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Glauber model for transfer reactions
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We investigate two aspects of the Glauber model fod] transfer reactions on nuclei. The first one is
connected with the violation of angular momentum conservation at the transition vertex inherent to straight line
propagation. This can be cured by introducing a different impact parameter in the entrance and exit channels.
We give an estimate of this effect in the case pfd) reactions on'’C. Second, the formalism is applied to
single neutron halo nuclei. We study the sensitivity of thed) cross sections to the radial dependence of the
halo wave function and to its rms radiy§0556-28138)05306-(

PACS numbe(s): 25.40.Hs, 24.10.Eq, 21.10.Pc, 27.20.

. INTRODUCTION A=Kk /k;,

Transfer reactions have been widely used to investigatdamely, to the ratio of the outgoing and incoming particle
nuclear structure. At low energy, the data analysis is usualljnomenta. A crude estimate has proved that indeed this effect
performed by means of distorted-wave Born approximatioras a noticeable influence on the shape and magnitude of the
(DWBA) techniques or coupled channel calculations. At in-differential cross section ofpd) reactions at intermediate
termediate energies, the hope of learning more about nuclegnergieq8].
structure once the reaction mechanism is under control has Our first aim is to revisit this question and to give a better
been emphasized by Wilkiil]. He showed the triangular estimate of the influence of. We shall also compare this
graph model to be quite successful in connecting differengffect to corrections arising from noneikonal propagation in
transfer reactions. the entrance and exit channels.

To our knowledge, little effort has been made to formu- Furthermore, because of the current interest in halo nu-
late the approach in the impact parameter representation. ®fei, we will consider the case of thepd) reaction on a
particular interest in this domain is the paper by Shepard antirget made of a neutron very weakly bound to a core. Halo
Rost[2] dealing with (,d) and d,p) reactions at 800 MeV. nuclei are very unstable and are known to be characterized
Starting from the eikonalization of the zero-range DWBA by large dissociation cross sections, which increase with the
amplitude, they developed an analytical expression similar tquare radius of the halo wave functif®. On this naive
that of Amado, Dedonder, and Lefig] devoted to elastic ground, we expect also a large amount of transfer reactions.
scattering. Their approach allows us to understand the saliedus it is interesting to check their potentialities.
and systematic features of transfer reactions at intermediate The paper is organized as follows. In Sec. II, the basic
energies. Recently, a simplified eikonalized DWBA transferformulas are given. Section Ill is devoted tp,{) reactions
amplitude has been used by Baymedral. [4] to study finite  on *°C as a test of the importance of the corrections advo-
range effects, a point of importance in the case of heavy iogated in this Introduction. In Sec. IV, we discuss tiged)
transfer reactions. reaction on'!'Be taken as the archetype of single neutron

The purpose of the present work is to provide a formula-halo nuclei. Conclusions are drawn in Sec. V.
tion of the (p,d) reaction in the Glauber model. The exten-
sion from the usual elastic scattering prescription to pro- Il. MODEL
cesses involving a nuclear transition is straightforward. The ) ) )
major difficulty is the fact remarked a while ago by For- In the Glaut_>er r_nod_el, the differential cross section for the
manek[5] that the Glauber model does not preserve time™(P.d)B reaction is given by
reversal and unitarity as soon as longitudinal momentum
transfers(mass transferoccur in the reaction. This traces 1 WoWa  WqWg Kg R
back to imposing straight line propagation, which violates qa- RITRE - k—SZ |T|m(q,q”)|2,
classical angular momentum conservation at the transition (2mwh )" WpTWa WgTWp Kp “m
vertex. As long as the stripping and pickup reactions are @
dominated by a two-channel process, this can be remedied
a simple way, by allowing a different value of the impact
parameter in the entrance and exit channélg] propor-
tional to

Mhere s contains spin and possibly spectroscopic factors.
The neutron is assumed to be picked from a quantum state of
angular momentunh and projectionm with respect to the

core (residua) nucleus. The quantity; = \/mj2+ ﬁzk]-2 is the
total energy of the particlg(p, A, d, or B); k, andky are
*Permanent address: Department of Fundamental Physics, Insﬁhe momentum of the proton and deuteron, respectively. The

tute for Physics and Nuclear Engineering, Magurele-Bucharesf @Xis is directed along the incident momenti The total
MG-6, R-76900, Romania. momentum transfeQ@ =k, —Ky has transverse and longitudi-
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nal componentﬁ andqy, respectively. Note that we shall > > - 2
adopt the small angle approximation. In this case, the longi- Ko 'XA)_perm z,~z, ) 0z,-27,)
tudinal component is kept to its minimal value

X 9(Zi2_2i1)5(5,>2iA)' : 'S(Biiil),

qj=kp—Kq, (5)
and the scattering angle is related to the norm of the perpenwvhere the sum runs over all permutatiofis, . . . ,ia} of
dicular momentum transfer, 1,... A.

A few well-justified assumptions greatly reduce the com-
plexity of the total profile function. Because of the large
momentum transfer at each transition vertex, we retain only

terms linear iny9P. We neglect the spin dependence of the

We neglect also nucleon binding energies, which could be ofqfiles functions. In such a case all terms commute and we
importance in actual cases, while calculating kinematicakq up with

guantities. The transition matrix element is given by

g=Kkgsind.

T9P(B,q) = (We(Xe, - -+ Xi1.Xis1s - - - Xn)|

T,m(G,q)= | €9PTdP(B5,q,)d?b, 2 . ) )
() fe (o) @ KT (B Ry 5o [ Waes . Xn))e (6)

wherede(B,q”) is the total profile function. It is obtained where
from averaging over the nuclear coordinates of the time or-
dered product of the elementary profile functions. In a two-
channel approach, the matrix describing the interaction of

the propagating particle with each target nucleon at position

x=(s,z) is written as a X 2 matrix in the impact parameter

L(b,X;- - xa)=2 ¥P(b—s))e'
I

representation ] [1-9%%b—sp) 6(z—z)
k#1
SP(b-s)  ASPUb-s)e I —Y*P(\b—8) 0(z—2)]. )
b,x)= 5 5 : _ _ .
S(b.x) lsdp(g_g) eld|z de(g_*) Neglecting center-of-mass corrections, and assuming a
A A A naive shell model picture of the nucleus, we write

- -

The factorh =kq4/k, takes care of the conservation of the WaA(X1,s o Xa) = PR(Xgs o v X1 X1y - - - Xa)
classical angular momentum at the transition vertex, R
X (I)/m(xi)-

Here <b,m(§i) is the wave function of the captured par-
ticle. We consider the reaction to take place on a single
As explained ir(6], use is made here of the ambiguity in the nycleon. More precisely, the pickup process is supposed to
definition of the impact parameter, which can be defined eipe specific to a single shell. Consequently we shall drop the
ther in the entrance or in the exit channel, to satisfy thesym over the index in Eq. (7), the possible multiplicity of

classical conservation law. o equivalent nucleons being taken into account in the faStor
We recall that the submatricedI(b) are related to the of Eq.(1). Under these assumptions, the total profile function
corresponding profile functions by becomes

Ki(h)=&.: — v i(b . aoa -

SHBI= A= 7B, @ rosg)- [ dsaayrB-)emb .6 )]

k#i
In the set of indicegk,}, the latter represent the initial state
of the propagating particle, the former the final state. Conse- XJ d2s.d S 2 1=v9%B—3)0(z— 2.
quently, in Eq.(3), SPP and S" correspond to proton and Azp(S 21—y (b =80 02— 2)
deuteron elastic scattering, whi® and S%° describe the
(d,p) and (p,d) interaction vertices, respectively.

The time-ordered product of the individu&lmatrix must R
be taken with care, since in general ®enatrix elements do wherep(x) is the single particle density. Instead of dealing
not commute. The appropriate expression of the tBtala-  with a microscopic calculation of the elastic part, it is very
trix for fixed nucleon positions is given by appropriate to introduce the optical limit

—YPP(\b—S) 8(zi— 2], (8)
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de(ﬁ’q\\) which is justified in view of the aims of the present works.
Analysis of actual data may require a finite range profile
function. It will increase the dimensionality of the integration

=j d?sdzy®P(b—s)e'9D . (s,2) to be performed numerically but it is not expected to modify
qualitatively our conclusions. Thus the final expression we
. .. are studying is given by

xexp(—Af dzs’dz’p(s’,z’)ydd(b—s’)e(z’—z))

Tim(4,0)) = Do J d’beld® j dzd9%e >, (5,2).

Xex;{ —AJ dzs’dz’p(§’,z’)ypp()\5—§’)0(2—2’)).
(14

©)

The exponentiation allows us to introduce in a natural wayAPart from the correction factox, Egs.(12) and (14) are

the optical phase in the entrance and exit channels by settirffmilar to the eikonalized DWBA expression used by Shep-
ard and Ros{2]. Note, however, that our kinematics differ

. . R slightly from the one used by these authors.

AJ d%s'p(s’,2)y*%b-s')=—ixy(b,2), (10 We shall end up this section with the following remark.
At the level of the elementary transition profile functioh,
invariance requires th§6]

Af d?s'p(s’,2')yPP(Nb—S")=—ix,(b,2)). (1D

> o

01
At the lowest order, the total phasg(b,z)=yx,(b,2) Vpd(b)ZPVdp( ) (15

+Xd(6,z) can be taken as the eikonal approximation

R R m. [z R The profile function analogous to E€) for the (d,p) reac-
x(b,2)=xo(b,2)=— ﬁz_lSj Vp(Ab,z")dZ’ tion is given by
p — 00
my (= - IP(b,q))
———| Vy4(b,z')dZ'. (12 '

P da(b,z")
Correctio_ns for noneik(_)nal propagation can be included in a_— if dZSdZ’ydp(E_g) equz(Dl*m(gy_Z)
systematic way following Wallac€10] or Waxmanet al. \? A
[11]. -

By identifying V,, and V4 with the measured optical po- _ 2t ot 12 iy dd b T .

tential of proton-nucleu®\ and deuteron-nucleuB elastic xexp —A| d's'dz’p(s’,—2")y N s'|0(z'~2)

scattering, this procedure has the advantage of summing up a

number of diagrams not explicitly written in E(). In par-

ticular the contributions involving pion degrees of freedom

in the intermediate steps of the multiple scattering are auto-

matically included. According to Ed8), the nucleon under-

going the transition is singled out, and, in the entrance chan-

nel, the optical potential should correspond to elasticvherez as been changed tez as well asz’ to —z'.

scattering of the incoming proton colliding with th& € 1) In the zero-range limif13) under the constraintl5), the

remaining nucleons. Whereas such a subtlety is irrelevant ted,p) transition profile function becomes

the point we shall raise in the next section devotedpa)

on 1C, it does matter in the case of halo nuclei and will be 5

taken into account. ' S yPYB—s8)= iDO(S(Z)(——§) _ (17)
At intermediate and high energies, it is customary to A2 A

simulate a relativistic wave equation by replacing in the

Schralinger equation the mass by the energy

— JmZ+ #2KZ, as recommended by Newton a while 444]. Assuming spherical symmetry, thae nuclear densi_tjes depend-

We shall adopt this procedure in this work, with the consedd ©only on the magnitude ok, we have p(s’,—2')

quence of changing by w in the calculation of the eikonal =p(s’,z"), and furthermore®j (s,—2z)=®(s,2). It is

phase. then easy to check that the total profile functions satisfy the
In order to keep the numerical effort at a reasonable leveliime reversal invariance condition

we approximate the transition profile function by a zero-

range interaction

xexp(—Af dzs’dz’p(§’,—z')ypp(5—§’)0(z—z’)),

(16)

Pd(b )=irdpE (18)
)= 2 di) -

y¥P(b—s)=Dy8?(b—s), (13)
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The validity of this relationship is not restricted to the use of TABLE I. Optical potential parameters for tHéC(p,d)*'C re-
zero-range transition profile functions but is quite general, agction at 800 MeMEq. (23)].

can be verified by comparing Eq®) and (16).

V(1) Vq(r)
lll. *C(p,d)*'C EXAMPLE V(0) 56.125 MeV 24.15 MeV
As a practical example to test the influence of the faxtor B B
K 0.5935 fm'! 0.4545 fm'!

on the transition matrix elemeiit4), we consider [f,d) re-

actions on?C at an incident energy of 800 MeV. The neu-
tron will be picked up from a & or 1p shell model state of —0.2 —02
2C (1=0,1), the radial dependence of the wave function

being taken from the harmonic oscillator .
The phase((b,z) entering Eq(14) has been calculated at
. o7 2 - the eikonal approximation by using E¢L2) in which the
Dy(r)= 2—14 zarje 2Y (9, @) massesn have been replaced by energiesas stated above.
77 In principle, use should be made of reduced energies, much
1 in the same way as reduced masses are entering thé-Schro
= (1O (Y) —€'m¢ (199  dinger equation of the two-body problem. However, since
2 we ignore center-of-mass corrections in the nuclear wave
functions, this effect is neglected here.

(We omit the principal quantum numbey since we are deal- Besides the nuclear phase, the Coulomb contribution
ing only withn=1 in our applications The parametet is  should be added. Using the potential generated by a uniform
related to the size of°C, namely,e®=0.3522 fm 2. charge distribution screened at atomic distances leads to

Although the p-*2C optical potential could be derived trivial integrals. As a result of the small charges involved in
from experimental elastic scattering data, in the absence ahe reaction, the high incident energy, and the large finite
d-''C data we adopt for both channels the Kerman-transfer momentum, the Coulomb interaction has a minor
McManus-ThaleKMT) prescription[13], which is known  effect on the amplitude and will be omitted.
to yield an excellent fit to elastic proton-nucleus elastic scat- Our primary aim in this section is to discuss the effect of
tering cross sections at intermediate enerd$15. As- . At this stage, it is also very important to compare this
suming zero-range nucleon-nucleon interactions for simpliceffect to the approximation introduced by the eikonal propa-

ity, the optical potentials are given by gation in order to establish the hierarchy among this two
5 corrections. To this end we have extended the calculation of
V(r)=— ﬁ_ Ea(i +a)pa(r). (20) x(b,z) by including a first order correctidri0,11], which in
2 Ejap the present case reads
We neglect spin degrees of freedom and average over the 5

isospin. The parameters and o are the strength and the
Re/Im ratio of the proton-nucleon and deuteron-nucleon in-
teractions, respectively. The target nucleus is described by its

d z R
1+xb—)f V2(\b,z')dZ

B,2)=—

one-body density, assumed to be spherically symmetric, w5 d ®
Y Y P sy -4 1+b—)f V3(b,z')dz'. (23)
3 ﬁ4kd db z
K 2.2 4
pa(r)=ng e Tl 1+ =k%r?|, (22)
77\/; 3 As far as the transition matrix eleme(itd) is concerned,

the integration over the angular variakgds straightforward
and normalized to the number of particles. The same expresmd we are left with

sion is used for both C isotopes. Proton and neutron densities
are supposed to be equal. The parametés fixed by the

charge rms radius, a procedure which accounts for the finite T|m(q)=im\/ﬁf Jn(gb)bdb

range of the nuclear forces and produces optical potentials of 0

ranges somewhat more realistic than the point particle den- ®

sities. In the case of theé-*'C optical potential, the param- Xj eUZh(r)0,,(9)exP2dz, (24

eter « is determined in a similar way, replacing the proton
charge radius by the charge radius of the deuteron.
The optical potentials take the following form: where®,,,, has to be calculated by using dbsz/\/zZ>+ b?.
The results of the present calczulati|ons are (ldzisplayed in
4 29 . . Figs. 1 and 2, whergToo(q,9)|% |T1o(g,qp)|% and
Vi(r)= _VJ(O)( 1+§Kj2r2>e (it e)  (j=p,d). | T11(a,q)|% respectively, are pIoHtted agairqstfoﬂ A =1.0
(22) and\ =kqy/ky; here,\ =1.26. Calculations at zero order are
limited to x; those at first order include algg. They con-
The values of parameters used in our calculations are listefirm the earlier findings of Ref8]. In brief, the effect oh is
in Table I. to change both the diffractive character and the magnitude of
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FIG. 1. (p,d) reaction on*C at 800 MeV incident energy. FIG. 3. Ratioo(A\)/o of |T)|? calculated forh =kqy/k, with
| Togl2 in arbitrary units is plotted against the magnitude of the trans+espect to\ = 1, for the three cases displayed in Figs. 1 and 2. The
verse momentum transfer For A=1, the dotted line corresponds dotted line corresponds to the eikonal approximation; the solid line
to the eikonal approximation and the dot-dashed line includes th@ncludes the first order correction.
first order correction to the eikonal approximation. Rer Ky /Ky,

the dashed line corresponds to the eikonal approximation and thgansion, we first simplify the optical potentials, setting
solid line includes the first order correction.

the differential cross section. The increase is spectacular at _Vd:%\/ =— _Upoe*ﬁ’zrzl (25)
large angles, reaching at certain places several orders of Kq
magnitude. This behavior is well illustrated by Fig. 3, which
displays the ratio$Tim(\ =Kq4/kp)|?/| Tim(N=1)|2. For the  with po=NpB%/ 77, N being the number of nucleons in
1s state, the effect is already manifestat 0, whereas fop ~ the target nucleus. Picking up the neutron insastate, we
states it becomes noticeable only beyond 0.7 ¥m have, up to irrelevant factors,
Another striking feature is the fact that the influenceyef
is small, independent of, and does not manifest strongly in
the diffraction pattern. Thus both effects are additive, and the ~ Too(d) = f bdbJy(gb)e ")+ o))
eikonal approximation is certainly sufficient over the range
of momentum transfer considered in this work. *
It is very tempting to try a systematic expansion around X f
A=1. In order to investigate the potentiality of such an ex-

dzddzeMto(®)~to\b)lef(An) g (b 7)),

— o

(26)
N
- L where
- 10'1;
E "C(p,d)”C \/_
2 _ a2p2 g T
U S to(b)=e AP, y= 2P g (27)
10'3:— ™
E 1 (x10%) The Taylor expansion is readily obtained:
'L
E * (A_l)ﬂ
Tl @ =T+ 2 ——T"@, (@29
. B where
10” ' -
T Y TO(q)= J bdbJ(gb)e 27 f dzd%d,y(b,2)
10 b b b b b by B NG [0 —

0 0.5 1 15 2 2.5 3 35 4 45 5

g (fm™)
FIG. 2. Same as Fig. 1 fdil ;|2 with m=0,1. and

(29
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IV. (p,d) REACTION ON HALO NUCLEI

We shall consider in this section the pickup of a neutron
very weakly bound to a core. This situation can be identified
with the ground state of single neutron halo nuclei. These
last are characterized by a neutron separation energy, which
is an order of magnitude smaller than the average binding
energy per particle. As a consequence the description of such
systems as two-body problems is justified, at least in a first
approximation. Note that the same situation could occur in
the spectrum of an ordinary nucleus near the threshold of
neutron emission.

To fix ideas and perform practical calculations, we shall
study the p,d) transfer reaction ort'Be, which is more or
less the archetype of halo nuclei.

The formalism is basically the same as the one presented
in the preceding section, up to a few modifications including

Co b b b b L L -
0 05 1 15 2 25 3 35 4 45 5 c.m. corrections. On the one hand, we denoteéby(3,0)
q (fm™) the coordinate of the neutron with respect to the center of
0 —)_ > . -
FIG. 4. Taylor expansion dfToo around\=1 (we recall that mas? o.f the'"Be core, Whereas_(b’z) IS th? (.:oordmate of
A=1.26). Long dashed lineT© (note that the IM@=0). Dot-  the incident proton. The impact parameteris measured

dashed lineT©@ +T®. Dotted line:T®+TM+T@, Dashed line: from the c.m. of'Be.

TO+TD+T@ 4+ TG, The solid line corresponds to the exact  Furthermore, the halo neutron binding energy is so weak

value. that it can undergo only a single interaction, leading either to
dissociation or transfer. Consequently the phase factor of the

IRe T, |, lIm T, |

()i entrance channel involves only a proton-core optical poten-
T<”)(q)=]§<:n J bdbJ(gb)e 2P fM(b) tial. Assuming as before a zero-range transfer profile func-
h tion
X f dz€ig (2)Doq(b,2), (30

(31)

: 1z .1
4ol p— —— 3| =D.6®@| b—
_ _ 4 (b 1+8) Dyd (b oA
whereg!(z)=[1+erf(8z)]' and

d ith
fll(b):ZyBZbZto(b), f21(b):fll(b)(1_2,82b2), we end up wi

f24(b)=f14(b)2,  f3%(b)=f}(b)25?p*(25°0?-3), Tim(d)=Do f e"°d%

3%(b)=3f#(b)f*(b), 3¥b)=f"(b)3. % .
xf ezexo® P, ((1+¢&)b,(1+¢)z)dz.

This expansion is appealing but unfortunately{(1)<<1 is -

not sufficient as a convergence criterion. For instance, the (32)

strength constany plays also an important role. This can be

checked from the first two contributions: starting from apare we haves=0.1. the mass ratio between the halo neu-
spherically symmetric bound state wave functioi®) has no 5 and thel®Be core. On the grounds of the results of the
imaginary part. The modulation by the mixed parity function jreceding section we restrict the calculation of the distorting

g(z) automatically induces an imaginary componenf phase to the eikonal approximation. It is given by
and, simultaneously, in the variable, whereas iT(® the
optical potential produces a monotonic increase of the phase
factor from nearly zero to unity, the functici?i(b) brings Yo(B,2)=— &JZ V(A +2)B,2')dZ
enhancement in the nuclear surface, an enhancement which ﬁzkp —w P
get sharper with higher orders.

Once these two features are taken into account, the series L VI
converges reasonably well. Nevertheless, in practice, we find NE Va(b,2')dZ', (33
it necessary to go up ) to come close to the exact value d
for A=1.26, as illustrated by the curves of Fig. 4. Ror
=1.1 the agreement is met only wif{?). Consequently we
conclude that an expansion aroune-1 does not facilitate
the task. Although, as stated above, this conclusion depen
on y and may be somehow better for a weak interaction, it
underlines the fact that the effect cannot easily be esti- w= _
mated perturbatively. Wi+ W,

whereV,, andV are the proton- and deuterdfiBe optical
potentials. According to Newtdi2], we have introduced,
ége equivalent of the reduced mass:

WiW5

(34



57 GLAUBER MODEL FOR TRANSFER REACTIONS

TABLE II. Optical potential parameters for théBe(p,d)'°Be
reaction at 800 MeVEg. (37)].

V(1) Vy(r)
V(0) 56.95 MeV 24.24 MeV
K 0.5964 fm?! 0.4421 fm?
@ -0.2 -0.2

As in the preceding section, the optical potentials are con-

structed from the KMT prescriptioi20). The core is de-
scribed by its one-body density

2k°3

Peord )= 577\/;

normalized to 10 particles. We take€=0.3556 fm 2, cor-
responding to a charge rms radius of 2.43 fm t8Be, in
agreement with the compilation of data by Angdlb]. The
two optical potentials read

_ .22
(1+ &%r?)e <",

(39

_ 2,2\ a— k2r2,; H
Vi(r)=—=V;(0)(1+«jro)e "' (i+a;) (j=p,d).
(36)

The values of the parameters used in the calculations a

listed in Table II.

Besides the influence af, which we want to check in this
particular situation of the transfer of a loosely bound particle
our aim is to study the sensitivity of the differential cross
section to the radial shape of the halo wave function. W
assume the halo neutron to be ih=a0 state with respect to
the core. In order to investigate a sufficiently large functional

space, the following four cases have been selected.
(1) A difference of two Gaussian®o node G,

—12
(e w2e2_ e~ 3u2§2/2) ,

(37

2
<I><§>=[“—

T

3/ 1
1+ ———
33 2

with ©2=0.0504 fm 2.

(2) A difference of two Gaussians with a no@s,

—1/2
(e w22 Be 3;4262/2) ,

P

™

@(é){

3/ BZ B
1+————
A[ 3v3 V2

(39)

€

3243
~ 03
Q
<
S llBe
~ L
SN
=02 Feeel,
o [T
N
S
=) L
01 -
0
R
o= S G,
........ WS,
L ws,
02 |
o3 Bl e
0 2 4 6 3 10 12 14 16
E(fm)

FIG. 5. The four neutron halo wave functions used in the
present work. See text.

These four wave functions have the same rms radius,
namely, 6.6 fm, in agreement with the experimental value
[17]. They are displayed in Fig. 5.

The results of present calculations|®(q,q;)|* are dis-

IpIayed in Figs. 6 and 7, for the Gaussian and the WS cases,

r%spectively. The first obvious conclusion is the strong influ-
ence of\ (herex =1.255) on the diffractive pattern. Thus, in
spite of the fact that the halo wave function extends over

large distances, with an important fraction outside the effi-

cient range of the optical potentials, this effect cannot be
heglected. On the other hand, the sensitivity of the differen-
tial cross section to the wave function is encouraging. Even
below q=2 fm™!, the difractive patterns are different

enough to be selective. It means that owing to a reaction
mechanism which is well under control, intermediate ener-

: UBe(p,d)"Be

with ©?=0.0335 fm 2 and B=2.80, this last being deter-
mined in order to get orthogonality with a single Gaussian of
rms radius of the core size.

(3) and (4) are numerical solutions of the Schiinger
equation for a Woods-Saxon potential, the eigenvalue being
equated with the neutron separation energy'@&e, namely,

0.5 MeV:WS, (no nod¢ andW S, (one nodg In the case of

T I

0.5

il
45 5

g (fm™)

WS, the size of the potential is the one expected to describe
1%Be, so that this wave function is orthogonal to trerfeu- FIG. 6. (p,d) reaction on''Be at 800 MeV incident energy.
tron state of the core. The antisymmetry problem is ignoredT? in arbitrary units is plotted against for the two halo wave
in the case oiVS,, which is chosen essentially for its radial functionsG, andG; (see text The dashed lines correspondXo
dependence. =1, the solid lines ton=kgy/kp .
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“Be(p,d)"Be

2
IT, |

-10f
o b b b b b b b b by gy
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

g (fm™)

FIG. 7. Same as Fig. 6 for the two halo wave functitv§, and
WS, (see text

study halo wave functions.

the behavior of the dissociation cross section. It would be
very instructive to understand this situation on the grounds of
a simplified model, similar to the one developed in Egs.
(28)—(30) taken atq=0. Setting\ =1, which is permissible
for the present purpose, we are left wiE§)(0). In order to
obtain analytical expressions we replage®”o(®) by two
simple forms

(a) e 2 _erfab),
with «=0.32 corresponding to ed®)=0.5 atb=1.5, and
(b) e 2™~ g(by—b),

with b=2.0 fm. Though not precise, these two forms are
sufficient to simulate the strong absortion of the eikonal
phase at low impact parameters and to give insight into the
problem. By using thé&s, wave function, we get, up to ir-
relevant factors,

r2
o Tione en{ g

gies transfer reactions constitute indeed a powerful tool to \/ 2(r?)a?

Another interesting feature is the dependence of

2.2A1+¢)%+a¥(r?)

|T00(q,qH)|2 on the rms radius of the halo wave function. To
illustrate this point, we display in Fig. 8 calculations per-
formed by usingG, for three different values of the rms
radius, namely, 4.6, 6.6, and 8.6 fm. On the one hand, we
find | Too(q)|? to decrease strongly with the radius. On the

~ 1np(_ (r2) 2)
303 N 1314620

2(r?)a?
other hand, the diffractive nature of the scattering is well X '

characterized by the shift of the minima towards loveer
values as the radius increases.

6.6(1+¢)%+ a%(r?)

2
The decrease of the transfer cross section with the rms (0) 203 . (ro) 2
radius of the halo wave function differs qualitatively from (b)  Too (0.qy)o=(r)™ ex 24
4.41+¢)
0 « 4.41+¢)?
;% 3 "Be(p,d) " Be ex <r2>

FIG. 8. (p,d) reaction on''Be at 800 MeV incident energy.
Sensitivity of | Tog? to the rms radius of the halo wave function.
Use is made here of the wave functiGg with the range parameter
adjusted ta(r2)12 = 4.6 fm (dashed ling 6.6 fm (solid line), and
8.6 fm (dotted ling.

33 N T 1321+e)2

p( 13.21+¢)?

Xexpp ———
(r?)

Use is made here gi?>=2.2r?)"1. From a few numerical
estimates, it is easy to become convinced that in both cases,
the decrease of Y is merely dictated by the second factor.

It suggests that, in the case of halo nuclei, transfer reactions
on heavier nuclei like YHe,"He), involving smallerqy,
could be more efficient having larger cross sections.

V. CONCLUSIONS

The present work deals wittp(d) transfer reactions for-
mulated in the Glauber approach. If the incident energy is
high enough that the eikonal approximation is valid, the re-
action mechanism appears to be well under control, provided
that the change in the impact parameter at the transition ver-
tex is taken into account. This effect is not negligible and
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cannot be easily treated perturbatively. On the specific extransfer and the radius of the halo wave functiotd,*He)
ample of (p,d) on *?C at 800 MeV incident energy, at large processes may be more advantageous than if®) (reac-
momentum transfer, this effect brings corrections totijon, except that multiple step processes may spoil the analy-
|T|m(q,q”)|2, reaching up to two orders of magnitude. BY sjs in the case of lovg
comparison, at this energy, contributions arising from non-  Finally, we emphasize that the use of optical potentials in
eikonal propagation play a minor role. Interference with thethe entrance and exit channels is more efficient than micro-
Coulomb phase, on the other hand, has no decisive impokcopic calculations based on the nucleon-nucleon profile
tance. functions. This is due to the fact that above the pion produc-
As far as halo nuclei are concerned, together with a larggion thresholdA production is rapidly increasing, giving rise
longitudinal momentum transfer, the very small separationp a series of complicated processes in the intermediate steps
energy constitutes a strong argument in favor of single stepf the particle propagation. The optical potential, when taken

transfer reactions, which may not hold in general. We findrom experiment, will automatically sum the corresponding
the differential cross section to be rather sensitive to the ragiagrams.

dial shape of the halo wave function. Thus, the intermediate

energy f,d) reaction could be a useful tool to measure the

halo wave function, to the extent that the optical potentials in ACKNOWLEDGMENTS
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