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Comparison of techniques for computing shell-model effective operators

Michael Thoresen, Petr Navra´til,* and Bruce R. Barrett
Department of Physics, University of Arizona, Tucson, Arizona 85721

~Received 1 October 1997!

Different techniques for calculating effective operators within the framework of the shell model using the
same effective interaction and the same excitation spaces are presented. Starting with the large-basis no-core
approach, we compare the time-honored perturbation-expansion approach and a model-space truncation ap-
proach. Results for the electric quadrupole and magnetic dipole operators are presented for6Li. The conver-
gence trends and dependence of the effective operators on differing excitation spaces and PauliQ-operators are
studied. In addition, the dependence of the electric-quadrupole effective charge on the harmonic-oscillator
frequency and the mass number, forA55,6, is investigated in the model-space truncation approach.
@S0556-2813~98!07606-7#

PACS number~s!: 21.60.Cs, 21.30.Fe, 27.20.1n
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I. INTRODUCTION

While considerable effort has been devoted to derive
effective interaction used in the shell-model calculatio
from the nucleon-nucleon interaction@1–3#, less work has
been done to understand the effective operators employe
calculating different nuclear, usually electromagnetic, pr
erties. A microscopic derivation of effective operators h
been only partially successful. It is well known that effecti
proton and neutron charges must be employed to describ
E2 transitions and moments. These charges are quite di
ent from the free nucleon charges; typically the values
eeff

p '1.5e and eeff
n '0.5e are obtained for both light and

heavy nuclei. It should be noted that these effective char
correspond to a severe truncation to a single-major-shel
0\V, space. Attempts to derive these charges microsc
cally, usually by perturbation theory@3#, or by an ‘‘expanded
shell-model’’ approach@4#, yielded much smaller values. W
note that in the ‘‘expanded shell-model’’ approach, typica
results of a (012)\V calculation were truncated to th
0\V space to derive the effective charges.

In a previous paper we described a truncation proced
for determining effective charges in small shell-model spa
using the results of large-space no-core calculations@5#. In
that study, we used a 6\V model space for6Li, i.e., includ-
ing excited states up to 6\V above the unperturbed ground
state configuration. This procedure yielded 0\V effective
charges consistent with empirical values. Since previous
croscopic perturbation-theory calculations have typica
produced effective charges, which are too small compa
with the empirical values, it is of interest to compa
perturbation-theory calculations and calculations in a tr
cated model-space in an attempt to understand the reaso
these differences.

To carry out this study we propose to perform three c
culations: ~1! no-core, ~2! perturbation theory, and~3!
model-space truncation, all using the same nucleon-nuc

*On leave of absence from the Institute of Nuclear Physics, Ac
emy of Sciences of the Czech Republic, 250 68 Rˇ ež near Prague,
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potential and assumptions for determining the nuclear re
tion matrix G. In addition, to shed more light on th
harmonic-oscillator-frequency and the mass-number dep
dence, we supplement the6Li results of Ref.@5# with calcu-
lations for other\V values and also present new results
A55 system.

In Sec. II we describe the formalism used in performi
the three calculations. The no-core results are presente
Sec. III. The perturbation calculation results and the mod
space truncation results are discussed in Secs. IV and
respectively. Conclusions are given in Sec. VI.

II. FORMALISM

All three approaches used in the study begin with
calculation of the Bruckner reaction matrix~or G-matrix!
defined as

G~«!5V1V
QP

«2H0
G~«!. ~1!

Either the starting energy« is parametrized by

«5ea1eb1D, ~2!

with D being independent ofea andeb , or the dependence
of the G-matrix on« is removed by taking into account th
folded diagrams by means of the Lee-Suzuki@6# approach
following the procedure described in Ref.@7#. In Eq.~1!, V is
the free nucleon-nucleon~N-N! interaction. The starting en
ergy« represents the initial energy of the two nucleons in
medium.H0 is the unperturbed Hamiltonian of the system
andQP is the Pauli projection operator, which projects on
two-particle states that are not already occupied. T
G-matrix is evaluated using the method of Barrett, Hew
and McCarthy@8#, which is similar to the reference-spectru
method@9#, in that a reference matrixGR is calculated and
the reaction matrix, orG-matrix, is then obtained by matrix
inversion. The computation of theG-matrix employed in our
calculations uses the Nijmegen II or the Reid93 N-N int
action @10# in a two-particleQP-space shown in Fig. 1 and
defined such that

-

3108 © 1998 The American Physical Society



57 3109COMPARISON OF TECHNIQUES FOR COMPUTING . . .
FIG. 1. QP-space projection operator for a 6\V calculation of6Li ~a! with wings and~b! without wings.
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QP50 for ~N11N2!<Nmax, N150, or N250, ~3!

QP51 for all other N1 and N2 ,

with

N152n11 l 1 and N252n21 l 2 .

In most calculations we useNmax58. Setting QP50 for
N11N2<8 forces the intermediate excitations to have
energy greater than 8\V. We will refer to theG-matrix cal-
culated with a QP-space defined this way as an 8\V
G-matrix. SettingQP50 for N150 or N250 prevents us
from scattering into intermediate states that are in the 0s1/2
state, which is already fully occupied. Hence, the Pauli
clusion principle prevents us from scattering into the
states. These portions of theQP-space are referred to as th
‘‘wings’’ of the QP-projection operator. In calculation
which do not assume there is a fully occupied4He core,
these 0s1/2 states may be accessible and the wings may
be needed in the calculation of theG-matrix. For calcula-
tions without wings we use theQP-operator of Fig. 1~b!
defined such that

QP50 for ~N11N2!<Nmax. ~4!

In theory the wings should extend to infinity, but compu
tional limits necessitate putting a finite limit on the extent
the wings. Barrett, Hewitt, and McCarthy@8# investigated
truncating the wings at different values and found that th
is little effect in extending the wings pastN510. Conse-
quently, in our study we have truncated the wings atN
510. Because we obtain slightly differentG-matrix ele-
ments, when we use differentQP-operators, we will study
the effect that including wings has on the calculations. F
n

-
e

ot

-
f

e

r

the purpose of comparison, both the no-core and
perturbation-expansion calculations are done with and w
out wings.

A. No-core approach

The no-core approach refers to large-basis shell-mo
calculations performed in a model space of several ma
harmonic-oscillator shells. In this approach allA nucleons of
a given nucleus are active for a completeN\V basis space
with a large value forN @11#. ~An N\V basis space is one
which includes all allowed configurations up to an energy
N\V above the unperturbed ground state.! Due to the no-
core assumption, the effective interaction used in the ca
lations is simplified as no hole states are present. In the
proach taken, the effective, in generalA-body, interaction is
determined for a system of two nucleons only and sub
quently used in many-nucleon calculations. As discusse
the beginning of this section, either the two-nucle
G-matrix with a particular parametrization of the startin
energy or the two-nucleonG-matrix with the folded dia-
grams taken into account by means of the Lee-Suzuki
proach is employed as the two-body effective interaction
our no-core shell-model calculations. By working in a com
plete N\V basis space with a single-particle harmon
oscillator Hamiltonian as our unperturbed Hamiltonian, w
can guarantee that all excluded configurations involve an
ergy of at least (N12)\V, which should limit any intruder-
states difficulties to the less interesting physical states hig
in the spectrum@12#. That is, the larger the value ofN, the
better the guarantee that we have included the major confi
rations making up the physical low-lying states. Using co
plete N\V harmonic-oscillator spaces allows us to proje
out the spurious center-of-mass components in the w
functions@13–15#. Note, however, that the calculations usin
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FIG. 2. ~a! Zeroth- and~b!, ~c! first-order one-
body diagrams for the effective charges.~d!–~f!
illustrate some second order,~g! and ~h! the
TDA, and ~i!–~l! the RPA diagrams included in
the calculation of the effective charges.
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the G-matrix with the wings mix center-of-mass an
relative-coordinate configurations, as there is no orthogo
transformation between the two-particle states and the r
tive and center-of-mass coordinate states of the two inter
ing particles in this case. We checked the effect of mixing
the center-of-mass and relative-coordinate configuration
the 6\V calculation by varying the projection paramet
used in the Hamiltonian and found that it is a very sm
effect.

In the no-core shell-model calculations presented here
calculate eigenenergies, electromagnetic properties using
al
la-
t-
f
in

l

e
the

bare nucleon charges, and the point-nucleon radii of6Li. In
addition, we use the no-core shell-model calculation res
for 5He and 5Li in Sec. V.

In order to gain insight into the model-space depende
of the no-core calculation, three different model spaces
investigated. For these three model spaces we useG-matrix
elements evaluated in such a manner as to include all t
particle states with unperturbed energies up to 4\V, 6\V,
and 8\V relative to the harmonic-oscillator ground stat
corresponding to excitations of 2\V, 4\V, and 6\V above
the lowest-energy configuration of6Li, respectively.
r
-

FIG. 3. First- and second-orde
one-body diagrams used to evalu
ate the single-particle energies.
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B. Perturbation expansion

Once we have determined theG-matrix we may employ a
perturbation expansion for effective operators calculated
second order to determine effective charges. T
perturbation-expansion diagrams for effective operators
cluded in our study follow the work of Siegel and Zamic
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@16#. Zeroth-order terms for effective charges are simply m
trix elements of the bare operators. The two first-order ter
including their exchange diagrams, contain one intermed
state and have one interaction between the valence part
and the core particles. These zeroth-order and first-order
grams are shown in Figs. 2~a!–2~c!. The two first-order dia-
grams are evaluated as
^bu@OLta#b&5(
p,h

~11Pph!~21!~L1t1 j p1 j h11!
1

eb2~ea1ep2eh! (J,T
~2J11!~2T11!A~2 j p11!

~2 j b11!

3^~ j bj h!JTuGu~ j aj p!JT&W~L, j p , j b ,J; j h , j a!WS t,
1

2
,
1

2
,T;

1

2
,
1

2D ^pu@OLth#p&. ~5!
nt

lts

e

f-
y
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-

The operatorPph exchanges the labelsp and h, except for
the energy denominator where its action results in the
change ofa and b. It changes diagram 2~b! into diagram
2~c!. The quantitiesW are Racah coefficients and the r
duced matrix element convention of Mavromatis, Zami
and Brown@17# is employed, where the reduced matrix e
ment ^pu@OLth#p& is defined by

^puOM
Ltuh&5~LM j hmhu j pmp!^pu@OLth#p&. ~6!

Instead of using approximate energy denominators set e
to multiples of\V, as done by Siegel and Zamick, we utiliz
energy denominators determined from calculated sin
particle energies~e.g.,ea) obtained using a second-order pe
turbation expansion that involves evaluating the three o
body diagrams, shown in Fig. 3. The formulas for these th
diagrams are given in our study of effective interactions@18#.
Using calculated single-particle energies will give a mo
accurate description of the differences in the energies of
particles involved in determining the energy denominato
All configurations up to 6\V above the ground state ar
included in the calculation of the energy denominators. T
same single-particle energies were employed in all calc
tions, regardless of the size of the intermediate excita
space being used for the effective-operator diagrams.

Second-order terms for effective operators include
terms with two intermediate states and have two sets of
teractions involving the core and excited particles. Some
amples of the second-order diagrams for the effective cha
are shown in Figs. 2~d!–2~l!. Diagram~d! is an example of a
second-order diagram obtained by inserting aG-interaction
into a first-order diagram, in this case diagram~b!. Figures
2~e! and 2~f! are examples of second-order diagrams, wh
have no counterpart in first-order. We do not include wa
function renormalizations in the calculation.

In calculating the effective charges, the result for ea
diagram was divided by the zeroth-order diagram for n
malization, thus the renormalized zeroth-order term is id
tically one for both the T50 and T51 cases, i.e., the isosca
lar and isovector terms, respectively. The effective pro
chargeeeff

p and the effective neutron chargeeeff
n are given in

terms of the isoscalar effective chargeeeff
0 , evaluated with
x-
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T50, and the isovector effective chargeeeff
1 , evaluated with

T51, according to the following equations:

eeff
p 5 1

2 ~eeff
0 1eeff

1 !, ~7!

eeff
n 5 1

2 ~eeff
0 2eeff

1 !, ~8!

whereeeff
0 andeeff

1 are determined by evaluating the differe
diagrams to various orders in the perturbation expansion~see
Ref. @16#, for example!.

C. Model-space truncation

To make a direct comparison with the perturbation resu
we apply the model-space truncation formalism@5# to the
no-core 6\V ~or 4\V) calculation in order to derive an
equivalent description in the 0\V space. That is, we take th
results of the large-space 6\V calculation and truncate~i.e.,
project! them into the 0\V space, so as to construct an e
fective 0\V Hamiltonian. The Lee-Suzuki starting-energ
independent similarity transformation method@6# is used,
which gives the effective HamiltonianPHeffP5PHP
1PHQvP, with the transformation operatorv satisfying
v5QvP. This operator is obtained from the large-spa
0\V dominated eigenstates using the relations

^aQuk&5(
aP

^aQuvuaP&^aPuk&, ~9!

^aQuvuaP&5 (
kPK

^aQuk&@^aPuk&#21. ~10!

The statesuaQ& anduaP& are theQ space andP space basis
states, respectively, andK is the set of eigenstatesuk& that
we wish to reproduce in the truncated model space. Note
here theP space is the 0\V model space. Using this opera
tor, the effective Hamiltonian can be constructed~see Ref.
@7#!, and a general effective operator is then obtained as@19–
21#
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TABLE I. No-core results for the ground-state energy~GE!, electric quadrupole moment~E2!, magnetic
dipole moment~M1!, and the root-mean-square point-proton radius (Rp) calculated in different model-spac
sizes for aG-matrix calculated with and without wings on theQP-operator.

2\V 4\V 6\V Experiment
Operator wings no wing wings no wing wings no wing

GE @MeV# 224.18 226.82 231.61 232.23 231.92 232.07 232.00
E2 [e fm2# 20.039 20.108 20.075 20.109 20.089 20.092 20.082
M1 [mN# 0.861 0.860 0.850 0.850 0.844 0.844 0.822
Rp @fm# 2.072 2.028 2.061 2.046 2.075 2.069 2.38
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Ōeff5@P~11v†v!P#21/2~P1Pv†Q!

3Ô~P1QvP!@P~11v†v!P#21/2. ~11!

In the particular application of this formalism to6Li, with Ô
being one-body electromagnetic operators, we obtain, in g
eral, two-body effective operators. These can be then s
rated into a one-body part with the help of effective charg
and a two-body part@5#.

III. NO-CORE CALCULATION RESULTS

The results using the large-model-space no-core calc
tions, with theG-matrix derived from the Nijmegen II po
tential, show good agreement with6Li experimental values,
as shown in Table I. With the harmonic-oscillator parame
\V 5 14 MeV, and theD of Eq. ~2! chosen as225 MeV to
reproduce the experimental binding energy of6Li, the elec-
tric quadrupole moment, magnetic dipole moment, and ro
mean-square proton radius, calculated in the 6\V model
space, are all within about 10% of their respective exp
mental values.

From Table I we can see a very small dependence of
magnetic dipole moment of the ground state of6Li on the
model-space size. Each successive increase in the size o
model space results in a smaller increase in the calcul
value for the magnetic dipole moment. The calculated va
of the magnetic dipole moment gets closer to the experim
tal value as the size of the model space increases.

The calculated root-mean-square proton radius is so
what smaller than the experimentally determined val
There is a slight model-space dependence for the calcul
value, where the calculated root-mean-square proton ra
tends to increase as the size of the model space incre
This model-space dependence is too small to account fo
discrepancy between the calculated and the experimen
determined values, the calculated value being about 1
smaller than the experimental value. This is a long-stand
problem, where calculations which reproduce the corr
binding energy tend to give a radius that is too small a
calculations, which produce the correct radius, tend to
derbind the system@22#. Since we have chosen to reprodu
the correct binding energy by our choice ofD5225 MeV in
the starting energy, we can expect to calculate a radius th
too small.

No-core calculations of the electric quadrupole mom
for the ground state of6Li closely match the small, negativ
experimental value of20.082. Calculations performed in th
2\V model space give us a small, negative value that is
n-
a-
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the order of the experimental value. Going to larger mo
spaces improves the result giving us a value that is very c
to the experimental value for the electric quadrupole mom
of 6Li. The trend of convergence of the electric quadrupo
moment with larger model spaces is not so consistent as
trend observed in the calculation of the magnetic dipole m
ment, discussed previously.

The difference between the results obtained in the no-c
approach for the ground-state EM moments with and with
wings depends upon the operator studied. For the magn
dipole operator, the 0s1/2 state cannot be connected with th
higher-lying states contained in the wings. Thus, there is
direct contribution to the magnetic dipole operator from t
wing portion of theQP-operator and the effect of the wing
upon the calculation of the magnetic dipole moment is
sentially nonexistent. The root-mean-square proton rad
exhibits a noticeable difference, when calculated with a
without wings. In each of the model spaces studied the
culation with wings results in a smaller binding energy, i
creasing the radius. The wings also include states wit
greater portion of their wave function at large radii. Th
combination of these two factors leads us to expect that
culations with wings will result in a greater calculated roo
mean-square proton radius, which we observe in Table I
all model spaces studied, including the wings in the calcu
tion of the G-matrix causes the no-core calculated value
the electric quadrupole moment to be smaller than the ca
lation without the wings. The calculations for the electr
quadrupole operator with and without wings grow closer
gether as we increase the size of the model space. The s
r 2-dependence and the contributions from the expanded
tions of the model space cause the electric quadrupole
ment to show the greatest dependence upon the wings o
three operators calculated. The number of states include
the wings decreases as we go to larger model spaces, s
would expect the difference between the calculations w
and without wings to diminish in the larger model spa
calculations. The diminishing effect of the wings can
clearly seen in Table I.

IV. PERTURBATION CALCULATION RESULTS

We now turn to our study of the effective operators a
effective charges obtained in the perturbation-expans
method. We utilize the sameG-matrix as that used for the
6\V 6Li no-core calculations discussed above. In evaluat
the various diagrams, single-particle energies, calculate
second-order in perturbation expansion, were employed
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TABLE II. Results of perturbation-expansion calculations, showing the dependence of effective ch
upon the type of energy denominators used. Results shown are for the 0p1/220p3/2 transitions calculated
without wave function renormalization diagrams. In the last two columns calculated single-particle en
~spe! are used~see Fig. 3!.

2, 4, and 6\V excitation contributions to multiples of\V Calculated spe
first- and second-order totals of 0p1/220p3/2 T50 T51 T50 T51

2\V excitations first-order 0.3270 20.1493 0.2706 20.1213
2\V excitations second-order 20.0992 20.1289 20.0288 20.0712
4\V excitations second-order 0.1171 20.0244 0.0913 20.0226
6\V excitations second-order 0.0528 20.0226 0.0530 20.0218

Total 1st and 2nd order for all configurations within a given model space

2\V excitations 1st1 2nd total 0.2278 20.2782 0.2418 20.1925
(214)\V excitations 1st1 2nd total 0.3449 20.3026 0.3331 20.2151
(21416)\V excitations 1st1 2nd total 0.3977 20.3252 0.3861 20.2369

0th 1 1st 1 2nd order proton neutron proton neutron
(21416)\V excitations 1.0363 0.3615 1.0746 0.3115
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determine the energy denominators. These single-particle
ergies were calculated using

e i5t i1ui , ~12!

where theui was determined by evaluating the first- a
second-order diagrams shown earlier in Fig. 3. For the p
pose of comparison with calculations done by others@16,23#,
all diagrams have also been evaluated using multiples of\V
for the energy denominators. The energy spacing betw
major shells using calculated single-particle energies, ins
of multiples of \V, tends to be larger for the lower-lyin
states and smaller for the higher-lying states. The sin
particle energies calculated using wings tended to be slig
larger than those calculated without wings, although this
ference was less than 1%.

The difference in energy denominators using calcula
single-particle energies results in about a 10% reduction
the T50 andT51 effective charges, when compared wi
the traditional method of using multiples of\V, as can be
seen in Table II. Looking at the sum of the second-or
diagrams in Table II, we see that the 2\V excitation space
effective charges are much smaller, when using calcula
energies, while there is less of a difference between the
methods for the effective charges calculated in the 4\V and
6\V intermediate-state excitation spaces. In the case of t
\V excitation first- and second-order diagrams, the ene
denominators obtained from calculated single-particle en
gies are larger and the resulting diagrams are smaller.
second-order diagrams have two energy denominat
which may have calculated energy gaps that are smaller
the energy gaps determined from multiples of\V, when we
go to higher intermediate-state excitations. For example
configuration included in the 6\V excitation space, but no
in the 2\V or 4\V excitation spaces, may have one of t
energy denominators corresponding to a 2\V excitation and
one corresponding to a 6\V excitation. Thus the calculate
energy denominator would be smaller than 6\V for the ‘‘6
\V ’’ intermediate-state excitation and larger than 2\V for
the ‘‘2\V ’’ intermediate-state excitation. Hence, we will se
n-
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en
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less reduction, or even an enhancement, of the diagram u
calculated single-particle energies, when compared to
same diagram evaluated using energy denominators tha
2\V and 6\V. This effect can be clearly seen by looking
the 2\V-excitation, 4\V-excitation, and 6\V-excitation
contributions to the sum of the second-order diagram
shown in Table II.

When effective-operator calculations in perturbati
theory are compared, using aG-matrix computed with and
without wings, there is less than a 1% difference for t
electric quadrupole operator as well as the orbital and s
portion of the magnetic dipole operator. Similarly, the res
of using single-particle energies calculated fromG-matrix
elements with and without wings also yields less than a
difference in the effective charges obtained from the eff
tive operators. This result holds for the 2\V, 4\V, and 6\V
model spaces as well as for first- and second-order calc
tions. Since we see only a small effect on effective-opera
results from including the wings in the calculation of th
G-matrix, we can safely conclude that the contribution of t
wings plays no significant role in our perturbation-expans
calculations.

Because the calculations are done in a finite-sized mo
space, we also investigate the effect of including more in
mediate states. For this portion of the study the same 8\V
G-matrix elements, calculated using the Nijmegen II N
potential, were used for all three choices for t
intermediate-state excitations. The same energy denom
tors, determined from calculated single-particle energ
were also employed in all three calculations. The only d
ference between the three different intermediate-state ca
lations is that additional excited states have been include
the calculations. The largest intermediate-state space
cludes all the configurations that are included in the sma
spaces and obviously yields exactly the same results
these lower-lying configurations. Allowing a large
intermediate-state space will involve configurations at hig
energies; these configurations will have larger energy
nominators and the contribution from each higher-lying co
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TABLE III. Isoscalar and isovector components as well as proton and neutron quadrupole effective charges for various diagra
calculated single-particle energies and an 8\V G-matrix with wings. Numbers listed are contributions due to the expanded portion o
intermediate-excitation space only, calculated without wave function renormalization diagrams.

0p1/220p3/2 0p3/220p3/2

T 5 0 T 5 1 proton neutron T5 0 T 5 1 proton neutron

2\V excitations 1st order 0.2706 20.1213 0.0747 0.1960 0.2257 20.1328 0.0464 0.1793
4\V excitations 1st order
6\V excitations 1st order

2\V excitations 2nd order TDA 0.0517 0.0115 0.0316 0.0201 0.0478 0.0122 0.0300 0.0
4\V excitations 2nd order TDA 0.0158 0.0040 0.0099 0.0059 0.0146 0.0043 0.0095 0.0
6\V excitations 2nd order TDA 0.0036 0.0011 0.0023 0.0013 0.0033 0.0011 0.0022 0.0

2\V excitations 2nd order RPA
4\V excitations 2nd order RPA 0.0226 0.0048 0.0137 0.0089 0.0191 0.0053 0.0122 0.0
6\V excitations 2nd order RPA 0.0068 0.0017 0.0043 0.0025 0.0056 0.0020 0.0038 0.0

2\V excitations 2nd order total 20.0289 20.0712 20.0500 0.0212 20.0346 20.0630 20.0488 0.0142
4\V excitations 2nd order total 0.0913 20.0226 0.0344 0.0570 0.0854 20.0212 0.0321 0.0533
6\V excitations 2nd order total 0.0530 20.0218 0.0156 0.0374 0.0506 20.0211 0.0148 0.0358

2\V excitations 1st1 2nd total 0.2418 20.1924 0.0247 0.2171 0.1911 20.1958 20.0024 0.1935
4\V excitations 1st1 2nd total 0.0913 20.0226 0.0344 0.0570 0.0854 20.0212 0.0321 0.0533
6\V excitations 1st1 2nd total 0.0530 20.0218 0.0156 0.0374 0.0506 20.0211 0.0148 0.0358

0th 1 1st 1 2nd order total 1.3861 0.7632 1.0747 0.3115 1.3271 0.7619 1.0445 0.28
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figuration should be smaller. While the contribution of ea
individual configuration is generally smaller with a larg
intermediate-excitation space, the number of configurati
greatly increases with each increase in the excitation-sp
size.

The results of the effective-charge calculations for T50
and T51 in the various model spaces are shown in Table
In the first-order diagrams, only the configurations that
exactly 2\V above the ground state contribute. This is b
cause the operator involved is an interaction between
0s1/2 hole state and a particle state, and only the 0d3/2 and
0d5/2 particle states have nonzero matrix elements of
transition operator with the 0s1/2 state. Having the hole state
limited to the 0s1/2 state also excludes the possibility of
pure 2\V excitation configuration in the random phase a
proximation~RPA! diagrams shown in Figs. 2~e!–2~h!.

Because there are no additional contributions to
zeroth- and first-order terms from excitations greater th
2\V, we are left with only the second-order diagrams f
investigating the intermediate-excitation space depende
In general, the contribution from the expanded portion of
excitation space for each individual diagram decreases as
size of the intermediate space grows, although there a
few cases where the 6\V excitation contribution is of the
same size or slightly larger than the 4\V excitation contri-
bution, which is in turn of the same size or larger than t
2\V excitation contribution for the same diagram.

Siegel and Zamick@16# also study the effect of going to a
larger excitation space. Their method of determining the
citation space differs from the one in this study, in that th
restrict their space by allowing all configurations for pa
ticles within a given shell. In the current study we restrict t
intermediate excitation-space to all configurations within
given energy limit. The calculations by Siegel and Zami
h
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leave out configurations with a single-particle in a high-lyi
shell and a lower energy than some of their included c
figurations. The calculation in the current study does not
clude configurations obtained within a given shell that are
higher energies than the limit set on intermediate-state e
tations. Some conclusions can still be drawn from the si
larities of going to larger excitation spaces. Siegel and Za
ick @16# looked at the convergence of the TDA and RP
diagrams and assumed that these diagrams would adequ
estimate the effect of intermediate-space truncation. T
calculations show that the contributions from the larger
citation space for the TDA and RPA graphs are about
order of magnitude smaller than the contribution from
smaller excitation spaces. In our calculation the contribut
from each of the successively larger excitation spaces
creases by roughly a factor of 4 for the TDA and RPA d
grams. Yet, when we calculate the sum of all second-o
diagrams, we do not observe the same convergence tha
found for the TDA and RPA studies. In fact, the secon
order total contributions from the different intermediate-st
spaces are of comparable magnitude and some are ev
different sign. This can be seen both in the results for T50
and T51, and in the effective proton and neutron charges
shown in Table III. The intermediate-state excitation-sp
truncation does not show strong convergence, although
major contribution to the effective charges does come fr
2\V excitation contributions.

In studying the order-by-order convergence of the d
grams, we see again that the diagrams evaluated with T50
show better convergence than the diagrams evaluated
T51. This is just the opposite of the result found for t
convergence of the effective interaction in Ref.@24#. The
second-order diagrams are all significantly smaller than
two first-order diagrams for T50. The sum of second-orde
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TABLE IV. Second order terms in the perturbation-expansion calculation of the magnetic dipole mo
of 6Li using calculated single-particle energies and an 8\V G-matrix with wings.N\V means the sum of al
contributions from 2 toN\V.

Excitation 0p1/220p1/2 0p1/220p3/2 0p3/220p3/2

Space T5 0 T 5 1 T 5 0 T 5 1 T 5 0 T 5 1

2 \V l -part 20.0765 0.0243 20.0135 0.0147 0.0279 0.0213
4 \V l -part 20.1020 0.0410 20.0220 0.0253 0.0307 0.0361
6 \V l -part 20.1146 0.0527 20.0296 0.0310 0.0267 0.0432

2 \V s-part 0.0174 20.0439 20.0135 20.0364 0.0375 20.0228
4 \V s-part 0.0329 20.0537 20.0220 20.0452 0.0753 20.0286
6 \V s-part 0.0400 20.0560 20.0319 20.0481 0.0943 20.0304

0p1/220p1/2 0p1/220p3/2 0p3/220p3/2

proton neutron proton neutron proton neutron

6 \V l -part 20.0310 20.0837 0.0007 20.0303 0.0350 20.0083
6 \V s-part 20.0080 0.0480 20.0400 0.0081 0.0320 0.0623
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diagrams is about an order-of-magnitude smaller than
sum of the two first-order diagrams. The second-order d
grams for T51 are all individually smaller than the two firs
order diagrams, but the sum of the second-order T51 dia-
grams is approximately the same size as the sum of the
first-order T51 diagrams.

When the isoscalar and isovector contributions are co
bined to produce proton and neutron effective charges,
Eqs. ~7! and ~8!, the different convergence trends for th
T50 and T51 diagrams cause problems for the converge
of the effective proton and neutron charges. The neutron
fective charge is dominated by the 2\V first-order diagrams,
being about twice the size of the sum of all second-or
diagrams. The proton effective charge does not show a s
lar dominating term. The second-order totals show a str
excitation space dependence. The 4\V and 6\V second-
order totals are of opposite sign and similar magnitude to
2\V second-order total and tend to cancel any major con
bution from the second-order diagrams. It is unclear if go
to larger excitation spaces will result in any significant co
tributions from second-order diagrams. Although the R
and TDA diagrams show good convergence as the excita
space increases, other second-order diagrams, particu
ones of opposite sign, counteract this convergence trend.
sum of all second-order diagrams is marginally largest
the 2\V excitation contributions for the effective proto
charge but the same cannot be said for the effective neu
charge.

The effective neutron charge is of the order of 0.3 w
about two-thirds of this coming from the first-order diagra
The effective proton charge is slightly larger than 1, with t
major contribution coming from first-order and, at least in
6\V excitation space, no significant contribution comi
from second-order diagrams.

The results for the perturbation-expansion calculation
the magnetic-dipole moments of6Li are shown in Table IV.
As the size of the excitation space increases, the converg
of the T50 and T51 elements is well behaved for both th
orbital and spin portion of the dipole moment matrix e
ments. The best convergence occurs in the T51 spin contri-
bution to the magnetic-dipole operators, where each incre
e
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of 2\V in the excitation space gives an additional contrib
tion, which is approximately one fourth of the lowe
excitation-space contribution. In these particular matrix e
ments the major contribution comes from the 2\V excitation
configurations with relatively small contributions from
higher-lying excitations, which tend to decrease as the e
tation energy gets larger.

The vast majority of the diagrams used to evaluate
magnetic-dipole operator give zero contribution due to
relatively small number of nonzero bare magnetic-dipole m
trix elements. The bare M1 matrix element is nonzero o
when the initial and final states of the operator have the sa
quantum numbersn, l . Thus, all first-order diagrams, show
in Fig. 2, give zero contribution to the magnetic-dipole o
erator because the operator cannot connect a 0s1/2 hole state
with a higher lying particle state. Since the zeroth-order c
tribution does not change and the first-order contribution
identically zero for all states, it is difficult to make any stat
ment about the order-by-order convergence of the pertu
tion expansion. Even the TDA and RPA diagrams, wh
have traditionally been evaluated to higher order in calcu
tions of other effective operators, are identically zero, so
are unable to pursue the order-by-order convergence of
magnetic-dipole operator any further.

The results obtained from perturbation-theory calculatio
of the magnetic-dipole operator are consistent with res
obtained from other calculations@17,25#. All of the TDA and
RPA diagrams, which we evaluate to give zero contributi
also have zero contribution in other studies involving one
two nucleons outside a doubly magic closed shell. T
second-order corrections to the magnetic-dipole operator
small with the majority contribution to these operators co
ing from the zeroth-order term.

V. MODEL-SPACE TRUNCATION RESULTS: A AND \V

DEPENDENCE

For a direct comparison with the effective charges o
tained in the perturbation-expansion calculation, we calcu
the effective charges in the model-space truncation sche
as described in Ref.@5#, employing the same interaction use



c spin
l-

n.
d

3116 57THORESEN, NAVRÁTIL, AND BARRETT
TABLE V. Effective charges of the proton and neutron quadrupole, magnetic orbital, and magneti
operators, derived by least-square fits to the corresponding 0p-shell effective operators obtained by mode
space truncation method from the 6\V calculation for6Li using the ‘‘single-valued’’G-matrix with wings,
D5225 MeV, and\V514 MeV. Both thej -dependent andj -independent effective charges are show
Also, the j -independent effective charges obtained in the same way from the 4\V calculation are presente
in the last two columns, labeled eff-4.

e1/23/2
p e1/23/2

n e3/23/2
p e3/23/2

n e1/21/2
p e1/21/2

n

E2 1.184 0.272 1.080 0.215
Ml 0.890 0.036 0.954 0.061 0.910 0.068
Ms 0.939 20.012 0.972 20.001 0.943 20.031

eeff
p eeff

n eeff-4
p eeff-4

n

E2 1.141 0.245 1.087 0.189
Ml 0.934 0.061 0.948 0.047
Ms 0.955 20.005 0.966 20.005
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in the perturbation calculation, namely, a ‘‘single-valued
G-matrix ~as opposed to the effective interaction used la
in this section! with wings, obtained with the Nijmegen I
N-N potential, a harmonic-oscillator parameter\V514
MeV, and a fixedD5225 MeV. The effective charges com
puted with this interaction are shown in Table V and co
pared with the corresponding perturbation results in Ta
VI. These comparisons are for the one-body part of the o
plus-two-body effective operators obtained in this appro
~see Ref.@5#!. The real two-body part is found to be sma
typically not more than 10% of the full operator.

Our previous calculations of effective charges, publish
in Ref. @5#, employed a different effective two-nucleon inte
action, the so-called ‘‘multivalued’’ interaction introduced
Ref. @11#. In this method, differentQP-operators are utilized
in evaluating theG-matrix for configurations with differen
spectator energies, hence the name ‘‘multivalued’’G-matrix
approach. The effective interaction employed in Ref.@5# also
uses the Reid93 N-N potential@10# and a harmonic-oscillato
parameter of\V517.2 MeV.

A comparison of the effective charges from Table III
Ref. @5# and Table V in the present paper shows that
quadrupole effective charges obtained here with the ‘‘sing
valued’’ G-matrix are considerably smaller than those o
tained with the ‘‘multivalued’’G-matrix. A major factor in
this difference is the choice of the harmonic-oscillator p
rameter. To understand the dependence of the quadru
effective charges on\V, we performed separate calcul
r
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le
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tions, as described later. The\V dependence accounts fo
some of the difference between the two sets of effect
charges, but the interactions used in the calculations
contribute to this difference. The electromagnetic transitio
are weaker in the ‘‘single-valued’’ calculation, which implie
smaller contributions to the effective charges. As to the co
parison with the experiment, the ‘‘multivalued’’ interactio
gives superior results. Therefore, the effective charges
tracted from the ‘‘multivalued’’ interaction calculation
should also be more realistic.

To gain a deeper insight into the dependence of the qu
rupole effective charge on\V andA, we performed severa
additional calculations. In Fig. 4 we present the quadrup
effective proton, neutron~a!, isoscalar~b!, and isovector~c!
effective charge dependence on\V and A. The effective
charges were obtained by the model-space trunca
method, going from the 6\V relative to the unperturbed
ground state to the 0\V model space in calculations for6Li
and 5He,5Li. The A55 results were extracted from the ca
culations presented in Fig. 1 of Ref.@7#. The calculations
were performed for a wide range of the harmonic-oscilla
frequencies,\V58, 10, 14, 17.8, and 22 MeV. TheA56
results obtained for\V517.2 MeV are taken from Ref.@5#.
Two more A56 calculations, for\V514 and 20 MeV,
were performed, using the same approach. All the calc
tions use the ‘‘multivalued’’ isospin-invariant effective inte
action derived from the Reid93 potential, as described
Ref. @7#. The effective charges are trivially computed for th
n and
TABLE VI. Comparison of effective charges obtained through a perturbation-expansion calculatio
a model-space-truncation calculation. Both results are for a ‘‘single-valued,’’ 8\V G-matrix with wings
derived using the Nijmegen II N-N potential,D5225 MeV, and\V514 MeV.

0p1/220p1/2 0p1/220p3/2 0p3/220p3/2

proton neutron proton neutron proton neutron

E2 perturbation 1.07 0.31 1.04 0.28
E2 space truncation 1.18 0.27 1.08 0.22
M1l perturbation 0.97 20.08 1.00 20.03 1.04 20.01
M1l space truncation 0.91 0.07 0.89 0.04 0.95 0.06
M1s perturbation 0.99 0.05 0.96 0.01 1.03 0.06
M1s space truncation 0.94 20.03 0.94 20.01 0.97 20.001
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A55 system by taking the ratios of the matrix eleme
calculated in the 6\V space with the corresponding on
from the 0\V space, e.g.,

eeff33
p 5^ 3

2
2~6\V,5Li !uQ~2!u 3

2
2~6\V,5Li !&/

^ 3
2

2~0\V,5Li !uQ~2!u 3
2

2~0\V,5Li !&.

The one-body quadrupole operator used in the calculat
employs free nucleon charges. TheA56 effective charges
are obtained using the method described in Ref.@5#.

From Fig. 4 we observe an almost linear scaling of
effective charges. This can be simply understood. In part
lar, for theA55 results, it is apparent that such scaling exi
under the condition that the large-space, here 6\V, results
depend only weakly on\V. The 0\V results, on the othe
hand, are proportional to the harmonic-oscillat

FIG. 4. ~a! The quadrupole effective proton, neutron,~b! iso-
scalar, and~c! isovector effective charge dependence on\V andA.
The effective charges were obtained by the model-space trunc
from 6\V calculations for6Li and 5He,5Li. The A55 results cor-
respond to the calculation presented in Fig. 1 of Ref.@7#, obtained
for \V58, 10, 14, 17.8, and 22 MeV. TheA56 results, obtained
for \V517.2 MeV, are taken from Ref.@5#. Two additional calcu-
lations, for\V514 and 20 MeV, are presented. All the calculatio
use the ‘‘multivalued’’ effective interaction derived from th
Reid93 potential, as described in Ref.@7#.
s

ns

e
-
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r

parameter b25(\c)2/(mNc2\V). Therefore, eeff(\V1)
'(\V1 /\V2)eeff(\V2). Apparently, and not surprisingly
the scaling persists forA56 as well.

A more nontrivial result is, however, the observation th
the isoscalar effective charges remain almost the same
A55 andA56, while, on the other hand, there is a signi
cant change in the isovector effective charges. This can
seen by comparing parts~b! and ~c! of Fig. 4. In fact, a
similar A dependence was reported by Nakada and Otsuk
Ref. @26# in a phenomenological shell-model calculation f
the p-shell nuclei. Here we make a similar observation in
microscopic calculation.

Let us return to the comparison of the effective charg
obtained from the ‘‘single-valued’’ effective interaction
Table V, and from the ‘‘multivalued’’ interaction, Table III
of Ref. @5#. From the above discussion of the\V depen-
dence, we should expect the electric-quadrupole effec
charges, calculated with\V517.2 MeV, to be larger by a
factor of 17.2/14'1.23. The remaining difference in the e
fective charges should then be attributed to the difference
the two effective interactions.

VI. CONCLUSIONS

To summarize, the goal of this project was to study d
ferent microscopical approaches for calculating the elec
magnetic operators of light nuclei, and in particular,6Li. As
in Ref. @18# for the effective interaction, the no-core calc
lation was again used as a ‘‘theoretical experiment’’ and a
starting point for the model-space truncation calculation
the purpose of comparison with the standard perturbat
theory calculations of effective operators. The results for
electric quadrupole operator give us more information ab
perturbation-theory calculations of effective operators th
the results of the magnetic dipole calculation. For the elec
quadrupole operator we find that the use of single-part
energies, instead of multiples of\V, for the energy denomi-
nators has a small effect, favoring larger effective proton a
neutron charges for calculations with energy denominat
which are multiples of\V. Hence, in perturbation-theor
calculations of effective charges, calculated single-part
energies appear to have no advantage over multiples of\V.

Similar to previous perturbation-theory calculations of e
fective charges@3,16,23#, we find that the perturbation ex
pansion does not converge rapidly. In addition, we discov
as seen in Tables III and IV, that the second-order terms
not well-behaved as the size of the space increases. Th
opposite to the conclusion of Siegel and Zamick@16#, based
only on the RPA and TDA terms~which are also well-
behaved with space size in our calculations!. It is unclear
whether going to larger excitation spaces and/or high
orders in the perturbation expansion will change the conc
sions based on the present results.

Unlike the calculation for the effective interaction, th
order-by-order convergence of the perturbation expansion
effective charges is better forT50 states than forT51
states@18,24#. When we look at the proton and neutron e
fective charges computed in the perturbation theory, we
that the proton effective charge has small and opposite c
tributions coming from the first- and second-order term
while the effective neutron charge has its first-order con

on
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bution about twice as large and of the same sign as
second-order contribution. The effective charges that we
tain, en' 0.3 and ep' 1.1, are similar to the effective
charges obtained in other perturbation calculations for lar
nuclei. The effective charges obtained through a perturba
expansion show good agreement with the effective cha
obtained through a model-space truncation calculation, w
the same interaction and harmonic-oscillator parameter
used.

Since the zeroth-order effective charges are fixed and
first-order contributions are zero for the magnetic dipole
erator, there is little that can be concluded about the con
gence of this operator. It is worth noting that there is ve
little contribution to both the orbital and the spin portion
the magnetic-dipole operator from second-order. This is c
sistent with the findings of the model-space-truncation
sults for effective magnetic-dipole charges, i.e.,g-factors.
Similar to the findings from the calculation of the electri
quadrupole operator, the effective charges we obtain fr
the perturbation expansion for the magnetic dipole oper
are of the same size as effective charges obtained in
model-space-truncation calculation, when using the sa
‘‘single-valued’’ G-matrix in both calculations, as summa
rized in Table VI.

We have also studied the\V and theA dependence of the
E2 effective charges in the model-space-truncation meth
We used the 6\V calculations for5Li, 5He, and 6Li, per-
formed for a wide range of the harmonic-oscillator freque
cies and using the ‘‘multivalued’’ effective interaction d
rived from the Reid93 potential, to extract the 0\V effective
.
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charges. We find a scaling of the effective charges with\V,
which can be simply understood. Let us mention that
effective charges extracted from the experimental E2 tra
tions or moments depend on the value of\V used in the
analysis and would scale with\V in a similar manner as we
observe in our microscopic calculations. Typically, the a
propriate values of\V employed in such analyses we
taken from a standard formula, such as\V545A21/3

225A22/3 MeV. For A56 this gives 17.2 MeV, the sam
value we utilized in our calculations in Ref.@5#, and for
which we obtained effective charges consistent with the
perimental ones. Also, we observe different behavior of
isoscalar and isovector effective charges with respect t
change in the mass numberA. While the isoscalar charge
remain almost constant as a function ofA, the isovector
charges change significantly betweenA55 and A56. A
similar observation for otherp-shell nuclei was reported in
Ref. @26#. There is also a dependence of the effective cha
on the strength of the effective interaction used in the cal
lation. We obtain the significant result that the ‘‘multiva
ued’’ effective interaction yields more realistic values for t
effective charges than the ‘‘single-valued’’ effective intera
tion.
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@19# P. Navrátil, H. B. Geyer, and T. T. S. Kuo, Phys. Lett. B315,

1 ~1993!.
@20# T. T. S. Kuo, P. J. Ellis, Jifa Hao, Zibang Li, K. Suzuki, and R

Okamoto, Nucl. Phys.A560, 621 ~1993!.
@21# K. Suzuki and R. Okamoto, Prog. Theor. Phys.93, 905~1995!.
@22# J. W. Negele, Rev. Mod. Phys.54, 913 ~1982!.
@23# P. J. Ellis and S. Siegel, Phys. Lett.34B, 177 ~1971!.
@24# M. Hjorth-Jensen, H. Mu¨ther, E. Osnes, and A. Ploos, J. Phy

G 22, 321 ~1996!.
@25# A. E. L. Dieperink and P. J. Brussaard, Nucl. Phys.A129, 33

~1969!.
@26# H. Nakada and T. Otsuka, Phys. Rev. C49, 886 ~1994!.


