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Particle number fluctuations in the quasiparticle random-phase approximation
and renormalized quasiparticle random-phase approximation
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Particle number fluctuations in the quasiparticle random-phase approxint@®mA) and the renormalized
quasiparticle random-phase approximation are investigated. A closed expression for the ground state wave
function is used, which allows an exact evaluation of the ground state phonon number and correlation function,
being valid to any order in the backward amplitudes. In realistic calculations a sudden increase in the particle
number fluctuations is found in both approximations when the particle-particle interaction approaches the value
at which the QRPA collapses. This behavior is strongly correlated with the ground state quasiparticle content
and can be understood as a signature of the phase transition previously found in simpler exactly solvable
models.[S0556-28138)06005-1

PACS numbeps): 21.60.Jz, 24.60.Ky

I. INTRODUCTION which are equivalent to a complete shell model treatment in

i . i inglej shell, sh hat th Il f the QRPA -
Boson expansion techniques provide a useful tool to per‘r—:1 singley shell, show that the collapse of the Q corre

f | truct lculationd]. A th th lates with the presence of an exact eigenvalue at zero energy
orm nuclear structure calculatiorjd]. Among them, the or, in a more general view, with the clear presence of a phase

quasiboson approximation, more often called the randomgngjtion[21,25. Various authors have found a growing of
phase approximatiofRPA) and its quasiparticle generaliza- the ground state quasiparticle content near the QRPA col-

tion (QRPA), have been widely used in the last decades tqgapse which could eventually produce strong fluctuations in
study electromagnetic transitions and beta decays in mediugpe particle number, with important effects on the nuclear
and heavy nuclefi1,2]. observableg26]. In this work we want to address these

Quite recently studies analyzing the role of the proton-points by studying the expectation values of the particle and
neutron interaction have had a revival. They were motivedyuasiparticle numbers, as well as particle number fluctua-
by novel experimental and theoretical resultdNirr Z nuclei  tions in realistic spaces for different nuclei in the QRPA and
[3] and in double-beta decay. The proton-neutronRQRPA ground states. The paper is organized as follows: In
(pn)-QRPA has been applied with success in the descriptiosec. Il we review expressions for the mean particle number
of single- and double-beta decay processes. Nevertheless,aind fluctuations within a quasiparticle picture, for a corre-
has some important limitations, the more remarkable bein@ted ground state. In Sec. Il we evaluate these quantities for
its collapse, i.e., the presence of imaginary eigenvalues fdhe RQRPA and its QRPA limit. The results for the case of
residual interaction strengths beyond a critical valde7. ' Ge, *’Se, and'®Mo for beta Fermi-type excitations are
Different improvements to the QRPA were preserj@é11] presented at Sec. IV and the conclusions in Sec. V.
but were unable to avoid the collapse.

A whole family of extensions of the QRPA, called renor- Il. PARTICLE NUMBER FLUCTUATION
malized QRPA(RQRPA), is known that does not develop o . )
any collapse by implementing the Pauli principle in a con-_ The mean square fluctuation in the particle number is de-
sistent way, beyond the simplest quasiboson approximatiofin€d as
[12-16. However, in its simplest versions there is a viola- A
tion of the non-energy-weighted Ikeda sum r[4&]. Calcu- AN?=(0|(N—N)?|0), (1)
lations to determine the amount of the violation and some
improvements to the RQRPA, in order to restore the SUI’TWhere|O> is the nuclear ground stat&=Z, A the actual
rule, have been presentdd8,19. Recently, it has been  mper of protons or neutrons, art=2,N the particle
shown that treating simultaneously BCS and QRPA equapymber operators, respectively. We make the transformation

FO?S one can fulfill the lkeda sum rule in the Fermi casetg guasiparticle creation and annihilation operators
20].

Using exactly solvable models a second and more pro-

fo At
found difficulty has been founf21-24. The calculations, o= U v @

where the subscriptgt) stand forp(p) (protons or n(n)

*On sabbatical leave from Departamento dsida, Centro de (neutrong, being t=t,m,, with t={n,l,j} ?nd my=mj,
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- s on . ~y tuation within the BCS approximation. The other terms also
N:NJFZ {2Q(uf —v )N —u [ Ay (0) + A (0) 1, come from ground state quasiparticle correlations. The sec-

3) ond and third ones depend on the one- and two-quasiparticle
occupations, while the fourth one depends on the two-

with quasiparticle(2qp correlation functions.
~ lafa® ~t + 4 (2j;+1) . RQRPA
M= V20, Ap(D=lafe, P, Q= 2

We are interested in the evaluation of the particle number
(4) fluctuations in thgpn-QRPA andpn-RQRPA ground states.

and where we have assumed the BCS particle number COWlthm the RQRPA the nuclear excited states are constructed

dition N=X ZQtvt The particle number operator depends s[14.19
on the quasiparticle number operajzi?f{ and the two quasi- INIMY=QT(AIM)|0), (9)
particle creation and destruction operatoﬁ‘t;rt(O) and
A(0), respectively. QTNIM) =2 [Xpn(AN DAL (IM) =Y 0(A Ay (IM],
Now from Eq.(1) pn
(10
ANZ=(N?)—2N(N)+N?, 5
(N2)=2N(N) CHE
with
Al (AM)=AT (IM)D, M2, Dpp=(1— (0N, +A}|0))
- N (17
(N)=(0IN|0)=N+22 Q(uf=v})(0lA{[0)  (6)
‘ are the renormalized two-quasiparticle proton-neutron cre-
and ation operators, which satisfy
. (OI[Apn(IM), AL, (3"M)][0)= 8y Sy 837 Suana-
(N)=(0IN0)=N?+43 Qfufof+23 0, - (12)
t

Here|0) is the RQRPA correlated ground state, which must

X[2(uZ—v?)N+uf+of—6uo?](0|A;|0) fulfil the condition

+4> OO uwUev(0]AT(0) Ay (0)|0) Q(NJIMm)[0)=0. (13
t,t/
The amplitudes< andY and the eigenvalues, satisfy the
+> (uf—vf)(uf,—vtz,)g V(23+1) equations
t,t’

(A(J) B(J) )(X(u)) ( X(\J)

B*(J) A*J))lyag)) N —Y()\J))' (14

X(OILAT(D)w A (91°]0), w
where we have assumed th&) has an equal number of where
proton and neutron quasiparticles, which is true for all the
QRPA-type models we are interested in. Putting both Egs. A, J et eNSrS ,+D1/2UF J D1/2’
(6) and (7) into Eq. (5) we finally obtain pnp'n'(J) = (€ €n) OpprOnn pnprn(DDprnr

Bpnpn(J)=DXUS (D2, (15)
pn,p'n
:42 QZutvt"'zz Q [Ut+U:1 tUt <O|M|O> et P
{ with
+4> O QU Uy (0] AT(0) Ay (0)]0) U7 o () =G(PN,p’ N’ IM)(UpUnUp: Uns + 00 00 5 V)
t,t/
+F(pn,p'n’",IM)(Upv,Uprv g
2_ 2y 2_ 2
+ 2 (uf=vf)(ug—vp) X 23+ 1) 0 pUnD U,
t,t p p
X(O|LAT(D) A (91°)0), (8 Ugn,p’nr(3)=—G(pn,p'n',JM)(Upunvp’Un'
In the mean number of particles, E(f), the second term +vpvnUpUny)+F(pn,p'n’,JM)

gives the contributions from ground state quasiparticle cor-
relations and comes from the spurious state-(N)|0). On

the other hand, the contributions to E&) come from the F and G being the usual particle-holéPH) and particle-
(N N)2|0) spurious state. The first term is the number fluc-particle (PP coupled two-particle matrix elements. In order

X(Upunup/vn/+UpUnvp/un/), (16)
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to evaluate the mean particle number and fluctuation from . (23+1)
Egs.(6) and(8), we need some information on the structure (0JN,0)= > T' V(D pnal%
of the RQRPA ground state to get the quasiparticle occupa- An’ P
tions and correlation functions. ~t -
We write the ground state in the form (0]A4 (O)ppAp’p’(0)|0>
S S (2J+1)(23' +1)

0)=N,eS|BCS), (17) oy i 000,,0,0,
-1

XD pnad I )50 XI5 ZXIDY

where )
+ 8, 5(0| V| 0)2,

=2 3 (23 DO puy A DAL (D (OILA"() ppr gy (91°10)
pnp'n’J
(18) = 20413 3 VD)pna VD5 XD

AN n)n’

The coefficientsC(J) pnp o Can be estimated through Eqg. 1 40,0, R ~
13), which leads to the set of equations XX(J)Y, ., + —=(0|N,|0){O|N,|0). (24
(13 g DXt 371y ONGIOK0IAR[0). (24
Note that the quasiparticle occupations and correlation func-
Y()\J);,n,=2 C(J)pnp,n,X()\J)’;n. (19)  tion are evaluated as functions of the RQRPA forward and
pn

backward matrix amplitude& and)), respectively, and must
be obtained together with the solution of the eigenvalue

While in previous works iterative expressions were develProblem(14). The same quantities for neutrons are obtained
oped for the matrixC(J) [27,28, in this work we will man- from I/Eqs.(24) c'hanglngp andp’ on th? left hand s'|de. by .
age the above expression as a matrix proddet]) andn’, and doing the same change in the sum indices. Fi-

=C(J)X(J), with the matrices¥(J) and)(J) defined as nally the usual QRPA expressions can be obtained by taking
the limit D,,=1 in Egs.(15).

(D) pna=Xpn(AD), M D)pna=Ypn(N), (20 IV. RESULTS

Now we present the calculus of the Fermi-typeexcita-
where X(J) [)J(J)] have one column for each eigenvector tions, and also analyze the evqlution of the total mean qua-
X(N,J9) [Y(N,9)], and their rows are formed by the 2qp siparticle number(Ny)==(0|\;/0), the mean particle
componentpn. Thus introducing théverse matrix¥(J) "' number(N), and the fluctuatiorAN as a function of the
it is possible to obtain the matri€(J) explicitly [1] as residual interaction parameter in the PP channel.

The Hamiltonian that leads to the eigenvalue problem in

Egs.(14) and(15) has the form

_ * x 1
C(J)pnp’n’_z)\: y(\])pn,xx(\]))\,pfnf- (21) H:Hp+Hn+ Hp,n- (25)

The first two terms refer to the single-particle plus pairing
Now through the relation Hamiltonians

. . m o a . He=2, eala,+ > (tito|V|tst)al ala, a,, (26)
(016|0y=(0|3(0+[0,5]+1/4[0,5],5]+ - - - )|[BCY Lo T g T TR

where the single particle energies are denoted;byand the
last term to the proton-neutron interaction

valid for any operator@, and making the quasiboson ap-

proximation Hpn= E , (p.nVlp',nYalataya,. (27
p,p NN
[Apn(JM),A;,n,(J’M ’)]~<0|[Apn(JM),A:,,n,(J’M 710) ,[Aéfi[er performing the quasiparticle transformati(®) we get
= 5ppr 5nn’6JJ’ 5MM!, (23)

H~E epa;ap"_z Enalan“l‘ H22+ H40+ H04, (28)
p n

in the evaluation of the commutators involved in E§2),
we get for the case of protons with
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8 -
_ F T ETV} L Ge'78 Se82 Mo100
H o= E U7 o (DAS(IMAL 0 (IM), o [eV] T
p,n,p’,n",JM 5[
@ i \
3r 1
2 || \‘
N 1E \ 1
Hos=Hl=— X Ugn‘p,n,(J)Agn(J M)A;,n,(J M). 0 ! .
p.n,p’,n",IM 30 s
<qu > st Ii ," :
The quasiparticle energies explicitly appear in the matrix T ; ;' ,'l
elements(15) while U and UZ have been defined in Eq. T /
(16), beingJ™=0" for the Fermi case. 0
We adopt as-type residual interaction already used pre- ay s
viously [7,8],
30 :
V,=—470,8(r) MeV fm?, (31) )4 ~
2.5
with four different strength constanis,=vha",vha",vbP, .
andeQ, where “pair” refers to theJ=0 PP channels for <y /N ,. ,
like nucleons angp andph to theJ=0 PP and PH chan- / ) J
nels, respectively, in the proton-neutron case. Wittifhand 10 < .
U5, the PP matrix elementS(pn,p’n’,0) depend only on ‘ s s ‘ s L

vhy and the particle-hole matrix elemeng(pn,p’n’,0)
only onvpy. s

. O“T Hilbert space has .11 smgle-pamcle energy levels, FIG. 1. Lowest eigenvalue®, mean quasiparticle numbers
including all the single-particle orbitals from oscﬂlatpr shells (N, particle number fluctuationsN and fractional particle num-
3fiw and 4w plus Ohg;, and Chy,), from the Hi w oscillator bers(N)/N are shown for’Ge, #Se, and®Mo nuclei. QRPA

shell. They were obtained using a Coulomb-correcteqegyits are plotted as dashed lines and RQRPA ones as solid lines.
Woods-Sa>.(on potential. Thelr numerical vaIuesT@Be'a}nd In the last two rows thick lines are used for protons and thin lines
82Se nuclei are tabulated in Table 1 of RES]. The pairing  for neutrons.

constantsyha" and vfa" were adjusted to reproduce the ex-

perimental pairing gaps for each nuclei, being their numerippy states with1”=0" in the summations in Eq$8) and

cal values being close to 2(49‘3 Table 2, Ref8]). (24), which corresponds to the SI1 approximation of Ref.
The particle-hole constam;tgn mainly defines the energy [19].
of the isobaric analog stat@AS), which is experimentally In the first row of Fig. 1 we show the lowesf=0"

found to be very close to the Coulomb displacement energyenergiesw (in MeV) for "°Ge, 82Se, and®Mo for the

It is fixed to reproduce this value. The only remaining Pa-QRPA (dashed linesand RQRPA(solid lineg approxima-
rameter isupf. It has a very limited effect in the spectra of tions. It is clear that the collapse in for the QRPA, which

the odd-odd neighbor nuclei and i3~ decays, affecting occurs aroung~2 in the different nuclei, is avoided for the
mainly the lower energy states. But it is crucial in the deter-RQRPA case. In the other rows in Fig. 1 we show the total
mination of the 87 decay strength and the two-neutrino mean quasiparticle numbéX,,) (equal for protons and neu-
double-beta 88,,) decay amplitudes. It has been arguedirons, the fluctuations\AN, and the fractional mean number
thatugr? can be determined invoking maximal restoration of of particles,(N)/N, for protons and neutrons, respectively.
the isospin symmetry7,8]. Other authors used somg" The dashed thickprotong and dashed thin linegeutron$
decays in semimagic nuclei. It is by far the least controlledcorrespond to QRPA results, and the solid-thigkotons
parameter in the formalism, and many studies have been dend solid-thin linegneutrong to the RQRPA approximation.
voted to the dependence of nuclear observables ¢A-it As we can see near the collapse the total number of quasi-
6,14]. This interaction strength is responsible for theparticles grows suddenly, and as the quasiparticle occupa-
pn-QRPA collapse and our results will be given as a func-tions are proportional tdY|?, it is an indication that

tion of it. To this end we define the parameter backward-going amplitudes become dominant. It invalidates
the simplest quasiboson approximation assumed to derive the
oPP QRPA and causes its collapse, producing a complex eigen-

_ _bn
pPair

value. The RQRPA is able to have a real lowest energy be-
cause it satisfies a quasiboson approximation with operators
that are renormalized while ground state correlations grow.
which is the ratio between th€=1, S=0 coupling con- This renormalization process acts as an effective reduction of
stants in the PP channels and the pairing force constanhe residual interaction and the RQRPA eigenvalue problem
vP'=(up"+ v R /2. remains stable. Nevertheless, if we observe the behavior of

We compare the results obtained within the usual QRPAjuasiparticle number and the mean number of particles, we
with those coming from the RQRPA. For simplicity we keep note an important departure from the BCS values for these



57 PARTICLE NUMBER FLUCTUATIONS IN THE . .. 3019

guantities above the collapse. The clear change in the pations. With these results particle number fluctuations were

ticle number fluctuations in these realistic calculations con<calculated in the QRPA and RQRPA ground states in realis-

firms that the phase transition found in exactly solvable modtic calculations of Fermi-type beta transitions. It was shown

els[21,25 is present and affects these calculations. It couldhat these fluctuations in the RQRPA have a sudden increase

be also an indication that in the RQRPA spurious states havier residual interaction strengths larger than those which pro-

a significant weight in the ground state wave function be-duce the QRPA collapse. This phenomenon can be under-

yond the QRPA collapse. stood as a signature of the phase transition previously found
In the last row in Fig. 1 the fractional mean number ofin simpler exactly solvable models.

particles is presented. It increases for protons and decreasesSelf-consistent calculations can cure the problems with

for neutrons. This behavior is controlled by the second ternr{N) [20], but theJ™=1" Gamow-Teller Ikeda sum rule will

in Eqg. (6), and in all the three examples the proton valencebe still violated due to the lack of scattering terfd€]. In

shell is more than half empty;§< ug), while the opposite is  both cases we would expect that the particle number fluctua-

true for neutrons. tion will remain exploding near the phase transition.

V. CONCLUSIONS
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