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Statistical calculations of the damping width of giant resonances
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The damping widths of giant resonances is calculated using a scheme developed for multistep compound
processes. The results were found to be reasonable and compare well to those indirectly extracted from data.
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I. INTRODUCTION for several years studied this question and devised models
that could allow one to obtain useful structure information
The calculation of the widths of giant multipole reso- from the analysis of the decay modes of the BR6]. In
nancegGR) in nuclei has received much attention since theparticular, quite recently, we have presented evidence for
pioneering work of Brown and Bolster[il]. Microscopi- preequilibrium contribution in the proton decay of the giant
cally, one relies on the random phase approximatRRA) quadrupole resonance i#'Ca[7], excited in a*°Ca+*Ca
or a more refined version of it. To allow us to obtain thereaction at 50 MeVA. By preequilibrium, we mean emis-
escape width™! the particles in the RPA are allowed to be in sion of protons from the @— 2h configurations whose cou-
the continuum with the mean field here replaced by the appling to the collective p—1h giant quadrupole resonance
propriate real part of the optical model potential. Thissupplies a reasonable measure of the latter's damping width.
method is referred to as the continuum REZRPA). In light If observed in other systems, the preequilibrium decay of
nuclei, such as®0, the escape width is a large function of GR’s should supply a means to extract information about the
the total width of the GR. However, in heavier nuclei the damping width. Thus it is important to develop a practical
escape width is but a small fraction of the total width owing Method for its calculation.

to the large number of noncollective states in which the GR  The purpose of this paper is to present a detailed discus-
is embedded and coupled to. The differelﬁ«zgh—FTGR isthe Sion of the cal_culauon of the dampmg_W|dth of t_he GR and
damping widthl" 5. Clearly in such cases one needs to haveSUppIy a reaction theory approa_ch to its extraction fro_m Fhe
GR l data. In Sec. Il we present a brief account of the excitation
ways to calculatd™. . . . and decay theory of the GR and discuss in some detail the
There are tW,O ways in which such a calculation can bepreequilibrium component of the decay process. In Sec. Ill
executed. One involves the enlargement of the space of thge supply a mean to calculate the damping width within the
RPA to include —2h degrees of freedom. The resulting statistical multistep compound reaction thegyd]. Finally
1p—1h+2p—2h RPA is called the second RPESRPA. iy sec. IV we perform the calculation fd°Ca, %zr , and

The calculation becomes formidable since the dimension 0£08py) Koth for the dipole and quadrupole mode, and present
the 2p—2h subspace is usually large and one relies on apggme concluding remarks.

proximations[2]. The other way, that is not used much, is a
natural extension of the CRPA. Here one uses for the con-
tinuum particles the full complex optical model and allows
the holes to have complex energies. The complexity of the
interactions simulates the coupling both to the continuum
and to the more complicated configurations such @s 2 A model for the decay of GR’s which contains the semi-
—2h, 3p—3h, etc. The latter is the origin of the damping of direct, preequilibrium, and statistical parts, consistently con-
the collective state. Results obtained using this method anmeected by unitarity constraint, was developed about a decade
comparable in quality to those of the SRIP2. ago by Dias, Hussein, and Adhikdd] (see Fig. 1 This
In all of the above, the major emphasis is the responsenodel, based on the theory (8], was later refined and fur-
function which supplies a measure of the excitation crossher applied. A similar, but slightly more general version of
section through its imaginary part; the strength function. It isthe model was developed by Piza and FodBd. In this
necessary, though, to emphasize that the GR eventually deection we use Ref5] to isolate and analyze the preequilib-
cays into the different available channels, and whatever inpuum part.
one uses in the formation process should somehow manifest In the excitation of the GR with heavy ions, we use the
itself in the decay process. Our group here o $aulo has recently developed exit-doorway model for the formation
process 10]. Since we are discussing here specifically the
40Ca+“°Ca at intermediate energies (50 Mé\}, we may
*On leave from Departamento déska, Universidade Federal da comfortably use the theory developed in REf], namely,
Paraba, C.P. 5008, 58051-970 dp&essoa, Pb, Brazil. the cross section is given by

II. EXCITATION AND DECAY THEORY
OF GIANT RESONANCES
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”””””””””””””””””””” | the giant resonance in the host nucleus, respectively. The
strengthe,, depends on th&(E2) (see discussion to follow
and Ref[11]).

GR

! : In Ref.[10], it was shown that by writing
: J !
! P i
Production E ' =1+ 2 A,u(t) (4)
Stage 1 ... Decay : 14
p” : Preequilibrium Channel :
doorway (PE) P) ; one obtains a second order differential equation for the aux-
excitation |+ . | iliary amplitudesA ,(t)
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FIG. 1. A schematic representation of the splitting of the host w'=-2-1012
nucleus phase space and the coupling between the parts. ®)
which can be easily solved. Application of the formation
doerc FCGR theory above has already been repoftet]. Preliminary re-
. o(E*)| — (1—p2) sults for the total(angle or impact paramedeintegrated
dE dE* Ter cross section, Eq?2), for “°Ca+4°Ca at 50 MeVA gave for
the quadrupole giant resonand&Egr=17 MeV B(E2)
, , =962 fnf'e?] the values,=21 mb in reasonable agree-
C C * . . . . A
du  Toet Tor(du/dE") ment with experimenf12]. This small value ofo, implies
dE* ; } that the simpler perturbation calculation wig(t’) in Eq.
2 TLE+ (du/dE*) F,EE (2) taken to be unity is adequate. More detailed account for
f! the formation calculation will be reported later.
¢! ! ! % In the factor multiplyinge.(E*) in Eq. (1), we have the
dp Tont #aToet sal o (du/dEY) details of the decay modes of the GR:
dE* f! * f’ .
+
; Tpet (du/dE*) I'pg do _ 1 | P
D dE* 27 (E*—E_)?+ (U4 T2
The formation cross sectiom (E*) for a given value of Whererﬁ’EZ{l—eXp:—ZWF;E(E*)pPE(E*)]} is the transmis-
the impact parameter, is given by sion coefficient of the preequilibrium stage into the final
channel, andrgN is the transmission coefficient of the last
o (E*)= i Ter stage of the reaction in the compound nucleus, into the final
2m (E*—E_)*+ (U4 T2 channel.

The mixing parameter, measures the fragmentation of
the preequilibrium stage owing to its coupling to the com-
pound nucleus and is given by

1
(2) = FPE
2=
where FPE

2

>

’ iE*t’ 0247\ 1% ’
it exp | [V T aglt)

_ 02 t 02 The last factor inside the square bracket is the contribu-
ao(t)=—2, V#(t)f dt'[V,(t)]* tion to the decay channel from the equilibrated compound
K o stage. In the next section we concentrate our discussion on
the second term inside the square bracket of (Eparising
ay(t’), (3  from the preequilibrium stage. In a recent publicafi@ghwe
gave evidence that this component may be appreciable. If so,
one can extract from the data the mixing parametgerand
then the damping width.

i N il
Xex —%(E —7)“ t")

where Viz(t)zviz[r(t)] is the Coulomb quadrupole cou-
pling with magnetic quantum numbgr evaluated at a given

value of the classically determinated separatlon dlstance
Ill. STATISTICAL THEORY OF THE DAMPING WIDTH
r(t). For a quadrupole coupling, we hava/’ (t)

=qa /r3(t) anday(t) semiclassical elastic probablllty am- In the calculation of the contribution of preequilibrium
letude atr(t). Eqgg andI'gr are the position and width of emission, we use the formalism originally developed by
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FIG. 3. The two damping processes, corresponding to a particle
or a hole interacting with a bound nucleon, exciting an additional
particle-hole pair. The energy of the interacting partidehole is
E-Z.
Q - - 2
. o (2j+1) [j+ 1/2]
\ 1y ) Rn(j)= 1203123 o no2 ) (8)
J the angular momentum functidf(j ;) of the pair of states is
FIG. 2. Diagrammatic representation of the= +2 process. given by
Feshbach, Kerman, and Koonil] and later improved and F(ja)=2 > (2j1+1)(2j,+DRy(j)R(j2)
generalized by Oblozinskiy13]. In these approaches one as- I 2
sumes a factorization of the excitation energy and angular i1 0. a2
momentum dependences in the density of states. Thus one
writes for the damping width associated with th#h stage X E _ E ol 9
the following form[8]: 2 2
while the radial integral (j1,j,,j,Q) is given by
(TR 2(E)=Xa5 2Y " 2(E). (6) 4 1
| _ I(jl,jz,j,Q)=(§wr8)vo4—
The X andY functions are described below. 77
o dr
A. The X function XJ Ri(NRa(MR(r)Ro(r) —, (10
r=0 r

The X function, which contains the details of angular mo-
mentum coupling, the distribution of the spin of the singlewhere R,(r), Ry(r), Rg(r), andR(r) represent the radial
particle levels and the radial integral of the stage oscillator wave functions of particlébole) with angular mo-
—stage n+2 transition matrix element is given by mentum j, j», Q, and j, respectively. The function
A(j4,Q,J) in Eq. (7) guarantees the angular momentum
coupling selection rules, i.eA(j4,Q,d)=1 if |j,—Q|<J

X220 S (2] 41) (254 1) <|j,+Q| or zero otherwise.
iQizia .
. ) B. The Y function

Rn—1(j4)R1(Q)Rq(j) Qs The Y functions in Eq.(6) describes the available phase
R.(J) 1 1 0 space for the transition and it is calculated by considering the

n 2 2 density of particle-hole states in the initial and final configu-

rations. Schematically, the processes that contribui aoe

XF(ja)1?(j,j1,]2,.Q)A(j4,Q.d) , (7)  depicted in Fig. 3. These represent the scattering of a particle

(a) and a holgb) from a bound nucleus and resulting in the
where the different factors are defined below. The angulaexcitation of a particle-holétwo exciton$ pair.

momentum coupling scheme is shown in Fig. 2. The contribution of the hole scattering FigaBis given
The spin distribution functionR,(j), is given by by [13]
|
YLn+2:1 g* (w(p,h—1,EN+1)—w[p,h—1,(E—B)N+1]+ Bw[p,h—1(E—F)N]
b™n 2 w(p,h,E)| (N—1)N(N+1) N
h—1EXE-F)N"1—w[p,h—1(E-B)XE-F)N"!
+w[p ( )" - o[p ( )« ) 7] 11
2(N—1)

and that of the particle scattering by
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4

miz 19" [e(p—1hEN"H-w[p-1h(E-B)""'] Bo[p—1h,(E-B)"] B?w[p—1h,(E-B)" ']
a¥n ~2 w(p,hE)| (N—1)N(N+1) B (N—1)N B 2(N—1)
(12)

The available density of states for the damping is the sumvhereN=p+h,B is the binding energy is the Fermi en-

of Egs.(11) and (12): ergy, andg~(3A/4=7?) is the density of single particle
statesA,, anda,;, are given b
yint2_ yintz, yine2 (13 ph ph are g Yy
1/p?+p h2-h
The particle-hole density(p,h,E) which appears in Egs. Xph=5 T + g (19
(11) and(12) is given by
h and
o(p,h E)=L p > (—D”"(P)(h) 1/p?>+p h?-3h
N, p'hI(N—-1)! {6 =0 i/\k o= + ) (16)
4 9 g
X O (E—aph—iB—kF) ) )
Note that in Eqs(11) and(12), a compact notation was
X(E—App—iB—kF)N"1, (14  used for the densities:
|
— 1'+k( )( ) U—iB—kF)(U-iB—kF)N*» for U>0,
w(p,h,UN*")=1 p'hl(p+h— 1)'2‘0 g‘o ) B 3 ) (17
0 for U=<O0.
|
The above formalism folr."*?(E) developed by Oblo- Of particular interest is the damping width of the giant

zinsky [13] should be contrasted with the simpler one of quadrupole resonance fiCa. We find the value of 1 MeV

Feshbach, Kerman, and KooniBKK) [8] where it is given atE*~17 MeV. Our recent finding that preequilibrium con-

by tribution to the proton decay of this nucleus is significant,
implying that our estimatel'se=T2P7" is reasonable.

(gE*)? Therefore to a certain extent the detection of a preequilib-
gE
In+2/ =%

Yn FKK(E ) g 2(n+ 1) (18) 20

40Ca e
15 J=1

J=2

It would be interesting to check the accuracy of Ef).
In the next section we give a detailed comparison between
the damping widths calculated with Eq4.1) and (12) and
the damping widths obtained with E{.8) for several nuclei.

Damping (MeV)

@

IV. NUMERICAL RESULTS AND CONCLUSIONS O T ws 1 s 1w 185 10

Excitation Energy (MeV)

We present in Figs. 4, 5, and 6 the result of our calcula-
tion for the nuclei*°Ca,*°zr, and 2°%b. The calculations
have been done by considering a basis including all bound “ca

single particle and hole states and using fpand o the % 15 =
expressions given by FKK3] § -
s J=1
3A \/1—2 AS3|12 § 10
942 | g )
05
The variation in the intervals of the excitation energy used L A

in the calculus of the width is done around the centroids of Excitation Energy (Me)

the giant resonances in each nucleus. As one can see from FIG. 4. Damping width (p—1h—2p—2h) for the GR’s
the figures the FKK result is a very good approximation foreg,E1, E2 in *°Ca calculated in the FKK approximatiai@a) and
all cases studied. (b) the approximation of9,13].
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FIG. 5. The same as Fig. 4 for tHZr nuclei FIG. 6. The same as Fig. 4 for tH8%b nuclei.
rium emission of the GR help “measure” its damping width.
The results presented here should be of use to understand
better the decay mechanism of the giant resonances in nuclei. We thank Carlos Bertulani for discussion. This work was
In particular, the recent observation and decay analysis cfupported in part by Conselho nacional de Desenvolvimento
double giant resonanc@s4] should particularly benefit from Cientfico e Tecnolgico (CNPg, Brasil and Fundao de
our discussion. Further application of our theory is underAmparo aPesquisa no Estado deoS2aulo(FAPESB, Bra-
way. sil.
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