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Statistical calculations of the damping width of giant resonances
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The damping widths of giant resonances is calculated using a scheme developed for multistep compound
processes. The results were found to be reasonable and compare well to those indirectly extracted from data.
@S0556-2813~98!01205-9#

PACS number~s!: 24.30.Cz, 24.10.Eq, 24.60.Dr, 27.40.1z
o-
he

he
in
ap
is

of
he
ng
GR

v

b
f t
g

ap
a
o
s

th
um
2

of
a

ns
os
t i

d
p
ife

dels
on

for
nt

-
-
e
idth.
of

the
al

us-
nd
the
ion
the
III

the

ent

i-
on-
ade

-
of

-

he
on
he

a

I. INTRODUCTION

The calculation of the widths of giant multipole res
nances~GR! in nuclei has received much attention since t
pioneering work of Brown and Bolsterli@1#. Microscopi-
cally, one relies on the random phase approximation~RPA!
or a more refined version of it. To allow us to obtain t
escape widthG↑ the particles in the RPA are allowed to be
the continuum with the mean field here replaced by the
propriate real part of the optical model potential. Th
method is referred to as the continuum RPA~CRPA!. In light
nuclei, such as16O, the escape width is a large function
the total width of the GR. However, in heavier nuclei t
escape width is but a small fraction of the total width owi
to the large number of noncollective states in which the
is embedded and coupled to. The differenceGGR2GGR

↑ is the
damping widthGGR

↓ . Clearly in such cases one needs to ha
ways to calculateG↓.

There are two ways in which such a calculation can
executed. One involves the enlargement of the space o
RPA to include 2p22h degrees of freedom. The resultin
1p21h12p22h RPA is called the second RPA~SRPA!.
The calculation becomes formidable since the dimension
the 2p22h subspace is usually large and one relies on
proximations@2#. The other way, that is not used much, is
natural extension of the CRPA. Here one uses for the c
tinuum particles the full complex optical model and allow
the holes to have complex energies. The complexity of
interactions simulates the coupling both to the continu
and to the more complicated configurations such asp
22h, 3p23h, etc. The latter is the origin of the damping
the collective state. Results obtained using this method
comparable in quality to those of the SRPA@3#.

In all of the above, the major emphasis is the respo
function which supplies a measure of the excitation cr
section through its imaginary part; the strength function. I
necessary, though, to emphasize that the GR eventually
cays into the different available channels, and whatever in
one uses in the formation process should somehow man
itself in the decay process. Our group here in Sa˜o Paulo has
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for several years studied this question and devised mo
that could allow one to obtain useful structure informati
from the analysis of the decay modes of the GR@4–6#. In
particular, quite recently, we have presented evidence
preequilibrium contribution in the proton decay of the gia
quadrupole resonance in40Ca @7#, excited in a40Ca140Ca
reaction at 50 MeV/A. By preequilibrium, we mean emis
sion of protons from the 2p22h configurations whose cou
pling to the collective 1p21h giant quadrupole resonanc
supplies a reasonable measure of the latter’s damping w
If observed in other systems, the preequilibrium decay
GR’s should supply a means to extract information about
damping width. Thus it is important to develop a practic
method for its calculation.

The purpose of this paper is to present a detailed disc
sion of the calculation of the damping width of the GR a
supply a reaction theory approach to its extraction from
data. In Sec. II we present a brief account of the excitat
and decay theory of the GR and discuss in some detail
preequilibrium component of the decay process. In Sec.
we supply a mean to calculate the damping width within
statistical multistep compound reaction theory@8,9#. Finally
in Sec. IV we perform the calculation for40Ca, 90Zr , and
208Pb both for the dipole and quadrupole mode, and pres
some concluding remarks.

II. EXCITATION AND DECAY THEORY
OF GIANT RESONANCES

A model for the decay of GR’s which contains the sem
direct, preequilibrium, and statistical parts, consistently c
nected by unitarity constraint, was developed about a dec
ago by Dias, Hussein, and Adhikari@4# ~see Fig. 1!. This
model, based on the theory of@8#, was later refined and fur
ther applied. A similar, but slightly more general version
the model was developed by Piza and Foglia@5#. In this
section we use Ref.@5# to isolate and analyze the preequilib
rium part.

In the excitation of the GR with heavy ions, we use t
recently developed exit-doorway model for the formati
process@10#. Since we are discussing here specifically t
40Ca140Ca at intermediate energies (50 MeV/A), we may
comfortably use the theory developed in Ref.@4#, namely,
the cross section is given by
3220 © 1998 The American Physical Society
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K dsc8c

dE* L 5sc~E* !F dm

dE*

GGR
c

GGR
↓ 1~12m2!

3
dm

dE*

t
PE

c81GGR
c8 ~dm/dE* !

(
f 8

tPE
f 8 1 ~dm/dE* ! GPE

f 8

1
dm

dE*

t
CN

c8 1m2t
PE

c81m2G
GR

c8 ~dm/dE* !

(
f 8

tPE
f 8 1 ~dm/dE* ! GPE

f 8 G .

~1!

The formation cross sectionsc(E* ) for a given value of
the impact parameter, is given by

sc~E* !5
1

2p

GGR

~E* 2E
GR

!21 ~1/4! G
GR

2

3(
m

U E
2`

`

dt8 expS iE* t8

\ D @Vm
02~ t8!#* a0~ t8!U2

,

~2!

where

ȧ0~ t !52(
m

Vm
02

~ t !E
2`

t

dt8@Vm
02~ t8!#*

3expF2
i

\S E* 2
iG1

2 D ~ t2t8!Ga0~ t8!, ~3!

where Vm
02

(t)[Vm
02

@r (t)# is the Coulomb quadrupole cou
pling with magnetic quantum numberm evaluated at a given
value of the classically determinated separation dista
r (t). For a quadrupole coupling, we haveVm

02
(t)

[am /r 3(t) , anda0(t) semiclassical elastic probability am
plitude at r (t). EGR and GGR are the position and width o

FIG. 1. A schematic representation of the splitting of the h
nucleus phase space and the coupling between the parts.
e

the giant resonance in the host nucleus, respectively.
strengtham depends on theB(E2) ~see discussion to follow
and Ref.@11#!.

In Ref. @10#, it was shown that by writing

a0~ t !511(
m

Am~ t ! ~4!

one obtains a second order differential equation for the a
iliary amplitudesAm(t)

Äm~ t !2F V̇m
02~ t !

Vm
02

~ t !
2

i

\S E* 2
iG

2 D G
3Ȧm~ t !2

uVm
02~ t !u2

\2 F11 (
m8522,21,0,1,2

Am8~ t !G50,

~5!

which can be easily solved. Application of the formatio
theory above has already been reported@11#. Preliminary re-
sults for the total~angle or impact parameter! integrated
cross section, Eq.~2!, for 40Ca140Ca at 50 MeV/A gave for
the quadrupole giant resonance@EGR517 MeV B(E2)
5962 fm4 e2# the valuesc521 mb in reasonable agree
ment with experiment@12#. This small value ofsc implies
that the simpler perturbation calculation witha0(t8) in Eq.
~2! taken to be unity is adequate. More detailed account
the formation calculation will be reported later.

In the factor multiplyingsc(E* ) in Eq. ~1!, we have the
details of the decay modes of the GR:

dm

dE*
5

1

2p

GGR
↓

~E* 2E
GR

!21 ~1/4! G
GR

2
,

wheret
PE

c85$12exp@22pG
PE

f (E* )r
PE

(E* )#% is the transmis-
sion coefficient of the preequilibrium stage into the fin
channel, andt

CN

f 8 is the transmission coefficient of the la
stage of the reaction in the compound nucleus, into the fi
channel.

The mixing parameterm2 measures the fragmentation o
the preequilibrium stage owing to its coupling to the co
pound nucleus and is given by

m2[
G

PE

↓

G
PE

.

The last factor inside the square bracket is the contri
tion to the decay channel from the equilibrated compou
stage. In the next section we concentrate our discussion
the second term inside the square bracket of Eq.~1! arising
from the preequilibrium stage. In a recent publication@7# we
gave evidence that this component may be appreciable. I
one can extract from the data the mixing parameterm2 and
then the damping width.

III. STATISTICAL THEORY OF THE DAMPING WIDTH

In the calculation of the contribution of preequilibrium
emission, we use the formalism originally developed

t
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3222 57CENEVIVA, TERUYA, DIAS, AND HUSSEIN
Feshbach, Kerman, and Koonin@8# and later improved and
generalized by Oblozinsky@13#. In these approaches one a
sumes a factorization of the excitation energy and ang
momentum dependences in the density of states. Thus
writes for the damping width associated with thenth stage
the following form @8#:

^GnJ
↓n12~E!&5XnJ

↓n12Yn
↓n12~E!. ~6!

The X andY functions are described below.

A. The X function

TheX function, which contains the details of angular m
mentum coupling, the distribution of the spin of the sing
particle levels and the radial integral of the stagen
→stage n12 transition matrix element is given by

XnJ
↓n1252p (

jQ j 3 j 4

~2 j 11!~2 j 311!

3
Rn21~ j 4!R1~Q!R1~ j !

Rn~J! S j Q j 3

1

2
2

1

2
0 D 2

3F~ j 3!I 2~ j , j 1 , j 2 ,Q!D~ j 4 ,Q,J! , ~7!

where the different factors are defined below. The angu
momentum coupling scheme is shown in Fig. 2.

The spin distribution function,Rn( j ), is given by

FIG. 2. Diagrammatic representation of theDn512 process.
ar
ne

r

Rn~ j !5
~2 j 11!

p1/2n3/2s3
expF2

@ j 1 1/2#2

ns2 G , ~8!

the angular momentum functionF( j 3) of the pair of states is
given by

F~ j 3!5(
j 1

(
j 2

~2 j 111!~2 j 211!R1~ j 1!R1~ j 2!

3S j 1 j 2 j 3

1

2
2

1

2
0 D 2

, ~9!

while the radial integralI ( j 1 , j 2 , j ,Q) is given by

I ~ j 1 , j 2 , j ,Q!5S 4

3
pr 0

3DV0

1

4p

3E
r 50

`

R1~r !R2~r !R~r !RQ~r !
dr

r 2
, ~10!

where R1(r ), R2(r ), RQ(r ), and R(r ) represent the radia
oscillator wave functions of particles~hole! with angular mo-
mentum j 1 , j 2 , Q, and j , respectively. The function
D( j 4 ,Q,J) in Eq. ~7! guarantees the angular momentu
coupling selection rules, i.e.,D( j 4 ,Q,J)51 if u j 42Qu<J
<u j 41Qu or zero otherwise.

B. The Y function

The Y functions in Eq.~6! describes the available phas
space for the transition and it is calculated by considering
density of particle-hole states in the initial and final config
rations. Schematically, the processes that contribute toY are
depicted in Fig. 3. These represent the scattering of a par
~a! and a hole~b! from a bound nucleus and resulting in th
excitation of a particle-hole~two excitons! pair.

The contribution of the hole scattering Fig. 3~a! is given
by @13#

FIG. 3. The two damping processes, corresponding to a par
or a hole interacting with a bound nucleon, exciting an additio
particle-hole pair. The energy of the interacting particle~or hole! is
E2Z.
bYn
↓n125

1

2

g4

v~p,h,E!Fv~p,h21,EN11!2v@p,h21,~E2B!N11#

~N21!N~N11!
1

Bv@p,h21,~E2F !N#

N

1
v@p,h21,E2~E2F !N21#2v@p,h21,~E2B!2~E2F !N21#

2~N21! G ~11!

and that of the particle scattering by
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aYn
↓n125

1

2

g4

v~p,h,E!Fv~p21,h,EN11!2v@p21,h,~E2B!N11#

~N21!N~N11!
2

Bv@p21,h,~E2B!N#

~N21!N
2

B2v@p21,h,~E2B!N21#

2~N21! G .
~12!
u

.

The available density of states for the damping is the s
of Eqs.~11! and ~12!:

Yn
↓n125aYn

↓n121bYn
↓n12. ~13!

The particle-hole densityv(p,h,E) which appears in Eqs
~11! and ~12! is given by

v~p,h,E!5
gN

p!h! ~N21!! (i 50

p

(
k50

h

~21! i 1kS p
i D S h

kD
3Q~E2aph2 iB2kF!

3~E2Aph2 iB2kF!N21, ~14!
o

ee

la

un

e
o

fr
fo
mwhereN5p1h,B is the binding energy,F is the Fermi en-
ergy, and g;(3A/4p2) is the density of single particle
states.Aph andaph are given by

aph5
1

2S p21p

g
1

h22h

g D ~15!

and

Aph5
1

4S p21p

g
1

h223h

g D . ~16!

Note that in Eqs.~11! and ~12!, a compact notation was
used for the densities:
v~p,h,UN1n!5H gp1h

p!h! ~p1h21!!(i 50

p

(
k50

h

~21! i 1kS p
i D S h

kD ,Q~U2 iB2kF!~U2 iB2kF!N1n for U.0,

0 for U<0.

~17!
nt

-
nt,

lib-
The above formalism forYn
↓n12(E) developed by Oblo-

zinsky @13# should be contrasted with the simpler one
Feshbach, Kerman, and Koonin~FKK! @8# where it is given
by

Yn,FKK

↓n12~E* !5g
~gE* !2

2~n11!
. ~18!

It would be interesting to check the accuracy of Eq.~18!.
In the next section we give a detailed comparison betw
the damping widths calculated with Eqs.~11! and ~12! and
the damping widths obtained with Eq.~18! for several nuclei.

IV. NUMERICAL RESULTS AND CONCLUSIONS

We present in Figs. 4, 5, and 6 the result of our calcu
tion for the nuclei 40Ca,90Zr, and 208Pb. The calculations
have been done by considering a basis including all bo
single particle and hole states and using forg and s the
expressions given by FKK@8#

g;
3A

4p2
, s5FA12

45p

A5/3

g G1/2

.

The variation in the intervals of the excitation energy us
in the calculus of the width is done around the centroids
the giant resonances in each nucleus. As one can see
the figures the FKK result is a very good approximation
all cases studied.
f

n

-

d

d
f

om
r

Of particular interest is the damping width of the gia
quadrupole resonance in40Ca. We find the value of 1 MeV
at E* ;17 MeV. Our recent finding that preequilibrium con
tribution to the proton decay of this nucleus is significa
implying that our estimateGGR

↓ .G1p1h
2p2h↓ is reasonable.

Therefore to a certain extent the detection of a preequi

FIG. 4. Damping width (1p21h→2p22h) for the GR’s
E0,E1, E2 in 40Ca calculated in the FKK approximation~a! and
~b! the approximation of@9,13#.
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rium emission of the GR help ‘‘measure’’ its damping widt
The results presented here should be of use to unders

better the decay mechanism of the giant resonances in nu
In particular, the recent observation and decay analysi
double giant resonances@14# should particularly benefit from
our discussion. Further application of our theory is und
way.

FIG. 5. The same as Fig. 4 for the90Zr nuclei.
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FIG. 6. The same as Fig. 4 for the208Pb nuclei.
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