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Shell corrections for finite depth potentials: Particle continuum effects
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Shell corrections of finite, spherical, one-body potentials are analyzed using a smoothing procedure which
properly accounts for the contribution from the particle continuum, i.e., unbound states. Since the plateau
condition for the smoothed single-particle energy seldom holds, a new recipe is suggested for the definition of
the shell correction. The generalized Strutinsky smoothing procedure is compared with the results of the
semiclassical Wigner-Kirkwood expansion. A good agreement has been found for weakly bound nuclei in the
vicinity of the proton drip line. However, some deviations remain for extremely neutron-rich systems due to
the pathological behavior of the semiclassical level density around the particle threshold.
[S0556-28188)06906-4

PACS numbsds): 21.10.Dr, 21.10.Ma, 21.66.n

[. INTRODUCTION continuum effects. The results of the calculations are con-
tained in Sec. V. Finally, conclusions are given in Sec. VI.
Positive-energy eigenstates of the average single-particlEhe threshold behavior of the semiclassical level density is
potential are very important for the description of nucleidiscussed in the Appendix.
close to the particle drip lines where the Fermi level ap-
proaches zergsee Ref[1] and references quoted thergin Il. SHELL CORRECTION AND SINGLE-PARTICLE
and in analysis of highly excited nuclear modes such as giant LEVEL DENSITY
resonanceg2,3]. With the advent of radioactive nuclear o _
beams, of particular interest are masses of weakly bound !N the standard macroscopic-microscopic apprdaet8],
nuclei with extremeN/Z ratios. For these nuclei, important the shell correction
for both nuclear structure and astrophysics, special care _
should be taken when dealing with the particle continuum, OE=Eq~Eqgp (1)
which strongly influences many nuclear properties, including
global ones(e.g., masses, radii, shapess well as nuclear is the difference between the total single-particle enérgy
dynamics(i.e., excitation modes
In a previous paper4], a macroscopic-microscopic E 2
method was applied to nuclei far from tigestability line. It sp &~ B
has been demonstrated that the systematic error in binding

energies, due to the particle continuum, can be as large 3% the smooth single-particle enerEyp. The shell correc-

several MeV at the neutron drip line; hence it can seriouslyjq, renresents the fluctuating part of the binding energy re-
affect theoretical mass predictions for nuclei far from stab|l—Sulting from the single-particle shell structure

ity. This error depends weakly on deformation, thus suggest- =, e sake of simplicity, we shall restrict our discussion

ing the possibility of renormalizing potential energy surfaces; spherically symmetric nuclei and assume that the single-

at the sphencal shape. . . nucleon energy spectrum is that of a one-body Hamiltonian
In this paper, the effect of the particle continuum on the ~

shell correctionthe quantal contribution to the total energy H :.T+V with a finite, local, and sphencallly symmetric po-
in the macroscopic-microscopic approachinvestigated by tential V(r). Since the Spe“'tf”m dfl contains .bOth bouf‘d
solving the Schidinger equation in the complex energy (£i<0) and unboundd>0) eigenvalues, the single-particle
plane. The new procedure allows for the direct treatment of€V€! density is the sum of the discrete and continuum con-
both narrow resonances and the smooth continuum backdioutions[9-13]
ground when calculating the single-particle level density.

The paper is organized as follows. Section Il contains a g(e)=2, (2ji+1)8(e—e)+gde). 3
brief review of the shell-correction method in terms of the i
single-particle level density. The semiclassical approach is
discussed in Sec. lll. Section IV describes the modifiedThe continuum partg.(e), is defined in terms of the scat-
Strutinsky renormalization procedure which takes care of théering phase shift$);(e)

@
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1 _ dé(e) large harmonic-oscillator bas[§]. However, for light and
gle)==2, (2j+1) de (4)  weakly bound nuclei, the plateau conditit8) usually does
v |,J &
not hold[4].

In the shell-correction methofb,6] the smooth energy

Esp is calculated by employing the smooth level density)
obtained fromg(e) by folding with a smoothing function

f(x): A possible alternative to Strutinsky's smoothing proce-
dure is the semiclassical averaging based on the Wigner-
_ (5) Kirkwood expansiorf15-21]. In Ref.[17] the equivalence
between the Strutinsky approach and the Wigner-Kirkwood
(WK) expansion has been demonstrated. It is important to
The folding functionf(x) can be written as a product of a note that this proof assumed that in the Strutinsky approach
weighting function and a curvature correction polynomial ofthe plateau condition could be fulfilled.
the orderp=2M [6]. The smoothing procedure should be |n the WK expansion, the diagonal part of the Bloch den-
unambiguous, i.e., the averaging should leave the smootity [21,27 is
part of the level density untouche@the so-called self-
consistency condition for the Strutinsky smoothinthis de-
fines a curvature correction polynomial for any specific C(r,8)=
choice of weighting function. In this study, a Gaussian
weighting function, (1{7) exp(~x?) has been used. The B
corresponding curvature function is an associated Laguerre - E(VV(Y))2
polynomial L%,llz x2). This choice guarantees the self-
consistency condition fog(e) if the smooth level density The spatial density is obtained by using the inverse Laplace
behaves as a polynomial of degre®l2 1 or lower ine. transform
The smoothed level densit{p) defines both the smooth

IIl. SEMICLASSICAL TREATMENT OF SHELL
CORRECTION

g'—¢

~ _1J'+ecd, ,f<
gle)=—] de'gle’)

2M 3/2 ﬁZﬂZ
[ BVl T |y2
473/2[33/2(?) e r [1 oM {V V(r)

+ ...

€)

single-particle energy o (C(r,ﬁ))
re)=Lg" \—5—], 10
: p(re)=Ly B (10)
Esp= f,mag(s)da' 6 and the particle number integral is given by
and the smoothed Fermi levkl The latter is obtained from N(a):f p(r,e)d3r. (11)
the particle number equation:

T Keeping only the two leading terms in the curly bracket in
N=f g(e)de, (7)  Eg.(9), the WK particle number equation can be expressed
o explicitly in terms of the single-particle potential

where N is the total number of particlef.e., protons or 4 [ oM\ %2t ()
neutron$. The smoothing range should be greater than the Nede)= =—| — j 2 (s— V)32
average energy distance between neighboring major shells, 37\ 42
7 Q~41/AY MeV [14].

Since the result of the smoothing procedure should not _ h? vav d 12
depend on the actual form of the smoothing function, in par- 32M (e—V)12 r. (12)

ticular on the smoothing rangeand the ordep of curvature
correction, the smooth energy should satisfy the so-called The integral in Eq(12) is cut off at the classical turning
plateau condition point, r(e), defined by the relation/(rs)=e. (For the
_ _ inclusion of the spin-orbit term see R¢20].) The semiclas-
Esp JEsp sical value of the Fermi energi,., can be determined from
E W_O' ®)  the particle number equatiddg(\s) =N.
The semiclassical level density is defined as
For infinite potentials such as a harmonic oscillator or a de-
formed Nilsson potential, one can always find an interval of _ dNsd &)
the smoothing parametessand p in which the smooth en- 9sd &)= de
ergy, hence the shell correction, is practically independent of
the valuesy andp [12,15. For finite-depth potentials, addi- Here, it is worth reminding that the semiclassical level den-
tional complications arise due to the presence of the consity is defined only foe >V, whereV, denotes the bottom
tinuum contribution, Eq(4) (see discussion in Ref§4,2],  of the potential well. That isgs{e)=0 if e<Vy. An ex-
and references quoted thereilm most calculations applying plicit expression fog,{e) in terms of a WK expansion can
the shell-correction approach, the continuum is treated ape found in, e.g., Ref.23].
proximately by using thejuasibound stated.e., the states It is to be noted that Eqs(9)—(13) are valid for any
resulting from the diagonalization of a finite potential in a smooth potential regardless whether it is infirotenot Of-

(13
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ten, the semiclassical level density is defined in terms of th@he calculation of the phase shifts and the continuum level

partition functionZ(B)=fC(r,8)d%r. However, there is a density along the real energy axis should be carried out with

difficulty: Z(B8) diverges for finite potentialg23]. In practi- great care. In general, the use of an extremely fine energy

cal calculations it is possible to overcome this serious probstep is required in order to collect contributions from narrow

lem by an appropriate modification of the potential at largeresonances. Recently, this difficulty has been overcome by

distances. Formally, this procedure is equivalent to placin@pplying a new method which uses Gamow std@&s A

an infinite potential wel(a box with soft wall$ at very large  Gamow resonance is a generalized eigenstate of the radial

distances from the classical regifi2g]. Schralinger equation corresponding to a complex energy ei-
Since the particle-number integrél2) depends only on genvaluew;=¢;—il’; (for bound stated’;=0). The wave

the potential in the classical region, wherg<e<Vg, the  function of a Gamow resonance is regularrat0 and has

guantityNg{ &) is well defined for energies which are not too purely outgoing asymptotics with a discrete complex wave

close to the top of the potential wallz where the semiclas- number.

sical expansion breaks dowgee the Appendjx Hence the In the new methodsee Ref[2] for detaily, the smoothed

total number of particles can be calculated without the exjevel densityg(e) can be written with the help of the Cauchy
plicit use of the partition function; there is no need at all totheorem as a sum over bound and resonant states, and an

put the system into a box in the case of a finite potential. integra| a|0ng a contour in the Comp|ex energy p|ane:
The total energy of the system of noninteracting particles

is

Ej(s)=2i f

8_W‘)+fdw (w)f(ﬂ) (17)
Y L & y )

A

E= fjxsg(s)ds=)\N—J

N(e)de. (14)
* In Eq.(17), the summation runs over all the bound states and
By means of Eqs(11) and(10), E can be written as those resonances .WhICh are above the contoand below
the real energy axis.
C(r,B) Thanks to the Cauchy theorem, the level density as given
E:)\N—f Eﬁix( 5 )d3r. (15) by Eq.(17) has only the real pafthe imaginary parts of the
B two terms in the right-hand sidéhs of Eq. (17) should
Here it is assumed that the order of the integration with re€ancel out exactly Furthermoreg(s) should be indepen-

spect toe (andr) and the inverse Laplace transform can bedent of the shape of the contour However, since the cal-
interchanged. Using Eq15), the semiclassical smoothed culations are carried out numerically, the exact cancellation

binding energy can be written as of the imaginary parts is always slightly violated and, in
addition, the sum of the real parts slightly depends on the
_ . [CdrB) shape of the contour. For example, if the contauis ex-
Escz)\scl\l—f Eﬁﬂsc ——|d? (16)  tended to the area of the complex energy plane with large
imaginary energies [InWf)<-5 MeV] then broad reso-

nances, i.e., those with lardé values should be included.
As a result, both terms in the rhs of Ed.7) would acquire
large imaginary parts which would not cancel completely
due to the numerical errors. Therefore, the best strategy is to
choose the contour in such a way that it would include only
€harrow resonances. With this choice the final result is prac-
tically independent of the shape of the contour, and the
imaginary part ofg(e) is negligible(it is the order of 104
or less. Three examples of contoutsare shown in Fig. 1.
With a reasonable choice for the contdurthe Gamow

The impact of the particle continuum on shell correctionsfesonances give the major contribution from the continuum;
has been investigated numerically in REE2] for neutrons  the contour integral gives the remainifgmal) part. From
in 2%%Ph and?%®114 by explicit calculation of the continuum the smoothed level density7) one can determing andEg,
part of the level density, Eq4). They have shown that, by using Eqs(7) and(6), respectively.
taking into account contributions from the neutron con- It is worth noting that another commonly used method of
tinuum up to~100 MeV in 2%Pb, the plateau conditiof8)  calculating the continuum level density is based on the dis-
could be met(see Ref[2] for an updated discussion of the cretization procedure. Here, one assumes that the nucleus is
continuum contribution ir?%Pb). Based on this early exer- placed inside a very large bdxf. the discussion in Sec. Il
cise, it was generallyassumedthat the plateau condition on the application of the semiclassical expansion to finite
could be fulfilled for finite potentials provided that the con- potential$. Since the properties of the nucleus itself must not
tinuum part was included. A systematic study of this as-depend on the box size, one has to renormalize the level
sumption is given in Sec. V B. density by subtracting the contribution from the free-gas
The lack of systematic studies using the continuum levebtated13,24—-217. In Refs.[13,27], the discretization method
density is due to the fact that these calculations are quitevas applied to investigate the accuracy of the semiclassical
cumbersome. Except for some special cases, the solution ekpression(13) for several commonly used potentials, and
the radial differential equation can be done only numericallygood agreement was found in all cases.

where the notatiolCs{r,8) means that only the terms which
are not a higher order thah are kept in the WK expansion
of C(r,8). As it was discussed if20], for the determination
of A it is enough to keep the terms of order?! in Eq. (9).
The explicit expression for the smoothed energy is quit
lengthy and can be found in Re®0].

IV. IMPROVED TREATMENT OF RESONANCES
IN THE SHELL CORRECTION METHOD
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FIG. 2. The energy dependence of the ‘“continuum particle

FIG. 1. The distribution of Gamow energy eigenval ,in
9y 9 v number” (18) for the neutrons int??Zr (a) and the protons it®Pb

the [Refv),Im(w)] plane for(a) the stable nucleus®Zr (neutron _
eigenvalues (b) neutron drip-line nucleud??zr (neutron eigenval-  (P) @long the contour of Fig. 1(b) and Xc). The energy depen-

ues, and (c) proton-rich nucleust®Pp (proton eigenvalugs The dence ofN, along the path is very gradual. The fluctuationdNin
contoursL used in Eq(17) to calculate the smoothed level density ¢&n be attributed to the presence of near-lying Gamow states.
in the generalized shell-correction method are also shown. Only the
Gamow states withv; lying above the contour are included in the ~ As an illustrative example, the distribution of eigenvalues
leading term in Eq(17). w; for the stable nucleu$®Zr (neutron$, neutron drip-line
nucleus??Zr (neutron$, and proton-rich nucleu$°Pb (pro-
tons is shown in Fig. 1, together with the contoursused
for calculating the level densityl7). In the case of°%Zr,

A. Details of calculations there are four poles close to tlee=0 threshold. They are

In the actual calculations, we have used the averangl2_(W:Q-2_i0-19 MeV), fsp (W=_2-1—i9-34 MeV), i3
Woods-Saxon{WS) potential, which contains a central part, (W_3:7_;Q'O?L4 Mei\/),tr?ndgg,z (W_i'%_'o'o.?h “ﬂﬁ\b- AS llest
a spin-orbit term, and a Coulomb potential for protons. Theo€N 1N F1g. 1, only the Lamow states wi € smalles
Coulomb potential has been assumed to be that of a char jdths, i...i 13 andhgy,, have been considered explicitly in

(Z—1)e distributed with the diffused charge density. We e level density calculations; a contribution from the re-
; maining eigenstates has been accounted for by the integral

employed the set of WS parameters introduced in (2, long the path., i.e., by the second term in E6L7). For the
and the charge-density form factor was taken in the WS, ron rich nucleusi?2zr, the number of near-threshold
form. (See Ref.[4] for details pertaining to the single- & mow states increases. Here, three Gamow resondnges:
particle mode). o , (W=0.7—10.02 Me\V), hg, (w=3.2—10.03 MeV), andi 17,

The poles of thes matrix, i.e., the eigenvalues;, have (,—4 5 j0.02 Me\) have been used to define the contour
been calculated by solving the radial equation numericallfnat includes them in Fig. (b). As seen in Fig. (), the
using the computer codeamow [29]. The contourL has  gjstribution of the proton Gamow eigenvalues 1#Pb is
been chosen to lie far from these poles. This ensures that thffferent. Due to the presence of the Coulomb barrier, there
energy dependence of phase shifts along the path is smootqpear many very narrow resonances even at relatively high
hence one can use relatively large energy steps. The phasgergies, i.e., above 10 MeV; therefore we have chosen in
shifts of scattering states along the patihave been calcu- this case a contour that includes these narrow resonances.
lated by solving the radial equation numerically using the The energy dependence of neutron phase shift&4ar
unpublished codescAT in which the complex Coulomb rou- and proton phase shifts iff%b along the contour is illus-
tine couLcc was used30]. trated in Fig. 2. Here are shown the real and imaginary parts

V. RESULTS
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analysis of neutron shell corrections. The plateau condition is
2l 298114 (@) | satisfied fairly well for the super-heavy nucled®114q,.
I (This nucleus was previously studied in Ref2].) Here, for
-4 - : - eachp value, SE possesses a local minimum 4y and the
r minimum energy changes little witlp. However, in the
-6 cases of**%Gd and®%Zr, it is impossible to assign a definite
-~ 8 i value to the neutron shell correction. The situation ¥Gd
> I and °°Zr shown in Fig. 3 should be considered as typical; the
v plateau conditior8) is seldom satisfied. Therefore, we con-
g r clude that theproper treatment of the continuum level den-
c -6 - sity does not guarantee that the plateau condition is fulfilled
= 8 i In the cases where the plateau condition was approxi-
T mately satisfied, like in Fig. (@), we found a strong correla-
g -10 - tion bgtween the values of andp. In particular, the behav-
© r ior of g(e) as a function ofe was found to be very similar
O 12 i for different values ofp and y corresponding to local
= minima in SE. Moreover, the dependenceg@fs) was found
< r to be almost linear in a wide range sfbelow . We also
n o 2r checked that for the cases when the plateau condition could
4 i not be satisfiedsee, e.g., Figs.(B) and 3c)], the approxi-
- mate linearity ofg(¢) was valid. It is worthwhile to point out
-6 that for the harmonic-oscillator potential, the average level
I density behaves a<’, while for the finite square-well poten-
-8 i . tial, the leading terms behave &s [16,13. Hence, a local
S linear behavior ofg(e) for a finite WS potential is not un-

9 1B 17 expected. This observation suggests that an alternative recipe
Y MeV) for defining shell correction for finite potentials, not based on
the plateau condition but rather on the behavior of the
FIG. 3. Shell correction for the neutrons(@ %114, (b) 4Gcd, ~ smooth level density, may be possible.

and (c) °%Zr obtained using the generalized Strutinsky averaging It is well known that the realistic value of the smoothing
procedure as a function of the smoothing range parametlar ~ parameter has to lie in a certain energy inter\28]. The
various orders of the curvature correctign=8 (dotted ling, p  value ofy should be large enough to wipe out shell effects in
=12 (dot-dashed ling andp= 16 (solid line). The continuum con- the energy range of a typical distance between shells:
tribution to the level density has been calculated using the method
described in Ref[2]. The gray line shows the result of the semi- v>hQ). (19

classical Wigner-Kirkwood approach. ) o ]
On the other hand, its upper limit is defined by the number of

of states considered in the calculations, i.e.,
1 <Ema— N, 20
No(w)= =2 (2)+1)8j;(w). (18 7 e 29

" and by the energy distance between the Fermi level and the

. . bottom of the well[15], i.e.,
According to Eq.(4), N, can be interpreted as the “con-

tinuum particle number” along the contour. As expected, the =
; : y<N—Vy. (21
energy dependence bf. along the path is very smooth. It is

also seen that the imaginary part W is small sjnce the | practice, the optimal value of for a givenp is found by
contour does not go far from the real energy axis. the following procedure. First we choose the energy interval

The WK calculations in this paper follow thos_e of R.E;ﬂ L}S' ,&,] which is lying belowx and is wider than the average
except for the treatment of the proton average field. Since th . . .
shell distance, e.gg,—&,>1.57%(). In this energy interval,

combined WS and Coulomb potentials give rise to a non- . .
monotonic field, in this study we had to employ a modified V& perform the least-squares fit to the smoothed level density

treatment of some of the terms in the WK expansion accord@Ssuming a linear dependencegg) on . The search for
ing to Ref.[31]. optimal y begins at a smally value below# ) where the

shell fluctuations are still present, and thenis gradually
increased until the first minimum i6E is found aty, . This
¥p corresponds to the smallest valueyfor a givenp that

In order to check the dependence of the smoothed singlesmooths out the shell fluctuations. The corresponding shell
particle energy ory andp, we made systematic calculations correction,0E= 6E,, is taken as the optimal shell correction
of the shell energy by varying these parameters within reafor this p. This procedure is repeated for higher valuep of
sonable ranges. Figure 3 shows three typical examples of olirvariations of SE, with p are small, then the mean value of

B. Modified plateau condition
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d TABLE I. Shell correctiondE, the rms errofo, and the Fermi
12+ i level N calculated using the generalized Strutinsky method with
V X _.5 continuum. The corresponding semiclassical quantities, shell cor-
b R * rection SE¢, and Fermi level ., are also shown together with the
1ok I IR S i differenceA = 6E— SE,.. All energies are in MeV.
09} '." isc 1 Neutrons
osl usGq Nucleus oE o N O0Es. Nsc A
07t neutrons ] BN -2.83 0.183 -264 —4.22 -251 1.39
S %0zr —-7.19 0100 -9.63 -6.82 -9.77 -0.37
Tl (@ 1 %7y 024 0016 -7.32 082 -7.37 —0.58
& L . . . 1047y 6.57 0.056 —4.79 6.48 —-4.71 0.09
(% 40 30 20 10 1067y 597 0.039 -4.23 556 —4.13  0.41
w e (MeV) 1087y 576 0.150 -3.69 494 -357 0.82
B0 L, ' ' ' ' 107y 449 0029 -317 345 -3.05 104
- | =& , ] 1227y —461 0.056 -0.32 -6.40 -044 179
w : 208Pp - SM (p=6) 1247y -2.91 0.052 012 -439 -012 1.47
W | ¢ protons | | T METN ] 18250 870 0023 450 -894 -442 024
I R WK ] “Gd  -1009 0118 -9.77 -9.85 -9.89 -0.24
| 208%pp  —-11.37 0.063 -5.50 —-11.23 -5.56 -0.13
b - 2%114  -8.44 0.090 -4.83 -863 -4.81 0.19
AR i\ ; Protons
10 i T e st e 48Nj -2.11 0.084 -0.16 -1.94 -—0.08 —-0.17
! f 0zr 196 0.222 -6.65 1.45 -6.84 0.51
. . A (b) %sn  -7.31 0083 072 -7.01  0.61 —0.30
40 30 20 10 0 1825n —6.02 0.081 —-1324 -6.65 —13.31 0.63
e (MeV) 148Gd 5.27 0.247 —3.98 451 -4.12 0.77
18pp  -7.72 0.016 -0.81 -857 -—0.87 0.85
FIG. 4. Comparison of the smoothed level densities calculated 208 —-6.73 0028 -7.16 —-7.33 —-7.22 0.60

using the generalized Strutinsky meth¢@M) and the Wigner-
Kirkwood method(WK) for (a) the neutrons in**%Gd and(b) the

20 - . ;
proto_ns~|n %b. The de_nsmes are normalized _to the Stru“_nSkycondition could not be mgt Another source of theoretical
densityg(e) calculated with the curvature correctipr=10. Semi-  yncertainty lies in the choice of the fitting rangg ,,]. In

classical level densities and Strutinsky level densities CalCUIatefSarticular, the selection of,, plays a role for weakly bound
with p=6 and 14 are shown by dotted, dot-dashed, and dashed . ~ . .

lines, respectively. It is seen that the result of the StrutinskynUCIeI with \r/]ery rs]m‘?" _values_o)ﬁ.dln practice, ml Orde'f ;_[]O h
smoothing is practically independent. The Fermi levels (SM) guarantee that the fitting region does not overlap with the

and\ . (WK) are indicated, together with the value of the potential threshold area, we have adopted the values pE\ —7% ()
depthV,,. ande =¢,—1.50Q. In order to estimate the associated the-
oretical error, we have performed a set of calculations for
SE, represents the shell correction obtained in this modifiedvell-bound nuclei assuming a larger value &f, namely
Strutinsky method. The uncertainty of the procedure is givers ,=X. The average deviation iE between the two sets of
by the rms erroir=o(SE). calculations is around 400 keV. We believe that this number
The smoothed level densitieg¢), calculated using the represents a fair estimate of the uncertainty of our method.
above procedure, are displayed in Fig. 4 for three different
values ofp=6, 10, and 14. Sincg(e) is practically inde- C. Comparison with the semiclassical method
pendent of the value gb we amplified the differences by
presenting in Fig. 4 the ratios of the level densitieg(e)
belonging top=10.

As a next step, we performed the detailed comparison of
the generalized Strutinsky method with the WK expansion.

olable | displays the shell correctiofE= ESP—ESC calcu-

The shell energy is also practically independent of th ) . ¢
value of p. Table | displays the calculated proton and neu-lated using the WK method, together_wnh the dlfferemf:e
= 0E— SE¢.. In most cased >0. That is, the semiclassical

tron shell-correction energies and the corresponding rms ef- 2
rors. Sinces increases when going to lighter nuclei where method yields the average single-particle eneggywhich is

the condition(21) does not hold, we limited calculations to greater thanEg, obtained in the generalized Strutinsky
nuclei heavier tharf’Ca. The calculations were performed method. The average value Afis about 0.45 MeV and the
for nuclei close to the stability valley and for nuclei with maximal deviation is about 1.8 MeV for neutrons and 0.9
extremeN/Z ratios (both neutron-rich and proton-righlt is MeV for protons. These deviations exhibit large fluctuations
seen that the rms error i86E is always less than 250 keV with particle number, and they are significantly larger than
(also for the cases such 8%r or #6Gd where the plateau the uncertainty of the generalized Strutinsky smoothing pro-
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1 FIG. 6. Neutron shell corrections and Fermi energies as a func-
tion of N calculated in the SM and WK models using the single-

4‘0 2'0 (‘) 2'0 particle potential of*°Zr. The corresponding smoothed level densi-
) ) ties are shown in Fig. 7.

e (MeV)

FIG. 5. Comparison of the smoothed level densities calculate(po_ttom of the well.[For i’:lllszquare-\_/vell poter_mal this S|_ngu-
using the generalized Strutinsky meth@lid line, p=10 variant larity behaves ase(— Vo)~ 7] As discussed in Ref23], in
and the Wigner-Kirkwood methogtiotted ling for the neutrons in the strict treatment ofs{e), there appears a correction to
146G (top) and the protons if°%Pb (bottom). the level density, proportional to the Dirac deltée —V,).

This additional term, usually ignored in calculations, partly

cedure. Considering the excellent agreement between tfﬁ?”eCtS_ fora pe_lthological beh_av_ior around t_he bottom of the
shell energies calculated in the Strutinsky and the WK meth!Vell by introducing a small shift in the Fermi levik. [16].
ods obtained previouslf20], and the existing proof of the Table I displays the Fermi energi@sand .. Usually, the
equivalence between these two methfitig, the large mag- Fermi levels are very close; for well-bound nuclei the differ-
nitudes ofA in Table | seem to be surprising. ence is less than 100 keV. Although small, this shift partly
In order to understand this discrepancy, we analyze th&ontributes to the calculated values/f(e.g., for protons in
behavior of smoothed single-particle level densities obtaine *Pb).
in both methods. The semiclassical level density has been Another major deviation betwea(s) andg.{¢) is seen
obtained by means of E¢L3), i.e., by calculating the deriva- in the energy region close to the=0 threshold in the neu-
tive of Ng{¢). trons, and around the top of the proton Coulomb barrier.
Smoothed level densitie@(g) andg.{e) are compared Here, the reason for this abnormal behavior is our semiclas-
in Figs. 4 and 5 for**%Gd (neutrong and 2°Pb (protong,  sical approximation. As discussed in the Appendix, the WK
respectively. The behavior of average single-particle densipeutron level densitgs{(e) diverges as Inte)//—e when
ties displayed in Fig. 5 shows a generic pattern characteristie— 0. For protons, the singularity is even more severe:
of a WS-like potential wel[13,27. Namely,g(¢) increases Jsde) diverges as\s—¢) ~* around the top of the barrier.
monotonically withe reaching the maximum value around  The pathological behavior @fs{() around zero energy is
thee =0 threshold for the neutrorand around/g, i.e., the the reason for the largest dewatloﬁs;‘ge_n in Tqb[e | for the
top of the Coulomb barrier for the protopsand then it Neutron casge.g.,A=1.39 MeV for ™Ni, and it is greater
smoothly falls down reflecting the increasing contributionthan 1 MeV for the Zr isotopes with=110,122,12}1 These
from the free-gas states. As discussed in Sec. V B, therBuclei are weakly boungas shown by their low Fern~1| ener-
exists a wide energy region in whigh(e) increases fairly gies, and the level density around the Fermi levgl()), is

linearly with . In generalg(e) andg.(e) are very close affected by the threshold effect. . .

except for the bottom of the potential well € V,) and close In order to understand the systematic behaviordofn

to the top of the potential barrier. Table I, neutron shell corrections and Fermi energies for the
Considering the low-energy region, there are problemd iSOtopes are shown in Fig. 6 as functionshof The cal-

with both methods. The Strutinsky smoothed density is nonculations were performed using the single-particle potential

zero for e<V,, i.e., in the classically forbidden region. corresponding td°Zr. The associated smoothed level densi-

Here, the inequality21) cannot be met and the averaging €S are shown in Fig. 7. It is seen that although the general

method breaks dowfiL5]. Also, there are serious questions pattern of 5E is similar in the generalized shell-correction

regarding the applicability of the semiclassical treatmentMethod and WK approachy exhibits the oscillatory behav-

close to thes =V, limit. The ! term in the WK expansion 10r as a function of particle number. The agreement between

of the semiclassical level densifyelated to the second term SE and SEg.is very good up toN~ 70 (7\~ —4 MeV), but it

in the integral(12)] gives rise to the singularity around the is spoiled at large neutron numbers wheéresystematically
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where the standard WK expansion cannot be carried out, and
(ii) a simple generalization to the deformed case where the
semiclassical expansion becomes awkwdrid

Finally, let us comment on the differendebetween shell
corrections obtained in both methods. There are several fac-
tors which contribute toA. In addition to the threshold
anomaly mentioned above, other factors drethe shift be-
tween the Fermi levels caused by the different behavior of
the level densities at the bottom of the potential w@i), the
assumption of the local linearity of the smoothed level den-
sity, and(iii) the systematic errors accumulated during nu-

907
L neutrons

N L
T

level density (MeV-)

SM (p=10) merical calculations. For protons, our calculations dikeé
_______________ WK P <<900 keV in all cases considered. Here, the main source of
. . the difference is the deviation between the level densities

-40 -20 0 around the bottom of the potential well, i.e., factor. For

€ (MeV) neutrons withk < —4 MeV, the value ofA| is even smaller:

o |A|<600 keV. The largest deviations approaching 2 MeV
FIG. 7. Same as in Fig. 5 except for the neutronS%r. The  have been obtained for the neutron drip-line nuclei such as
points at which the difference between SM and WK level densities122;, Considering the analysis presented in this study, it has
49 changes sign are marked by A, B, and C. The oscillatory behavgg pe concluded that the excellent agreement found in Ref.
ior of &g is responsible for the oscillatory behavior &fas a func- [20] (|A|~100 keV) is fortuitous. According to our results
tion of particle number, as shown in Fig. 6. in Table 1, for nuclei discussed by these authors, P&Pb

_ o - and ?*®114, the difference is indeed very small. However,
increases. Indeed, above point C in Fig. 7, the semiclassicgh other cases deviations are larger.

level density diverges, and it does not yield a good estimate
of the shell correction.

For the protons, the “dangerous” threshold regionggf
is shifted to higher energies due to the presence of the Cou- This research was supported in part by the Hungarian Na-
lomb barrier(see Fig. $. That explains why the differences tional Research FunOTKA T17298, the Swedish Royal
between the Strutinsky and WK results are smaller for theAcademy of Sciences, the U.S. Department of Energy under
protons than for the neutrons. For instance, for the protorContract Nos. DE-FG02-96ER40963niversity of Tennes-
drip-line nucleus!®®Sn the agreement between two methodssed, DE-FG05-87ER40361Joint Institute for Heavy lon
is surprisingly good in spite of the fact that=0.72 MeV. Researc) DE-AC05-960R22464 with Lockheed Martin
Since in actual nucle{both particle bound and in proton Energy Research CorgOak Ridge National Laboratory
emitterg the proton Fermi level is significantly lower than the Institute of Atomic Physics, Bucharest, and by the Polish
Vg, the divergent behavior of protogy, around the top of Committee for Scientific ReseardiKBN) under Contract
the Coulomb barrier has no practical importance. No. 2 P03B04014.
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VI. CONCLUSIONS APPENDIX: NEAR-THRESHOLD BEHAVIOR

. . . OF THE SEMICLASSICAL LEVEL DENSITY
This paper introduces a new method of calculating the

nuclear shell energy. The generalized Strutinsky procedure In the WK method, the semiclassical level dengjty¢)

fully takes into account the effect of the particle continuum.can be written as

Although the traditional plateau condition can seldom be met

for finite potentials, the proposed method makes it possible Osde)=071e(e)+g_1(e), (A1)

to define the shell correction unambiguously. A conservative

estimate of the uncertainty idE obtained using the new wheregr(e) is the Thomas-Ferm{TF) level density and

smoothing procedure is-400 keV. This error can be con- g_,(&) is the WK correction terntof the order of, 1). By

sidered as small. employing Egs.(13) and (12), one can writeg,{e) as a
In most cases, the results of the generalized Strutinskgerivative of the particle number with respectsp

procedure are in good agreement with those of the semiclas-

sical WK method. Significant deviations have been obtained dNe dN_;

for neutron-rich nuclei for which the neutron Fermi energy is gre(e)= 5+ 9-1(e)= (A2)

low (\>—4 MeV). This discrepancy has been tracked back

to the singularity in the WK level density around the top of In Eq. (A2), Nyg is the TF particle number,

the potential barrier. The density(e) obtained in the gen-
eralized Strutinsky method nicely interpolates through the
threshold regionsee also Refd.13,27]). Other advantages
of the new method ardi) its applicability to potentials with
discontinuous derivativeg.g., the Coulomb potential of a
uniform charge distribution and a folded-Yukawa potential while the ~* WK term is

4
NTF(8)=§

2M

312 o)
= f (e—V)3¥%2dr, (A3)
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1/2 T T T T
1 (2M rede) V2V
=== 2 (a) Neutrons
N_i(e) 127\ 72 f mr dr. (A4) _ 250 F

As usual, the classical turning point is defined by the relation % 201 ;"7\

V(red{e))=e. = 150} §5' ) . H
The pathological behavior @f,{¢) close to the top of the = 2
potential barrier can be attributed to the singularity in the & ]
g_1(e) term. To examine this divergence, let us consider the od i
integral
Feds) VZV -0.5 -0.4 -0.3 -0.2 -0.1 0
l(e)= |. r2dr, (A5) e (keV)
( r Vve—V
where it has been assumed tN4r) is an increasing func- L (b) Protons 1
. . ~ ~ . . .~ —~ 400 B
tion of r on an intervalr,rs], andr is a fixed radius I = o ) —_— ]
<rgd. % [ BT ] ]
T . 30F 3
By substitutingx=V(r), 1(g) can be written as b [ % st . ]
(X) \/O'E 200 - ]
&n N ]
I(e)= dx, A6 3

(o) [ (6) 5 _
wherex=V(r) and 1 s e 4 a2

2y Vi ~Vg (keV)

n(X)=r>—— =|r?—+2r (A7)
\ X \ X FIG. 8. The divergent behavior @fs{¢) for the neutronga)

and the protongb) in 12°Sn around the particle threshold. It is seen
The singularity ak=e¢ in the integrand in EQ(A6) can be  that the semiclassical approximation breaks down in the vicinity of
eliminated by performing a partial integration: the threshold. The densities scaled according to HA45):
. 1000y (e)/[InE)\E] (where F=g/Vy), and Eq. (A20):
I(e)=275(X) \/8_;(+2ﬁ 7' (X)Je—xdx ~ (A8)  100@.{s)/[1/e] [wheres =(s—Vg)/V,] are shown in the insets.
X

The first term in Eqg.(A8) does not cause any problems , r(x)

around the particle threshold and can be neglected in the Y (X)%ZT (A13)
following. Hence the behavior aj_,(&) around the top of
the barrier is governed by the integral

|'(8)~ﬁ977 ) dx. (A9) zIn(x/x)

xve—X |'(s)~2f~ dx. (A14)
X Xy €&—X

and

1. Woods-Saxon potential: neutron case

For neutrons in a WS potential, the particle threshold ap e above integral can be easily calculated. Arourd, it
pears at:=0. In the vicinity of the threshold, the potential Pehaves as
energy can be approximated by

= In(e/X) [ Velx, (A15)
V(r)=X exp( - T) , (A10)
and this is the asymptotic behavior@f(e) around the neu-
and the classical radius is tron threshold. .
The behavior ofg.{e) for the neutrons in'?%Sn at
_ X e~0 is displayed in Fig. &). It is seen that the semiclassical
r(x)=r+aln < (A11)  density diverges according to the law given by E415).
In the limit e— 0, the functiony(x) in Eg. (A7) can be 2. Finite potential barrier: proton case

written as . e :
For potentials with finite barriers, such as the sum of WS

7(X)=2r(x)—r?(x)la~ —r?(x)/a. (A12)  and Coulomb potentials, the particle threshold appears at the
top of the barriere =Vg. Around the barrier top, the poten-
Hence tial energy can be expanded as
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1
V(r)%VB—aE(r—rB)z, (A16)

wherea=—V"(rg).
Fore~Vg, the functionn(x) in Eq. (A7) can be written
as

~— r) (A17)
7)== —1(X)
Consequently,
, r(x)
7' (X)~— (A18)

alrg—r(x)1%’

and the leading term ih' (&) takes the form
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e 1

The above integral can be easily evaluated. Aroaird/ it
behaves as

(A19)

1
VB_E,

(A20)

and this gives the asymptotic behaviorqf(e) around the
top of the Coulomb barrier.

The behavior ofg.(e) for the protons in*?%Sn around
e=Vjgis displayed in Fig. &). It is seen that around the top
of the barrier the semiclassical density diverges according to
the law given by Eq(A20). Of course, the WK contribution
(A4) to the particle number also diverges wherVg. This
result is by no means surprising; the semiclassical approxi-
mation breaks down if the gradient of the potential at the
turning point vanishes, and this happens precisely around the
top of the barrier.
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