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Comparison of techniques for computing shell-model effective operators
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Different techniques for calculating effective operators within the framework of the shell model using the
same effective interaction and the same excitation spaces are presented. Starting with the large-basis no-core
approach, we compare the time-honored perturbation-expansion approach and a model-space truncation ap-
proach. Results for the electric quadrupole and magnetic dipole operators are presefitédThe conver-
gence trends and dependence of the effective operators on differing excitation spaces aQebpatditors are
studied. In addition, the dependence of the electric-quadrupole effective charge on the harmonic-oscillator
frequency and the mass number, for 5,6, is investigated in the model-space truncation approach.
[S0556-28188)07606-1
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[. INTRODUCTION potential and assumptions for determining the nuclear reac-
tion matrix G. In addition, to shed more light on the
While considerable effort has been devoted to derive thdarmonic-oscillator-frequency and the mass-number depen-
effective interaction used in the shell-model calculationsdence, we supplement tif&i results of Ref[5] with calcu-
from the nucleon-nucleon interactiqd—3], less work has lations for otheri Q) values and also present new results for
been done to understand the effective operators employed =5 system.
calculating different nuclear, usually electromagnetic, prop- In Sec. Il we describe the formalism used in performing
erties. A microscopic derivation of effective operators hashe three calculations. The no-core results are presented in
been only partially successful. It is well known that effective Sec. Ill. The perturbation calculation results and the model-
proton and neutron charges must be employed to describe tlspace truncation results are discussed in Secs. IV and V,
E2 transitions and moments. These charges are quite differespectively. Conclusions are given in Sec. VI.
ent from the free nucleon charges; typically the values of
el~1.5%e and el4~0.5%¢ are obtained for both light and Il. FORMALISM
heavy nuclei. It should be noted that these effective charges
correspond to a severe truncation to a single-major-shell, or All three approaches used in the study begin with the
040, space. Attempts to derive these charges microscopialculation of the Bruckner reaction matrior G-matrix)
cally, usually by perturbation theofg], or by an “expanded defined as
shell-model” approach4], yielded much smaller values. We b
note that in the “expanded shell-model” approach, typically G(e)=V+V Q G(e) 1)
results of a (G-2)A() calculation were truncated to the e—Hj '
02.Q space to derive the effective charges.
In a previous paper we described a truncation procedur&ither the starting energy is parametrized by
for determining effective charges in small shell-model spaces
using the results of large-space no-core calculat{&isin e=€,teptA, (2
that study, we used a#) model space fofLi, i.e., includ-
ing excited states up to7d) above the unperturbed ground- With A being independent of, and ey, or the dependence
state configuration. This procedure yielded(® effective  of the G-matrix one is removed by taking into account the
charges consistent with empirical values. Since previous mifolded diagrams by means of the Lee-Suz[&j approach
croscopic perturbation-theory calculations have typicallyfollowing the procedure described in RET]. In Eq.(1), V is
produced effective charges, which are too small comparethe free nucleon-nucleofN-N) interaction. The starting en-
with the empirical values, it is of interest to compare ergye represents the initial energy of the two nucleons in the
perturbation-theory calculations and calculations in a trunimedium.H, is the unperturbed Hamiltonian of the system,
cated model-space in an attempt to understand the reason fand QP is the Pauli projection operator, which projects onto
these differences. two-particle states that are not already occupied. The
To carry out this study we propose to perform three cal-G-matrix is evaluated using the method of Barrett, Hewitt,
culations: (1) no-core, (2) perturbation theory, and3)  and McCarthy{8], which is similar to the reference-spectrum
model-space truncation, all using the same nucleon-nucleomethod[9], in that a reference matrigR is calculated and
the reaction matrix, o6G-matrix, is then obtained by matrix
inversion. The computation of th&-matrix employed in our
*On leave of absence from the Institute of Nuclear Physics, Acadcalculations uses the Nijmegen Il or the Reid93 N-N inter-
emy of Sciences of the Czech Republic, 250 &% Rear Prague, action[10] in a two-particleQP-space shown in Fig. 1 and
Czech Republic. defined such that
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FIG. 1. QP-space projection operator for &6 calculation of®Li (a) with wings and(b) without wings.

QP=0 for (N;+N))<Npa. N;=0, or N,=0, (3) the purpose of comparison, both the no-core and the
perturbation-expansion calculations are done with and with-

QP=1 forallother N; and N, out wings.

with
A. No-core approach
N;=2n,+I1; and N,=2n,+1,. The no-core approach refers to large-basis shell-model
calculations performed in a model space of several major

In most calculations we usbl,,=8. SettingQP=0 for  harmonic-oscillator shells. In this approachAlhucleons of
N;+N,=<8 forces the intermediate excitations to have ana given nucleus are active for a compl&té () basis space
energy greater thanz8). We will refer to theG-matrix cal-  with a large value foN [11]. (An NZQ basis space is one
culated with aQP-space defined this way as am@ which includes all allowed configurations up to an energy of
G-matrix. SettingQP=0 for N;=0 or N,=0 prevents us N#A( above the unperturbed ground statue to the no-
from scattering into intermediate states that are in thg,0 core assumption, the effective interaction used in the calcu-
state, which is already fully occupied. Hence, the Pauli exdations is simplified as no hole states are present. In the ap-
clusion principle prevents us from scattering into theseproach taken, the effective, in genefabody, interaction is
states. These portions of tig-space are referred to as the determined for a system of two nucleons only and subse-
“wings” of the QP-projection operator. In calculations quently used in many-nucleon calculations. As discussed in
which do not assume there is a fully occupiéde core, the beginning of this section, either the two-nucleon
these &,,, states may be accessible and the wings may noG-matrix with a particular parametrization of the starting
be needed in the calculation of tl&matrix. For calcula- energy or the two-nucleo-matrix with the folded dia-
tions without wings we use th@"-operator of Fig. fb) grams taken into account by means of the Lee-Suzuki ap-

defined such that proach is employed as the two-body effective interaction in
our no-core shell-model calculations. By working in a com-
QP=0 for (N;+N,)<Npax- 4 plete NA () basis space with a single-particle harmonic-

oscillator Hamiltonian as our unperturbed Hamiltonian, we
In theory the wings should extend to infinity, but computa-can guarantee that all excluded configurations involve an en-
tional limits necessitate putting a finite limit on the extent of ergy of at least il + 2)% (), which should limit any intruder-
the wings. Barrett, Hewitt, and McCarthy] investigated states difficulties to the less interesting physical states higher
truncating the wings at different values and found that therén the spectrunj12]. That is, the larger the value o, the
is little effect in extending the wings padt=10. Conse- better the guarantee that we have included the major configu-
qguently, in our study we have truncated the wingsNat rations making up the physical low-lying states. Using com-
=10. Because we obtain slightly differe@-matrix ele- plete NA{) harmonic-oscillator spaces allows us to project
ments, when we use differeQ-operators, we will study out the spurious center-of-mass components in the wave
the effect that including wings has on the calculations. Forfunctions[13—15. Note, however, that the calculations using
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the G-matrix with the wings mix center-of-mass and bare nucleon charges, and the point-nucleon radfilof In
relative-coordinate configurations, as there is no orthogonaiddition, we use the no-core shell-model calculation results
transformation between the two-particle states and the relder >He and®Li in Sec. V.
tive and center-of-mass coordinate states of the two interact- In order to gain insight into the model-space dependence
ing particles in this case. We checked the effect of mixing ofof the no-core calculation, three different model spaces are
the center-of-mass and relative-coordinate configurations ifnvestigated. For these three model spaces weQisgatrix
the 62Q calculation by varying the projection parameter elements evaluated in such a manner as to include all two-
used in the Hamiltonian and found that it is a very smallparticle states with unperturbed energies up &4 6%},
effect. and 8:.Q relative to the harmonic-oscillator ground state,
In the no-core shell-model calculations presented here weorresponding to excitations ofiZ), 44}, and 6:() above
calculate eigenenergies, electromagnetic properties using thlee lowest-energy configuration 8t.i, respectively.

h P2 h P1 p FIG. 3. First- and second-order
one-body diagrams used to evalu-
ate the single-particle energies.

(@ (b) ©
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B. Perturbation expansion [16]. Zeroth-order terms for effective charges are simply ma-
] . trix elements of the bare operators. The two first-order terms,
Once we have determined tlEematrix we may employ a including their exchange diagrams, contain one intermediate
perturbation expansion for effective operators calculated t@tate and have one interaction between the valence particles
second order to determine effective charges. Thend the core particles. These zeroth-order and first-order dia-
perturbation-expansion diagrams for effective operators ingrams are shown in Figs(&8)—2(c). The two first-order dia-
cluded in our study follow the work of Siegel and Zamick grams are evaluated as

o 1 2]+ 1)
T b\ _ _ ( +7+ )ttt ) P
(b|[O"a] >—§] (1+Ppp)(— 1) 7Hlptintd Eb_(ea+6p_6h); (+ D@D 5

11 11 L
7,5,51T2§,§)<p|[0 "h]P). (5)

X<(ijh)JT|G|(JaJ p)JT>W(L1jp1jb1J;jh1ja)W

The operatoPy, exchanges the labefs and h, except for  T=0, and the isovector effective chargh, evaluated with
the energy denominator where its action results in the exT=1, according to the following equations:

change ofa and b. It changes diagram(B) into diagram

2(c). The quantitiesW are Racah coefficients and the re- b _1,.0 1

duced matrix element convention of Mavromatis, Zamick, €efi= 2 (Eeff T €eff) (7)
and Brown[17] is employed, where the reduced matrix ele-

ment({p|[O-"h]P) is defined by en = 1(ed —ely), ®)

O [h)y=(LMjpmy|j,m 0-"h]P). 6
(PIOWTM = (LMjnmnl 5m,)(PIL 1% . whereed; andel, are determined by evaluating the different

agrams to various orders in the perturbation expan&ea

di
Instead of using approximate energy denominators set equéef' [16], for example.

to multiples off (), as done by Siegel and Zamick, we utilize
energy denominators determined from calculated single-
particle energiege.g.,e,) obtained using a second-order per- C. Model-space truncation

turbation expansion that involves evaluating the three one- 14 make a direct comparison with the perturbation results
body diagrams, shown in Fig. 3. The formulas for these threg, apply the model-space truncation formali§) to the
diagrams are given in our study of effective interactift®. | J_.ore 6.0 (or 44Q) calculation in order to derive an
Using calculated single-particle energies will give a moreq, iyajent description in the#@) space. That is, we take the
accurate description of the differences in the energies of thg,q ,its of the large-spacé:) calculation and tr,uncat@.e.
particles involved in determining the energy denominatorsprojecb them into the @Q space, so as to construct an’ of-

All configurations up to & above the ground state are fective 0A() Hamiltonian. The Lee-Suzuki starting-energy

included in the calculation of the energy denominators. Th‘?ndependent similarity transformation methg@l is used,

same single-particle energies were employed in all Calcma\ivhich gives the effective HamiltoniarPHyP=PHP

tlogié rgzeg_f]\rdles; d?‘t)rﬂ:ﬁestleszeec(? Lhi |2;c:trg:edq:1trea§1xcnatlon+ PHQwP, with the transformation operatap satisfying
sp Ing us IVe-op lagrams. o=QuwP. This operator is obtained from the large-space

Second-order terms for effective operators include all : . . .
terms with two intermediate states andphave two sets of ithQ dominated eigenstates using the relations
teractions involving the core and excited particles. Some ex-

amples of the second-order diagrams for the effective charge (aglk)=2 (ao|w|ap)ap|k), ©)

are shown in Figs. @)—2(1). Diagram(d) is an example of a o

second-order diagram obtained by insertin-anteraction

into a first-order diagram, in this case diagréioy. Figures

2(e) and 2f) are examples of second-order diagrams, which (aglolap)= 2 (ag|k)[{ap|k)] L (10

have no counterpart in first-order. We do not include wave kek

function renormalizations in the calculation.

In calculating the effective charges, the result for eactThe state$aq) and|ap) are theQ space and® space basis
diagram was divided by the zeroth-order diagram for norstates, respectively, and is the set of eigenstatgk) that
malization, thus the renormalized zeroth-order term is idenwe wish to reproduce in the truncated model space. Note that
tically one for both the 0 and T=1 cases, i.e., the isosca- here theP space is the B model space. Using this opera-
lar and isovector terms, respectively. The effective protonor, the effective Hamiltonian can be construcisge Ref.
chargeel; and the effective neutron chargg; are given in  [7]), and a general effective operator is then obtaindd @s
terms of the isoscalar effective chargéf, evaluated with 21]
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TABLE I. No-core results for the ground-state enef@FE), electric quadrupole momefE2), magnetic
dipole momen{(M1), and the root-mean-square point-proton radig) (calculated in different model-space
sizes for aG-matrix calculated with and without wings on G -operator.

2hQ 44 640 Experiment
Operator wings no wing wings no wing wings no wing
GE [MeV] —24.18 —26.82 —31.61 —32.23 —31.92 —32.07 —32.00
E2 [e fm?] —0.039 —0.108 —0.075 —0.109 —0.089 —0.092 —0.082
M1 [ n] 0.861 0.860 0.850 0.850 0.844 0.844 0.822
Ry [fm] 2.072 2.028 2.061 2.046 2.075 2.069 2.38
59ﬁ=[P(1+wTw)P]‘1’2(P+ Pw'Q) the ordgr of the experimentgl _value. Going to Ia_rger model
spaces improves the result giving us a value that is very close
X O(P+QuwP)[P(1+w'w)P] "2 (11  to the experimental value for the electric quadrupole moment

. of SLi. The trend of convergence of the electric quadrupole
In the particular application of this formalism i, with O moment with larger model spaces is not so consistent as the
being one-body electromagnetic operators, we obtain, in gerirend observed in the calculation of the magnetic dipole mo-
eral, two-body effective operators. These can be then sepasent, discussed previously.
rated into a one-body part with the help of effective charges The difference between the results obtained in the no-core

and a two-body pait5]. approach for the ground-state EM moments with and without
wings depends upon the operator studied. For the magnetic
I1l. NO-CORE CALCULATION RESULTS dipole operator, the §,, state cannot be connected with the

. higher-lying states contained in the wings. Thus, there is no

The results using the large-model-space no-core calculagirect contribution to the magnetic dipole operator from the
tions, with theG-matrix derived from the Nijmegen Il po- ing portion of theQP-operator and the effect of the wings
tential, show good agreement wifiti experimental values, ypon the calculation of the magnetic dipole moment is es-
as shown in Table I. With the harmonic-oscillator parameteisentially nonexistent. The root-mean-square proton radius
7Q) = 14 MeV, and theA of Eq. (2) chosen as-25 MeV 1o exhibits a noticeable difference, when calculated with and
reproduce the experimental binding energy®af, the elec-  without wings. In each of the model spaces studied the cal-
tric quadrupole moment, magnetic dipole moment, and rootgy|ation with wings results in a smaller binding energy, in-
mean-square proton radius, calculated in tHe6model  creasing the radius. The wings also include states with a
space, are all within about 10% of their respective experigreater portion of their wave function at large radii. The
mental values. combination of these two factors leads us to expect that cal-

From Table | we can see a very small dependence of thgylations with wings will result in a greater calculated root-
magnetic dipole moment of the ground state®f on the  mean-square proton radius, which we observe in Table I. In
model-space size. Each successive increase in the size of thg model spaces studied, including the wings in the calcula-
model space results in a smaller increase in the CalCUlatqﬁbn of the G-matrix causes the no-core calculated value of
value for the magnetic dipole moment. The calculated valughe electric quadrupole moment to be smaller than the calcu-
of the magnetic dipole moment gets closer to the experimenation without the wings. The calculations for the electric
tal value as the size of the model space increases. quadrupole operator with and without wings grow closer to-

The calculated root-mean-square proton radius is somegyether as we increase the size of the model space. The strong
what smaller than the experimentally determined valuer2.dependence and the contributions from the expanded por-
There is a slight model-space dependence for the calculateghns of the model space cause the electric quadrupole mo-
value, where the calculated root-mean-square proton raditent to show the greatest dependence upon the wings of the
tends to increase as the size of the model space increasggree operators calculated. The number of states included in
This mOdeI'Space dependence is too small to account for thﬂe Wings decreases as we go to |arger model spaces, so we
discrepancy between the calculated and the experimentallyould expect the difference between the calculations with
determined Values, the calculated value being about 15%nd without Wings to diminish in the |arger model Space

smaller than the experimental value. This is a long-standingajculations. The diminishing effect of the wings can be
problem, where calculations which reproduce the correctjearly seen in Table I.

binding energy tend to give a radius that is too small and

calculations, which produce the correct radius, tend to un-

derbind the s.ysFer[QZ]. Since we havg chosen to reprqduce IV. PERTURBATION CALCULATION RESULTS

the correct binding energy by our choice®f —25 MeV in

the starting energy, we can expect to calculate a radius that is We now turn to our study of the effective operators and

too small. effective charges obtained in the perturbation-expansion
No-core calculations of the electric quadrupole momenimethod. We utilize the sam@-matrix as that used for the

for the ground state ofLi closely match the small, negative 6% SLi no-core calculations discussed above. In evaluating

experimental value of 0.082. Calculations performed in the the various diagrams, single-particle energies, calculated to

27 model space give us a small, negative value that is osecond-order in perturbation expansion, were employed to
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TABLE Il. Results of perturbation-expansion calculations, showing the dependence of effective charges
upon the type of energy denominators used. Results shown are fopthe-0p5, transitions calculated
without wave function renormalization diagrams. In the last two columns calculated single-particle energies
(spe are usedsee Fig. 3.

2, 4, and &) excitation contributions to multiples df(} Calculated spe
first- and second-order totals 0p@,—0pz/» T=0 T=1 T=0 T=1
2#.Q) excitations first-order 0.3270 —0.1493 0.2706 —-0.1213
2#.Q) excitations second-order —0.0992 —0.1289 —0.0288 —0.0712
4#.() excitations second-order 0.1171 —0.0244 0.0913 —0.0226
64 () excitations second-order 0.0528 —0.0226 0.0530 —0.0218

Total 1st and 2nd order for all configurations within a given model space

2A.Q) excitations 1st+ 2nd total 0.2278 —0.2782 0.2418 —0.1925
(2+4)7Q excitations 1st+ 2nd total 0.3449 —0.3026 0.3331 —0.2151
(2+4+6)h Q) excitations 1st+ 2nd total 0.3977 —0.3252 0.3861 —0.2369
Oth + 1st+ 2nd order proton neutron proton neutron
(2+4+6)hQ excitations 1.0363 0.3615 1.0746 0.3115

determine the energy denominators. These single-particle efess reduction, or even an enhancement, of the diagram using
ergies were calculated using calculated single-particle energies, when compared to the
same diagram evaluated using energy denominators that are

&=ti+u, 12 240 and GQ. This effect can be clearly seen by looking at

where theu; was determined by evaluating the first- and the ZiQ.-eXCItatIOI’I, 4-excitation, and BQ'eXC't‘?‘t'on
second-order diagrams shown earlier in Fig. 3. For the purcontributions to the sum of the second-order diagrams,
pose of comparison with calculations done by othégs23, ~ Shown in Table II. _ . _
all diagrams have also been evaluated using multiplés(bf When effective-operator calculations in perturbation
for the energy denominators. The energy spacing betweeifieory are compared, using@matrix computed with and
major shells using calculated single-particle energies, insteadithout wings, there is less than a 1% difference for the
of multiples of (), tends to be larger for the lower-lying electric quadrupole operator as well as the orbital and spin
states and smaller for the higher-lying states. The singleportion of the magnetic dipole operator. Similarly, the result
particle energies calculated using wings tended to be slightlpf using single-particle energies calculated fr@rmatrix
larger than those calculated without wings, although this difelements with and without wings also yields less than a 1%
ference was less than 1%. difference in the effective charges obtained from the effec-
The difference in energy denominators using calculatedive operators. This result holds for th&@, 440, and 6:Q
single-particle energies results in about a 10% reduction ifnodel spaces as well as for first- and second-order calcula-
the T=0 andT=1 effective charges, when compared with tions. Since we see only a small effect on effective-operator
the traditional method of using multiples 6}, as can be results from including the wings in the calculation of the
seen in Table Il. Looking at the sum of the second-ordeiG-matrix, we can safely conclude that the contribution of the
diagrams in Table Il, we see that thé @ excitation space wings plays no significant role in our perturbation-expansion
effective charges are much smaller, when using calculate@alculations.
energies, while there is less of a difference between the two Because the calculations are done in a finite-sized model
methods for the effective charges calculated in th€l4dand  space, we also investigate the effect of including more inter-
64.() intermediate-state excitation spaces. In the case of the Rediate states. For this portion of the study the saf@ 8
7 Q) excitation first- and second-order diagrams, the energys-matrix elements, calculated using the Nijmegen Il N-N
denominators obtained from calculated single-particle enerpotential, were used for all three choices for the
gies are larger and the resulting diagrams are smaller. Alintermediate-state excitations. The same energy denomina-
second-order diagrams have two energy denominatorsors, determined from calculated single-particle energies,
which may have calculated energy gaps that are smaller thamere also employed in all three calculations. The only dif-
the energy gaps determined from multiplesi®?, when we  ference between the three different intermediate-state calcu-
go to higher intermediate-state excitations. For example, #ations is that additional excited states have been included in
configuration included in thed) excitation space, but not the calculations. The largest intermediate-state space in-
in the 21Q) or 42.Q) excitation spaces, may have one of thecludes all the configurations that are included in the smaller
energy denominators corresponding tofidRexcitation and spaces and obviously yields exactly the same results for
one corresponding to &) excitation. Thus the calculated these lower-lying configurations. Allowing a larger
energy denominator would be smaller thai(b for the “6  intermediate-state space will involve configurations at higher
7 Q" intermediate-state excitation and larger that(® for energies; these configurations will have larger energy de-
the “24Q" intermediate-state excitation. Hence, we will see nominators and the contribution from each higher-lying con-
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TABLE lIl. Isoscalar and isovector components as well as proton and neutron quadrupole effective charges for various diagrams using
calculated single-particle energies and &(BG-matrix with wings. Numbers listed are contributions due to the expanded portion of the
intermediate-excitation space only, calculated without wave function renormalization diagrams.

Op1>,—0psp Op3z,—0psp2
T=0 T=1 proton neutron =0 T=1 proton neutron
2A() excitations 1st order 0.2706 —0.1213 0.0747 0.1960 0.2257 —0.1328 0.0464 0.1793
4#.Q) excitations 1st order
64() excitations 1st order
24 Q) excitations 2nd order TDA 0.0517 0.0115 0.0316 0.0201 0.0478 0.0122 0.0300 0.0178
4#,Q) excitations 2nd order TDA 0.0158 0.0040 0.0099 0.0059 0.0146 0.0043 0.0095 0.0052

6/ ) excitations 2nd order TDA 0.0036 0.0011 0.0023 0.0013 0.0033 0.0011 0.0022 0.0011
2A() excitations 2nd order RPA

41,Q) excitations 2nd order RPA 0.0226 0.0048 0.0137 0.0089 0.0191 0.0053 0.0122 0.0069
67 excitations 2nd order RPA 0.0068 0.0017 0.0043 0.0025 0.0056 0.0020 0.0038 0.0018
2#() excitations 2nd order total —0.0289 —0.0712 —0.0500 0.0212 —-0.0346 —0.0630 —0.0488 0.0142
47.Q) excitations 2nd order total 0.0913 -0.0226 0.0344 0.0570 0.0854 —0.0212 0.0321 0.0533
67.() excitations 2nd order total 0.0530 —-0.0218 0.0156 0.0374 0.0506 —0.0211 0.0148 0.0358
2#.Q) excitations 1st+ 2nd total 0.2418 —0.1924 0.0247 0.2171 0.1911 -0.1958 —0.0024 0.1935
41,Q) excitations 1st+ 2nd total 0.0913 —0.0226 0.0344 0.0570 0.0854 —0.0212 0.0321 0.0533
67.Q) excitations 1st+ 2nd total 0.0530 —0.0218 0.0156 0.0374 0.0506 —0.0211 0.0148 0.0358
Oth + 1st+ 2nd order total 1.3861 0.7632 1.0747 0.3115 1.3271 0.7619 1.0445 0.2826

figuration should be smaller. While the contribution of eachleave out configurations with a single-particle in a high-lying

individual configuration is generally smaller with a larger shell and a lower energy than some of their included con-
intermediate-excitation space, the number of configurationfigurations. The calculation in the current study does not in-
greatly increases with each increase in the excitation-spaagude configurations obtained within a given shell that are at
size. higher energies than the limit set on intermediate-state exci-

The results of the effective-charge calculations fexrOI'  tations. Some conclusions can still be drawn from the simi-
and T=1 in the various model spaces are shown in Table llllarities of going to larger excitation spaces. Siegel and Zam-
In the first-order diagrams, only the configurations that areick [16] looked at the convergence of the TDA and RPA
exactly 2z() above the ground state contribute. This is be-diagrams and assumed that these diagrams would adequately
cause the operator involved is an interaction between thestimate the effect of intermediate-space truncation. Their
0s;,, hole state and a particle state, and only tlis 0and  calculations show that the contributions from the larger ex-
0dsj, particle states have nonzero matrix elements of theitation space for the TDA and RPA graphs are about one
transition operator with the€),, state. Having the hole states order of magnitude smaller than the contribution from the
limited to the G, state also excludes the possibility of a smaller excitation spaces. In our calculation the contribution
pure () excitation configuration in the random phase ap-from each of the successively larger excitation spaces de-
proximation(RPA) diagrams shown in Figs.(@-2(h). creases by roughly a factor of 4 for the TDA and RPA dia-

Because there are no additional contributions to thegrams. Yet, when we calculate the sum of all second-order
zeroth- and first-order terms from excitations greater thamliagrams, we do not observe the same convergence that was
20, we are left with only the second-order diagrams forfound for the TDA and RPA studies. In fact, the second-
investigating the intermediate-excitation space dependencerder total contributions from the different intermediate-state
In general, the contribution from the expanded portion of thespaces are of comparable magnitude and some are even of
excitation space for each individual diagram decreases as tldifferent sign. This can be seen both in the results fei0T
size of the intermediate space grows, although there are @nd T=1, and in the effective proton and neutron charges, as
few cases where thef) excitation contribution is of the shown in Table Ill. The intermediate-state excitation-space
same size or slightly larger than thé @ excitation contri- truncation does not show strong convergence, although the
bution, which is in turn of the same size or larger than themajor contribution to the effective charges does come from
2#,Q) excitation contribution for the same diagram. 210} excitation contributions.

Siegel and Zamick16] also study the effect of going to a In studying the order-by-order convergence of the dia-
larger excitation space. Their method of determining the exgrams, we see again that the diagrams evaluated with T
citation space differs from the one in this study, in that theyshow better convergence than the diagrams evaluated with
restrict their space by allowing all configurations for par-T=1. This is just the opposite of the result found for the
ticles within a given shell. In the current study we restrict theconvergence of the effective interaction in RE24]. The
intermediate excitation-space to all configurations within asecond-order diagrams are all significantly smaller than the
given energy limit. The calculations by Siegel and Zamicktwo first-order diagrams for ¥0. The sum of second-order
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TABLE IV. Second order terms in the perturbation-expansion calculation of the magnetic dipole moment
of ®Li using calculated single-particle energies and &€)8G-matrix with wings.N7Q means the sum of all
contributions from 2 tdNA ().

Excitation Q12— 0py2 Op12—0p3p2 Op3;—0psp
Space =0 T=1 T=0 T=1 T=0 T=1
2 1 Q) |-part —0.0765 0.0243 —0.0135 0.0147 0.0279 0.0213
4 1Q |-part —0.1020 0.0410 —0.0220 0.0253 0.0307 0.0361
6 2 Q) |-part —0.1146 0.0527 —0.0296 0.0310 0.0267 0.0432
2 1 Q) s-part 0.0174 —0.0439 —0.0135 —0.0364 0.0375 —0.0228
4 1 Q) s-part 0.0329 —0.0537 —0.0220 —0.0452 0.0753 —0.0286
6 7() s-part 0.0400 —0.0560 —0.0319 —0.0481 0.0943 —0.0304
Op12— 0Py Op1/2— 0pss2 0pa2—0p3p
proton neutron proton neutron proton neutron
6 2 Q) |-part —0.0310 —0.0837 0.0007 —0.0303 0.0350 —0.0083
6 2 () s-part —0.0080 0.0480 —0.0400 0.0081 0.0320 0.0623

diagrams is about an order-of-magnitude smaller than thef 24} in the excitation space gives an additional contribu-
sum of the two first-order diagrams. The second-order diation, which is approximately one fourth of the lower-
grams for =1 are all individually smaller than the two first- excitation-space contribution. In these particular matrix ele-
order diagrams, but the sum of the second-orderlTdia-  ments the major contribution comes from the(2 excitation
grams is approximately the same size as the sum of the tweonfigurations with relatively small contributions from
first-order =1 diagrams. higher-lying excitations, which tend to decrease as the exci-

When the isoscalar and isovector contributions are comtation energy gets larger.
bined to produce proton and neutron effective charges, via The vast majority of the diagrams used to evaluate the
Egs. (7) and (8), the different convergence trends for the magnetic-dipole operator give zero contribution due to the
T=0 and T=1 diagrams cause problems for the convergenceelatively small number of nonzero bare magnetic-dipole ma-
of the effective proton and neutron charges. The neutron efirix elements. The bare M1 matrix element is nonzero only
fective charge is dominated by thé @ first-order diagrams, when the initial and final states of the operator have the same
being about twice the size of the sum of all second-ordeguantum numbers, |. Thus, all first-order diagrams, shown
diagrams. The proton effective charge does not show a simin Fig. 2, give zero contribution to the magnetic-dipole op-
lar dominating term. The second-order totals show a strongrator because the operator cannot conned;3 Bole state
excitation space dependence. The(4 and () second- with a higher lying particle state. Since the zeroth-order con-
order totals are of opposite sign and similar magnitude to théribution does not change and the first-order contribution is
2#.Q) second-order total and tend to cancel any major contriidentically zero for all states, it is difficult to make any state-
bution from the second-order diagrams. It is unclear if goingment about the order-by-order convergence of the perturba-
to larger excitation spaces will result in any significant con-tion expansion. Even the TDA and RPA diagrams, which
tributions from second-order diagrams. Although the RPAhave traditionally been evaluated to higher order in calcula-
and TDA diagrams show good convergence as the excitatiotions of other effective operators, are identically zero, so we
space increases, other second-order diagrams, particuladye unable to pursue the order-by-order convergence of the
ones of opposite sign, counteract this convergence trend. Thrmagnetic-dipole operator any further.
sum of all second-order diagrams is marginally largest for The results obtained from perturbation-theory calculations
the 2nQ) excitation contributions for the effective proton of the magnetic-dipole operator are consistent with results
charge but the same cannot be said for the effective neutrambtained from other calculatio$7,25. All of the TDA and
charge. RPA diagrams, which we evaluate to give zero contribution,

The effective neutron charge is of the order of 0.3 withalso have zero contribution in other studies involving one or
about two-thirds of this coming from the first-order diagram.two nucleons outside a doubly magic closed shell. The
The effective proton charge is slightly larger than 1, with thesecond-order corrections to the magnetic-dipole operator are
major contribution coming from first-order and, at least in asmall with the majority contribution to these operators com-
67.() excitation space, no significant contribution cominging from the zeroth-order term.
from second-order diagrams.

The resu_Its for the perturbati(_)n—expansion_ calculation Ofv. MODEL-SPACE TRUNCATION RESULTS: A AND £Q
the magnetic-dipole moments 8Ei are shown in Table IV. DEPENDENCE
As the size of the excitation space increases, the convergence
of the T=0 and T=1 elements is well behaved for both the  For a direct comparison with the effective charges ob-
orbital and spin portion of the dipole moment matrix ele-tained in the perturbation-expansion calculation, we calculate
ments. The best convergence occurs in thelpin contri-  the effective charges in the model-space truncation scheme,
bution to the magnetic-dipole operators, where each increasss described in Ref5], employing the same interaction used
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TABLE V. Effective charges of the proton and neutron quadrupole, magnetic orbital, and magnetic spin
operators, derived by least-square fits to the correspondirghell effective operators obtained by model-
space truncation method from thé @ calculation forSLi using the “single-valued”G-matrix with wings,
A=-25 MeV, andn()=14 MeV. Both thej-dependent ang-independent effective charges are shown.
Also, thej-independent effective charges obtained in the same way from/ifie ¢alculation are presented
in the last two columns, labeled eff-4.

elnar €123 50312 312372 el €112
E2 1.184 0.272 1.080 0.215
MI 0.890 0.036 0.954 0.061 0.910 0.068
Ms 0.939 —-0.012 0.972 —0.001 0.943 —-0.031

el ecir G €cft-4

E2 1.141 0.245 1.087 0.189
Ml 0.934 0.061 0.948 0.047
Ms 0.955 —0.005 0.966 —0.005

in the perturbation calculation, namely, a “single-valued” tions, as described later. TH&) dependence accounts for
G-matrix (as opposed to the effective interaction used latesome of the difference between the two sets of effective
in this section with wings, obtained with the Nijmegen Il charges, but the interactions used in the calculations also
N-N potential, a harmonic-oscillator parametéfl=14  contribute to this difference. The electromagnetic transitions
MeV, and a fixedA = — 25 MeV. The effective charges com- are weaker in the “single-valued” calculation, which implies
puted with this interaction are shown in Table V and com-smaller contributions to the effective charges. As to the com-
pared with the corresponding perturbation results in Tablgarison with the experiment, the “multivalued” interaction
VI. These comparisons are for the one-body part of the onegives superior results. Therefore, the effective charges ex-
plus-two-body effective operators obtained in this approaciiracted from the ‘“multivalued” interaction calculation
(see Ref[5]). The real two-body part is found to be small, should also be more realistic.
typically not more than 10% of the full operator. To gain a deeper insight into the dependence of the quad-

Our previous calculations of effective charges, publishedupole effective charge ofi{) andA, we performed several
in Ref.[5], employed a different effective two-nucleon inter- additional calculations. In Fig. 4 we present the quadrupole
action, the so-called “multivalued” interaction introduced in effective proton, neutroka), isoscalanb), and isovectokc)
Ref.[11]. In this method, differenQ-operators are utilized effective charge dependence @) and A. The effective
in evaluating theG-matrix for configurations with different charges were obtained by the model-space truncation
spectator energies, hence the name “multivalu@¥matrix  method, going from the %B() relative to the unperturbed
approach. The effective interaction employed in R&f.also  ground state to the7) model space in calculations fSLi
uses the Reid93 N-N potentigl0] and a harmonic-oscillator and °He °Li. The A=5 results were extracted from the cal-
parameter ofi (1=17.2 MeV. culations presented in Fig. 1 of Rdf7]. The calculations

A comparison of the effective charges from Table Il of were performed for a wide range of the harmonic-oscillator
Ref. [5] and Table V in the present paper shows that thefrequencies/£Q=8, 10, 14, 17.8, and 22 MeV. Tha=6
quadrupole effective charges obtained here with the “singleresults obtained fofi ) =17.2 MeV are taken from Ref5].
valued” G-matrix are considerably smaller than those ob-Two more A=6 calculations, forAQ)=14 and 20 MeV,
tained with the “multivalued” G-matrix. A major factor in  were performed, using the same approach. All the calcula-
this difference is the choice of the harmonic-oscillator pa-tions use the “multivalued” isospin-invariant effective inter-
rameter. To understand the dependence of the quadrupodetion derived from the Reid93 potential, as described in
effective charges ori(), we performed separate calcula- Ref.[7]. The effective charges are trivially computed for the

TABLE VI. Comparison of effective charges obtained through a perturbation-expansion calculation and
a model-space-truncation calculation. Both results are for a “single-valuetl{) &-matrix with wings
derived using the Nijmegen Il N-N potential,= — 25 MeV, and# =14 MeV.

0p12— 0Py 0p1/2—0pP3p2 0p3;2—0p3p2
proton neutron proton neutron proton neutron
E2 perturbation 1.07 0.31 1.04 0.28
E2 space truncation 1.18 0.27 1.08 0.22
M1l perturbation 0.97 —0.08 1.00 —-0.03 1.04 -0.01
M1l space truncation 0.91 0.07 0.89 0.04 0.95 0.06
M1s perturbation 0.99 0.05 0.96 0.01 1.03 0.06

M1s space truncation 0.94 -0.03 0.94 -0.01 0.97 —0.001
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25 parameter b2=(%c)?/(myc?2Q). Therefore, ess(fh ;)
~(h Q111 Q) eq(hQs). Apparently, and not surprisingly,
o 20¢ the scaling persists fok=6 as well.
a A more nontrivial result is, however, the observation that
“c.a 1.5¢ the isoscalar effective charges remain almost the same for
\V 1ok A=5 andA=6, while, on the other hand, there is a signifi-
: cant change in the isovector effective charges. This can be
05 ¢ seen by comparing partb) and (c) of Fig. 4. In fact, a
' similar A dependence was reported by Nakada and Otsuka in
0.0 Ref.[26] in a phenomenological shell-model calculation for
' the p-shell nuclei. Here we make a similar observation in a
25¢ microscopic calculation.
20k Let us return to the comparison of the effective charges
- obtained from the “single-valued” effective interaction,
é 15F Table V, and from the “multivalued” interaction, Table IlI,
Y of Ref. [5]. From the above discussion of i) depen-
1.0¢ dence, we should expect the electric-quadrupole effective
05k charges, calculated with()=17.2 MeV, to be larger by a
' factor of 17.2/14=1.23. The remaining difference in the ef-
0.0 fective charges should then be attributed to the differences in
20 the two effective interactions.
2 15 VI. CONCLUSIONS
Gy
S To summarize, the goal of this project was to study dif-
O 10 ferent microscopical approaches for calculating the electro-
magnetic operators of light nuclei, and in particuléirj. As
0.5¢ in Ref. [18] for the effective interaction, the no-core calcu-
lation was again used as a “theoretical experiment” and as a

0.0 starting point for the model-space truncation calculation for

the purpose of comparison with the standard perturbation-
mQ2 [MeV] theory calculations of effective operators. The results for the
electric quadrupole operator give us more information about
perturbation-theory calculations of effective operators than
nge results of the magnetic dipole calculation. For the electric

from 64 calculations for®Li and °He5Li. The A=5 results cor- quadr_upol_e operator We_find that the use of single-par_ticle
respond to the calculation presented in Fig. 1 of IREJ. obtained ~ €Nergies, instead of multiples A1), for the energy denomi-

for £0=8, 10, 14, 17.8, and 22 MeV. The=6 results, obtained Nators has a small effect, favoring larger effective proton and
for #Q0=17.2 MeV, are taken from Reff5]. Two additional calcu- neutron charges for calculations with energy denominators,

lations, fori Q)= 14 and 20 MeV, are presented. All the calculations Which are multiples ofz.{). Hence, in perturbation-theory
use the “multivalued” effective interaction derived from the calculations of effective charges, calculated single-particle

Reid93 potential, as described in RET]. energies appear to have no advantage over multiplé€)of
Similar to previous perturbation-theory calculations of ef-

A=5 system by taking the ratios of the matrix elementsfective chargeg3,16,23, we find that the perturbation ex-

calculated in the 6Q space with the corresponding ones Pansion does not converge rapidly. In addition, we discover,
from the 05 Q space, e.g., as seen in Tables Il and IV, that the second-order terms are

not well-behaved as the size of the space increases. This is
opposite to the conclusion of Siegel and Zamitk], based
only on the RPA and TDA termgwhich are also well-
behaved with space size in our calculatipns is unclear
whether going to larger excitation spaces and/or higher-
orders in the perturbation expansion will change the conclu-
The one-body quadrupole operator used in the calculationsions based on the present results.
employs free nucleon charges. TAe=6 effective charges Unlike the calculation for the effective interaction, the
are obtained using the method described in R&f. order-by-order convergence of the perturbation expansion for
From Fig. 4 we observe an almost linear scaling of theeffective charges is better fof=0 states than foiT=1
effective charges. This can be simply understood. In particustates[18,24. When we look at the proton and neutron ef-
lar, for theA=5 results, it is apparent that such scaling existsfective charges computed in the perturbation theory, we see
under the condition that the large-space, heti€)6 results  that the proton effective charge has small and opposite con-
depend only weakly oh (). The &) results, on the other tributions coming from the first- and second-order terms,
hand, are proportional to the harmonic-oscillatorwhile the effective neutron charge has its first-order contri-

6 8 10 12 14 16 18 20 22 24

FIG. 4. (a) The quadrupole effective proton, neutrdb) iso-
scalar, andc) isovector effective charge dependenceidh andA.
The effective charges were obtained by the model-space truncati

eBiss= (3 (649, °L)|Q? |3~ (64.0.5Li))/

(37(0hQ,5Li)|Q@ |3 (04Q,5Li)).
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bution about twice as large and of the same sign as theharges. We find a scaling of the effective charges Wwith
second-order contribution. The effective charges that we obahich can be simply understood. Let us mention that the
tain, e,~ 0.3 and ¢~ 1.1, are similar to the effective effective charges extracted from the experimental E2 transi-
charges obtained in other perturbation calculations for largetions or moments depend on the valueZd® used in the
nuclei. The effective charges obtained through a perturbatioanalysis and would scale wifhQ) in a similar manner as we
expansion show good agreement with the effective chargesbserve in our microscopic calculations. Typically, the ap-
obtained through a model-space truncation calculation, whepropriate values ofi{) employed in such analyses were
the same interaction and harmonic-oscillator parameter anaken from a standard formula, such &€)=45A"17
used. —25A" 2% MeV. For A=6 this gives 17.2 MeV, the same

Since the zeroth-order effective charges are fixed and thealue we utilized in our calculations in Reff5], and for
first-order contributions are zero for the magnetic dipole opwhich we obtained effective charges consistent with the ex-
erator, there is little that can be concluded about the conveperimental ones. Also, we observe different behavior of the
gence of this operator. It is worth noting that there is veryisoscalar and isovector effective charges with respect to a
little contribution to both the orbital and the spin portion of change in the mass numbAr While the isoscalar charges
the magnetic-dipole operator from second-order. This is conremain almost constant as a function Af the isovector
sistent with the findings of the model-space-truncation recharges change significantly betwe&s=5 and A=6. A
sults for effective magnetic-dipole charges, i.g-factors.  similar observation for othep-shell nuclei was reported in
Similar to the findings from the calculation of the electric- Ref.[26]. There is also a dependence of the effective charge
quadrupole operator, the effective charges we obtain fronpn the strength of the effective interaction used in the calcu-
the perturbation expansion for the magnetic dipole operatofation. We obtain the significant result that the “multival-
are of the same size as effective charges obtained in thged” effective interaction yields more realistic values for the
model-space-truncation calculation, when using the sameffective charges than the “single-valued” effective interac-
“single-valued” G-matrix in both calculations, as summa- tion.
rized in Table VI.

We have also studied th&) and theA dependence of the
E2 effective charges in the model-space-truncation method.
We used the 6Q calculations for°Li, SHe, and®Li, per- This material is based upon work supported by the Na-
formed for a wide range of the harmonic-oscillator frequen-tional Science Foundation under Grant No. PHY96-05192.
cies and using the “multivalued” effective interaction de- P.N. also acknowledges partial support from the grant of the
rived from the Reid93 potential, to extract theQ effective  Grant Agency of the Czech Republic 202/96/1562.
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