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Extraction of electromagnetic properties of theA(1232 excitation from pion photoproduction
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Several methods for the treatment of pion photoproduction in the region oA({h232 resonance are
discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a
dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic
dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we
try to relate the various values for the raRgq,, of theE2 to M1 multipole excitation strengths for tig1232
resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is
confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due
to some phenomenological contributions entering the mofi®8556-28188)04301-3

PACS numbes): 14.20.Gk, 13.60.Le, 13.60.Rj, 25.20.Lj

I. INTRODUCTION on (i) a dynamical mode(DM) for the coupledmN-A-yN
system(ii) the effective Lagrangian approatBL), and(iii)

One of the most prominent manifestations of mternalthe recently proposed speed plot analy&iB). We will take

nucle_on _structure i; tha (1232 resonance which is seen, the DM as a common point of reference for this study.
e.g., in pion scattering and electromagnégan) pion pro- To this end we briefly review in Sec. Il the treatment of
duction. Thus it is not surprising that a large number of x5y photoproduction based on a dynamical model. Special
perimental and theoretical investigations has been devoted @tention is paid to the general structure of the pion nucleon
the understanding of the structure of this resonance. Rescattering and photoproduction amplitudes and the implica-
cently, the question of the relative strength of the electrigion of unitarity. Section 1l collects the basic formulas of the
quadrupole E2) to the magnetic dipoleM 1) excitation in  treatment of these reactions in the framework of ELs, and the
the e.m.yN—A transition has become one of the centralconnection between quantitities such as resonance mass,
guestions and is the subject of numerous pajfer§]. While  coupling constants of the ELs, and the corresponding quan-
the M1 strength in the simplest approach is directly relatedities of a DM is derived. Moreover, a numerical comparison
to the magnetic properties of the constituents, ®2 is performed. In Sec. IV we briefly discuss the SP and point
strength may be interpreted as a measure of internal spati@it some shortcomings in the present application and how
deformation, i.e., as deviation of the orbital wave functionsthey can be avoided. The paper ends with a summary and
from spherical symmetry. Thus, there is considerable experisome conclusions.
mental effort to provide accurate data on pion photoproduc-
tion and glectroproduc_tion from the nucleon in thereso- . II. DYNAMICAL MODEL
nance regio9,10]. Various methods have been proposed in
the literature for the isolation of the genuine resonant part of There are two main advantages of treating e.m. pion pro-
the experimentally measured multipoles which, howeverduction dynamically, i.e., solving for a givemN interaction
give quite different answeifd,3,11-13. the corresponding Lippman-Schwinger equation. First of all,
The general problem of such an extraction lies in the facit ensures that all two-body unitarity constraints are auto-
that the experimentally observable multipoles contain impormatically respected. Secondly, it provides a well defined ba-
tant background contributions which cannot be separated in sis for the analysis of the role of the final state interaction in
simple and unigue way, so that in most explicit evaluations ahe e.m. reaction. In such a dynamical approach the model
specific model is used. Thus it is not surprising that the dif-parameters are usually adjusted in order to reproduce all
ferent prescriptions result in different values of resonancevailable on-shell data. At present the main disadvantage lies

properties. In fact, for photoproduction the values Ry, in the fact that a dynamical model requires still some purely
the ratio of electric quadrupole to magnetic dipole, vary bephenomenological input, e.g., form factors in order to regu-
tween+4 and—8 % (see, e.g., the discussion[i]). How- larize the driving terms of the interaction, which is essential

ever, in view of the various methods used, it remains uncleato solve the dynamical equations. Further problems are re-
how these values should be compared to each other. In othtated to the neglect of three-body unitarity above two-pion
words, is there a common basis for a meaningful comparithreshold and to the requirements of relativity and gauge
son? invariance. However, various improvements have been

It is the purpose of this paper to address this question imchieved recently11,13—-18. Notwithstanding these short-
greater detail. To this end we will compare three differentcomings, such a dynamical model still provides the most
methods which have been recently applied. They are basesatisfactory and comprehensive description.
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FIG. 1. (@) wN scattering amplitude(b) dressedmNA vertex,
and (c) the dressed propagatomgy, .
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FIG. 2. (a) Pion production amplitude antb) dressedyNA
vertex.
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yielding different splittings into background and resonant

We shall first briefly review the salient features of a dy- @MPplitudes but leaving the total amplitude unchanggld

namical model for the coupledN-A-yN system following

the notation of[1,5]. The Hilbert space is assumed to be a
direct sum of baré\, =N, andyN states with corresponding

The structure of the photoproduction amplitude

oy =to +ty )

Y

projectorsPy, Py, andP,y. The Hamiltonian is taken as s completely analogous. It again splits into a background

h=ho(m)+v>, +Wamm+vintvantHC), (D)
with a backgroundrN interactionv® =P _(h—hg)P .\,
the wNA vertexvn=PahP,y, @ nonresonanyN— 7N
driving term v> \=P_\hP,y, and the yNA vertex
va,n=PahP,y. One should note that the energy in the
A sector depends on the bare resonance miswhich is a
model parameter to be fitted.

Within such a model the elastieN scattering amplitude
t,» can be split into a background tert’ﬁ1T and a resonant

partt? -

t.=t2 +t% . (2
The background term is defined by the integral equation
o= Vo0 G0t 3
with the barerN propagatorg?TN. The resonant part
tR =0 sNa0aV amn 4
is determined by the dressetNA andA N vertices
VanN=UaaNtUAmNT Nt
VA=V ana Tt 0o s 5
and the dressed propagatorg, , obtained from
94(8)=03(8)+03(5)2a(9)9a(9), (8)

with the free A propagatorg®(z)=(z—m3)~* and theA
self-energy

@)

_~ 0 _ 0~
2 A(8) =V AzNTZNU NA =V A 7NDZND 7NA -

B X
t.,, determined by
ti‘y:U‘IBTyN_'—tiﬂ'gS)TNvin ’ (9)
and a resonant part
t?ryZEWNAgA;A YN » (10)

referred to as the “dressed” resonant amplitude. It contains
the dressed/NA vertex

-~ _ 0 ;B
UAyN_vAyN+UA7TNngt77y' (11)

Accordingly, one may splilti7 further into the so-called bare
resonant part,., and a vertex renormalizatiarf’; , i.e.,

th =to +t7%, (12)
where
t7y= 0 aNaGAV AN 13
and
U= 7nagaU amng Nt - (14

The diagrammatic representationtgf, is shown in Fig. 2. It
is obvious that for both multipole amplitudes the same for-
mal structure holds.

The form of the amplitude as discussed above is quite
general below thers production threshold. In that energy
regime, the coupling to the closed=N channel may be
effectively incorporated into eeal, energy dependent back-
ground interaction, where the energy dependence arises
through the energy dependence of the propagators in the in-
termediater N states. Note that such an energy dependence
is already introduced by considering the crossed nucleon

The equationg2) and (4)—(6) are illustrated diagrammati- pole term as background mechanism, in the (3,3 chan-
cally in Fig. 1. We have already mentioned the fact that thenel.

driving terms of the background and resonance amplitudes We turn now to the discussion of the basic relations be-
contain at present phenomenological ingredients which arveen on-shell matrix elements and phase shifts. In order to
fitted to the experimental data. Thus these amplitudes and thevoid new notation, we will understand all amplitudes in
corresponding phases are to some extent model dependeotnnection with the phase shifts as the corresponding on-
Recently we have shown that this model dependence can fshell quantities. ForrN scattering, the scattering amplitude
interpreted as different, unitarily equivalent representationsieads
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1 L Sir‘(ﬁDM+6DM)
t_ =——e?sin s, 15 t_=tR — =~ P - 2
P ( ) Ty Ty sin 5gM ( 5)

With. a phase space fact_prdetermined k_)y the a(_jo_pte(_j NOr™ cyrthermore, for the moduli of the background and bare
malization conventions, i.e., the scattering matrix is given byresonance amplitudes, one easily finds the following rela-

s, =1+2ipt__. (16  tions:
The usual choice ip=—q, whereq denotes the on-shell T _TR sin 55”’ 26
momentum of the pion in therN c.m. frame. Since the T 7Y gin 53“"
background is unitary by itself, one can define a nonresonant
background phase shii;" by ;
t2 =— M gin M. (27)
B 1 M . oM Y =
to =— ;e‘ B sindg . 17 PUALN

One then easily deduces for the resonant part Note that the bare amplitudé,y carries the full phasé[see
Eqg. (13)]. An expression, alternative to E(R5), is then

1 . om
R _ _ —4i(6+82M) «in SDM _
t pe B ) sindg", (18 tszEy cos §SM+TI73W cos 52M, (28)

where the resonance phase sbfft'= 65— d5" is given by which exhibits the resonance and background contributions

tot,.,.
tan 62M(s) = Im24(s) (19 At the end of this brief review, we collect different pos-
R Js— my(s) sible definitions ofE2/M1 ratios Rgy, for the yNA transi-
tion. The ratio of the full amplitudes
Here we have introduced the dresgednass
ma(s)=m} +ReX,(s). (20 Ren= ty(ED) _ tmy(E2) (29

. . . try(M1) -t (M1)
Neglecting small Compton scattering correctioi],

Watson's theorem states that the phase of the photoprodugs girectly related to the experimentally observable multi-
tion amplitude below the two pion threshold is given by the a5 which, according to Watson’s theorem, is a real but
hadronicwN scattering phase shif, i.e., energy dependent quantity. The bare ratio

try=t €, (21)

A T A
Rt oy (D) _ ToED

= (30
ta,(M1) T3 (M1)

wheret_m is real. Similarly, one has for the background
contribution

is also a real number because the bare amplitudes carry the
total phase as mentioned above. It is directly related to the
ratio of the strengths of the coupling constants in §i¢A
transition current and thus is energy dependent only if the

B _3B _istM
t8 =15 €%,

(22)

with the 7N scattering background phase sh#f" and a

real t% . Itis convenient to define an additional pha',  coupling is energy dependent.
called the photoproduction background phfkg so that With respect to the ratio of the dressed multipoles, one
R il sDM may define two different quantities, since the dressed multi-
t5y= tme'(‘H %), (23 poles carry different phases, namely, the complex quantity
where againTﬁy is real. One should keep in mind that this ] tﬁy(EZ)
phasest™ is in general different for the different multipole Rem(DM) =m0 (M1)’ (31)
amplitudes. Moreover3," is determined by the elementary m
interaction model. In detail, one has or, alternatively, the ratio of the moduli
sin &M
tan S5M=— R . (24) — TR (E2)
t .y~ to, cossp™ Ren(DM)= ———. (32
tR (M1)

For the comparison with the ELs it is useful to express the

modulus of the total photoproduction amplitude in terms ofAs we will see in the next section, this latter quantity is
the modulus of the resonance amplitude and the photopraslosely related toRg), defined in the EL. Note that both
duction background phase dressed ratios are energy dependent.
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lll. EFFECTIVE LAGRANGIAN APPROACH 1+ tan 62V

AND UNITARIZATION METHODS tan 6= —— v (39
n—tan ég

Let us first summarize the treatment of pion scattering and
pion photoproduction in the effective Lagrangian approachwith
(EL). Here, only the lowest order tree level Feynman dia-
grams are considered including background and resonance _ 1 (39)
contributions. Subsequently, the resulting amplitude is unita- #~ tan 63'\" '
rized. Three different prescriptions for unitarization have
been proposed in the literature: the Olsson metH@i19, where tan&g"" is given in Eq.(19).
the Noelle method20], and theK-matrix approach3]. The Equating now Egs(38) with (33), one can express(s)
dependence of the photoproduction process on the adopte@ function of the DM variab|e§g"" and 5[8)'\", the EL back-
unitarization scheme has already been extensively studied bytound phasest-, and the unitarization parameter
Davidson, Mukhopadhyay, and Wittm&8], and we follow
their notation for convenience. o w(1— 7 tan 85™ tan 655 — (tan 55+ 7 tan 854
We start by collecting the basic formulas for pion nucleon €(S)= DM EC DM EC
scattering in the energy region of tderesonance. The dif- 1+ p(tan o™ —tan 5g7) +tan dg ™ tan 5
ferent unitarization methods can be parametrized by the fol-
lowing relation for the phase shift: By means of Eq(34), the EL quantititiesvl , andI", can be
EL expressed through DM quantities. In addition, they will also
tan 5= 1+etan 5; (33  depend on the EL background phasg and the unitariza-
e+ tandg’ tion parametery. For example, one finds for the resonance

mass parameter
where tanég" is given by the nonresonant tree diagrams. The

(40)

quantity e is interpreted as the-channel contribution of the tan 65M+ 7 tan 55"
A resonance and parametrized in the form Ma=my+ 7= 7 tan 50" tan o5 ImZ,, (4D
2 _
Mi—s (34) where the right-hand side is to be takensg=M3 and the

Mal'a(s)’ dressed energy-dependent masg is defined in Eq.(20).
The dependence on both the EL background phiseand
the DM background phasép™ reflects the representation
dependence mentioned above in the discussion of the DM.
If now we assume the same representation, i.e., identify
e background phase = 65-= 65", then the expressions
Simplify considerably, yielding

where the constant ma#é, is obtained as the zero efs).
The parameter in Eq. (33) distinguishes the different uni-
tarization methods, i.e.y=-—1,0,1 refers to the Noelle,
K-matrix, and Olsson approaches, respectively. Obviously,
all methods coincide in the case of a vanishing backgrounéh
phase shifis5-=0. For the decay width, the following ansatz

is used: w(l— 7 tarf 8g)—tan dg(1+ %)
€(8)= 1+tar? 8 42
92na(9)G3(S)[E(S) + M](v/s+ M) ®
Fals)= 24mm2\/sM, B (1+ n)tan o
7 Ma=my+ 7= o~ Im3,. (43

whereq(s) andE;(s) denote, respectively, the pion momen-

tum and the nucleon energy in therest frame. Furthermore, Thjs is an implicit equation for the mads , in the respec-

a weak energy dependence of the coupling congant is  tive unitarization scheme. One has in detail
allowed for

MA:mA(MA) (Noelle), (44)
,. B(s—M3) C(s—Mj)?
9ra(8)=Gmna (M) + ——g—+ =g, My=my(My)+Im Sy (My)  (K-matrix),  (45)
(36)
Im EA(MA)
with free parameterB andC. The background phase shift is Ma=my(My)+ ZWMM) (Olsson
parametrized as BLTA
a1 [ qls =my(My)+21m 5 (My)+O(tar? 5g).  (46)
EL__

tan dg"=a m) b m_w) ' (37 Itis easily seen that in the case of tematrix methodM
corresponds to the energy at which the full phase shif
with free parametera andb to be fitted as well. equal tow/2. Note that the sign of Ik, is not fixed a

In order to establish the connection between the EL angbriori. For the model B of Tanabe and Ohta, upon which our
the DM one just has to cast tahof the DM into a form later comparison is based, one obtains a negative sign and
which corresponds to E@33) in terms of the corresponding thus within this model M,(Olsson<M ,(K-matrix)
dynamical guantitities. A straightforward calculation gives <M ,(Noelle).
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_Turning now to pion photoproduction, we begin with a duction background phas&" is a well defined quantity.
brief summary of the treatment of this process as given imjthough this relation betweeN and the dressed amplitude
[3]. In the EL, one starts from the tree level contributions OfTR depends also on the various phases of DM and EL and

Ty
background and resonance terms thus does not allow a simple interpretation, one sees that the
N ratio Rgy is just the ratio of the moduli of the dressed mul-
t,,(tree=Ag+ p (47  tipoles in the DM[see Eq(32)]:
For our purpose, it is not necessary to specify the explicit R th(E2) ~r
; ' ; . Rem(Olsson= ———=R¢,,(DM). (54)
expressions for the real numbekg andN, which are given TR (M1)
Ty

in [3]. The unitarized amplitude then has the form
In Noelle’s scheme, the unitarized amplitude is given by

Uy =T y€'°, (49)
with t ,,=Ag cos5+N sin 6", (55)
t_m:"N' sin( sE-+ 5EL)_ (49) which leads to the expressions
— N2 N2 EL s L 2
The real amplitudeN and the photoproduction background N®=N? cos' 65+ (N sin 85"~ Ag), (56
phasest" are functions oN, Ag and the phases- and 65 EL
p Ag €OSs dg

whose explicit form depends on the unitarization method and tan SEt=
which will be given below. The rati®?,, is then given in P

terms of the appropriate electric and magnetic amplitudes ) _
N,y defined correspondingly as in E@7): The connection betweed and the DM amplitudes reads

(57)

N—Ag sin 65~

T EL__+B
Ne(EL) t,,Ccosdg —t_, COSS
RE(EL): = N; oL (50) N(Noelle)= —~ S ot oo ;EL (58)

In the literature, the ratio®RE,,(EL) are quoted just at the Due to the explicit appearance of the background contribu-

energyM , of the respective unitarization scheme. tions, there is again no simple interpretation Kg{MNoelle) in
Now we can establish the relations between the EL amterms of the dynamically calculated quantities. On the other

plitudes Ng;,, and the DM quantities on the basis that the hand, the ratidRg), becomes quite simple

total 7N phase shifts and the total multipole amplitudes can

be identified, i.e., give a satisfactory fit to experimental data. R t_wy(Ez)COS 5§L—T§y(E2)cos )
In Olsson’s method, the unitarized amplitude is given in the ~ Rgy(Noelle)= — _—— :
form t -y (M1)cosség -t (M1l)cosés
(59)
t ., =Ag oS35 +N sin 55 cos 5;", (51)

Obviously, there is no simple relation between this ratio and
with the dynamical resonance parameters. However, if one evalu-
ates this ratio ab= /2, one finds

. EL AB R
sin &, =N (52 ReEm(Noelle)| 5= 2= Rem(DM)| 5= npo- (60)

) — In the K-matrix approach, one identifies the tree level
leading to the correspondendg(Olsson)=N. As already  contributions ad-matrix elements. The full unitarized pho-
pointed out by Olssof18], no solution arises in the case toproduction amplitude reads then

when|Ag|>|N|, as is the case for tHe2 excitation of theA.

This problem is avoided, when the helicity amplitudes are _
unitarized instead of the multipol¢8]. However, this trick try=
would not work in the case of a weak resonance which is

produced by one e.m. multipole only. The comparison withgjnce here the relation
the DM, which has already been performed by Tanabe and

Ohta[1], is based on the identification of E@9) with Eq. 1 el

(25). It yields the relation —~tané—tandg (62

Ag+ —|cos 6. (61

€

Csin(oBV+ M) R, (53 holds, one finds
Sin(Sg +3,) sindg"

N
_ H EL
It is worth noting that, when identifying the respective back- tay=Ag COSI+ cos b5 sin dg” (63

ground contributions in EL and DM, the ca#&s|>|N| can-
not appear, because in the dynamical model the photopracomparing Eq(63) with Eq. (55) one finds the relation
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FIG. 3. The coupling strength, v, as function of the invariant FIG. 4. The differentE2/M 1 ratios as function of the photon

energy of therN system for the different ELs. The dotted, dashed, laboratory energy&R,,(DM)=R%,,(Olsson (solid), R§RE,,(DM)]
and solid curves correspond to the Olsson, Noelle, ldraatrix (dashed} and RR (Noe"e):RR (K matrix) (dotted.
method, respectively. EM EM

RE\(Noelle=—0.2%, andR&,,(K-matrix)=—0.7%. The
N(K-matrix) = cos 55"N(Noelle), (64)  difference to the results ¢8] can be traced back mainly to
different prescriptions for the e.m. and hadronic background
which immediately leads to the same energy depenBpt  contributions. Since all ratios are based on the same DM,
for the K-matrix as in Noelle’s approach, and thus in the these different results clearly reflect the fact that a meaning-
K-matrix approach the ratio quoted in the literature is noth-ful comparison is not possible. In this context we recall that
ing else than the ratio of the experimental multipoles atexcept forRgy,(K-matrix), the dressed ratios are representa-

o=l2. tion dependent.
We close this Section by comparing the explicit numerical
values for the various ratiofRgy and other quantities IV. SPEED PLOT ANALYSIS

introduced above with the dynamical model of Tanabe I

and Ohta(model B in[1]). From their model one deduces The es;enhal |dga of the spee_d plot anaIYSIQ rests on
from Egs. (46) and (45 the following A masses: the analyt|c_ propgrtles of the par.tlal wave amplitude. A reso-
M ,(Olsson=1220 MeV, M ,(K-matrix)=1230 MeV, and nance mamfests itself as a pole in the !ower half plqne of .the
M , (Noelle)= 1243 MeV. The ordering of the masses is duesecond Riemann sheet when co_ntmumg the _amplltude into
to the negative self-energy contribution of this model. Itthe comp_le_:x energy plane. Th_e aim of the SP is to '°°at? the
turns out, that the values obtained in this manner are not f ole position a_md to determmg the correspo_ndlng reS|dpe
away from the numbers quoted[i8], which are 1217, 1232, rom the experlmental data. Th|s method, originally .used in
and 1250 MeV, respectively. The small difference in theP'o" scattering, has begn applied very reqently to pion pho-
K-matrix method has its origin in the fact that different datatOprOOILICtlon by Hanstein, Drechsel, and Tigtbg]. Assum-

for & had been fitted in both papefrs,3). ing a well isolated pole for thA resonance, one can separate

As next we calculate on the basis of the DM the couplingit by perfor_ming a Laurent expansion in the vicinity of the
“constant” g,na(S) for the different ELs via the decay pole, resulting in the form
width I",(s) given in Eq. (35 using Egs.(34), (42), and _4SP sP
(43). ThAe( r)esgult is shov(an in Fig. ?? O%e readily notices a Ly (W) =t W) + treguial W), 63
15% variation of the coupling strength between the OlssoRith the pole term
and K-matrix method. Furthermore, the energy dependence, ‘
which can be traced back to the energy dependence of the sp re'T'e/2
self-energy in the DM, is rather weak and similar for all three tpoid W) = Wr—W '’ (66)
schemes but not negligible at all. At least for the simple
model of Tanabe and Ohta, it is larger than the energy deand the regular part
pendence allowed for by Davidsat al. [3]. .

In Fig. 4 we show the various2/M 1 ratios as a function
of the pghoton lab energy. There are basically three different tfezula'(w):rgo To(W=Wg)", (67)
dressed ratios,RE,,(DM)=RE,,(Olsson, RgRE,(DM)], _ N
and R%,,(Noelle=R%,,(K-matrix). Note that these identifi- With ~ constant — complex  coefficients 7,. ~ Here,
cations are based on the assumption that the background cof'r=Mg— (i/2) I'r denotes the pole position with constant
tributions, which may formally be obtained by putting fésonance madd z and W|dthFR, andr and ¢ characterize
g.na=0 in DM and EL, can be identified. The difference M0dulus and phase of the residue. _
between the ratios is obvious. In particular, comparing _!f We apply this analysis to the DM, the pole is deter-
RR,, (Olsson with RERE,(DM)], one readily notes quite a Minéd as solution of
distinct different energy dependence, théM(K-matrix)
behaves qualitatively similar as FR§,,(DM) ], although dif-
ferences remain in detail. If evaluated at the respectiven the second Riemann sheet, which leads to a sytem of
masses My, we find RE,(Olsson=—5.7%, coupled equations for the resonance mass and width:

z=md+3,(2) (68)
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[ SP, (Mr*TRr/2)=SP, (Mp)/2, 79
MR=m2+R%EA<MR— EFR) : (69) (Mt 'r/2) (M) 79
or from the curvature at maximum speed
i
['r=-2Im EA(MR— —FR) . (70) 2_ SP#(MR)
2 FR="8q2sp_(Mp/dwe" (80

Expanding then the DM amplitude as in B§5), one imme- he latter should be preferred for a broad resonance but

diately sees that the splitting into a pole and a regular par ight be more difficult to evaluate numerically. Ker [21]
formally is not identical with the splitting into a resonance finds

and a background part because of an additional energy de-
pendence of the dressed resonance amplitude besides the Mg=1210 MeV, TI'r=100 MeV. (81)
pole contribution.
However, this formal criticism may not be too relevant in These values may be used to calculagerom Eq. (71) for
the actual application if the background amplitude is verythe whole energy range and to check the initial assumption
weakly energy dependent. To this end, let us first brieflyyith respect to the energy dependencet?p,t. Indeed, one
re_yiew the SP of elastierN scattering as performed by finds at resonancé,(W=Mg)=—23.5° and only a very
Hohler [21,22 to determine the resonance pole parametersmall variation ofs, with energy which justifies the method.
(Mg, T'g). Itis based on the following parametrization of a An important point to note so far is thaP _ and tP° in
resonant pagtlal wave amplltudellm by splitting it into a  Hghler's analysis may well be considered as approximations
background; . and a pole part;>*: to background and dressed amplitud®s andt? _ of a cer-
b ole, tain dynamical model in a limited energy interval around the
trr(W) = (W) + 62 W), 7D resonance position. In view of the fact that one can generate
a whole family of phase equivalent dynamical models by
means of unitary transformations without changing the pole
t’jfj'f(W)zz(W)t;ﬂ(W), (72) position in the complex plane, one may conclude that the
speed plot analysis singles out from this family the one
with which predicts a dressed amplitutf®, that is most accu-
rately approximated by its pole term and which gives the
i_ (73 weakest energy dependence of the backgrd&qd On the
Mr—W=iT'r/2 mass shell, it would provide dynamical amplitudégr and
tR_which are closest to Hder's amplitudes® _ andt?%,
e(espectively. This observation could also provide a possible
explanation for the fact that the resulting background phase
is repulsive in contrast to standard attractive background in-
t2_(W)=sin 8p(W)e' W), (74)  teractions as has been noted already byleio[22].
The recent extension of the SP to pion photoproduction
As discussed in Sec. Il, EG74) is a natural consequence in by Hansteiret al.[12] takes as the starting point the follow-
any dynamical model. In the elastic region, of course, alsdng ansatz for the photoproduction amplitude,
the full amplitude is unitary,

where

tren(W) =

Since theA resonance lies in the elastic region, Her's
parametrization requires in addition separate unitarity for th
background. Thus a real phase sfHiftcan be assigned by

, t (W)=t W)+ T2 +z.t" (W), (82
t__(W)=sin S(W)e oW, (75) 7 7 v
wheret?,"yrn is the photoproduction Born amplitude calculated

which fixes the quantity: from the pseudoscalarN Lagrangian. Assumin@"?w to be

Z(W) =2 (W), (76) energy independent, they could determine the pole param-
etersMg, I'r, and the residue, from the speed of the
Assumingt?ﬂ, (and thuss, andz) to be energy indepen- difference between the full and the Born amplitude:
dent, one can extract the pole paramebMgsandI' directly

b
from the speed of the full amplitude, which is defined as SP._(Hanstein= d[tﬂ(W)—tﬂoy"’(W)]} (83)
Ty dw '
dt, (W)
SPA (W)= daw |’ (77) The main reason for criticizing this procedure is twofold:
(i) In the original SP of7N scattering[21,22 Born terms
Then one finds from Eq.71) have not been subtracted, i.e., the speed of the full amplitude
determines the pole parameters. Moreover, only the speed of
zI'g/2 i i i
SP._(W)= R (78 the full amplitude is related to the time delay between the

arrival of the incident wave packet at the collision region and
the departure of the outgoing packét) There is no reason
Thus the maximum of the speed is located\at Mg, de- to give up the separate unitarity constraint for the back-
termining the resonance mass. Furthermore, the width is theground amplitude and to treat the hadronic and e.m. reactions
obtained from the half maximum values in a different manner.

(Mg—W)2+T3/4°
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M, M, TABLE I. Residuesz,(Mg)=r exp(¢) for the E3? andM}?
60 [ g 60 L} multipoles from various speed plots.
~ [ ; ~ ;
§ 40t \\ N’E 40 - \\ : ] present(SP  present(MSP)  from [12]
S e T S I P e T T 2.47 2.24 2.46
5 : = : b (deg —156 - 162 -154.7
. i . B v (1073/m.) 39.9 415 42.32
1100 1200 1300 1100 1200 1300 — — —
W B W B by (deg 26.0 36.5 275

FIG. 5. Left panel: The modulus ai (W) for electric(dashed

and magnetic multipoleolid). Right panel: The modulus c'ffy of
MSP.

approximation in an energy interval around the resonance
position. The phase of the residue can be calculated from
the relation

Therefore, we propose as a consequent extension of

Hohler's ansatz(71) to e.m. pion production in the elastic Im[t,(Mg)]= l+—tarnr§[cos ¢+tan &, sin ¢],
b

region the form
(88)

which follows directly from Eqs(84) and (86). Our values
for z,(Mg) are compared with the ones of REE2] in Table

_ . In the case of the electric multipolg3? | both values
where again it is assumed that the background tgeif>  agree very well. However, a somewhat larger deviation is
ObeyS itself the Unitarity Constraint, i.e., it fulfills Watson's found for M?lf . For the ratio of the residues of electric to
theorem which implies thag is real. The constraint from magnetic multipoles we obtain

Watson’s theorem for the full amplituds,.,, which can be

written as

try(W)=B(W)e' W +2 (W] (W), (84

E
M
Rey(SP = ZZJ,((—MR))=—O.04O—O.O4Z. (89)
Mt (W)] 7 (Mr

tan S(W) = R, (W)]’ (85

Comparison to the result $i.2] (—0.035-0.046) shows a
i o good agreement for the imaginary part while the real part is
finally allows to eliminate the unknown modulus of the back- 1004 smaller.
ground amplitudg3(W) in Eq. (84). One finds Most of the difference between the approach of Hanstein
et al. and ours can be traced back to the phase of the back-
, ground of the magnetic multipole. Whereas in our ansatz the
B(W)=—sin 5p(W)Re[ 2,(W)]+cos 6,(W)Im[z,(W)]. phases of both background amplitudes agree by definition
(86 with 8y, Which is already fixed in the analysis @fN scat-

Of course, the information contained in E¢84) and(86) is  tering, the phase of the backgrou "+17, in Eq.(82) is
not sufficient to fix the complex functian (W) over a larger  unconstrained sincezy is an arbitrary complex number. As
energy range from available experimental multipole datashown in Fig. 6, they differ even in sign for both multipoles.
sets. However, it allows to check whether the data can b®nly the electric background phagiotted curvgis close to
described at all over a limited energy range around the resa$, (solid curvg. Consequently, the background and pole

nance position replacing,(W) by the residuez,(Mg). terms found i 12] cannot, even approximately, be identified
We have performed such a SP taking as input “data” the
multipoles from the fixed-dispersion analysis of Hanstein 60
et al. [12]. By construction, these multipoles exactly obey -
Watson's theorem, and thus they provide at the same time a %0 P
“data” set for the 77N scattering phase shift Writing the b 7
residuez,(Mg) =r exp(¢), it is obvious[see Eqs(84) and Z 0=
(86)] that its modulus is given by the ratio of the speeds of <
the hadronic and e.m. amplitudes —-30 r ]
~®%100 1200 1300
r= w (87) w (M6V>
|dt, . /dW

FIG. 6. Background phase shifts as function of the photon lab
energy from the analysis dfl2]. The dotted and dashed curves
This ratio is plotted as a function of the energy in the leftcorrespond to the electric and magnetic multipoles, respectively.
panel of Fig. 5. The plateau arouldd= My, already indicates The solid curve shows the background phase obtained Hyero
that the assumption of a constant residue may provide a godebm =N scattering 21].
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50 40 mentioned time delay, one would not have an unique pre-
20 130 scription for the choice of the amplitude for which the speed
& should be calculated and thus the whole procedure would
(S . 20 become rather ambiguous.

Ei_m 10
20 o o V. SUMMARY AND CONCLUSIONS
 'Tre ' ‘ T ' o We have analyzed in detail different theoretical descrip-
g o 0 z tions of pion photoproduction in the region of tiereso-
> T nance, namely, dynamical models, effective Lagrangian ap-
277 i Y. ] proaches, and the recently proposed speed plot analysis. Our
wa Jot ] main emphasis has been laid on the question to what extent
T genuine resonance contributions to the e.m. multipoles can
3

oo 200 300 400 5007900 200 300 400 500 be extracted, in particular, the interesting and controversely
E, (MeV) E, (MeV) discussedE2/M 1 ratio Rgy, for the e.m.A excitation.

As a theoretical basis we have chosen a dynamical model
or which we have briefly reviewed the treatment of pion
nucleon scattering and pion photoproduction, in particular
the separation of background and resonance properties. For
the effective Lagrangian approaches, we have discussed the

with the background and dressed multipotég and tR different unitarization schemes resulting in different back-

. . LTy round and resonance contributions as pointed out already in
respectively, of any dynamical model. However, this is pOS_QB]. It turns out thata priori there is nopdirect relation ofy

sible for our results in the approximate way discussed abov sackground and resonance contributions of a DM to the cor-
Figure 7 shows the quality of the pole approximation, I'e"responding ones of a EL. The main reason for this is that

evaluating Eq.(84) with z,(W)=2,(Mg), in comparison unitarity is put in by hand in the EL which does not allow the

with the full multipoles. Clearly, the pole approximation . o .
cannot reproduce the data below and above the resonan|deent|f|cat|on of the background part. Only on the premises

region as it not need to. In particular, it is obvious that by at the hadronic background phases could be identified, the
definition the pole approximation leads to a wrong low. Various resonance parameters such as resonance mass, decay
energy behavior. width, andE2/M 1 ratio could be r_elated. This reflects the
There remains one final point to be mentioned. It concerngaCt that_ the largely phenomenolo_glc_al treatment of th_e back-
the proper normalization of the amplitude for which the ground introduces a unitary ambiguity or re.presgntauon de-
speed is calculated since any energy-dependent normalizB?ndence[s]' Therefore, almost alE2/M1 ratios discussed

on factor o afect th resul. Accorng [a2) two o 1 TePesentalon dependentduenties which imples
times the speed of th& matrix (which is related to thes y '

matrix thioughs =1+ 2iT) defines the quantity which can 2228 0L (M, B0 S B S o etion, because
be interpreted as a time delay. This suggests to study t ' p ’

speed of the product ofgk times the multipole, where they are simply given by the ratio of the full multipoles at

. . this energy.
andk are t_he ¢.m. momenta of pion and phot_on, respectively. The main problem, however, how these numbers should
(The relatlon betvvee_n th@\/@tnx ‘ind mUIt'pOIGS can be be compared to a given microscopic hadron model, remains
found, e.g., iN17]) Sincedyqk/dW~0.9 in the resonance ,resolved. The only safe solution is to calculate the com-
region, this factor is not neghglblq Wg have performed thlsplete pion production amplitude within such a model in order
modified speed analysi®ISP), i.e., identifiedt ., in Eq. (84)

. i X ; X ) to have an unambiguous and direct comparison to experi-
with Jq_ktlmes the multipole, instead of taking the multipole

. ; i mentally observable quantities.
itself as before and in Refl12]. The results are summarized  pg 3 |ast topic, we have studied the recently proposed
in Fig. 5 (right pane] and Table I(middle column. In order

X ! , , speed plot analysis of Hansteshal. We could show that the
to allow a direct comparison with the foregoing SP, Wegseparated resonance and background contributions of their
present the MSP results in termsof=z,/\qok, whereq,  analysis cannot be identified with corresponding DM quan-
andky are the momenta aV=Mg. From Table | one ob- tities, since their ansatz for the background is not constrained
tains by unitarity. For this reason, we have proposed an alternative
speed plot analysis which respects the separate unitarity con-
dition for the background. In such an analysis, the regular
Rem(MSP)=—0.032-0.044, (900 and pole contributions can be viewed as approximations of
the background and dressed resonant contribution of a cer-
which differs significantly fromRgy(SP) in Eg.(89). In  tain dynamical model. Applied to the same input as Hanstein
addition, we have checked that the quality of the pole apet al, we find a similar result for the residue of the electric
proximation, which can be achieved within the MSP, is verymultipole, whereas differences of the order of 10% appear
similar to the one shown in Fig. 7. for the magnetic multipole. Accordingly, we obtain a slightly
This last point shows the following. Without reference to changed ratioRgy(SP). In addition, we have proposed a
the physical interpretation of the speed in terms of the abovéurther modification of the speed analysis which was guided

FIG. 7. The pole approximation as obtained in our analysisf
(dashed compared to the complete multipoles from Hansetiral.

[12] (solid).
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by the physical interpretation of the speed in terms of theand the coupling to many pion channels, which makes a
time delay between incoming and outgoing wave packetsiealistic dynamical calculation more difficult.
This modification leads to a 20% change in tRgy(SP)
ratio. But again it remains unclear hoRey(SP) could be
compared to any microscopic hadron model. ACKNOWLEDGMENTS
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