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Glauber model for transfer reactions

F. Carstoiu,* C. Lazard, and R. J. Lombard
Division de Physique The´orique, Institut de Physique Nucle´aire, 91406 Orsay Cedex, France

~Received 7 January 1998!

We investigate two aspects of the Glauber model for (p,d) transfer reactions on nuclei. The first one is
connected with the violation of angular momentum conservation at the transition vertex inherent to straight line
propagation. This can be cured by introducing a different impact parameter in the entrance and exit channels.
We give an estimate of this effect in the case of (p,d) reactions on12C. Second, the formalism is applied to
single neutron halo nuclei. We study the sensitivity of the (p,d) cross sections to the radial dependence of the
halo wave function and to its rms radius.@S0556-2813~98!05306-0#

PACS number~s!: 25.40.Hs, 24.10.Eq, 21.10.Pc, 27.20.1n
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I. INTRODUCTION

Transfer reactions have been widely used to investig
nuclear structure. At low energy, the data analysis is usu
performed by means of distorted-wave Born approximat
~DWBA! techniques or coupled channel calculations. At
termediate energies, the hope of learning more about nuc
structure once the reaction mechanism is under control
been emphasized by Wilkin@1#. He showed the triangula
graph model to be quite successful in connecting differ
transfer reactions.

To our knowledge, little effort has been made to form
late the approach in the impact parameter representation
particular interest in this domain is the paper by Shepard
Rost@2# dealing with (p,d) and (d,p) reactions at 800 MeV.
Starting from the eikonalization of the zero-range DWB
amplitude, they developed an analytical expression simila
that of Amado, Dedonder, and Lenz@3# devoted to elastic
scattering. Their approach allows us to understand the sa
and systematic features of transfer reactions at intermed
energies. Recently, a simplified eikonalized DWBA trans
amplitude has been used by Baymanet al. @4# to study finite
range effects, a point of importance in the case of heavy
transfer reactions.

The purpose of the present work is to provide a formu
tion of the (p,d) reaction in the Glauber model. The exte
sion from the usual elastic scattering prescription to p
cesses involving a nuclear transition is straightforward. T
major difficulty is the fact remarked a while ago by Fo
manek @5# that the Glauber model does not preserve ti
reversal and unitarity as soon as longitudinal moment
transfers~mass transfer! occur in the reaction. This trace
back to imposing straight line propagation, which violat
classical angular momentum conservation at the transi
vertex. As long as the stripping and pickup reactions
dominated by a two-channel process, this can be remedie
a simple way, by allowing a different value of the impa
parameter in the entrance and exit channels@6,7# propor-
tional to

*Permanent address: Department of Fundamental Physics,
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namely, to the ratio of the outgoing and incoming partic
momenta. A crude estimate has proved that indeed this e
has a noticeable influence on the shape and magnitude o
differential cross section of (p,d) reactions at intermediate
energies@8#.

Our first aim is to revisit this question and to give a bet
estimate of the influence ofl. We shall also compare thi
effect to corrections arising from noneikonal propagation
the entrance and exit channels.

Furthermore, because of the current interest in halo
clei, we will consider the case of the (p,d) reaction on a
target made of a neutron very weakly bound to a core. H
nuclei are very unstable and are known to be character
by large dissociation cross sections, which increase with
square radius of the halo wave function@9#. On this naive
ground, we expect also a large amount of transfer reacti
Thus it is interesting to check their potentialities.

The paper is organized as follows. In Sec. II, the ba
formulas are given. Section III is devoted to (p,d) reactions
on 12C as a test of the importance of the corrections ad
cated in this Introduction. In Sec. IV, we discuss the (p,d)
reaction on 11Be taken as the archetype of single neutr
halo nuclei. Conclusions are drawn in Sec. V.

II. MODEL

In the Glauber model, the differential cross section for t
A(p,d)B reaction is given by

ds

dV
5

1

~2p\2!2

wpwA

wp1wA

wdwB

wd1wB

kd

kp
S(

m
uTlm~qW ,qi!u2,

~1!

where S contains spin and possibly spectroscopic facto
The neutron is assumed to be picked from a quantum sta
angular momentuml and projectionm with respect to the
core~residual! nucleus. The quantitywj5Amj

21\2kj
2 is the

total energy of the particlej (p, A, d, or B); kp andkd are
the momentum of the proton and deuteron, respectively.
z axis is directed along the incident momentumkW p. The total
momentum transferQW 5kW p2kWd has transverse and longitud

ti-
t,
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3238 57F. CARSTOIU, C. LAZARD, AND R. J. LOMBARD
nal componentsqW and qi , respectively. Note that we sha
adopt the small angle approximation. In this case, the lon
tudinal component is kept to its minimal value

qi5kp2kd ,

and the scattering angle is related to the norm of the perp
dicular momentum transfer,

q5kdsinq.

We neglect also nucleon binding energies, which could be
importance in actual cases, while calculating kinemati
quantities. The transition matrix element is given by

Tlm~qW ,qi!5E eiqW •bWGdp~bW ,qi!d
2b, ~2!

whereGdp(bW ,qi) is the total profile function. It is obtained
from averaging over the nuclear coordinates of the time
dered product of the elementary profile functions. In a tw
channel approach, theS matrix describing the interaction o
the propagating particle with each target nucleon at posi
xW5(sW,z) is written as a 232 matrix in the impact paramete
representation

S~bW ,xW !5S Spp~bW 2sW ! lSpd~bW 2sW !e2 iq iz

1

l
SdpS bW

l
2sW D eiq iz SddS bW

l
2sW D D .

~3!

The factorl5kd /kp takes care of the conservation of th
classical angular momentum at the transition vertex,

kW p3bW 85kWd3bW .

As explained in@6#, use is made here of the ambiguity in th
definition of the impact parameter, which can be defined
ther in the entrance or in the exit channel, to satisfy
classical conservation law.

We recall that the submatricesSk j(bW ) are related to the
corresponding profile functions by

Sk j~bW !5dk j2gk j~bW !. ~4!

In the set of indices$k, j %, the latter represent the initial sta
of the propagating particle, the former the final state. Con
quently, in Eq.~3!, Spp and Sdd correspond to proton an
deuteron elastic scattering, whileSpd and Sdp describe the
(d,p) and (p,d) interaction vertices, respectively.

The time-ordered product of the individualS matrix must
be taken with care, since in general theS matrix elements do
not commute. The appropriate expression of the totalS ma-
trix for fixed nucleon positions is given by
i-

n-

of
l

r-
-

n

i-
e

e-

S~bW ,xW1 , . . . ,xWA!5 (
perm

u~zi A
2zi A21

!•••u~zi 3
2zi 2

!

3u~zi 2
2zi 1

!S~bW ,xW i A
!•••S~bW ,xW i 1

!,

~5!

where the sum runs over all permutations$ i 1 , . . . ,i A% of
1, . . . ,A.

A few well-justified assumptions greatly reduce the co
plexity of the total profile function. Because of the larg
momentum transfer at each transition vertex, we retain o
terms linear ingdp. We neglect the spin dependence of t
profiles functions. In such a case all terms commute and
end up with

Gdp~bW ,qi!5^CB~xW1 , . . . ,xW i 21 ,xW i 11 , . . .xWA!u

3Ĝ~bW ,xW1•••xWA!uCA~xW1 , . . . ,xWA!&, ~6!

where

Ĝ~bW ,xW1•••xWA!5(
i

gdp~bW 2sW i !e
iq izi

3)
kÞ i

@12gdd~bW 2sWk!u~zk2zi !

2gpp~lbW 2sWk!u~zi2zk!#. ~7!

Neglecting center-of-mass corrections, and assumin
naive shell model picture of the nucleus, we write

CA~xW1 , . . . ,xWA!5CB~xW1 , . . . ,xW i 21 ,xW i 11 , . . . ,xWA!

3F l m~xW i !.

Here F lm(xW i) is the wave function of the captured pa
ticle. We consider the reaction to take place on a sin
nucleon. More precisely, the pickup process is suppose
be specific to a single shell. Consequently we shall drop
sum over the indexi in Eq. ~7!, the possible multiplicity of
equivalent nucleons being taken into account in the factoS
of Eq. ~1!. Under these assumptions, the total profile funct
becomes

Gdp~bW ,qi!5E d2sidzig
dp~bW 2sW i !e

iq iziF l m~sW i ,zi !)
kÞ i

3E d2skdzkr~sWk ,zk!@12gdd~bW 2sWk!u~zk2zi !

2gpp~lbW 2sWk!u~zi2zk!#, ~8!

wherer(xW ) is the single particle density. Instead of dealin
with a microscopic calculation of the elastic part, it is ve
appropriate to introduce the optical limit
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57 3239GLAUBER MODEL FOR TRANSFER REACTIONS
Gdp~bW ,qi!

5E d2sdzgdp~bW 2sW !eiq izF l m~sW,z!

3expS 2AE d2s8dz8r~sW8,z8!gdd~bW 2sW8!u~z82z! D
3expS 2AE d2s8dz8r~sW8,z8!gpp~lbW 2sW8!u~z2z8! D .

~9!

The exponentiation allows us to introduce in a natural w
the optical phase in the entrance and exit channels by se

AE d2s8r~sW8,z8!gdd~bW 2sW8!52 ixd~bW ,z8!, ~10!

AE d2s8r~sW8,z8!gpp~lbW 2sW8!52 ixp~bW ,z8!. ~11!

At the lowest order, the total phasex(bW ,z)5xp(bW ,z)
1xd(bW ,z) can be taken as the eikonal approximation

x~bW ,z!.x0~bW ,z!52
mp

\2kp
E

2`

z

Vp~lbW ,z8!dz8

2
md

\2kd
E

z

`

Vd~bW ,z8!dz8. ~12!

Corrections for noneikonal propagation can be included i
systematic way following Wallace@10# or Waxmanet al.
@11#.

By identifying Vp and Vd with the measured optical po
tential of proton-nucleusA and deuteron-nucleusB elastic
scattering, this procedure has the advantage of summing
number of diagrams not explicitly written in Eq.~8!. In par-
ticular the contributions involving pion degrees of freedo
in the intermediate steps of the multiple scattering are a
matically included. According to Eq.~8!, the nucleon under-
going the transition is singled out, and, in the entrance ch
nel, the optical potential should correspond to elas
scattering of the incoming proton colliding with the (A21)
remaining nucleons. Whereas such a subtlety is irrelevan
the point we shall raise in the next section devoted to (p,d)
on 12C, it does matter in the case of halo nuclei and will
taken into account.

At intermediate and high energies, it is customary
simulate a relativistic wave equation by replacing in t
Schrödinger equation the mass by the energyw
5Am21\2k2, as recommended by Newton a while ago@12#.
We shall adopt this procedure in this work, with the con
quence of changingm by w in the calculation of the eikona
phase.

In order to keep the numerical effort at a reasonable le
we approximate the transition profile function by a ze
range interaction

gdp~bW 2sW !5D0d~2!~bW 2sW !, ~13!
y
ng

a

p a

o-

n-
c

to

-

l,
-

which is justified in view of the aims of the present work
Analysis of actual data may require a finite range pro
function. It will increase the dimensionality of the integratio
to be performed numerically but it is not expected to mod
qualitatively our conclusions. Thus the final expression
are studying is given by

Tlm~qW ,qi!5D0E d2beiqW •bWE
2`

`

dzeiq izeix~bW ,z!F l m~bW ,z!.

~14!

Apart from the correction factorl, Eqs. ~12! and ~14! are
similar to the eikonalized DWBA expression used by She
ard and Rost@2#. Note, however, that our kinematics diffe
slightly from the one used by these authors.

We shall end up this section with the following remar
At the level of the elementary transition profile function,T
invariance requires that@6#

gpd~bW !5
1

l2
gdpS bW

l
D . ~15!

The profile function analogous to Eq.~9! for the (d,p) reac-
tion is given by

Gpd~bW ,qi!

5
1

l2E d2sdzgdpS bW

l
2sW D eiq izF lm* ~sW,2z!

3expF2AE d2s8dz8r~sW8,2z8!gddS bW

l
2sW8D u~z82z!G

3expS 2AE d2s8dz8r~sW8,2z8!gpp~bW 2sW8!u~z2z8! D ,

~16!

wherez as been changed to2z as well asz8 to 2z8.
In the zero-range limit~13! under the constraint~15!, the

(d,p) transition profile function becomes

gpd~bW 2sW !5
1

l2
D0d~2!S bW

l
2sW D . ~17!

Assuming spherical symmetry, the nuclear densities depe
ing only on the magnitude ofxW , we have r(s8W ,2z8)
5r(s8W ,z8), and furthermoreF lm* (sW,2z)5F lm(sW,z). It is
then easy to check that the total profile functions satisfy
time reversal invariance condition

Gpd~bW ,qi!5
1

l2
GdpS bW

l
,qi D . ~18!
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The validity of this relationship is not restricted to the use
zero-range transition profile functions but is quite general
can be verified by comparing Eqs.~9! and ~16!.

III. 12C„p,d…11C EXAMPLE

As a practical example to test the influence of the factol
on the transition matrix element~14!, we consider (p,d) re-
actions on12C at an incident energy of 800 MeV. The ne
tron will be picked up from a 1s or 1p shell model state of
12C (l 50,1), the radial dependence of the wave funct
being taken from the harmonic oscillator

F lm~rW !52
a3/2

p1/4FA2

3
ar G l

e2a2r 2/2Ylm~q,w!

5f l~r !Q lm~q!
1

A2p
eimw ~19!

~we omit the principal quantum numbern, since we are deal
ing only with n51 in our applications!. The parametera is
related to the size of12C, namely,a250.3522 fm22.

Although the p-12C optical potential could be derive
from experimental elastic scattering data, in the absenc
d-11C data we adopt for both channels the Kerma
McManus-Thaler~KMT ! prescription@13#, which is known
to yield an excellent fit to elastic proton-nucleus elastic sc
tering cross sections at intermediate energies@14,15#. As-
suming zero-range nucleon-nucleon interactions for simp
ity, the optical potentials are given by

V~rW !52
\2

2

klab

Elab
s~ i 1a!rA~rW !. ~20!

We neglect spin degrees of freedom and average over
isospin. The parameterss and a are the strength and th
Re/Im ratio of the proton-nucleon and deuteron-nucleon
teractions, respectively. The target nucleus is described b
one-body density, assumed to be spherically symmetric,

rA~r !5n0

k3

pAp
e2k2r 2S 11

4

3
k2r 2D , ~21!

and normalized to the number of particles. The same exp
sion is used for both C isotopes. Proton and neutron dens
are supposed to be equal. The parameterk is fixed by the
charge rms radius, a procedure which accounts for the fi
range of the nuclear forces and produces optical potentia
ranges somewhat more realistic than the point particle d
sities. In the case of thed-11C optical potential, the param
eter k is determined in a similar way, replacing the prot
charge radius by the charge radius of the deuteron.

The optical potentials take the following form:

Vj~r !52Vj~0!S 11
4

3
k j

2r 2De2k j
2r 2

~ i 1a j ! ~ j 5p,d!.

~22!

The values of parameters used in our calculations are li
in Table I.
f
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The phasex(bW ,z) entering Eq.~14! has been calculated a
the eikonal approximation by using Eq.~12! in which the
massesm have been replaced by energiesw, as stated above
In principle, use should be made of reduced energies, m
in the same way as reduced masses are entering the S¨-
dinger equation of the two-body problem. However, sin
we ignore center-of-mass corrections in the nuclear w
functions, this effect is neglected here.

Besides the nuclear phase, the Coulomb contribut
should be added. Using the potential generated by a unif
charge distribution screened at atomic distances lead
trivial integrals. As a result of the small charges involved
the reaction, the high incident energy, and the large fin
transfer momentum, the Coulomb interaction has a mi
effect on the amplitude and will be omitted.

Our primary aim in this section is to discuss the effect
l. At this stage, it is also very important to compare th
effect to the approximation introduced by the eikonal prop
gation in order to establish the hierarchy among this t
corrections. To this end we have extended the calculatio
x(bW ,z) by including a first order correction@10,11#, which in
the present case reads

x1~bW ,z!52
wp

2

\4kp
3S 11lb

d

d~lb! D E2`

z

Vp
2~lbW ,z8!dz8

2
wd

2

\4kd
S 11b

d

dbD E
z

`

Vd
2~bW ,z8!dz8. ~23!

As far as the transition matrix element~14! is concerned,
the integration over the angular variablew is straightforward
and we are left with

Tlm~q!5 i mA2pE
0

`

Jm~qb!bdb

3E
2`

`

eiq izf~r !Q lm~q!eix~b,z!dz, ~24!

whereQ lm has to be calculated by using cosq5z/Az21b2.
The results of the present calculations are displayed

Figs. 1 and 2, whereuT00(q,qi)u2, uT10(q,qi)u2, and
uT11(q,qi)u2, respectively, are plotted againstq, for l 5 1.0
andl5kd /kp ; here,l51.26. Calculations at zero order a
limited to x0; those at first order include alsox1. They con-
firm the earlier findings of Ref.@8#. In brief, the effect ofl is
to change both the diffractive character and the magnitud

TABLE I. Optical potential parameters for the12C(p,d)11C re-
action at 800 MeV@Eq. ~23!#.

Vp(r ) Vd(r )

V(0) 56.125 MeV 24.15 MeV

k 0.5935 fm21 0.4545 fm21

a 20.2 20.2
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57 3241GLAUBER MODEL FOR TRANSFER REACTIONS
the differential cross section. The increase is spectacula
large angles, reaching at certain places several order
magnitude. This behavior is well illustrated by Fig. 3, whi
displays the ratiosuTlm(l5kd /kp)u2/uTlm(l51)u2. For the
1s state, the effect is already manifest atq50, whereas forp
states it becomes noticeable only beyond 0.7 fm21.

Another striking feature is the fact that the influence ofx1
is small, independent ofl, and does not manifest strongly i
the diffraction pattern. Thus both effects are additive, and
eikonal approximation is certainly sufficient over the ran
of momentum transfer considered in this work.

It is very tempting to try a systematic expansion arou
l51. In order to investigate the potentiality of such an e

FIG. 1. (p,d) reaction on 12C at 800 MeV incident energy
uT00u2 in arbitrary units is plotted against the magnitude of the tra
verse momentum transferq. For l51, the dotted line correspond
to the eikonal approximation and the dot-dashed line includes
first order correction to the eikonal approximation. Forl5kd /kp ,
the dashed line corresponds to the eikonal approximation and
solid line includes the first order correction.

FIG. 2. Same as Fig. 1 foruT1mu2 with m50,1.
at
of

e

d
-

pansion, we first simplify the optical potentials, setting

wd

kd
Vd5

wp

kp
Vp52

i

2
sr0e2b2r 2

, ~25!

with r05Nb3/pAp, N being the number of nucleons i
the target nucleus. Picking up the neutron in a 1s state, we
have, up to irrelevant factors,

T00~q!5E bdbJ0~qb!e2g[ t0~b!1t0~lb!]

3E
2`

`

dzeiq izeg[ t0~b!2t0~lb!]erf~bz!F00~b,z!,

~26!

where

t0~b!5e2b2b2
, g5

s

4
r0

Ap

b
. ~27!

The Taylor expansion is readily obtained:

T00~q!5T~0!~q!1 (
n51

`
~l21!n

n!
T~n!~q!, ~28!

where

T~0!~q!5E bdbJ0~qb!e22gt0~b!E
2`

`

dzeiq izF00~b,z!

~29!

and

-

e

he

FIG. 3. Ratios(l)/s of uTlmu2 calculated forl5kd /kp with
respect tol51, for the three cases displayed in Figs. 1 and 2. T
dotted line corresponds to the eikonal approximation; the solid
includes the first order correction.
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3242 57F. CARSTOIU, C. LAZARD, AND R. J. LOMBARD
T~n!~q!5(
j <n

E bdbJ0~qb!e22gt0~b! f n j~b!

3E
2`

`

dzeiq izgj~z!F00~b,z!, ~30!

wheregj (z)5@11erf(bz)# j and

f 11~b!52gb2b2t0~b!, f 21~b!5 f 11~b!~122b2b2!,

f 22~b!5 f 11~b!2, f 31~b!5 f 11~b!2b2b2~2b2b223!,

f 32~b!53 f 21~b! f 11~b!, f 33~b!5 f 11~b!3.

This expansion is appealing but unfortunately (l21)!1 is
not sufficient as a convergence criterion. For instance,
strength constantg plays also an important role. This can b
checked from the first two contributions: starting from
spherically symmetric bound state wave function,T(0) has no
imaginary part. The modulation by the mixed parity functi
g(z) automatically induces an imaginary component inT(1)

and, simultaneously, in theb variable, whereas inT(0) the
optical potential produces a monotonic increase of the ph
factor from nearly zero to unity, the functionf n j(b) brings
enhancement in the nuclear surface, an enhancement w
get sharper with higher orders.

Once these two features are taken into account, the s
converges reasonably well. Nevertheless, in practice, we
it necessary to go up toT(3) to come close to the exact valu
for l51.26, as illustrated by the curves of Fig. 4. Forl
51.1 the agreement is met only withT(2). Consequently we
conclude that an expansion aroundl51 does not facilitate
the task. Although, as stated above, this conclusion depe
on g and may be somehow better for a weak interaction
underlines the fact that thel effect cannot easily be est
mated perturbatively.

FIG. 4. Taylor expansion ofuT00u aroundl51 ~we recall that
l51.26). Long dashed line:T(0) ~note that the ImT(0)50). Dot-
dashed line:T(0)1T(1). Dotted line:T(0)1T(1)1T(2). Dashed line:
T(0)1T(1)1T(2)1T(3). The solid line corresponds to the exa
value.
e

se

ich

ies
d

ds
it

IV. „p,d… REACTION ON HALO NUCLEI

We shall consider in this section the pickup of a neutr
very weakly bound to a core. This situation can be identifi
with the ground state of single neutron halo nuclei. The
last are characterized by a neutron separation energy, w
is an order of magnitude smaller than the average bind
energy per particle. As a consequence the description of s
systems as two-body problems is justified, at least in a fi
approximation. Note that the same situation could occur
the spectrum of an ordinary nucleus near the threshold
neutron emission.

To fix ideas and perform practical calculations, we sh
study the (p,d) transfer reaction on11Be, which is more or
less the archetype of halo nuclei.

The formalism is basically the same as the one prese
in the preceding section, up to a few modifications includi
c.m. corrections. On the one hand, we denote byjW5(bW ,s)
the coordinate of the neutron with respect to the center
mass of the10Be core, whereasrW5(bW ,z) is the coordinate of
the incident proton. The impact parameterbW is measured
from the c.m. of11Be.

Furthermore, the halo neutron binding energy is so we
that it can undergo only a single interaction, leading eithe
dissociation or transfer. Consequently the phase factor of
entrance channel involves only a proton-core optical pot
tial. Assuming as before a zero-range transfer profile fu
tion

gdpS bW 2
1

11«
bW D5D0d~2!S bW 2

1

11«
bW D , ~31!

we end up with

Tlm~q!5D0E eiqW •bWd2b

3E
2`

`

eiq izeix0~bW ,z!F lm„~11«!bW ,~11«!z…dz.

~32!

Here we have«50.1, the mass ratio between the halo ne
tron and the10Be core. On the grounds of the results of t
preceding section we restrict the calculation of the distort
phase to the eikonal approximation. It is given by

x0~bW ,z!52
vp

\2kp
E

2`

z

Vp„~l1«!bW ,z8…dz8

2
vd

\2kd
E

z

`

Vd~bW ,z8!dz8, ~33!

whereVp andVd are the proton- and deuteron-10Be optical
potentials. According to Newton@12#, we have introducedv,
the equivalent of the reduced mass:

v5
w1w2

w11w2
. ~34!
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As in the preceding section, the optical potentials are c
structed from the KMT prescription~20!. The core is de-
scribed by its one-body density

rcore~r !5
2k3

5pAp
~11k2r 2!e2k2r 2

, ~35!

normalized to 10 particles. We takek250.3556 fm22, cor-
responding to a charge rms radius of 2.43 fm for10Be, in
agreement with the compilation of data by Angeli@16#. The
two optical potentials read

Vj~r !52Vj~0!~11k j
2r 2!e2k j

2r 2
~ i 1a j ! ~ j 5p,d!.

~36!

The values of the parameters used in the calculations
listed in Table II.

Besides the influence ofl, which we want to check in this
particular situation of the transfer of a loosely bound partic
our aim is to study the sensitivity of the differential cro
section to the radial shape of the halo wave function.
assume the halo neutron to be in al 50 state with respect to
the core. In order to investigate a sufficiently large functio
space, the following four cases have been selected.

~1! A difference of two Gaussians~no node! G0

F~jW !5Fm2

p G3/4F11
1

3A3
2

1

A2
G21/2

~e2m2j2/22e23m2j2/2!,

~37!

with m250.0504 fm22.
~2! A difference of two Gaussians with a nodeG1,

F~jW !5Fm2

p G3/4F11
B2

3A3
2

B

A2
G21/2

~e2m2j2/22Be23m2j2/2!,

~38!

with m250.0335 fm22 and B52.80, this last being deter
mined in order to get orthogonality with a single Gaussian
rms radius of the core size.

~3! and ~4! are numerical solutions of the Schro¨dinger
equation for a Woods-Saxon potential, the eigenvalue be
equated with the neutron separation energy of11Be, namely,
0.5 MeV:WS0 ~no node! andWS1 ~one node!. In the case of
WS1, the size of the potential is the one expected to desc
10Be, so that this wave function is orthogonal to the 1s neu-
tron state of the core. The antisymmetry problem is igno
in the case ofWS0, which is chosen essentially for its radi
dependence.

TABLE II. Optical potential parameters for the11Be(p,d)10Be
reaction at 800 MeV@Eq. ~37!#.

Vp(r ) Vd(r )

V(0) 56.95 MeV 24.24 MeV

k 0.5964 fm21 0.4421 fm21

a 20.2 20.2
-

re

,

e

l

f

g

e

d

These four wave functions have the same rms rad
namely, 6.6 fm, in agreement with the experimental va
@17#. They are displayed in Fig. 5.

The results of present calculations ofuT00(q,qi)u2 are dis-
played in Figs. 6 and 7, for the Gaussian and the WS ca
respectively. The first obvious conclusion is the strong infl
ence ofl ~herel51.255) on the diffractive pattern. Thus, i
spite of the fact that the halo wave function extends o
large distances, with an important fraction outside the e
cient range of the optical potentials, this effect cannot
neglected. On the other hand, the sensitivity of the differ
tial cross section to the wave function is encouraging. Ev
below q52 fm21, the difractive patterns are differen
enough to be selective. It means that owing to a reac
mechanism which is well under control, intermediate en

FIG. 5. The four neutron halo wave functions used in t
present work. See text.

FIG. 6. (p,d) reaction on11Be at 800 MeV incident energy
uT00u2 in arbitrary units is plotted againstq for the two halo wave
functionsG0 andG1 ~see text!. The dashed lines correspond tol
51, the solid lines tol5kd /kp .
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gies transfer reactions constitute indeed a powerful too
study halo wave functions.

Another interesting feature is the dependence
uT00(q,qi)u2 on the rms radius of the halo wave function. T
illustrate this point, we display in Fig. 8 calculations pe
formed by usingG0 for three different values of the rm
radius, namely, 4.6, 6.6, and 8.6 fm. On the one hand,
find uT00(q)u2 to decrease strongly with the radius. On t
other hand, the diffractive nature of the scattering is w
characterized by the shift of the minima towards lowerq
values as the radius increases.

The decrease of the transfer cross section with the
radius of the halo wave function differs qualitatively fro

FIG. 7. Same as Fig. 6 for the two halo wave functionsWS0 and
WS1 ~see text!.

FIG. 8. (p,d) reaction on11Be at 800 MeV incident energy
Sensitivity of uT00u2 to the rms radius of the halo wave functio
Use is made here of the wave functionG0 with the range paramete
adjusted tô r 2&1/2 5 4.6 fm ~dashed line!, 6.6 fm ~solid line!, and
8.6 fm ~dotted line!.
o

f

e

ll

s

the behavior of the dissociation cross section. It would
very instructive to understand this situation on the grounds
a simplified model, similar to the one developed in Eq
~28!–~30! taken atq50. Settingl51, which is permissible
for the present purpose, we are left withT00

(0)(0). In order to
obtain analytical expressions we replacee22gt0(b) by two
simple forms

~a! e22gt0~b!→erf~ab!,

with a50.32 corresponding to erf(ab)50.5 atb51.5, and

~b! e22gt0~b!→u~b02b!,

with b52.0 fm. Though not precise, these two forms a
sufficient to simulate the strong absortion of the eikon
phase at low impact parameters and to give insight into
problem. By using theG0 wave function, we get, up to ir-
relevant factors,

~a! T00
~0!~0,qi!}^r 2&3/4FexpS 2

^r 2&

4.4~11«!2
qi

2D
3A 2^r 2&a2

2.2~11«!21a2^r 2&

2
1

3A3
expS 2

^r 2&

13.2~11«!2
qi

2D
3A 2^r 2&a2

6.6~11«!21a2^r 2&
G ,

~b! T00
~0!~0,qi!}^r 2&3/4FexpS 2

^r 2&

4.4~11«!2
qi

2D
3expS 2

4.4~11«!2

^r 2&
D

2
1

3A3
expS 2

^r 2&

13.2~11«!2
qi

2D
3expS 2

13.2~11«!2

^r 2&
D G .

Use is made here ofm252.2̂ r 2&21. From a few numerical
estimates, it is easy to become convinced that in both ca
the decrease ofT00

(0) is merely dictated by the second facto
It suggests that, in the case of halo nuclei, transfer react
on heavier nuclei like (3He,4He), involving smallerqi ,
could be more efficient having larger cross sections.

V. CONCLUSIONS

The present work deals with (p,d) transfer reactions for-
mulated in the Glauber approach. If the incident energy
high enough that the eikonal approximation is valid, the
action mechanism appears to be well under control, provi
that the change in the impact parameter at the transition
tex is taken into account. This effect is not negligible a
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57 3245GLAUBER MODEL FOR TRANSFER REACTIONS
cannot be easily treated perturbatively. On the specific
ample of (p,d) on 12C at 800 MeV incident energy, at larg
momentum transfer, this effect brings corrections
uTlm(q,qi)u2, reaching up to two orders of magnitude. B
comparison, at this energy, contributions arising from n
eikonal propagation play a minor role. Interference with t
Coulomb phase, on the other hand, has no decisive im
tance.

As far as halo nuclei are concerned, together with a la
longitudinal momentum transfer, the very small separat
energy constitutes a strong argument in favor of single s
transfer reactions, which may not hold in general. We fi
the differential cross section to be rather sensitive to the
dial shape of the halo wave function. Thus, the intermed
energy (p,d) reaction could be a useful tool to measure t
halo wave function, to the extent that the optical potentials
both the entrance and exit channels are well determined
advocated by Wilkin in his quoted paper@1#, this process has
the priviledge of testing the wave function at large momen
which is always a challenging problem. Furthermore, sin
the magnitude of the cross section is found to be decrea
strongly with the longitudinal component of the momentu
s.

r

x-

-
e
r-

e
n
p

d
a-
te

n
s

,
e
ng

transfer and the radius of the halo wave function, (3He,4He)
processes may be more advantageous than the (p,d) reac-
tion, except that multiple step processes may spoil the an
sis in the case of lowqi .

Finally, we emphasize that the use of optical potentials
the entrance and exit channels is more efficient than mic
scopic calculations based on the nucleon-nucleon pro
functions. This is due to the fact that above the pion prod
tion threshold,D production is rapidly increasing, giving ris
to a series of complicated processes in the intermediate s
of the particle propagation. The optical potential, when tak
from experiment, will automatically sum the correspondi
diagrams.
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