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Shell corrections for finite depth potentials: Particle continuum effects
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Shell corrections of finite, spherical, one-body potentials are analyzed using a smoothing procedure which
properly accounts for the contribution from the particle continuum, i.e., unbound states. Since the plateau
condition for the smoothed single-particle energy seldom holds, a new recipe is suggested for the definition of
the shell correction. The generalized Strutinsky smoothing procedure is compared with the results of the
semiclassical Wigner-Kirkwood expansion. A good agreement has been found for weakly bound nuclei in the
vicinity of the proton drip line. However, some deviations remain for extremely neutron-rich systems due to
the pathological behavior of the semiclassical level density around the particle threshold.
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I. INTRODUCTION

Positive-energy eigenstates of the average single-par
potential are very important for the description of nuc
close to the particle drip lines where the Fermi level a
proaches zero~see Ref.@1# and references quoted therein!,
and in analysis of highly excited nuclear modes such as g
resonances@2,3#. With the advent of radioactive nuclea
beams, of particular interest are masses of weakly bo
nuclei with extremeN/Z ratios. For these nuclei, importan
for both nuclear structure and astrophysics, special c
should be taken when dealing with the particle continuu
which strongly influences many nuclear properties, includ
global ones~e.g., masses, radii, shapes! as well as nuclear
dynamics~i.e., excitation modes!.

In a previous paper@4#, a macroscopic-microscopi
method was applied to nuclei far from theb stability line. It
has been demonstrated that the systematic error in bin
energies, due to the particle continuum, can be as larg
several MeV at the neutron drip line; hence it can seriou
affect theoretical mass predictions for nuclei far from stab
ity. This error depends weakly on deformation, thus sugg
ing the possibility of renormalizing potential energy surfac
at the spherical shape.

In this paper, the effect of the particle continuum on t
shell correction~the quantal contribution to the total energ
in the macroscopic-microscopic approach! is investigated by
solving the Schro¨dinger equation in the complex energ
plane. The new procedure allows for the direct treatmen
both narrow resonances and the smooth continuum b
ground when calculating the single-particle level density.

The paper is organized as follows. Section II contain
brief review of the shell-correction method in terms of t
single-particle level density. The semiclassical approach
discussed in Sec. III. Section IV describes the modifi
Strutinsky renormalization procedure which takes care of
570556-2813/98/57~6!/3089~10!/$15.00
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continuum effects. The results of the calculations are c
tained in Sec. V. Finally, conclusions are given in Sec. V
The threshold behavior of the semiclassical level density
discussed in the Appendix.

II. SHELL CORRECTION AND SINGLE-PARTICLE
LEVEL DENSITY

In the standard macroscopic-microscopic approach@5–8#,
the shell correction

dE5Esp2Ẽsp ~1!

is the difference between the total single-particle energyEsp,

Esp5 (
i 2occ

« i , ~2!

and the smooth single-particle energyẼsp. The shell correc-
tion represents the fluctuating part of the binding energy
sulting from the single-particle shell structure.

For the sake of simplicity, we shall restrict our discussi
to spherically symmetric nuclei and assume that the sin
nucleon energy spectrum is that of a one-body Hamilton
Ĥ5T1V with a finite, local, and spherically symmetric po
tential V(r ). Since the spectrum ofH contains both bound
(« i,0) and unbound («.0) eigenvalues, the single-particl
level density is the sum of the discrete and continuum c
tributions @9–13#

g~«!5(
i

~2 j i11!d~«2« i !1gc~«!. ~3!

The continuum part,gc(«), is defined in terms of the scat
tering phase shiftsd l j («)
3089 © 1998 The American Physical Society
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3090 57T. VERTSEet al.
gc~«!5
1

p(
l , j

~2 j 11!
dd l j ~«!

d«
. ~4!

In the shell-correction method@5,6# the smooth energy
Ẽsp is calculated by employing the smooth level densityg̃(«)
obtained fromg(«) by folding with a smoothing function
f (x):

g̃~«!5
1

gE2`

1`

d«8g~«8! f S «82«

g D . ~5!

The folding functionf (x) can be written as a product of
weighting function and a curvature correction polynomial
the orderp52M @6#. The smoothing procedure should b
unambiguous, i.e., the averaging should leave the sm
part of the level density untouched~the so-called self-
consistency condition for the Strutinsky smoothing!. This de-
fines a curvature correction polynomial for any spec
choice of weighting function. In this study, a Gaussi
weighting function, (1/Ap) exp(2x2) has been used. Th
corresponding curvature function is an associated Lagu
polynomial LM

1/2(x2). This choice guarantees the se

consistency condition forg̃(«) if the smooth level density
behaves as a polynomial of degree 2M11 or lower in«.

The smoothed level density~5! defines both the smoot
single-particle energy

Ẽsp5E
2`

l̃
«g̃~«!d«, ~6!

and the smoothed Fermi levell̃. The latter is obtained from
the particle number equation:

N5E
2`

l̃
g̃~«!d«, ~7!

where N is the total number of particles~i.e., protons or
neutrons!. The smoothing rangeg should be greater than th
average energy distance between neighboring major sh
\V'41/A1/3 MeV @14#.

Since the result of the smoothing procedure should
depend on the actual form of the smoothing function, in p
ticular on the smoothing rangeg and the orderp of curvature
correction, the smooth energy should satisfy the so-ca
plateau condition:

]Ẽsp

]g
50,

]Ẽsp

]p
50. ~8!

For infinite potentials such as a harmonic oscillator or a
formed Nilsson potential, one can always find an interva
the smoothing parametersg andp in which the smooth en-
ergy, hence the shell correction, is practically independen
the valuesg andp @12,15#. For finite-depth potentials, add
tional complications arise due to the presence of the c
tinuum contribution, Eq.~4! ~see discussion in Refs.@4,2#,
and references quoted therein!. In most calculations applying
the shell-correction approach, the continuum is treated
proximately by using thequasibound states, i.e., the states
resulting from the diagonalization of a finite potential in
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large harmonic-oscillator basis@7#. However, for light and
weakly bound nuclei, the plateau condition~8! usually does
not hold @4#.

III. SEMICLASSICAL TREATMENT OF SHELL
CORRECTION

A possible alternative to Strutinsky’s smoothing proc
dure is the semiclassical averaging based on the Wig
Kirkwood expansion@15–21#. In Ref. @17# the equivalence
between the Strutinsky approach and the Wigner-Kirkwo
~WK! expansion has been demonstrated. It is importan
note that this proof assumed that in the Strutinsky appro
the plateau condition could be fulfilled.

In the WK expansion, the diagonal part of the Bloch de
sity @21,22# is

C~r,b!5
1

4p3/2b3/2S 2M

\2 D 3/2

e2bV~r!H 12
\2b2

12M F¹2V~r!

2
b

2
„¹V~r!…2G1 . . . J . ~9!

The spatial density is obtained by using the inverse Lapl
transform

r~r,«!5L b→«
21 S C~r,b!

b D , ~10!

and the particle number integral is given by

N~«!5E r~r,«!d3r . ~11!

Keeping only the two leading terms in the curly bracket
Eq. ~9!, the WK particle number equation can be express
explicitly in terms of the single-particle potential

Nsc~«!5
4

3pS 2M

\2 D 3/2E r sc~«!

r 2H ~«2V!3/2

2
\2

32M

¹2V

~«2V!1/2J dr. ~12!

The integral in Eq.~12! is cut off at the classical turning
point, r sc(«), defined by the relationV(r sc)5«. ~For the
inclusion of the spin-orbit term see Ref.@20#.! The semiclas-
sical value of the Fermi energy,lsc, can be determined from
the particle number equationNsc(lsc)5N.

The semiclassical level density is defined as

gsc~«!5
dNsc~«!

d«
. ~13!

Here, it is worth reminding that the semiclassical level de
sity is defined only for«.V0 , whereV0 denotes the bottom
of the potential well. That is,gsc(«)50 if «,V0 . An ex-
plicit expression forgsc(«) in terms of a WK expansion can
be found in, e.g., Ref.@23#.

It is to be noted that Eqs.~9!–~13! are valid for any
smooth potential regardless whether it is infiniteor not. Of-
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57 3091SHELL CORRECTIONS FOR FINITE DEPTH . . .
ten, the semiclassical level density is defined in terms of
partition functionZ(b)5*C(r,b)d3r . However, there is a
difficulty: Z(b) diverges for finite potentials@23#. In practi-
cal calculations it is possible to overcome this serious pr
lem by an appropriate modification of the potential at lar
distances. Formally, this procedure is equivalent to plac
an infinite potential well~a box with soft walls! at very large
distances from the classical region@23#.

Since the particle-number integral~12! depends only on
the potential in the classical region, whereV0,«,VB , the
quantityNsc(«) is well defined for energies which are not to
close to the top of the potential wellVB where the semiclas
sical expansion breaks down~see the Appendix!. Hence the
total number of particles can be calculated without the
plicit use of the partition function; there is no need at all
put the system into a box in the case of a finite potential

The total energy of the system of noninteracting partic
is

E5E
2`

l

«g~«!d«5lN2E
2`

l

N~«!d«. ~14!

By means of Eqs.~11! and ~10!, E can be written as

E5lN2E L b→l
21 S C~r,b!

b2 Dd3r . ~15!

Here it is assumed that the order of the integration with
spect to« ~and r) and the inverse Laplace transform can
interchanged. Using Eq.~15!, the semiclassical smoothe
binding energy can be written as

Ẽsc5lscN2E L b→lsc

21 S Csc~r,b!

b2 D d3r , ~16!

where the notationCsc(r,b) means that only the terms whic
are not a higher order than\ are kept in the WK expansion
of C(r,b). As it was discussed in@20#, for the determination
of lsc it is enough to keep the terms of order\21 in Eq. ~9!.
The explicit expression for the smoothed energy is qu
lengthy and can be found in Ref.@20#.

IV. IMPROVED TREATMENT OF RESONANCES
IN THE SHELL CORRECTION METHOD

The impact of the particle continuum on shell correctio
has been investigated numerically in Ref.@12# for neutrons
in 208Pb and298114 by explicit calculation of the continuum
part of the level density, Eq.~4!. They have shown that, b
taking into account contributions from the neutron co
tinuum up to;100 MeV in 208Pb, the plateau condition~8!
could be met~see Ref.@2# for an updated discussion of th
continuum contribution in208Pb!. Based on this early exer
cise, it was generallyassumedthat the plateau condition
could be fulfilled for finite potentials provided that the co
tinuum part was included. A systematic study of this a
sumption is given in Sec. V B.

The lack of systematic studies using the continuum le
density is due to the fact that these calculations are q
cumbersome. Except for some special cases, the solutio
the radial differential equation can be done only numerica
e
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The calculation of the phase shifts and the continuum le
density along the real energy axis should be carried out w
great care. In general, the use of an extremely fine ene
step is required in order to collect contributions from narro
resonances. Recently, this difficulty has been overcome
applying a new method which uses Gamow states@2#. A
Gamow resonance is a generalized eigenstate of the ra
Schrödinger equation corresponding to a complex energy
genvaluewi5« i2 iG i ~for bound statesG i50). The wave
function of a Gamow resonance is regular atr 50 and has
purely outgoing asymptotics with a discrete complex wa
number.

In the new method~see Ref.@2# for details!, the smoothed
level densityg̃(«) can be written with the help of the Cauch
theorem as a sum over bound and resonant states, an
integral along a contourL in the complex energy plane:

g̃~«!5(
i

f S «2wi

g D1E
L
dwgc~w! f S «2w

g D . ~17!

In Eq. ~17!, the summation runs over all the bound states a
those resonances which are above the contourL and below
the real energy axis.

Thanks to the Cauchy theorem, the level density as gi
by Eq. ~17! has only the real part@the imaginary parts of the
two terms in the right-hand side~rhs! of Eq. ~17! should
cancel out exactly#. Furthermore,g̃(«) should be indepen-
dent of the shape of the contourL. However, since the cal
culations are carried out numerically, the exact cancellat
of the imaginary parts is always slightly violated and,
addition, the sum of the real parts slightly depends on
shape of the contour. For example, if the contourL is ex-
tended to the area of the complex energy plane with la
imaginary energies [Im(w), – 5 MeV# then broad reso-
nances, i.e., those with largeG i values should be included
As a result, both terms in the rhs of Eq.~17! would acquire
large imaginary parts which would not cancel complete
due to the numerical errors. Therefore, the best strategy
choose the contour in such a way that it would include o
narrow resonances. With this choice the final result is pr
tically independent of the shape of the contour, and
imaginary part ofg̃(«) is negligible~it is the order of 1024

or less!. Three examples of contoursL are shown in Fig. 1.
With a reasonable choice for the contourL, the Gamow

resonances give the major contribution from the continuu
the contour integral gives the remaining~small! part. From
the smoothed level density~17! one can determinel̃ andẼsp
using Eqs.~7! and ~6!, respectively.

It is worth noting that another commonly used method
calculating the continuum level density is based on the d
cretization procedure. Here, one assumes that the nucle
placed inside a very large box~cf. the discussion in Sec. II
on the application of the semiclassical expansion to fin
potentials!. Since the properties of the nucleus itself must n
depend on the box size, one has to renormalize the le
density by subtracting the contribution from the free-g
states@13,24–27#. In Refs.@13,27#, the discretization method
was applied to investigate the accuracy of the semiclass
expression~13! for several commonly used potentials, an
good agreement was found in all cases.
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V. RESULTS

A. Details of calculations

In the actual calculations, we have used the aver
Woods-Saxon~WS! potential, which contains a central pa
a spin-orbit term, and a Coulomb potential for protons. T
Coulomb potential has been assumed to be that of a ch
(Z21)e distributed with the diffused charge density. W
employed the set of WS parameters introduced in Ref.@28#,
and the charge-density form factor was taken in the W
form. ~See Ref. @4# for details pertaining to the single
particle model.!

The poles of theS matrix, i.e., the eigenvalueswi , have
been calculated by solving the radial equation numeric
using the computer codeGAMOW @29#. The contourL has
been chosen to lie far from these poles. This ensures tha
energy dependence of phase shifts along the path is sm
hence one can use relatively large energy steps. The p
shifts of scattering states along the pathL have been calcu
lated by solving the radial equation numerically using t
unpublished codeZSCAT in which the complex Coulomb rou
tine COULCC was used@30#.

FIG. 1. The distribution of Gamow energy eigenvalues,wi in
the [Re(w),Im(w)] plane for ~a! the stable nucleus90Zr ~neutron
eigenvalues!, ~b! neutron drip-line nucleus122Zr ~neutron eigenval-
ues!, and ~c! proton-rich nucleus180Pb ~proton eigenvalues!. The
contoursL used in Eq.~17! to calculate the smoothed level densi
in the generalized shell-correction method are also shown. Only
Gamow states withwi lying above the contour are included in th
leading term in Eq.~17!.
e

e
ge

S

y

he
th;
se

As an illustrative example, the distribution of eigenvalu
wi for the stable nucleus90Zr ~neutrons!, neutron drip-line
nucleus122Zr ~neutrons!, and proton-rich nucleus180Pb~pro-
tons! is shown in Fig. 1, together with the contoursL used
for calculating the level density~17!. In the case of90Zr,
there are four poles close to the«50 threshold. They are
p1/2 (w50.22 i0.19 MeV!, f 5/2 (w52.12 i0.34 MeV!, i 13/2
(w53.72 i0.004 MeV!, andh9/2 (w53.92 i0.03 MeV!. As
seen in Fig. 1, only the Gamow states with the small
widths, i.e.,i 13/2 andh9/2, have been considered explicitly i
the level density calculations; a contribution from the r
maining eigenstates has been accounted for by the inte
along the pathL, i.e., by the second term in Eq.~17!. For the
neutron-rich nucleus122Zr, the number of near-threshol
Gamow states increases. Here, three Gamow resonancesf 7/2
(w50.72 i0.02 MeV!, h9/2 (w53.22 i0.03 MeV!, and i 13/2
(w54.52 i0.02 MeV! have been used to define the conto
that includes them in Fig. 1~b!. As seen in Fig. 1~c!, the
distribution of the proton Gamow eigenvalues in180Pb is
different. Due to the presence of the Coulomb barrier, th
appear many very narrow resonances even at relatively
energies, i.e., above 10 MeV; therefore we have chose
this case a contour that includes these narrow resonanc

The energy dependence of neutron phase shifts in122Zr
and proton phase shifts in180Pb along the contourL is illus-
trated in Fig. 2. Here are shown the real and imaginary p

e

FIG. 2. The energy dependence of the ‘‘continuum parti
number’’ ~18! for the neutrons in122Zr ~a! and the protons in180Pb
~b! along the contoursL of Fig. 1~b! and 1~c!. The energy depen-
dence ofNc along the path is very gradual. The fluctuations inNc

can be attributed to the presence of near-lying Gamow states.
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of

Nc~w!5
1

p(
l , j

~2 j 11!d l j ~w!. ~18!

According to Eq.~4!, Nc can be interpreted as the ‘‘con
tinuum particle number’’ along the contour. As expected,
energy dependence ofNc along the path is very smooth. It i
also seen that the imaginary part ofNc is small since the
contour does not go far from the real energy axis.

The WK calculations in this paper follow those of Ref.@4#
except for the treatment of the proton average field. Since
combined WS and Coulomb potentials give rise to a n
monotonic field, in this study we had to employ a modifi
treatment of some of the terms in the WK expansion acco
ing to Ref.@31#.

B. Modified plateau condition

In order to check the dependence of the smoothed sin
particle energy ong andp, we made systematic calculation
of the shell energy by varying these parameters within r
sonable ranges. Figure 3 shows three typical examples o

FIG. 3. Shell correction for the neutrons in~a! 298114,~b! 146Gd,
and ~c! 90Zr obtained using the generalized Strutinsky averag
procedure as a function of the smoothing range parameterg for
various orders of the curvature correction:p58 ~dotted line!, p
512 ~dot-dashed line!, andp516 ~solid line!. The continuum con-
tribution to the level density has been calculated using the me
described in Ref.@2#. The gray line shows the result of the sem
classical Wigner-Kirkwood approach.
e

e
-

-

e-

-
ur

analysis of neutron shell corrections. The plateau conditio
satisfied fairly well for the super-heavy nucleus298114184.
~This nucleus was previously studied in Ref.@12#.! Here, for
eachp value,dE possesses a local minimum ing, and the
minimum energy changes little withp. However, in the
cases of146Gd and90Zr, it is impossible to assign a definit
value to the neutron shell correction. The situation for146Gd
and 90Zr shown in Fig. 3 should be considered as typical; t
plateau condition~8! is seldom satisfied. Therefore, we co
clude that theproper treatment of the continuum level de
sity does not guarantee that the plateau condition is fulfille.

In the cases where the plateau condition was appr
mately satisfied, like in Fig. 3~a!, we found a strong correla
tion between the values ofg andp. In particular, the behav-
ior of g̃(«) as a function of« was found to be very similar
for different values ofp and g corresponding to loca
minima indE. Moreover, the dependence ofg̃(«) was found
to be almost linear in a wide range of« below l̃. We also
checked that for the cases when the plateau condition c
not be satisfied@see, e.g., Figs. 3~b! and 3~c!#, the approxi-
mate linearity ofg̃(«) was valid. It is worthwhile to point out
that for the harmonic-oscillator potential, the average le
density behaves as«2, while for the finite square-well poten
tial, the leading terms behave asA« @16,13#. Hence, a local
linear behavior ofg̃(«) for a finite WS potential is not un-
expected. This observation suggests that an alternative re
for defining shell correction for finite potentials, not based
the plateau condition but rather on the behavior of
smooth level density, may be possible.

It is well known that the realistic value of the smoothin
parameter has to lie in a certain energy interval@23#. The
value ofg should be large enough to wipe out shell effects
the energy range of a typical distance between shells:

g.\V. ~19!

On the other hand, its upper limit is defined by the numbe
states considered in the calculations, i.e.,

g!«max2l̃, ~20!

and by the energy distance between the Fermi level and
bottom of the well@15#, i.e.,

g!l̃2V0 . ~21!

In practice, the optimal value ofg for a givenp is found by
the following procedure. First we choose the energy inter

@« l ,«u# which is lying belowl̃ and is wider than the averag
shell distance, e.g.,«u2« l.1.5 \V. In this energy interval,
we perform the least-squares fit to the smoothed level den
assuming a linear dependence ofg̃(«) on «. The search for
optimal g begins at a smallg value below\V where the
shell fluctuations are still present, and theng is gradually
increased until the first minimum indE is found atgp . This
gp corresponds to the smallest value ofg for a givenp that
smooths out the shell fluctuations. The corresponding s
correction,dE5dEp , is taken as the optimal shell correctio
for this p. This procedure is repeated for higher values ofp.
If variations ofdEp with p are small, then the mean value o

g

d
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3094 57T. VERTSEet al.
dEp represents the shell correction obtained in this modifi
Strutinsky method. The uncertainty of the procedure is giv
by the rms errors[s(dE).

The smoothed level densitiesg̃(«), calculated using the
above procedure, are displayed in Fig. 4 for three differ
values ofp56, 10, and 14. Sinceg̃(«) is practically inde-
pendent of the value ofp we amplified the differences b
presenting in Fig. 4 the ratios of the level densities tog̃(«)
belonging top510.

The shell energy is also practically independent of
value of p. Table I displays the calculated proton and ne
tron shell-correction energies and the corresponding rms
rors. Sinces increases when going to lighter nuclei whe
the condition~21! does not hold, we limited calculations t
nuclei heavier than40Ca. The calculations were performe
for nuclei close to the stability valley and for nuclei wit
extremeN/Z ratios~both neutron-rich and proton-rich!. It is
seen that the rms error indE is always less than 250 keV
~also for the cases such as90Zr or 146Gd where the plateau

FIG. 4. Comparison of the smoothed level densities calcula
using the generalized Strutinsky method~SM! and the Wigner-
Kirkwood method~WK! for ~a! the neutrons in146Gd and~b! the
protons in 208Pb. The densities are normalized to the Strutins

densityg̃(«) calculated with the curvature correctionp510. Semi-
classical level densities and Strutinsky level densities calcula
with p56 and 14 are shown by dotted, dot-dashed, and das
lines, respectively. It is seen that the result of the Strutin

smoothing is practicallyp independent. The Fermi levelsl̃ ~SM!
andlsc ~WK! are indicated, together with the value of the potent
depthV0 .
d
n

t

e
-
r-

condition could not be met!. Another source of theoretica
uncertainty lies in the choice of the fitting range@« l ,«u#. In
particular, the selection of«u plays a role for weakly bound
nuclei with very small values ofl̃. In practice, in order to
guarantee that the fitting region does not overlap with
threshold area, we have adopted the value of«u5l̃2\V
and« l5«u21.5\V. In order to estimate the associated th
oretical error, we have performed a set of calculations
well-bound nuclei assuming a larger value of«u , namely
«u5l̃. The average deviation indE between the two sets o
calculations is around 400 keV. We believe that this num
represents a fair estimate of the uncertainty of our metho

C. Comparison with the semiclassical method

As a next step, we performed the detailed comparison
the generalized Strutinsky method with the WK expansi
Table I displays the shell correctiondEsc5Esp2Ẽsc calcu-
lated using the WK method, together with the differenceD
[dE2dEsc. In most casesD.0. That is, the semiclassica
method yields the average single-particle energyẼsc which is
greater thanẼsp obtained in the generalized Strutinsk
method. The average value ofD is about 0.45 MeV and the
maximal deviation is about 1.8 MeV for neutrons and 0
MeV for protons. These deviations exhibit large fluctuatio
with particle number, and they are significantly larger th
the uncertainty of the generalized Strutinsky smoothing p

d

d
ed
y

l

TABLE I. Shell correctiondE, the rms errors, and the Fermi

level l̃ calculated using the generalized Strutinsky method w
continuum. The corresponding semiclassical quantities, shell
rectiondEsc and Fermi levellsc, are also shown together with th
differenceD[dE2dEsc. All energies are in MeV.

Neutrons
Nucleus dE s l̃ dEsc lsc D

78Ni 22.83 0.183 22.64 24.22 22.51 1.39
90Zr 27.19 0.100 29.63 26.82 29.77 20.37
96Zr 0.24 0.016 27.32 0.82 27.37 20.58
104Zr 6.57 0.056 24.79 6.48 24.71 0.09
106Zr 5.97 0.039 24.23 5.56 24.13 0.41
108Zr 5.76 0.150 23.69 4.94 23.57 0.82
110Zr 4.49 0.029 23.17 3.45 23.05 1.04
122Zr 24.61 0.056 20.32 26.40 20.44 1.79
124Zr 22.91 0.052 0.12 24.39 20.12 1.47
132Sn 28.70 0.023 24.50 28.94 24.42 0.24
146Gd 210.09 0.118 29.77 29.85 29.89 20.24
208Pb 211.37 0.063 25.50 211.23 25.56 20.13
298114 28.44 0.090 24.83 28.63 24.81 0.19

Protons

48Ni 22.11 0.084 20.16 21.94 20.08 20.17
90Zr 1.96 0.222 26.65 1.45 26.84 0.51
100Sn 27.31 0.083 0.72 27.01 0.61 20.30
132Sn 26.02 0.081 213.24 26.65 213.31 0.63
146Gd 5.27 0.247 23.98 4.51 24.12 0.77
180Pb 27.72 0.016 20.81 28.57 20.87 0.85
208Pb 26.73 0.028 27.16 27.33 27.22 0.60
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cedure. Considering the excellent agreement between
shell energies calculated in the Strutinsky and the WK me
ods obtained previously@20#, and the existing proof of the
equivalence between these two methods@17#, the large mag-
nitudes ofD in Table I seem to be surprising.

In order to understand this discrepancy, we analyze
behavior of smoothed single-particle level densities obtai
in both methods. The semiclassical level density has b
obtained by means of Eq.~13!, i.e., by calculating the deriva
tive of Nsc(«).

Smoothed level densitiesg̃(«) and gsc(«) are compared
in Figs. 4 and 5 for146Gd ~neutrons! and 208Pb ~protons!,
respectively. The behavior of average single-particle de
ties displayed in Fig. 5 shows a generic pattern character
of a WS-like potential well@13,27#. Namely,g̃(«) increases
monotonically with« reaching the maximum value aroun
the«50 threshold for the neutrons~and aroundVB , i.e., the
top of the Coulomb barrier for the protons!, and then it
smoothly falls down reflecting the increasing contributi
from the free-gas states. As discussed in Sec. V B, th
exists a wide energy region in whichgsc(«) increases fairly
linearly with «. In general,g̃(«) and gsc(«) are very close
except for the bottom of the potential well («'V0) and close
to the top of the potential barrier.

Considering the low-energy region, there are proble
with both methods. The Strutinsky smoothed density is n
zero for «,V0 , i.e., in the classically forbidden region
Here, the inequality~21! cannot be met and the averagin
method breaks down@15#. Also, there are serious question
regarding the applicability of the semiclassical treatm
close to the«5V0 limit. The \21 term in the WK expansion
of the semiclassical level density@related to the second term
in the integral~12!# gives rise to the singularity around th

FIG. 5. Comparison of the smoothed level densities calcula
using the generalized Strutinsky method~solid line, p510 variant!
and the Wigner-Kirkwood method~dotted line! for the neutrons in
146Gd ~top! and the protons in208Pb ~bottom!.
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bottom of the well.@For a square-well potential this singu
larity behaves as («2V0)21/2.] As discussed in Ref.@23#, in
the strict treatment ofgsc(«), there appears a correction t
the level density, proportional to the Dirac deltad(«2V0).
This additional term, usually ignored in calculations, par
corrects for a pathological behavior around the bottom of
well by introducing a small shift in the Fermi levellsc @16#.
Table I displays the Fermi energiesl̃ andlsc. Usually, the
Fermi levels are very close; for well-bound nuclei the diffe
ence is less than 100 keV. Although small, this shift par
contributes to the calculated values ofD ~e.g., for protons in
208Pb!.

Another major deviation betweeng̃(«) andgsc(«) is seen
in the energy region close to the«50 threshold in the neu-
trons, and around the top of the proton Coulomb barr
Here, the reason for this abnormal behavior is our semic
sical approximation. As discussed in the Appendix, the W
neutron level densitygsc(«) diverges as ln(2«)/A2« when
«→0. For protons, the singularity is even more seve
gsc(«) diverges as (VB2«)21 around the top of the barrier

The pathological behavior ofgsc(«) around zero energy is
the reason for the largest deviationsD seen in Table I for the
neutron case~e.g.,D51.39 MeV for 78Ni, and it is greater
than 1 MeV for the Zr isotopes withA5110,122,124!. These
nuclei are weakly bound~as shown by their low Fermi ener
gies!, and the level density around the Fermi level,gsc(l̃), is
affected by the threshold effect.

In order to understand the systematic behavior ofD in
Table I, neutron shell corrections and Fermi energies for
Zr isotopes are shown in Fig. 6 as functions ofN. The cal-
culations were performed using the single-particle poten
corresponding to90Zr. The associated smoothed level den
ties are shown in Fig. 7. It is seen that although the gen
pattern ofdE is similar in the generalized shell-correctio
method and WK approach,D exhibits the oscillatory behav
ior as a function of particle number. The agreement betw
dE anddEsc is very good up toN;70 (l̃;24 MeV!, but it
is spoiled at large neutron numbers whereD systematically

d

FIG. 6. Neutron shell corrections and Fermi energies as a fu
tion of N calculated in the SM and WK models using the sing
particle potential of90Zr. The corresponding smoothed level den
ties are shown in Fig. 7.
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3096 57T. VERTSEet al.
increases. Indeed, above point C in Fig. 7, the semiclass
level density diverges, and it does not yield a good estim
of the shell correction.

For the protons, the ‘‘dangerous’’ threshold region ofgsc
is shifted to higher energies due to the presence of the C
lomb barrier~see Fig. 5!. That explains why the difference
between the Strutinsky and WK results are smaller for
protons than for the neutrons. For instance, for the pro
drip-line nucleus100Sn the agreement between two metho
is surprisingly good in spite of the fact thatl̃50.72 MeV.
Since in actual nuclei~both particle bound and in proto
emitters! the proton Fermi level is significantly lower tha
VB , the divergent behavior of protongsc around the top of
the Coulomb barrier has no practical importance.

VI. CONCLUSIONS

This paper introduces a new method of calculating
nuclear shell energy. The generalized Strutinsky proced
fully takes into account the effect of the particle continuu
Although the traditional plateau condition can seldom be m
for finite potentials, the proposed method makes it poss
to define the shell correction unambiguously. A conserva
estimate of the uncertainty indE obtained using the new
smoothing procedure is;400 keV. This error can be con
sidered as small.

In most cases, the results of the generalized Strutin
procedure are in good agreement with those of the semic
sical WK method. Significant deviations have been obtain
for neutron-rich nuclei for which the neutron Fermi energy
low (l.24 MeV!. This discrepancy has been tracked ba
to the singularity in the WK level density around the top
the potential barrier. The densityg̃(«) obtained in the gen-
eralized Strutinsky method nicely interpolates through
threshold region~see also Refs.@13,27#!. Other advantages
of the new method are:~i! its applicability to potentials with
discontinuous derivatives~e.g., the Coulomb potential of
uniform charge distribution and a folded-Yukawa potenti!

FIG. 7. Same as in Fig. 5 except for the neutrons in90Zr. The
points at which the difference between SM and WK level densi
dg changes sign are marked by A, B, and C. The oscillatory beh
ior of dg is responsible for the oscillatory behavior ofD as a func-
tion of particle number, as shown in Fig. 6.
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where the standard WK expansion cannot be carried out,
~ii ! a simple generalization to the deformed case where
semiclassical expansion becomes awkward@4#.

Finally, let us comment on the differenceD between shell
corrections obtained in both methods. There are several
tors which contribute toD. In addition to the threshold
anomaly mentioned above, other factors are:~i! the shift be-
tween the Fermi levels caused by the different behavior
the level densities at the bottom of the potential well,~ii ! the
assumption of the local linearity of the smoothed level de
sity, and~iii ! the systematic errors accumulated during n
merical calculations. For protons, our calculations giveuDu
,900 keV in all cases considered. Here, the main sourc
the difference is the deviation between the level densi
around the bottom of the potential well, i.e., factor~i!. For
neutrons withl̃,24 MeV, the value ofuDu is even smaller:
uDu,600 keV. The largest deviations approaching 2 Me
have been obtained for the neutron drip-line nuclei such
122Zr. Considering the analysis presented in this study, it
to be concluded that the excellent agreement found in R
@20# (uDu;100 keV! is fortuitous. According to our results
in Table I, for nuclei discussed by these authors, i.e.,208Pb
and 208114, the differenceD is indeed very small. However
in other cases deviations are larger.
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APPENDIX: NEAR-THRESHOLD BEHAVIOR
OF THE SEMICLASSICAL LEVEL DENSITY

In the WK method, the semiclassical level densitygsc(«)
can be written as

gsc~«!5gTF~«!1g21~«!, ~A1!

where gTF(«) is the Thomas-Fermi~TF! level density and
g21(«) is the WK correction term~of the order of\21). By
employing Eqs.~13! and ~12!, one can writegsc(«) as a
derivative of the particle number with respect to«:

gTF~«!5
dNTF

d«
, g21~«!5

dN21

d«
. ~A2!

In Eq. ~A2!, NTF is the TF particle number,

NTF~«!5
4

3pS 2M

\2 D 3/2E r sc~«!

~«2V!3/2r 2dr, ~A3!

while the\21 WK term is

s
v-
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N21~«!52
1

12pS 2M

\2 D 1/2E r sc~«! ¹2V

A«2V
r 2dr. ~A4!

As usual, the classical turning point is defined by the relat
V„r sc(«)…5«.

The pathological behavior ofgsc(«) close to the top of the
potential barrier can be attributed to the singularity in t
g21(«) term. To examine this divergence, let us consider
integral

I ~«![E
r̃

r sc~«! ¹2V

A«2V
r 2dr, ~A5!

where it has been assumed thatV(r ) is an increasing func-
tion of r on an interval@ r̃ ,r sc#, and r̃ is a fixed radius (r̃
,r sc).

By substitutingx5V(r ), I («) can be written as

I ~«!5E
x̃

« h~x!

A«2x
dx, ~A6!

wherex̃5V( r̃ ) and

h~x![r 2
¹2V

V8
U

x

5S r 2
V9

V8
12r D

x

. ~A7!

The singularity atx5« in the integrand in Eq.~A6! can be
eliminated by performing a partial integration:

I ~«!52h~ x̃!A«2 x̃12E
x̃

«

h8~x!A«2xdx. ~A8!

The first term in Eq.~A8! does not cause any problem
around the particle threshold and can be neglected in
following. Hence the behavior ofg21(«) around the top of
the barrier is governed by the integral

I 8~«!'E
x̃

« h8~x!

A«2x
dx. ~A9!

1. Woods-Saxon potential: neutron case

For neutrons in a WS potential, the particle threshold
pears at«50. In the vicinity of the threshold, the potentia
energy can be approximated by

V~r !' x̃ expS 2
r 2 r̃

a
D , ~A10!

and the classical radius is

r ~x!5 r̃ 1a lnS x̃

x
D . ~A11!

In the limit «→0, the functionh(x) in Eq. ~A7! can be
written as

h~x!52r ~x!2r 2~x!/a'2r 2~x!/a. ~A12!

Hence
n

e

he

-

h8~x!'2
r ~x!

x
~A13!

and

I 8~«!'2E
x̃

« ln~ x̃/x!

xA«2x
dx. ~A14!

The above integral can be easily calculated. Around«50, it
behaves as

ln~«/ x̃! /A«/ x̃, ~A15!

and this is the asymptotic behavior ofgsc(«) around the neu-
tron threshold.

The behavior ofgsc(«) for the neutrons in120Sn at
«;0 is displayed in Fig. 8~a!. It is seen that the semiclassic
density diverges according to the law given by Eq.~A15!.

2. Finite potential barrier: proton case

For potentials with finite barriers, such as the sum of W
and Coulomb potentials, the particle threshold appears a
top of the barrier,«5VB . Around the barrier top, the poten
tial energy can be expanded as

FIG. 8. The divergent behavior ofgsc(«) for the neutrons~a!
and the protons~b! in 120Sn around the particle threshold. It is see
that the semiclassical approximation breaks down in the vicinity
the threshold. The densities scaled according to Eqs.~A15!:

1000gsc(«)/@ ln(«̃)/A«̃ # ~where «̃5«/V0), and Eq. ~A20!:

1000gsc(«)/@1/«̃ # @where«̃5(«2VB)/V0] are shown in the insets
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V~r !'VB2a
1

2
~r 2r B!2, ~A16!

wherea52V9(r B).
For «'VB , the functionh(x) in Eq. ~A7! can be written

as

h~x!'2
r 2~x!

r B2r ~x!
. ~A17!

Consequently,

h8~x!'2
r 2~x!

a@r B2r ~x!#3
, ~A18!

and the leading term inI 8(«) takes the form
hy

e

v

I 8~«!→E
x̃

« 1

~VB2x!3/2A«2x
dx. ~A19!

The above integral can be easily evaluated. Around«5VB it
behaves as

1

VB2«
, ~A20!

and this gives the asymptotic behavior ofgsc(«) around the
top of the Coulomb barrier.

The behavior ofgsc(«) for the protons in120Sn around
«5VB is displayed in Fig. 8~b!. It is seen that around the to
of the barrier the semiclassical density diverges accordin
the law given by Eq.~A20!. Of course, the WK contribution
~A4! to the particle number also diverges when«→VB . This
result is by no means surprising; the semiclassical appr
mation breaks down if the gradient of the potential at t
turning point vanishes, and this happens precisely around
top of the barrier.
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