional interpretation or are

N-particle states. Thia posteriorimodification of an incom- .~~~ . ) : . '
pleae quantum-dynamiF():al evolution creates the interpreta'—ndIca.uve of the new in-medium properties Wh'Ch. the current
tional problems of the output = (p; ,r; ,t,). Phenomenologi- experimental programs at CERN and RHIC aim for. The

cally motivated numerical simulations of heavv-ion physics of final-state hadrons however, though being meso-
coIIiysions have remarkable success despite these fun)(ljamesqopiC and hence difficult to treat, is known in principle. It
P Hlows hence for a detailed guantitative description on the

tal problems. It is of some interest to confront them with basis of present day knowledge. In a second step, such a
experimental two-particle correlations, since this provides %iescription will pave the way for quantitative statéments

trﬁf)trnefturt:-?jlg :r?c?;r?t?gnZ(:triilga\s\rl]srexth::t thoarll)t/hetg(lalro- about the geometry and dynamics of the final stage of the
P brop ' P 90~ collision process, thereby setting up an experimentally moti-

rithms discussed in Sec. V A are useful in such comparisong, .o 4 starting point for a dynamical back extrapolatiah

We hope that the present work, by quantifying one mesos-

copic multiparticle effect, will prove useful in refining this
The Zajc-Pratt algorithm provides a simple technique for'€construction program and in separating known physics

the calculation of multiparticle symmetrization effects in ffom the in-medium properties we are looking for.

one- and two-particle spectra. Based on this algorithm, we

have studied to what extent multiparticle correlatlops steepen ACKNOWLEDGMENTS

the slope of the one-particle and broaden the width of the

two-particle spectrum. The scale of both effects depends sen- The author thanks Miklos Gyulassy and Bill Zajc for
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VI. CONCLUSION
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FIG. 8. Diagrammatic representation of the one-particle spec-
trum for multiplicitesN=1,2,3.

(1) placing the dot once disconnected from all other
cycles.
(2) changing closedn cyclesC,, into m closed M+ 1)
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cerning the physics underlying E(@.17). Discussions with ~maximal value fow(N) is N!. _
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author thanks Ulrich Heinz for a critical reading of the manu-G,(P,P), the N—m other dots being contained in closed
script and a discussion focusing on E¢.23. This work  cycles. To construct from it the terms af(N+1)7?§+1(P)
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APPENDIX A: DERIVATION OF THE ZP ALGORITHM

So far, there is no self-contained derivation of the Zajc-
Pratt algorithm in the literature. For the convenience of the®

reader, we give here the main arguments.
Notation: We denote the terrfy Jin by an arrow from ; to

i,. m of these terms form a closeu cycle C,,. The only
other structure appearing in all spectra are opermycles
G, see Fig. 6. HereDi*1 is represented by a cross from
which the arrow startsD; by a cross at which the arrow

ends. The Pratt tern@,,,, G, are obtained by averaging the
emission points in Fig. 6 over a model distributip(p,r,t).

W(N-mM)G,,—W(N+1-m)G,+W(N—-m)mG,,.
(A1)

Diagrammatically, this is realized by employing the two dia-
grammatic rules given above and supplementing them with

(3) change opem cyclesG,, into m open (m+ 1) cycles
m+1-

The prescription can be checked, e.g., in Fig. 8. Using the
recursion relatiorfAl), one can prove by complete induction
that the averaged one-particle spectra?h(P) takes the
form (2.9). .

Two-particle spectrum:n w(N)P,Z\,(Pl,PZ), each term
contains two open cycles of lengthsand j, the N—i—j
remaining dots being contained in closed cycles, divided by
the normalizationw(N). On the endpoints of the two open
cyclesG; andG;, the momentd; andP, can be attached in

Dots without indices attached indicate that this average wadifferent combinations: foi=j, there are two possibilities,

carried out, see Fig. 7. .

Normalization: The normalizationw(N)=77,% sums the
products C!C2...C[" over all partitions 6,1,)y. Each
partition of (n,l,)y hasN!/II,n!'n(I 1) possible realizations.
These have to be multiplied by tha{ 1)! different ways to
combine each set of points to a closed cycle. This leads to
the prefactoMN!/II,n'n(1,!) in Eq. (2.8).

for i#j, there are four. This combinatorics is properly en-
coded in the definition of the produc;; =C;C;H;;/(1
+6j;), see Eq(4.12h. An N— (N+ 1) recursion relation for
the two-particle spectrum is obtained by using the rule to
change opem cycles intom open (n+1) cycles, and prop-
erly treating the combinatorics for=j,

W(N=i=])Gj j—=W(N—i=[I(1+ 11— 6 j)Git1j

There exists a simple diagrammatic prescription to con-

struct from the terms oW(N) the terms ofw(N+1). One
adds to each diagram @f(N) an (N+ 1)th dot by

o(l)= @
o2)=-0 ©+e—9
3 =000 +30 09 2000

FIG. 7. Diagrammatic representation of the averaged total mul-

tiplicity w(N). The 2 cycle stands fo€,, the 3 cycle forCs, etc.

+jGi,j+l]+W(N+1_i_j)Gi,j .
(A2)

Expression2.10 for the two-particle spectrum then follows
from Eq. (A2) by complete induction.

APPENDIX B: CALCULATION OF MULTIPARTICLE
EFFECTS

Here, we give details of the calculation of higher-order
Pratt termsC,, andG,, for the Gaussian source moddl.1)
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in Sec. IV. Due to the structure of the functiofig, it is
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m
advantageous to change to relative and average momentum G ( Pl,Pz)zf (J]:[l d3a1d3bj;(aj b;)

variables. For an average overphase-space points, we in-

troduce the integration variables

&=pPi—Pi+1, bi=ri—rizq, forie[lm-1],

(Bla)

an=Pm+P1, bp=rm+ry. (B1b)

In terms of these variables, the building blocks for thih
order Pratt terms read

m—1

(52/4) 22— 2y pn24ib. A

f12f23---f(m—1)m:H g~ (014 aj— (1/40®) by +ibjA;
j=1

(B2a)

n—-1 m-1

1 1

An=—52, aj+§i:%laj, (B2b)

m—1 2 m—1 2 m—1
fml:e—(azm) ( > aj) - 1/402( 2 bj) o (i12) amjzl by,

- - (B2¢)

XD1(P)f1of 3. . . fm—1ymDm(P2).
(B4)

This is a Gaussian integral which can be calculated analyti-
cally. Its exponent is diagonal in all integration variabkgs
and ina,,, and doing the corresponding integrals leads to
a?A? R?
1+ —
2072

—3/2

1+ y

) —3(m-1)/2

Gm(P1,Py)= (
Xe~ o214 (1+ R2/2(r2)q2e— 2IA2 (1- 1/y)K?2

X1(K,q), (B5a)

1
y=1Tb[1+ab(m—l)]. (BSb)

Here, the notational shorthands b of Eq. (4.39 are used
again,

m—-1
I(K,q)= w*?’(m*l)’ZJ ( jf:[l d3aj)

XeXF[_aiMijaj+(Wi+Ui)ri], (B6a)
m—1
. w;= b, B6b
D1(Py)Dy(Py) =7 (an2 K71k 2, o oo
m-1 |2 vi=K2oba(2i—m)/y, (B60)
e (02/4)<q+2 aj) +ig(by/2)
“~ .
' M= &; +b+ab(m—1-2[i —j| - &)
(B2d)
a’b? . .
———  (2i—-m)(2j—m).  (B6d)
For the Gaussian emission probabilig.1), the probability ab(m—-1)+1
p, of having two particles with wave packets centered . -
around phase-space points ;) (r;.p;), is given by the The integrall (K,q) can be calculated explicitlyl3],
productp(r;,p;)- p(r;,p;) and factorizes into a probability
distribution for the relative and average particle pair coordi- h(2m>h<3m>
nates, M= —""7"—"—, (B79)
1+ab(m—-1)
p2(Pi P T ) =p(Pi ri)p(P; 1)) 1
ZViMi W =0, (B7b)
=prel(Pi =P Fi =T Pavd Pi+P; 1+ Tj),
(B33
o (y=Dh§"—byh{™
o ZVM;) ;= T K2, (B70
P(asb):Prel(aab)zpave(ayb) A ’)/h3
1 2 2 2 2
_ g~ (3%28%—- (b%2R%) (B3 1 o2 1 h(zm)_h(gm)
3R3A3 “wMilw=—x_— 2 42
(27)°R°A 4W,MIl W 21-a pm g-. (B7d)

We then define the higher-order Pratt terms as averages ovéhe factorsh{™, h{™ , andh{"™ are defined in Eqsi4.3
pair distribution probabilities and(4.4).
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