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Relation between damping of the hot giant dipole resonance and the complex admittance of an
irreversible process

Nguyen Dinh Dang1,* and Fumihiko Sakata2
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2Department of Mathematical Sciences, Ibaraki University, Mito 310, Japan
~Received 18 April 1997; revised manuscript received 14 October 1997!

It is shown that the complex admittance, which describes the dissipation of the giant dipole resonance
~GDR! in hot nuclei, can be derived from the microscopic double-time Green function for the propagation of
the GDR. The damping width of the GDR is calculated directly from the complex admittance without explic-
itly solving the equation for the poles of the Green function. Using this method, a systematic study of the width
of the GDR as a function of temperatureT is carried out in120Sn and208Pb. The quantal width, caused by the
coupling toph configurations decreases slowly with increasingT. The thermal width, caused by the coupling
to pp andhh configurations atTÞ0, increases sharply at low temperatures up toT; 3 MeV, and slowly at
high temperatures, where it reaches a saturation in the region ofT. 3–4 MeV. The calculated values of the
total damping width of the GDR are found in reasonable agreement with the experimental data in heavy-ion
fusion reactions and inelastica scattering. The mechanism of the ‘‘disappearance’’ of the GDR at high
temperatures is analyzed. The evidence of motional narrowing in the hot GDR is investigated.
@S0556-2813~98!01906-2#
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I. INTRODUCTION

It is now well-established that the width of the observ
giant dipole resonance in hot nuclei~the hot GDR! increases
strongly as the excitation energy increases up to around
MeV in tin isotopes. At higher excitation energies the wid
increases slowly and even saturates@1–6#. ~See also Refs
@7,8# for the reviews!. A considerable number of theoretic
studies have been performed in the last decade on the su
of the damping of hot GDR@9–19#. While theories can re-
produce the centroid energy of the hot GDR, many of th
still give different, sometimes controversial explanations
garding its width. The hot GDR has been observed firs
the compound-nuclear reactions induced in heavy-ion co
sions@1–6#. In these experiments the hot compound nucle
was usually formed at high angular momentum. The dep
dence of the width of the hot GDR on the excitation ene
E* contained then both effects of the angular moment
and the temperatureT. Recently two new experimental meth
ods have been introduced. The first one involves compo
nuclear reactions@20#, where large arrays ofg detectors have
been set up to measure the GDR of a hot system at a de
angular momentum. The second one@21# is based on a new
technique usinga particles to excite the target nucleus v
inelastic scattering at a small angular momentum. These
methods have offered a possibility to individually study t
effects of temperature and of angular momentum on
damping of the hot GDR in a direct comparison with the
retical predictions.

*Present address: Department of Physics, Faculty of Scien
Saitama University, 255 Shimo-Okubo, Urawa, 338-8570 Saita
Japan. Email: dang@rikaxp.riken.go.jp - On leave of absence f
the Institute of Nuclear Science and Technique, VAEC, Han
Vietnam.
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In the microscopic extrapolation to nonzero temperat
the conventional approaches to hot GDR have included
effect of temperature via a simple replacement of the aver
over the ground state atT5 0 by the one over the therma
statistical ensemble. This means that the hot GDR has b
considered as a quantal eigenstate built on top of the the
equilibrium ensemble. The results show that the aver
quantities of the system such as the Landau splitting ca
lated within the self-consistent random phase approxima
~SC-RPA! at finite temperature~SC-FTRPA! @12,13# and the
spreading widthG↓ of the hot GDR, arising after coupling
the ph states to 2p2h ones@14,15#, remain stable agains
varying T. In order to understand the increase of the o
served width of the hot GDR other thermodynamical effe
such as thermal fluctuations of shapes, temperat
dependent transferred angular momentum, etc. were in
duced @16,17#. Thermal fluctuations have also been tak
into account in the recent theory on the hot GDR width@18#.
The authors of Ref.@6# have pointed out, however, that th
increase of the width, offered by the theory in Ref.@18#, is
still quite slow in order to account for the experimental sy
tematics. Reference@6#, therefore, has called for a search
a missing effect, emphasizing the role played by thermal
angular momentum effects in the low excitation energy
gion (E* < 200 MeV!. The most recent theoretical evalu
tions in Ref.@22#, which include the thermal shape fluctu
tions within an adiabatic model, agree nicely with thea
scattering data in Ref.@21# for the GDR width in 120Sn and
208Pb at temperatures 1 MeV,T< 3 MeV ~30 MeV <E*
< 130 MeV!. The increase of the evaporation widthGev due
to a finite lifetime of the compound nuclear states@19#, has
also been included to improve the results atT; 3 MeV. The
theoretical predictions of Ref.@22# are given for T<3.4
MeV. It is not clear whether the adiabatic model can descr
with the same success the region of the width satura
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(E* . 130 MeV!, where a considerable number of heavy-i
fusion data has been accumulated up toE* ; 450 MeV.
These results have also shown that the effects due to an
momentum on the data set of interest are negligible. T
observation is important as it confirms the domination
thermal effects in the increase and saturation of the G
width.

From the macroscopic point of view the GDR built on t
ground state (T5 0! ~the g.s. GDR! can be considered as th
Landau zero sound@23#. The damping of the hot GDR ha
been studied within the framework of the Landau-Vlas
theory~See Refs.@24,25# and references therein!. The width
of the GDR within this approach shows a continuous
crease as the temperature increases. The width saturati
T> 3 MeV and the ‘‘disappearance’’ of the GDR at hig
temperature (T. 4.5 ; 5 MeV!, observed in some heavy
ion fusion experiments@26#, are interpreted within this ap
proach mainly as a result of an exceedingly large width.
the recent Ref.@27#, it has been shown, however, that atT
> 2 MeV the regime of rare collisions, where the rando
phase approximation~RPA! method can be applied in th
theory of Fermi liquid, must be replaced with the regime
frequent collisions. Including the memory effects in the c
lisional integral and the quadrupole distortion of the Fer
surface, the collisional width of the GDR, obtained in R
@27#, turns out to be rather independent on temperature in
agreement with the predictions of microscopic theor
@14,15#. Thermal shape fluctuations have also been ta
into account based on the Landau theory of nuclear sh
transitions in Ref.@28#. The latter provides a nice macro
scopic description of thermal fluctuations in all quadrup
shape degrees of freedom. With all parameters fixed at
temperature this theory shows good agreement with the
for hot GDR up toT5 2 ; 3 MeV.

In the present situation we see two particularly import
issues in the theoretical study of the behavior of the GDR
a function of temperature. The first one is the need o
consistent description of the hot GDR width as a function
temperature, including both regions of the width increase
low temperatures~0 <T< 3 MeV! as well as of the width
saturation (T> 3 MeV! up to the region where the GDR i
thought to disappear (T. 4.5 ; 5 MeV!. The second one is
the connection between the microscopic and macrosc
understandings of the damping mechanism of hot GDR.
cently we have shown in a series of works@29,30# that the
coupling of the RPA phonon to thepp and hh configura-
tions, which appear at nonzero temperature, leads to the
mal damping of the collective vibration~phonon!. In our
most recent work@31# we gave our answer to the first issu
Namely, we have performed a systematic study of the da
ing of the GDR in 90Zr, 120Sn, and208Pb as a function of
temperatureT. The results have shown that the coupling
the collective vibration to thepp andhh excitations, which
causes the thermal damping width, is responsible for the
crease of the total width with increasing temperature up
T' 3 MeV and its saturation at higher temperatures. O
results are found in an overall agreement with the exp
mental data for the GDR width obtained in the inelastica
scattering and heavy-ion fusion reactions at excitation e
giesE* < 450 MeV.

In the present paper we will make a further step in t
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direction by answering the second issue mentioned ab
Namely, we would like to study here a connection betwe
the microscopic description and a macroscopic interpreta
of the hot GDR. As a result we shall propose an alternat
way to estimate the damping width of the GDR via the co
plex admittance of an irreversible process. This work is
ganized as follows. In Sec. II we study the dissipation of
hot GDR, considering it as a statistical state, which
slightly deviated from the thermal equilibrium under the i
fluence of a temperature-dependent external perturbation
a matter of fact, in intermediate-energy heavy-ion collisio
the hot GDR can be present as a thermal excitation and
detectedg rays are emitted predominantly in the nonequili
rium phase. The evolution of this weakly nonequilibriu
state can be described by the transport equation of a lin
irreversible process. An alternative treatment within t
time-dependent Hartree-Fock~TDHF! approach can be
found in Ref. @32#. However we shall use the double-tim
Green function method to derive the complex admittance
this process in a microscopic way without explicitly recou
ing to the transport equation. The systematic numerical
culations are carried out in realistic nuclei,120Sn and208Pb,
within a large range of temperature~up to at leastT5 6
MeV! in Sec. III. The results are compared with the rece
experimental data for the hot GDR in these nuclei in hea
ion fusion reactions and inelastica scattering. The paper is
summarized in the last section, where some conclusions
provided.

II. EVOLUTION OF THE HOT GDR IN AN IRREVERSIBLE
PROCESS

We consider the dissipation of the hot GDR as a statist
state, which is slightly deviated from the thermal equilibriu
under the influence of a temperature-dependent external
turbation. The weakly nonequilibrium state can be co
structed, considering the response of a system, which is
scribed by a time-independent HamiltonianHh , on an
external perturbationHt

1 @33,34# under the assumption tha
there is no external perturbation at the timet52`. The total
Hamiltonian is

H5Hh1Ht
1 , Ht52`

1 50. ~2.1!

The evolution of a dynamical variableÔ, whose average

value isO(t )̄5Tr$r(t)Ô%, can be studied in terms of a time
dependent density operatorr(t). The latter satisfies the von
Neumann equation with a condition that att52` the sys-
tem is in the thermal equilibrium:

i
]

]t
r~ t !5@Hh1Ht

1 ,r~ t !#,

r~2`!5r5e2bHh/Tr$e2bHh%, b5T21. ~2.2!

Since the external perturbation is assumed to be small,
~2.2! can be solved by linearizing the density operatorr(t)
with its first-order~small! incrementDr(t)

r~ t !5r1Dr~ t !, ~2.3!
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so thatHt
1Dr(t) can be neglected. Under these conditio

the evolution of the dynamical variableÔ is described by the
equation well-known in the statistical mechanics of irreve
ible processes@33,34#. With switching on a periodic pertur
bation, for example, this equation takes the form

O~ t !̄5^Ô&12p(
q

e2 iVqt1«t^^Ô;Vq&&E5Vq

ret , ~2.4!

where^ . . . & denotes the average over the grand canon
ensemble:

^ . . . &5Tr$r . . . %5
Tr$ . . . exp~2bHh!%

Tr$exp~2bHh!%
, ~2.5!

the sum(qVq[H1 is the time-independent part of the exte
nal perturbationHt

1 , and Vq is the energy of elementar
excitations, characterizing the distribution of the wa
packet associated with the evolution of the dynamical v
able under consideration. The retarded Green func

^^Ô;Vq&&
ret, taken at energyE5Vq ~the after-effect func-

tion!, is related to the complex admittancexq(Vq) as@33,34#

xq~Vq!522p^^Ô;V̂q&&E5Vq

ret , ~2.6!

whereV̂q is the operator part ofVq .
In order to estimate microscopically the complex adm

tance xq(E) in Eq. ~2.6! we adopt in Eq.~2.1! a model
Hamiltonian, which includes the coupling of collective osc
lations ~phonons! to the field ofph, pp, andhh pairs in a
form of a sum of three terms:

H5(
s

Esas
†as1(

q
vqQq

†Qq1 (
ss8q

Fss8
~q!as

†as8~Qq
†1Qq!.

~2.7!

The first term in the RHS of Eq.~2.7! describes the field o
independent single particlesas

† and as . The second term
stands for the phonon field$Qq

† ,Qq%. The last term repre-
sents the coupling between the two fields.Es5es2eF ,
where es is the single-particle energy andeF is the Fermi
surface’s energy. Hereafter the energyEs is simply called the
single-particle energy. The phonon energy is denoted asvq .
This form of the model Hamiltonian in Eq.~2.7! is quite
general and common in many microscopic approache
nuclear collective excitations. The difference is in the way
defining the single-particle energyEs , phonon energyvq
s

-

al
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-

to
f

and phonon structure under a specific effective coupl
Fss8

(q) . In the quasiparticle-phonon model~QPM! @35# or in

Ref. @36#, e.g., the coupling vertexFss8
(q) is a sum of products

of the coupling strength and the coupling-matrix elemen
The coupling strength contains the RPA amplitudes ofph
configurations in the collective oscillation. The coupling m
trix elements can be obtained through the derivative of
central potential. In the QPM, e.g., phonon operatorsQq

† and
Qq have the fermion structure, being built from the cohere
ph or quasiparticle pairs. Recently, the form in Eq.~2.7! has
been derived rigorously from the QPM Hamiltonian in Re
@30#. In the simplest case when the two-body term consist
only a separable isovector dipole-dipole interaction, one
covers from Eq.~2.7! the Hamiltonian widely used in the
literature to describe the GDR@37#. The term, containing a
sum of products of twopp (hh) pairs, is omitted in Eq.~2.7!
as it has a little influence on the damping of phonon exc
tions @38#.

We introduce the double-time Green functions@39#,
which describe the following:

~1! The propagation of a free particle (or hole):

Gs8;s~ t2t8!5^^as8~ t !;as
†~ t8!&&, ~2.8!

~2! The propagation of a free phonon:

Gq8;q~ t2t8!5^^Qq8~ t !;Qq
†~ t8!&&, ~2.9!

~3! The particle-phonon coupling in the single-partic
field:

Gs8q;s
2

~ t2t8!5^^as8~ t !Qq~ t !;as
†~ t8!&&, ~2.10!

Gs8q;s
1

~ t2t8!5^^as8~ t !Qq
†~ t !;as

†~ t8!&&, ~2.11!

~4! The transition between a nucleon pair and a phono:

Gss8;q
2

~ t2t8!5^^as
†~ t !as8~ t !;Qq

†~ t8!&&. ~2.12!

The effect of the backward process, described by the Gr
function ^^Qq8

† (t);Qq
†(t8)&&, is small @30#, so we neglect it

here. In Eqs.~2.8!–~2.12! the standard notation is used fo
the double-time retarded Green function@33,39#. A set of
coupled equations for an hierarchy of Green functions is
tained, applying the standard method of the equation of m
tion for the double-time Green functions@33,39,40#. We
close this hierarchy to the functions in Eqs.~2.8!–~2.12!,
using a decoupling approximation as described in Re
@33,39#:
~2.13!

~2.14!
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In Eqs. ~2.13! and ~2.14! ns5^as
†as& and nq5^Qq

†Qq& are
the single-particle and phonon occupation numbers, res
tively. The time variable is omitted for simplicity. Makin
the Fourier transformation to the energy planeE and elimi-
nating then functionsG2(E), G1(E), andG(E) by express-
ing them in terms ofGs;s8(E) andGq;q8(E), we obtain a set
of two equations forGs;s8(E) andGq;q8(E), which describe
the p (h) and phonon propagations, respectively. For
propagation of a singlep ~or h) states5s8 and a single
phonon stateq5q8 these equations have the simple form

Gs~E!5
1

2p
@E2Es2Ms~E!#21,

Gq~E!5
1

2p
@E2vq2Pq~E!#21, ~2.15!

where the massMs(E) and polarizationPq(E) operators are

Ms~E!5 (
q8s8

Fss8
~q8!Fs8s

~q8!S nq8112ns8

E2Es82vq8

1
ns81nq8

E2Es81vq8
D ,

Pq~E!5(
ss8

Fss8
~q!Fs8s

~q! ns2ns8

E2Es81Es

. ~2.16!
ha
g,
o
e
la
dt

a
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a
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e

Closing the hierarchy to the functions in Eqs.~2.8!–~2.12!
restricts the couplings in the single-particle mass opera
Ms(E) to at most 2p1h configurations if the one-phono
operator generates the collectiveph excitation. On the other
hand the g.s. GDR acquires the spreading widthG↓

mostly via coupling to 2p2h configurations. The latter
can be included by extending the hierarchy to high
order Green functions of ‘‘1p1h% phonon’’ type
^^ah

†(t)ap(t)Qq(t);Qq8
† (t8)&& as in Ref.@14# or two-phonon

type ^^Qq1
(t)Qq2

(t);Qq8
† (t8)&&, etc. as in Ref.@15#. The re-

sult would then include the graphs in Figs. 3 and 4 of R
@14# or in Fig. 1 of Ref. @15# for the phonon polarization
operatorPq(E). The numerical calculations in Refs.@14,15#
have shown, however, that the effects of these graphs on
spreading width of the GDR are almost independent of
temperature. Therefore, in order to maintain the simplic
we will include the spreading due to these effects in
parameters of the model defined atT5 0 in the next section.
The explicit inclusion of these higher-order double-tim
Green functions is reserved for our forthcoming study.

The dampingsgs(v) of the single-particle andgq(v) of
the phonon states are derived as the imaginary parts of
analytical continuation in the complex energy planeh5v
6 i« of the massMs(E) and polarization operatorsPq(E),
respectively:
gs~v!5p (
q8s8

Fss8
~q8!Fs8s

~q8!
@~nq8112ns8!d~v2Es82vq8!1~ns81nq8!d~v2Es81vq8!#, ~2.17!

gq~v!5p(
ss8

Fss8
~q!Fs8s

~q!
~ns2ns8!d~v2Es81Es!. ~2.18!
nt
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The single-particle occupation numberns ~phonon occupa-
tion numbernq) in Eqs. ~2.16!–~2.18! has the form of a
Fermi ~Bose! distribution, which is folded with a Lorentzian

with a width of 2gs(v) „2gq(v)… and centered atẼs5Es

1Ms(Ẽs) @ṽq5vq1Pq(ṽq)#. In Ref. @30# it has been
shown in an example of a damped harmonic oscillator t
gq(v) is indeed the half-width of the oscillator dampin
while the real part of the analytical continuation of the p
larization operatorPq(E) into the complex energy plan
gives the frequency shift of the damped oscillator. A simi
proof can be extended to the single-particle damping wi
gs(v) in a straightforward manner. Ifgs is small, the single-
particle occupation number can be well approximated by
exact Fermi distribution function with energyẼs . For the
phonon occupation number this is not valid becausegq is
large.

In Ref. @19# it has been proposed that the states of
compound nucleus have a definite lifetime or width. In t
most general case, the energy levels of the compo
nucleus include both discrete and continuum parts. Since
high-lying bound states of the single-particle spectrum m
acquire an appreciable width via the coupling to the c
tinuum, this certainly affects also the single-particle damp
t

-

r
h

n

e

d
he
y
-
g

gs in Eq. ~2.17!. While the escape widthG↑ is known to be
only a small fraction~around few hundreds keV! of the ob-
served width of the GDR in heavy nuclei atT50, its contri-
bution to the total damping of GDR may become significa
at very high temperature. The role of the evaporation wi
Gev at TÞ 0 has been studied in Refs.@19,22# and also in
Ref. @41#. In the latter, it has been suggested that the ‘‘d
appearance’’ of the hot GDR at very high temperatures m
be associated with the growth of the evaporation widthGev .
Even though the continuum is not explicitly included in o
formalism, we can say that the effect of coupling to the co
tinuum can be incorporated here, at least partially, in an
fective way. Indeed, as will be discussed in the next sect
the numerical calculations in our formalism use the sing
particle energy spectra, defined within the Woods-Saxon
tential. These spectra include not only the levels near
Fermi surface, but also high-lying bound states and qu
bound states. Therefore, the poles in Eq.~2.18! can be lo-
cated at rather high excitation energies in the continuum
gion. Hence, the effects caused by coupling to these h
lying discrete states can simulate the effect of coupling to
continuum.

If we assume that before the coupling the GDR is gen
ated by a single phonon, associated with a strongly collec
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vibration at energyvq , the full width at half maximum
~FWHM! GGDR of the GDR, caused by the coupling, is ca
culated from Eq.~2.18! as

GGDR52gq@v5EGDR~T!#. ~2.19!

This width GGDR must be compared with the FWHM of th
GDR, extracted in the experiments. The energyEGDR(T) of
the hot GDR is defined as the pole of the Green funct
Gq(v) at the real energyv from the equation

v2vq2Pq~v!50. ~2.20!

The width GGDR in Eq. ~2.19! has been calculated in Re
@31# for 90Zr, 120Sn, and208Pb. The results have been foun
in overall agreement with the experimental data in heavy-
fusion reactions as well as in inelastica scattering. The cal-
culations also showed that the effect of single-particle dam
ing on the width of the GDR is rather small up to hig
temperatures. The increase of the GDR width at low te
peratures and its saturation at high temperatures are
plained within this model as follows. AtT50 the single-
particle occupation numberns is equal to one for a hole stat
(Eh, 0! and zero for a particle one (Ep. 0!. Therefore the
GDR widthGGDR has a nonzero value only through the co
pling to ph pairs, wherenh2np5 1 @Eq. ~2.18!#. As the
temperature increases, the quantal damping which we de
asGQ decreases as the differencenh2np decreases from on
at T50 to zero atT5`. At the same time there appear th
pp andhh configurations because the differencens2ns8Þ 0
also for (s,s8)5(p,p8) or (h,h8) at TÞ 0. The coupling to
pp and hh configurations leads to the thermal dampingGT
@30#, which increases first with increasingT. However, be-
cause of the factorns2ns8, the total phonon dampingGq will
decrease asO(T21) at large T. Therefore, it must reach
some plateau within a certain region of temperature. This
natural explanation for the width saturation of the GD
within the present model.

We would also like to point out a possible connecti
between the coupling topp and hh configurations and the
the thermal shape fluctuations. In our opinion the coupling
pp and hh configurations may offer an alternative way
take thermal shape fluctuations into account microscopica
To this end, first of all, it is worth noticing that there a
several ways to include thermal shape fluctuations. A co
mon way is to use a model, in which the motion of nucleo
is described in terms of a deformed oscillator, Woods-Sax
or cranked Nilsson potential. The residual interaction
tween nucleons in the intrinsic system can be described
the dipole-dipole force for the GDR case. This scheme
been proposed in Ref.@16#, according to which the cros
section, averaged over all possible thermal fluctuations
shapes, is given by
n

n

-

-
x-

-

ote

a

o

y.

-
s
n,
-
y
s

of

^s~E;E* !&5

E P~E* !s~E;E* !dD

E P~E* !dD

, ~2.21!

where the excitation energyE* , in general, is a function of
temperatureT, angular momentumI , and deformation pa-
rametersb and g of the system. The probabilityP(E* ) is
proportional to

P~E* !}exp@2F~E* !/T#, ~2.22!

whereF(E* ) is the free energy of the system. The met
dD ~volume element! depends on the deformation param
eters. In the approach based on the Landau theory of sh
transitions@42#, the free energyF(E* ) can be expanded in
terms of the ‘‘deformation’’ parametersa lm , which deter-
mine the deviations of the compound nucleus from
spherical shape. Hence the shape fluctuations must includ
general the couplings to all possible multipolarities, not on
the quadrupole-quadrupole one. The approach in Ref.@42#
then concentrated only on the most important deformatio
the quadrupole one, which corresponds to the second o
in this expansiona2m , and determined an effective free e
ergy as a function of temperature anda2m only. Another way
of taking into account thermal shape fluctuations is based
a model using a collective quadrupole plus GDR Ham
tonian to generate the quadrupole deformation atT5 0 @43#.
In this case the mean field of oscillator type is deform
already atT5 0 with three frequenciesv i , (i 5x,y,z), re-
lated to the Hill-Wheeler deformation parametersb and g
@37#. This scheme has been applied in the most recent ca
lations of thermal shape fluctuations with the adiaba
coupling model in Ref.@22#. In the present paper only g.s
spherical nuclei are studied. Still the effects of thermal sh
fluctuations, being dependent only on temperature, can
considered via the coupling topp and hh configurations.
Indeed, app or hh pair operatorBss85as

†as8 can be ex-
panded in the lowest order as a sum of tensor products oph
pair operators: (h@Bph

†
^ Bp8h#lp if ( s,s8)5(p,p8) or

(p@Bph8
†

^ Bph#lp if ( s,s8)5(h,h8) @44#. Therefore the cou-
pling of the last term of the HamiltonianH in Eq. ~2.7! can
be rewritten, e.g., for the case with (s,s8)5(p,p8), as

Hc→HBQ5 (
pp8q

Fpp8
~q! (

h
@Bph

†
^ Bp8h#lp~Qq

†1Qq!.

~2.23!

ExpressingBph
† (Bp8h) in terms ofQq1

† and Qq1
(Qq2

† and

Qq2
) using the well-known inverse canonical transformatio

one obtains
HBQ5 (
pp8qq1q2

Fpp8
~q! (

h
@~Xph

~q1!Qq1

† 2Yph
~q1!Qq1

! ^ ~Xph
~q2!Qq2

† 2Yph
~q2!Qq2

!#lp~Qq
†1Qq!. ~2.24!
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Equation ~2.24! suggests that ifQq
† and Qq are the GDR

phonon operators,$Qq1

† , Qq1
% and$Qq2

† , Qq2
% can have the

moment and parity as~12, 21), ~21, 32), etc. so that the
total coupled momentum is again equal tolp512. The
RPA amplitudesXph

(q1) , Yph
(q1) , andXph

(q2) , Yph
(q2) can be calcu-

lated microscopically using the residual interactions, wh
include dipole-dipole, quadrupole-quadrupole, octupo
octupole, etc., forces. This can be seen clearly when the
sidual interactions are separable. In this case the coup
vertexFss8

(q) in Eq. ~2.7! can be evaluated in terms of the RP
amplitudes with multipolarityl as @30#:

Fss8
~l!

5
k~l!

4~2l11!
f j sj

s8
~l! (

j 1 j 18
f j 1 j

18
~l!

~Xj 1 j
18

~l i !
1Yj 1 j

18
~l i !

!, ~2.25!

with k(l) being the parameter of the multipole-multipole i
teraction~details can be found in Ref.@35#!. This means that
the coupling topp andhh configurations in the last term o
Eq. ~2.7! or in HBQ in Eq. ~2.24! in fact already includes, via
multiphonon configuration mixing atTÞ 0, the coupling to
different multipole-multipole fields. Taking into account th
high-lying ph, pp, andhh configurations, as has been di
cussed above, the coupling to high-lying multiphonon sta
is also incorporated in our formalism. It is well-known th
the configuration mixing of 1p1h with 2p2h states@35,49#
@or ph with phonon ones discussed above~cf. also Ref.
@36#!# is decisively important to account for the spreadi
width G↓. In addition to the quantal coupling toph configu-
rations, a quite similar mechanism takes place atTÞ 0 via
the coupling topp andhh configurations. As the latter take
place only atTÞ 0, it is tantamount to the thermal effects
the fluctuations of multipole deformations of nuclear sha
around the spherical one.

In the present paper we are going to find an alterna
way for estimating the damping of the GDR through t
complex admittance of an irreversible process. The comp

admittance in Eq.~2.6! for the case withÔ5Qq can be ex-
pressed in terms of the Green functionGq(E) defined in Eq.
~2.15!. After some simple derivations we obtain

xq~E!522pGq~E!52
1

E2vq2Pq~E!
. ~2.26!

Equation~2.26! is the microscopic expression of the compl
admittance in terms of the energyvq of the collective vibra-
tion, corresponding to the GDR excitation, and of the pol
ization operatorPq(E), characterizing the damping of th
collective phonon. The information about the transport eq
tion ~2.4! is now defined by the real and imaginary parts
the complex admittance@Eq. ~2.26!# ~in the complex energy
plane!, from which the imaginary part is directly related
the strength functionSq(v) of the hot GDR, namely

Im@xq~E5v1 i«!#5
gq~v!1«

@v2vq2Pq~v!#21~gq~v!1«!2

.pSq~v! if «!gq , ~2.27!

where
h
-
e-
ng

s

s

e

x

-

-
f

Sq~v!5
1

p

gq~v!

@v2vq2Pq~v!#21gq
2~v!

. ~2.28!

Knowing the complex admittance@the Green function
Gq(E)#, one can derive the spectral intensity of the GD
excitation from the relation

Gq~v1 i«!2Gq~v2 i«!52 i ~expv/T21!Jq~v!,
~2.29!

which is equal to@39#

Jq~v!5Sq~v!~exp~v!21!21. ~2.30!

The normalized relaxation functionC(t), associated with the
energy dissipation of the GDR to noncollective degrees
freedom in the single-particle field~the heat bath!, is defined
from the complex admittance after a Fourier transformat
as @34#

xq~E!

xq~0!
215 iEE

0

`

C~ t !eiEtdt. ~2.31!

If the corresponding probabilityuC(t)u2 displays a good ex-
ponential decaying behavior

uC~ t !u25e2t/tc5eGt, G5
1

tc
, ~2.32!

the width G of the GDR strength distribution can be e
tracted as the reverse of the relaxation timetc . Hence, we
have found an alternative way to estimate the width of
GDR without calculating directlygq(v) in Eq. ~2.18!. This
means we can avoid directly solving Eq.~2.20!, which is
much more complicated, especially when the number of c
lective phonons are not small. Moreover, the detail inform
tion of each fragmented excitation would not have mu
sense since we are interested only in the average or g
structure of the hot GDR. In confronting the calculated va
to the experimental data the attention must be paid to
following point. As has been mentioned above, the GD
width was usually extracted in experiments as the FWHM
a Lorentzian, which is centered at the GDR energy and m
be compared to the widthGGDR, calculated in Eq.~2.19!. In
terms of the complex admittance, this means the widthGGDR
must be extracted from the relaxation functionCGDR(t) @Eq.
~2.31!#, which is calculated in turn from the complex adm
tancexGDR(v) according to the equation

xGDR~E!522pGGDR~E!52
1

E2EGDR2PGDR
,

PGDR5Pq~v5EGDR!, ~2.33!

instead of Eq.~2.26!. In the present model, where the effec
of coupling to more complicated configurations such
2p2h ones are incorporated in the parameters, the re
from Eq. ~2.33! is more reliable than the widthG from the
total strength function. In the next section we will represe
the results of calculations of both quantities: the widthG @Eq.
~2.32!# of the total dipole strength distribution over th



th
li

ix

r
e

g

f
c

o
d

se

fi

e

na

ar
C-

e,

er
a
o
au
h

o
a

re,

on.
of
al-

ling

ase
i-

ture
de-

of
-
-
in

its
mi-

fs.

s a
g-

and
ated
rgy

al-

o-

es.
The

ture
f

os-
tri-
if

ach

h

of
ich
g to

3038 57NGUYEN DINH DANG AND FUMIHIKO SAKATA
whole energy interval up to 40 MeV and the widthGGDR
using the complex admittance in Eq.~2.33!.

The present formalism can be also used to examine
evidence of motional narrowing in the hot GDR. The app
cation of the theory on motional narrowing@34# to the hot
GDR is given in the Appendix. It is shown in the Append
that motional narrowing would occur in the long-time~sud-
den! limit when the effective half-widthg̃ of the stochastic
frequency modulation in Eq.~A25! became much narrowe
than the frequency spreadD ~the standard deviation of th
Gaussian distribution! in the adiabatic~short-time! limit.
This is possible if the following criteria hold:

~i! The adiabaticity parameter is much less that 1:

h5
D

GGDR
!1. ~2.34!

~ii ! The frequency spreadD decreases with increasin
temperature T.

~iii ! The effective half-width

geff5hD ~2.35!

decreases as increasing temperatureT, starting from a certain
valueTc . The valueTc would then denote the lower limit o
the temperature region where motional narrowing took pla

Even though several efforts have been undertaken
search for the evidence of motional narrowing in the h
GDR @45–47#, it is still debated whether this effect is indee
present in realistic situations. The advantage of the pre
approach as compared to the adiabatic model@46# and the
macroscopic approach@47# is that the parameterh can be
evaluated microscopically rather than being adjusted to
the experimental width as in Refs.@46,47#. The present ap-
proach is also free from the adiabaticity limitation. The fr
quency spreadD in Eqs. ~2.34! and ~2.35! is determined in
terms of the polarization operatorPq(v) @Eq. ~2.20!# as

D5A^Pq
2~v!&5AE

0

`

Pq
2~v!Sq~v!dv

E
0

`

Sq~v!dv

. ~2.36!

Therefore, examining the temperature dependence ofh and
g̃, we hope to be able to clarify the issue related to motio
narrowing in hot GDR within the present formalism.

It is worth emphasizing that the obtained results
physically different from those of the conventional S
FTRPA, which considers thepp and hh configurations at
finite temperature as elementary excitations as theph ones.
The pp andhh configurations in the SC-FTRPA, therefor
participate in forming the collective motion~phonon!. As the
FTRPA is in fact a one-phonon approximation, the high
order effects, related to the thermal shape fluctuations
coupling to more complicate configurations, are averaged
of the FTRPA. The remaining part is only some Land
splitting, which is almost independent on temperature as
been mentioned in the Introduction@12,13#. In our formal-
ism, thepp andhh configurations are expressed in terms
noncollective degrees of freedom and they do not particip
e
-

e.
to
t

nt

t

-

l

e

-
nd
ut

as

f
te

in constructing the collective vibrational modes. Therefo
they are treatedbeyondtheph FTRPA, if the latter is used to
define the microscopic structure of the collective phon
Under this treatment they induce an irreversible coupling
the collective phonon to the noncollective subspace. In re
istic nuclei the number ofpp andhh configurations is large.
If the average single-particle damping widthGs.p. is small,
which is actually the case, thepp andhh configurations can
be well approximated by a heat bath. Hence the coup
between the collective phonon and thepp and hh configu-
rations is a de facto GDR-heath bath coupling. The incre
of the anharmonicities in the coupling of the collective d
pole mode with noncollective states when the tempera
increases has also been a decisive feature in the TDHF
scription of the hot GDR in40Ca in Ref.@32#.

III. NUMERICAL RESULTS

In this section we present the results of the calculations
the GDR width for120Sn and208Pb as a function of tempera
ture in a wide range 0<T< 6 MeV. The results are com
pared with the experimental data of the GDR’s width
heavy-ion fusion reactions and inelastica scattering. Since
we are interested in the evolution of the hot GDR via
coupling to the single-particle field, we assume that the
croscopic description of the structure of the g.s. GDR (T5
0! and its spreading widthG↓ is known. Such a description
can be found in a number of works such as Re
@35,36,48,49#. The microscopic calculations atTÞ0 @12–15#
have also shown that the GDR can be considered a
strongly collective excitation, which is stable against chan
ing the temperature. Therefore, in order to have a simple
clear picture, we assume that the g.s. GDR can be gener
by a single collective and structureless phonon width ene
vq closed to the energyEGDR of the g.s. GDR. This GDR
phonon is damped via coupling toph, pp, andhh configu-
rations. We employ the realistic single-particle energies, c
culated in the Woods-Saxon potential atT50 for 90Zr,
120Sn, and208Pb. The parameters of the Woods-Saxon p
tentials have been defined in Ref.@50#. In 208Pb we replace
the levels near the Fermi surface with the empirical on
These energies are extended to nonzero temperatures.
self-consistent calculations in Ref.@51# have shown that the
dependence of the single-particle energies on the tempera
is rather weak up toT. 5 ; 6 MeV. The matrix elements o
the coupling toph and pp or hh are parametrized asFph

(q)

5F1 for (s,s8)5(p,h) and Fpp
(q)5Fhh

(q)5F2 for (s,s8)
5(p,p8) or (h,h8). As the ph interaction in the GDR is
dominated only across the two major shells, which are cl
est to the Fermi surface from both sides, the uniform dis
bution of theph strength over all the levels can be justified
F1

2!F2
2. The phonon energyvq , F1, and F2 are three pa-

rameters in our model. Their values are chosen for e
nucleus so that the empirical quantal widthGQ and energy
EGDR of the g.s. GDR in these nuclei@52# are reproduced
after the coupling is switched on, and that theEGDR(T), de-
fined from Eq. ~2.20!, does not change appreciably wit
varying temperature. Reference@37# has shown that this kind
of selection of parameters already include the vibration
protons against neutrons in the collective phonon, wh
generates the g.s. GDR. On the other hand, the couplin
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2p2h configurations, which leads to the microscop
temperature-independent spreading widthG↓, is effectively
included in the parameterF1. The best sets of parameters f
120Sn and 208Pb are presented in the Table I. These valu
are kept unchanged throughout the calculations atTÞ 0.
This ensures that all thermal effects are caused by the m
scopic coupling between the GDR and the single-part
field, but not by changing parameters. Thed functions in the
RHS of Eqs.~2.17! and ~2.18! are replaced in numerica

TABLE I. Parameters of the model used in calculations.

vq ~MeV! F1 ~MeV! F2 ~MeV!

120Sn 17.0 0.313 1.02
208Pb 13.8 0.103 0.548
s

o-
e

calculations with a Lorentzian with a width«. We have
checked and found that the results of calculations do not v
appreciably in the interval 0.2 MeV<«<1.0 MeV. The re-
sults, obtained with«5 0.5 MeV, are discussed below.

Shown in Figs. 1–3 is the imaginary part Im@xq(E)# @Eq.
~2.27!# of the complex admittancexq(E), divided byp, for
the GDR in 120Sn at several temperatures. The results in F
1 are obtained via coupling to allph, pp, andhh configura-
tions. Figure 2 represents the results of the calculatio
which include only the coupling toph configurations. In Fig.
3 the results, obtained via coupling topp andhh configura-
tions, which appear atTÞ 0, are displayed. The effect o
single-particle damping@Eq. ~2.17!#, although small, is in-
cluded in the calculations. These figures show that the G
bump in a realistic nucleus is a superposition of ma
Lorentzians. The quantal effects due to the coupling toph
o all
FIG. 1. Imaginary part of the complex admittance of the GDR in120Sn at several temperatures: Results obtained via the coupling t
ph, pp, andhh configurations.
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FIG. 2. Imaginary part of the complex admittance of the GDR in120Sn at several temperatures: Results obtained via the coupling to
ph configurations.
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configurations~Fig. 2! are getting weaker with increasin
temperature. As the result the GDR bump becomes narro
until its width GQ vanishes at high temperatures. At the sa
time the thermal effects due to the coupling topp and hh
configurations~Fig. 3! enlarge the GDR as the temperatu
goes up. Higher thanT; 3–4 MeV the gross structure of th
GDR, caused by thermal effects alone, ceases to change
combined effects~Fig. 1! give a gross structure of GDR
which changes drastically with increasingT up to 3–4 MeV,
but becomes temperature-independent at higherT, conserv-
ing the Thomas-Reiche-Kuhn~TRK! sum rule for the GDR.
Already in Ref. @30#, it has been shown in a simplifie
model, that there is an energy dissipation from the bump
Fig. 2 to the one in Fig. 3. We can see here that the real
situation is driven by the same mechanism. The differenc
that the space ofpp and hh configurations in realistic ho
er
e

he

in
ic
is

nuclei is significantly larger and spreads up to high energ
including the GDR region and above it. This makes the GD
persist even up to very high temperature with all its stren
preserved. As a matter of fact, we also show in these figu
the case withT5 10 MeV to demonstrate that the behavi
of the hot GDR becomes insensitive to the change of te
perature atT. 3 MeV within this model, even though th
maximum temperature a realistic finite system could sus
is aboutT. 5–6 MeV. As seen from the figures, a pro
nounced structure in the low energy region, which spre
up to aroundv5 10 MeV, is developed atT> 2 MeV. On
the other hand, a part of the GDR strength is shifted to
higher-energy wing. As the result, the centroid energy of
GDR remains almost unchanged with varying the tempe
ture. As has been pointed out in Ref.@30#, the appearance o
the low-lying structures may serve as the origin of the ‘‘d



o

57 3041RELATION BETWEEN DAMPING OF THE HOT GIANT . . .
FIG. 3. Imaginary part of the complex admittance of the GDR in120Sn at several temperatures: Results obtained via the coupling tpp
andhh configurations.
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appearance’’ of the GDR at high excitation energy in so
experiments@26#. In fact, these calculations show that it
hard to isolate such low-lying structures when subtract
the exponential background in the experimental spectra
this is the case, the remaining part can be taken as a G
with less collectivity or even as a disappearing GDR. Hen
the hot GDR does not seem to disappear within the pre
model. This result must be understood in the context that
damping mechanism of the GDR at high temperatures co
mainly from thermal effects via the coupling topp andhh
configurations. The quantal effects are due to coupling toph
states, which are responsible for the damping of the
GDR as the zero sound vanishes at high temperatures.
confirms the feature, which has been pointed out in our p
vious work @30#, that as the temperature increases, the p
sibility for the development of pure quantal collective ex
tations, such as the coherent motion of all protons agains
e

g
If
R
,
nt
e

es

s.
his
e-
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all

neutrons, is reduced, vanishing completely atT; 5–6 MeV
because of the increase of stochastic motion of noncollec
degrees of freedom constituting the heat bath. A similar c
clusion has been given in Ref.@32# within the TDHF ap-
proach, which shows a possibility for a rapid loss of colle
tivity of the isovector dipole mode due to the growin
disorder in the motion of protons against neutrons. Th
results are similar to those obtained from directly solving E
~2.20!. The strength functionSq(v) in Eq. ~2.28!, calculated
based on this solution with the coupling to allph, pp, and
hh configurations taken into account, is presented in Fig
Comparing this figure with Fig. 1, one can see that th
indeed give the same gross structure of the GDR stren
distribution at various temperatures. The fine structure
smoother in Fig. 1. The reason is that the calculations of
imaginary part of the complex admittance in Fig. 1 with t
same parameter« have resulted in a stronger smearing
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FIG. 4. Strength function of the GDR in120Sn, calculated from the poles of the Green functionGq(v) via the coupling to allph, pp,
andhh at several temperatures.
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compared to the strength functionSq(v) @Compare Eqs.
~2.27! and ~2.28!#.

Shown in Fig. 5 are the probabilitiesuC(t)u2 ~upper fig-
ures! anduCGDR(t)u2 ~lower figures!, deduced from the com
plex admittancesx(E) @Eq. ~2.26!# and xGDR(E) @Eq.
~2.33!#, respectively. They are plotted as a function of 1/t so
that the abscissa of the crossing point between them and
horizontal line exp(21) is just equal to the value of the ex
tracted width 1/tc5G ~upper figures! or GGDR ~lower figures!
at a given temperature. Another way of plotting these figu
as a function oft instead of 1/t would reveal an obvious
exponential decay of functionsuC(t)u2 anduCGDR(t)u2. Fig-
ures 5~a! and 5~b! represent the results obtained in120Sn,
while Figs. 5~c! and 5~d! show the results in208Pb at various
temperatures. The total width of the GDR obviously i
creases sharply with increasing temperatureT up to 2–3
he

s

MeV, but slowly atT. 3 MeV. It reaches a saturation atT;
4–6 MeV.

The width of the GDR, extracted from Fig. 5, and i
components in120Sn and208Pb are displayed as a function o
temperature in Fig. 6~a! and 6~b! in comparison with the
recent inelastica scattering data@21#. The quantal widthGQ
~dashed curve! is obtained through the coupling to onlyph
states. The thermal widthGT ~solid curve! comes from the
coupling to pp and hh configurations atTÞ 0. The total
width GGDR ~solid with diamond curve! is calculated through
the coupling to allph, pp, andhh configurations, including
the effect of single-particle damping. The widthG of the
total dipole strength distribution in Fig. 1 is represented
the dotted curve. In general,GGDR is not the sum ofGQ and
GT because the poles of the Green functionGq(v) are dif-
ferent due to the coupling to different configurations. It
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FIG. 5. ProbabilitiesuC(t)u2 ~upper figures! anduCGDR(t)u2 ~lower figures! for the GDR in120Sn ~a!, ~b! and 208Pb ~c!, ~d! as a function
of the inversed time 1/t at various temperatures. The value of temperature~in MeV!, at which a curve was calculated, is given by a numb
near the curve. The horizontal line is exp(21).
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clear from this figure that the quantal effect is getting wea
in hot GDR asGQ is slowly getting smaller withT going up.
The thermal damping widthGT , on the contrary, become
rapidly larger with increasingT. As the result,GGDR in-
creases sharply asT raises up to 3 MeV and slowly at highe
temperatures. It reaches a saturated value of around
MeV in 120Sn and 10 MeV in208Pb atT5 4–6 MeV. These
evaluations also show that the GDR width at higher tempe
tures is driven mostly by the thermal widthGT . The results
of our calculations forGGDR are in reasonable agreeme
with the experimental data. This agreement is as good as
one given recently within the adiabatic model in Ref.@22#.
Our results also cover a much wider temperature region.
also seen that the widthG of the total dipole strength distri
bution over the whole interval from 0 up to 40 MeV is foun
in a large discrepancy with the experimental data. In b
nuclei the widthG increases much more rapidly at low tem
peratures and reaches the saturation at a lower temper
T; 2.5 MeV as compared to the widthGGDR. The reason
for this discrepancy is a consequence of the fact that
effect of coupling to 2p2h configurations is incorporated i
the present model via choosing the parameterF1 to repro-
duce the empirical value of the quantal widthGq of the g.s.
GDR. Therefore, while the valueGGDR is good as an averag
one for comparing with the experimental data, the confi
ration mixing in the calculated strength function is fair
coarse in order to be well approximated by a single Lore
zian as it is the case in the experiments. This result
confirms the fact that the experiments have approximated
r

3.5
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he
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h

ure

e
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hot GDR as a single Lorentzian, centered at the GDR ene
EGDR(T), which just coincides with the theoretical valu
GGDR. On the other hand, it is experimentally difficult t
extract the widthG of the total dipole strength distribution a
T> 3 MeV because of the ambiguities in isolating the lo
lying structure from the background at high temperatures
has been discussed above~Figs. 1 and 4!. This may also
serve as an explanation of why some authors have con
ered the saturation of the GDR width as the signature of
GDR disappearance.

Shown in Fig. 6~c! is the same widthGGDR for 120Sn ~a!,
but plotted as a function of excitation energyE* in compari-
son with the FWHM of the GDR from the heavy-ion fusio
data in tin isotopes@1–6#. An overall agreement between th
theory and experimental data is seen in the whole region
excitation energyE* , including the data at 250<E* < 450
MeV @2#. The predictions of Refs.@18# ~solid curve! and@24#
~dotted curve! are also shown. They are similar to ours
E* < 150 MeV. In this region there is a noticeable discre
ancy between the dependence ofGGDR on the excitation en-
ergy Em.f.* , evaluated in the thermal mean-field~solid with
diamonds! ~see Ref.@53# for details!, and the one onEF.g.*
from the Fermi-gas model with the level density parame
a5A/12 ~dashed!. The contribution of higher-multipole col
lective vibrations also affect the excitation energy in the th
mal mean-field@53#. As the result,Em.f. is pushed closer to
EF.g.. Therefore we also plot in Fig. 6~c! the same width as a
function of Ē* 5(Em.f.* 1EF.g.* )/2 for comparison~solid curve
with asterisks!.
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FIG. 6. Widths of the GDR as a function of temperature in120Sn
~a! and 208Pb~b!, and as a function of excitation energy in120Sn~c!.
The open squares represent the experimental data from inelasa
scattering@~a! and~b!# and heavy-ion fusion reactions~c!. In ~a! and
~b!, the solid curves with diamonds denote the widthGGDR, calcu-
lated at the GDR energy with the coupling to allph, pp, andhh
taken into account. The quantal widthGQ , obtained via coupling to
only ph configurations, is denoted by the dashed curve, while
thermal widthGT , caused by coupling topp andhh configurations,
is represented by the solid curve. The dotted curves represen
width G of the total strength function from Fig. 1. The GDR width
evaluated in Ref.@22# without and including the evaporation width
are shown by the dash-dotted and short dashed curves, respec
In ~c!, the solid curve with diamonds represents the widthGGDR in
~a!, plotted as a function ofEm.f.* ~see text!. The dashed curve is th
same width, but plotted as a function ofEF.g.* from Fermi-gas
model. The solid curve with asterisks is the same width, plotted

a function of Ē* ~See text!. The width, obtained in Ref.@18#, is
represented by the solid curve, while the result of Ref.@24# is
shown by the dotted curve.
Finally, using criteria~i!–~iii !, let us examine whethe
there is an evidence of motional narrowing in the tempe
ture dependence of the hot GDR. We have calculated
adiabaticity parameterh, the frequency spreadD, and the
effective half-width geff , using Eqs. ~2.34!, ~2.36!, and
~2.35!, respectively, in120Sn and208Pb. The results are plot
ted as a function of temperature in Fig. 7. Starting fromT
> 1.5 MeV in 120Sn andT> 1 MeV in 208Pb, the value of
h, calculated via coupling topp andhh configurations@solid
curves in the top part of Fig. 7#, becomes continuously
smaller than one and decreases with increasingT. This
means that criterion~i! is fulfilled, although not so strongly
This criterion is also fulfilled with the values ofh, calculated
via couping to onlyph configurations~dashed curves in the
top figures!, or to all ph, pp, andhh ones~solid curves with
diamonds in the top figures!. In order to see the source o
motional narrowing, we have to examine the behavior of
frequency spreadD @criterion ~ii !# and the effective half-
width geff @criterion ~iii !#. Taking into account the coupling
to pp and hh configurations,D continuously increases in
general with increasing temperature~solid curve in the
middle figures!. This means that thermal fluctuations
shapes are not associated with motional narrowing. At
same time, the value ofD, calculated via coupling toph
configurations~dashed curves in the middle figures!, con-
tinuously decreases asT goes up, showing a clear effect o
motional narrowing with the fulfillment of criterion~ii !. This
effect has a direct connection with the narrowing of t
quantal widthGQ asT increases, as has been discussed p
viously. It is stronger in208Pb. As a result, the value ofD,
calculated via coupling to allph, pp, andhh configurations,
behaves differently in two nuclei, namely it increases
120Sn, and slightly decreases~at T> 1.5 MeV! in 208Pb with
increasingT. The resulting effective half-widthgeff of the
stochastic frequency modulation of the hot GDR, shown
the bottom part of Fig. 7, decreases continuously with
creasingT when the coupling to onlyph configurations
~dashed curves! is taken into account. This decrease is a
seen in the thermal fluctuations of the hot GDR~solid
curves! at T> 1–2 MeV. The resulting effective half-width
geff , calculated via coupling to allph, pp, andhh configu-
rations, starts to decreases atT> 1 MeV in 120Sn and atT
> 1.5 MeV in 208Pb. From this analysis we conclude th
motional narrowing in the stochastic modulation of the GD
energy~frequency modulation of the hot GDR! indeed takes
place atT> 1–1.5 MeV and this effect comes from th
quantal coupling toph configurations@criteria~iii !#. Thermal
effect due to coupling topp andhh configurations~thermal
shape fluctuations! are not associated with motional narrow
ing @criteria ~ii ! is not fulfilled# and can be considered as a
adiabatic process atT< 1 MeV whereh. 1. In general, the
behavior of the hot GDR at high temperatures can be
proximated by the long-time~sudden time! limit where cri-
terion ~i! holds.

IV. CONCLUSIONS

In the present paper we have proposed an alterna
method to calculate the damping width of the hot GDR v
the complex admittance of an irreversible process. The r
tion is established between the microscopic theory for
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FIG. 7. Adiabaticity parameterh ~top!, frequency spreadD ~middle!, and effective half-widthgeff of the stochastic frequency modulatio
in the hot GDR as a function of temperature in120Sn ~a!–~c! and 208Pb ~d!–~f!. The solid curves are the results, obtained via coupling topp
andhh configurations. The dashed curves denote the results, obtained via coupling to onlyph configurations. The solid curve with diamond
represents the results obtained via coupling to allph, pp, andhh configurations.
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damping of hot GDR and the macroscopic one for the e
lution of the dynamical variable, which describes the evo
tion of the hot GDR. The microscopic expression for t
complex admittance is derived from the Green functio
which describes the propagation of the GDR vibrati
through the field of noncollective degrees of freedom~heat
bath!.

The present formalism was then applied to a system
study of the behavior of the GDR as a function of tempe
ture in the nuclei120Sn and208Pb. The values of the calcu
lated damping widthGGDR of the hot GDR, centered a
EGDR(T), were compared with the recent experimental d
-
-

,

ic
-

a

obtained in the heavy-ion fusion reactions and inelastica
scattering. An overall agreement between theory and exp
ment is achieved. In comparison to the recent theoret
predictions by other theories in Refs.@18,22,24#, the present
approach is free from the constraint on adiabaticity and a
gives a reasonable agreement with experiments withi
much larger temperature interval, including the region of
width’s saturation, where the adiabaticity is broken (h, 1!.

The present paper confirms that the thermal effects du
the coupling of the GDR collective vibration to thepp and
hh configurations are the source of the increase of
GDR’s width at low excitation energies~up to 130–150
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MeV! and of the width saturation at high excitation energi
These effects are fairly enough to account for the ther
fluctuations in the hot GDR in finite nuclei. The quant
width GQ due to the coupling of the GDR to onlyph con-
figurations decreases slowly with increasing temperatureT.

Analyzing the calculated strength distribution of the h
GDR, we see that refined experimental methods are ca
for to explore the low-energy region of the GDR distributio
in order to isolate a possible low-lying structure. In partic
lar, the appearance of the low-lying structure and the d
culties of extracting it from the background are proposed
this work as one possible reason of the ‘‘disappearance’
the hot GDR in some experiments. On the other hand a m
detailed study on the relation between the excitation ene
and the temperature in finite nuclei at temperatures be
T5 5 MeV is needed in order to avoid the large uncertaint
when comparing theoretical results and the data.

Finally our results seem to indicate the presence of m
tional narrowing in the hot GDR atT> 1–1.5 MeV as a
consequence of the quantal coupling toph configurations.
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APPENDIX: RANDOM FREQUENCY MODULATION OF
THE HOT GDR AS A STOCHASTIC PROCESS

Motional narrowing as a feature, which takes place
stochastic processes, has been studied by Kubo and An
son more than four decades ago@54,55#. Recently the Kubo-
Anderson process has been applied to study the possibili
motional narrowing in hot nuclei in Ref.@46#. A stochastic
macroscopic approach to GDR in hot rotating nuclei has a
been developed in Ref.@47# based on the generalized Lang
vin equation due to Mori@56#. Details of the general theor
on motional narrowing in stochastic processes can be fo
in Ref. @34#. A direct application of this theory to the ho
GDR within our model is given in this Appendix.

We have shown that the hot GDR can be considered
damped oscillator due to the coupling of the collective ph
non to theph, pp, and pp configurations. The broadene
frequency spectrum, expressed in terms of the complex
mittance or the strength function in Eq.~2.27!, is related to
the stochastic nature of the time modulation of the phon
energy~the oscillator frequency!. In order to study this, we
assume that the collective phonon, which generates the
GDR, is randomly perturbed so that the phonon energy
modulated in time as

vq~ t !5vq1vq
~1!~ t !, ~A1!
.
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where the variationv1(t) is a stochastic process. We ca
write down the equation of motion of the phonon propag
tion as

Q̇q~ t !5 ivq~ t !Qq~ t !. ~A2!

The solution of Eq.~A2! is

Qq~ t !5Qq~0!expF i E
2`

t

vq~ t8!dt8G . ~A3!

The correlation functionFq(t) for the GDR phonon propa
gation is directly related to the spectral intensityJq(v) in
Eq. ~2.30! as

Fq~ t !5^Qq
†~ t !Qq~0!&5E

2`

`

Jq~v!eivtdv. ~A4!

Conversely, the spectral intensity is derived from the cor
lation function via the Fourier transform as

Jq~v!5
1

2pE2`

`

Fq~ t !e2 ivtdt. ~A5!

If vq
(1)(t) is stochastic, thenQq(t) is a stochastic proces

defined by Eq.~A2!. In this case the correlation functio
Fq(t) can be rewritten in the form

Fq~ t !5K Qq
†~0!Qq~0!expF i E

0

t

v~ t8!dt8G L
5@exp~vq /T!21#21eivqtf~ t !, ~A6!

where the correlation functionf(t) is

f~ t !5K expF i E
0

t

vq
~1!~ t8!dt8G L . ~A7!

Let us define the power spectrumI (v8) of the stochastic
processvq

(1)(t), characterizing the frequency modulation,
the Fourier transform of the correlation functionf(t) as

I ~v8!5
1

2pE2`

`

f~ t !e2 iv8dt, ~A8!

where

v85v2vq ~A9!

is the frequency difference measured from the unpertur
frequencyvq . Assuming that the processvq

(1)(t) is station-
ary and Gaussian with the average value^vq

(1)(t)&50, one
can define its correlation function from the equation

^vq
~1!~ t0!v1~ t01t !&5^~vq

~1!!2&c~ t !. ~A10!

The correlation functionf(t) is then related with the relax
ation functionc(t) of this Gaussian stochastic process as

f~ t !5expF2^~vq
~1!!2&E

0

t

~ t2t!c~t!dtG . ~A11!
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Substitutingf(t) in Eq. ~A8! with its value from Eq.~A11!,
one can see that the power spectrumI (v) of the stochastic
processvq

(1) becomes

I ~v!5
1

2pE2`

`

dtexpF2 ivt2D2E
0

t

~ t2t!c~t!dtG .
~A12!

In Eq. ~A12! the quantities

D5A^~vq
~1!!2&, ~A13!

and

tc5E
0

`

c~t!dt5
1

D2E0

`

^v1~ t0!v1~ t01t !&dt ~A14!

represent the magnitude~spread! and the rate of the random
frequency modulation, respectively. This leads to Eq.~2.32!,
which states thattc5G21 is just the decay time if the cor
relation functionc(t) of vq

(1) ~or the probabilityuC(t)u2)
exhibits a simple exponential decay as

c~ t !5e2t/tc. ~A15!

We come to a parameter

h5Dtc5
A^v1

2&
G

, ~A16!

which characterizes the behavior of the power spectrumI (v)
of the stochastic processvq

(1) . This parameter is called th
adiabaticity parameter in Ref.@47#, where it was fitted to the
experimental data of the hot GDR width within an adiaba
model with shape fluctuations included as in Re
@16,22,28#.

If the exponential decay in Eq.~A15! is assumed, the
correlation functionf(t) in Eq. ~A7! becomes

f~ t !5exp$2D2tc@ t2tc~12e2t/tc!#%

5exp@2h2~1/tc211e2t/tc!#. ~A17!

In the limit whereh→` or tc→` the correlation function
f(t) in Eq. ~A17! is approximated by

f~ t !5expS 2
D2

2
t2D . ~A18!

The power spectrumI (v) of the stochastic processvq
(1) then

takes a Gaussian form with the standard deviationD

I ~v!5
1

A2pD
expS 2

v2

2D2D . ~A19!

This power spectrum becomes narrower and narrower w
the parameterD decreases. This phenomenon is known
motional narrowing. Physically it means that the motion
Qq(t) in Eq. ~A3!, which is rewritten as
.

en
s
f

Qq~ t !5Qq~0!eivqexpF i E
2`

t

vq
~1!~ t8!dt8G , ~A20!

is a Brownian motion on a unit circle in the complex plan
If the duration time is shorter than the characteristic tim
needed to maintain a frequency shift,

T.
2p

vq
~1!

, ~A21!

the modulation is averaged out and cannot be seen.
In order to derive the clear criteria of motional narrowin

we must study the duration time, concerning which there
two extreme cases, namely the short-time (t/tc!1) and
long-time (t/tc@1) limits.

(a) The short-time limit(t/tc!1). The short-time limit
just corresponds to the approximation in Eqs.~A18! and
~A19! whenh@1. The correlation function in this case is th
average of exp(ivq

(1)) over all possible distributions of the
modulationvq

(1) , such as all possible quadrupole shape
formations

f~ t !5E exp~ ivq
~1!!exp@2~vq

~1!!2/2D2#
dvq

~1!

A2pD
.

~A22!

This is an average over an ensemble of oscillators with
quenciesvq

(1) . Each oscillator describes a collective motio
during this short timet. In terms of quadrupole shape fluc
tuations, this dynamical coherent picture takes place if
quadrupole deformation changes slowly enough (tc is large
enough! for the GDR to feel these changes. Hence the sh
time limit here is nothing butthe adiabatic limitdiscussed in
Ref. @47#.

(b) The long-time limit(t/tc@1). In the long-time limit,
which corresponds toh!1, the correlation functionf(t) in
Eq. ~A11! behaves as

f~ t !5e2geffutu1d. ~A23!

The power spectrumI (v) of the stochastic processvq
(1) has

a good Lorentzian form

I ~v!5
ed

p

geff

v21geff
2

, ~A24!

where the effective half-widthgeff is equal to

geff5D2tc5hD!D, ~A25!

and

d5D2E
0

`

tc~t!dt. ~A26!

This long-time limit was calledthe sudden limitin Ref. @47#.
The effective half-widthgeff of the power spectrumI (v) in
the sudden limit~long-time! becomes much smaller than th
standard deviationD of the Gaussian in the adiabatic~short-
time! limit. Hence the sudden limit~long-time limit! is the
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region where motional narrowing may start to show up.
such motional narrowing is incompatible with the adiaba
approximation ~short-time limit!. The recent adiabatic
coupling calculations in Ref.@22#, which did not present any
evidence of motional narrowing, is a good confirmation
rt.

v

C

n

-

s

f

this conclusion. AtTÞ 0 all the quantitiesh, D, and geff
depend onT. Therefore the criteria~i!–~iii ! of motional nar-
rowing, mentioned in Sec. II, are given as a function of te
perature. In this way one can clearly point out the tempe
ture region where motional narrowing takes place.
g
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