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Extraction of electromagnetic properties of theD„1232… excitation from pion photoproduction
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Institut für Theoretische Physik, Universita¨t Hannover, D-30167 Hannover, Germany
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Institut für Kernphysik, Johannes Gutenberg-Universita¨t, D-55099 Mainz, Germany

~Received 5 August 1997!

Several methods for the treatment of pion photoproduction in the region of theD~1232! resonance are
discussed, in particular the effective Lagrangian approach and the speed plot analysis are compared to a
dynamical treatment. As a main topic, we discuss the extraction of the genuine resonance parts of the magnetic
dipole and electric quadrupole multipoles of the electromagnetic excitation of the resonance. To this end, we
try to relate the various values for the ratioREM of theE2 to M1 multipole excitation strengths for theD~1232!
resonance as extracted by the different methods to corresponding ratios of a dynamical model. Moreover, it is
confirmed that all methods for extracting resonance properties suffer from an unitary ambiguity which is due
to some phenomenological contributions entering the models.@S0556-2813~98!04301-5#

PACS number~s!: 14.20.Gk, 13.60.Le, 13.60.Rj, 25.20.Lj
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I. INTRODUCTION

One of the most prominent manifestations of intern
nucleon structure is theD~1232! resonance which is seen
e.g., in pion scattering and electromagnetic~e.m.! pion pro-
duction. Thus it is not surprising that a large number of e
perimental and theoretical investigations has been devote
the understanding of the structure of this resonance.
cently, the question of the relative strength of the elec
quadrupole (E2) to the magnetic dipole (M1) excitation in
the e.m.gN↔D transition has become one of the cent
questions and is the subject of numerous papers@1–8#. While
the M1 strength in the simplest approach is directly rela
to the magnetic properties of the constituents, theE2
strength may be interpreted as a measure of internal sp
deformation, i.e., as deviation of the orbital wave functio
from spherical symmetry. Thus, there is considerable exp
mental effort to provide accurate data on pion photoprod
tion and electroproduction from the nucleon in theD reso-
nance region@9,10#. Various methods have been proposed
the literature for the isolation of the genuine resonant par
the experimentally measured multipoles which, howev
give quite different answers@1,3,11–13#.

The general problem of such an extraction lies in the f
that the experimentally observable multipoles contain imp
tant background contributions which cannot be separated
simple and unique way, so that in most explicit evaluation
specific model is used. Thus it is not surprising that the d
ferent prescriptions result in different values of resona
properties. In fact, for photoproduction the values forREM ,
the ratio of electric quadrupole to magnetic dipole, vary b
tween14 and28 % ~see, e.g., the discussion in@4#!. How-
ever, in view of the various methods used, it remains unc
how these values should be compared to each other. In o
words, is there a common basis for a meaningful comp
son?

It is the purpose of this paper to address this questio
greater detail. To this end we will compare three differe
methods which have been recently applied. They are ba
570556-2813/98/57~1!/295~10!/$15.00
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on ~i! a dynamical model~DM! for the coupledpN-D-gN
system,~ii ! the effective Lagrangian approach~EL!, and~iii !
the recently proposed speed plot analysis~SP!. We will take
the DM as a common point of reference for this study.

To this end we briefly review in Sec. II the treatment
pion photoproduction based on a dynamical model. Spe
attention is paid to the general structure of the pion nucle
scattering and photoproduction amplitudes and the impl
tion of unitarity. Section III collects the basic formulas of th
treatment of these reactions in the framework of ELs, and
connection between quantitities such as resonance m
coupling constants of the ELs, and the corresponding qu
tities of a DM is derived. Moreover, a numerical comparis
is performed. In Sec. IV we briefly discuss the SP and po
out some shortcomings in the present application and h
they can be avoided. The paper ends with a summary
some conclusions.

II. DYNAMICAL MODEL

There are two main advantages of treating e.m. pion p
duction dynamically, i.e., solving for a givenpN interaction
the corresponding Lippman-Schwinger equation. First of
it ensures that all two-body unitarity constraints are au
matically respected. Secondly, it provides a well defined
sis for the analysis of the role of the final state interaction
the e.m. reaction. In such a dynamical approach the mo
parameters are usually adjusted in order to reproduce
available on-shell data. At present the main disadvantage
in the fact that a dynamical model requires still some pur
phenomenological input, e.g., form factors in order to reg
larize the driving terms of the interaction, which is essen
to solve the dynamical equations. Further problems are
lated to the neglect of three-body unitarity above two-pi
threshold and to the requirements of relativity and gau
invariance. However, various improvements have be
achieved recently@11,13–16#. Notwithstanding these short
comings, such a dynamical model still provides the m
satisfactory and comprehensive description.
295 © 1998 The American Physical Society



y-

a
g
s

t

-
th
de
a
t

de
n
n

nt

nd

ins

or-

ite
y

-
ises

in-
nce
eon

be-
r to
in
on-
e

296 57TH. WILBOIS, P. WILHELM, AND H. ARENHÖVEL
We shall first briefly review the salient features of a d
namical model for the coupledpN-D-gN system following
the notation of@1,5#. The Hilbert space is assumed to be
direct sum of bareD, pN, andgN states with correspondin
projectorsPD , PpN , andPgN . The Hamiltonian is taken a

h5h0~mD
0 !1vpp

B 1~vDpN1vpgN
B 1vDgN1H.c.!, ~1!

with a backgroundpN interactionvpp
B 5PpN(h2h0)PpN ,

the pND vertex vDpN5PDhPpN , a nonresonantgN→pN
driving term vpgN

B 5PpNhPgN , and the gND vertex
vDgN5PDhPgN . One should note that the energyh0 in the
D sector depends on the bare resonance massmD

0 which is a
model parameter to be fitted.

Within such a model the elasticpN scattering amplitude
tpp can be split into a background termtpp

B and a resonan
part tpp

R :

tpp5tpp
B 1tpp

R . ~2!

The background term is defined by the integral equation

tpp
B 5vpp

B 1vpp
B gpN

0 tpp
B ~3!

with the barepN propagatorgpN
0 . The resonant part

tpp
R 5 ṽ pNDgD ṽ DpN ~4!

is determined by the dressedpND andDpN vertices

ṽ DpN5vDpN1vDpNgpN
0 tpp

B ,

ṽ pND5vpND1tpp
B gpN

0 vpND , ~5!

and the dressedD propagatorgD , obtained from

gD~s!5gD
0 ~s!1gD

0 ~s!SD~s!gD~s!, ~6!

with the free D propagatorgD
0 (z)5(z2mD

0 )21 and theD
self-energy

SD~s!5 ṽ DpNgpN
0 vpND5vDpNgpN

0 ṽ pND . ~7!

The equations~2! and ~4!–~6! are illustrated diagrammati
cally in Fig. 1. We have already mentioned the fact that
driving terms of the background and resonance amplitu
contain at present phenomenological ingredients which
fitted to the experimental data. Thus these amplitudes and
corresponding phases are to some extent model depen
Recently we have shown that this model dependence ca
interpreted as different, unitarily equivalent representatio

FIG. 1. ~a! pN scattering amplitude,~b! dressedpND vertex,
and ~c! the dressedD propagatorgD .
e
s

re
he
nt.
be
s,

yielding different splittings into background and resona
amplitudes but leaving the total amplitude unchanged@5#.

The structure of the photoproduction amplitude

tpg5tpg
B 1tpg

R ~8!

is completely analogous. It again splits into a backgrou
tpg
B , determined by

tpg
B 5vpgN

B 1tpp
B gpN

0 vpgN
B , ~9!

and a resonant part

tpg
R 5 ṽ pNDgD ṽ DgN , ~10!

referred to as the ‘‘dressed’’ resonant amplitude. It conta
the dressedgND vertex

ṽ DgN5vDgN1vDpNgpN
0 tpg

B . ~11!

Accordingly, one may splittpg
R further into the so-called bare

resonant parttpg
D and a vertex renormalizationtpg

VR , i.e.,

tpg
R 5tpg

D 1tpg
VR , ~12!

where

tpg
D 5 ṽ pNDgDvDgN , ~13!

and

tpg
VR5 ṽ pNDgDvDpNgpN

0 tpg
B . ~14!

The diagrammatic representation oftpg is shown in Fig. 2. It
is obvious that for both multipole amplitudes the same f
mal structure holds.

The form of the amplitude as discussed above is qu
general below thepp production threshold. In that energ
regime, the coupling to the closedppN channel may be
effectively incorporated into areal, energy dependent back
ground interaction, where the energy dependence ar
through the energy dependence of the propagators in the
termediateppN states. Note that such an energy depende
is already introduced by considering the crossed nucl
pole term as background mechanismvpp in the ~3,3! chan-
nel.

We turn now to the discussion of the basic relations
tween on-shell matrix elements and phase shifts. In orde
avoid new notation, we will understand all amplitudes
connection with the phase shifts as the corresponding
shell quantities. ForpN scattering, the scattering amplitud
reads

FIG. 2. ~a! Pion production amplitude and~b! dressedgND
vertex.
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57 297EXTRACTION OF ELECTROMAGNETIC PROPERTIES OF . . .
tpp52
1

r
eid sin d, ~15!

with a phase space factorr determined by the adopted no
malization conventions, i.e., the scattering matrix is given

spp5112irtpp . ~16!

The usual choice isr52q, whereq denotes the on-she
momentum of the pion in thepN c.m. frame. Since the
background is unitary by itself, one can define a nonreson
background phase shiftdB

DM by

tpp
B 52

1

r
eidB

DM
sin dB

DM . ~17!

One then easily deduces for the resonant part

tpp
R 52

1

r
ei ~d1dB

DM
! sin dR

DM , ~18!

where the resonance phase shiftdR
DM5d2dB

DM is given by

tan dR
DM~s!5

ImSD~s!

As2mD~s!
. ~19!

Here we have introduced the dressedD mass

mD~s!5mD
0 1Re SD~s!. ~20!

Neglecting small Compton scattering corrections@17#,
Watson’s theorem states that the phase of the photopro
tion amplitude below the two pion threshold is given by t
hadronicpN scattering phase shiftd, i.e.,

tpg5 t̄ pgeid, ~21!

where t̄ pg is real. Similarly, one has for the backgroun
contribution

tpg
B 5 t̄ pg

B eidB
DM

, ~22!

with the pN scattering background phase shiftdB
DM and a

real t̄ pg
B . It is convenient to define an additional phasedp

DM ,
called the photoproduction background phase@1#, so that

tpg
R 5 t̄ pg

R ei ~d1dp
DM

!, ~23!

where againt̄ pg
R is real. One should keep in mind that th

phasedp
DM is in general different for the different multipol

amplitudes. Moreover,dp
DM is determined by the elementar

interaction model. In detail, one has

tan dp
DM5

sin dR
DM

t̄ pg2 t̄ pg
B cosdR

DM
. ~24!

For the comparison with the ELs it is useful to express
modulus of the total photoproduction amplitude in terms
the modulus of the resonance amplitude and the photo
duction background phase
y

nt

c-

e
f
o-

t̄ pg5 t̄ pg
R

sin~dR
DM1dp

DM!

sin dR
DM . ~25!

Furthermore, for the moduli of the background and ba
resonance amplitudes, one easily finds the following re
tions:

t̄ pg
B 5 t̄ pg

R
sin dp

DM

sin dR
DM , ~26!

t̄ pg
D 52

vDgN

r v̄̃ DpN

sin dR
DM . ~27!

Note that the bare amplitudetpg
D carries the full phased @see

Eq. ~13!#. An expression, alternative to Eq.~25!, is then

t̄ pg5 t̄ pg
R cosdp

DM1 t̄ pg
B cosdR

DM , ~28!

which exhibits the resonance and background contributi
to t̄ pg .

At the end of this brief review, we collect different pos
sible definitions ofE2/M1 ratiosREM for the gND transi-
tion. The ratio of the full amplitudes

REM5
tpg~E2!

tpg~M1!
5

t̄ pg~E2!

t̄ pg~M1!
~29!

is directly related to the experimentally observable mu
poles which, according to Watson’s theorem, is a real
energy dependent quantity. The bare ratio

REM
D ~DM!5

tpg
D ~E2!

tpg
D ~M1!

5
t̄ pg

D ~E2!

t̄ pg
D ~M1!

~30!

is also a real number because the bare amplitudes carry
total phase as mentioned above. It is directly related to
ratio of the strengths of the coupling constants in thegND
transition current and thus is energy dependent only if
coupling is energy dependent.

With respect to the ratio of the dressed multipoles, o
may define two different quantities, since the dressed mu
poles carry different phases, namely, the complex quant

REM
R ~DM!5

tpg
R ~E2!

tpg
R ~M1!

, ~31!

or, alternatively, the ratio of the moduli

R̃EM
R ~DM!5

t̄ pg
R ~E2!

t̄ pg
R ~M1!

. ~32!

As we will see in the next section, this latter quantity
closely related toREM defined in the EL. Note that both
dressed ratios are energy dependent.
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III. EFFECTIVE LAGRANGIAN APPROACH
AND UNITARIZATION METHODS

Let us first summarize the treatment of pion scattering
pion photoproduction in the effective Lagrangian approa
~EL!. Here, only the lowest order tree level Feynman d
grams are considered including background and reson
contributions. Subsequently, the resulting amplitude is un
rized. Three different prescriptions for unitarization ha
been proposed in the literature: the Olsson method@18,19#,
the Noelle method@20#, and theK-matrix approach@3#. The
dependence of the photoproduction process on the ado
unitarization scheme has already been extensively studie
Davidson, Mukhopadhyay, and Wittman@3#, and we follow
their notation for convenience.

We start by collecting the basic formulas for pion nucle
scattering in the energy region of theD resonance. The dif-
ferent unitarization methods can be parametrized by the
lowing relation for the phase shift:

tan d5
11e tan dB

EL

e1h tan dB
EL , ~33!

where tandB
EL is given by the nonresonant tree diagrams. T

quantitye is interpreted as thes-channel contribution of the
D resonance and parametrized in the form

e~s!5
MD

2 2s

MDGD~s!
, ~34!

where the constant massMD is obtained as the zero ofe(s).
The parameterh in Eq. ~33! distinguishes the different uni
tarization methods, i.e.,h521,0,1 refers to the Noelle
K-matrix, and Olsson approaches, respectively. Obviou
all methods coincide in the case of a vanishing backgro
phase shiftdB

EL50. For the decay width, the following ansa
is used:

GD~s!5
gpND

2 ~s!q3~s!@Ef~s!1M #~As1MD!

24pmp
2AsMD

, ~35!

whereq(s) andEf(s) denote, respectively, the pion mome
tum and the nucleon energy in theD rest frame. Furthermore
a weak energy dependence of the coupling constantgpND is
allowed for

gpND~s!5gpND~MD
2 !1

B~s2MD
2 !

MD
2 1

C~s2MD
2 !2

MD
4 ,

~36!

with free parametersB andC. The background phase shift
parametrized as

tan dB
EL5aS q

mp
D 3

1bS q

mp
D 5

, ~37!

with free parametersa andb to be fitted as well.
In order to establish the connection between the EL

the DM one just has to cast tand of the DM into a form
which corresponds to Eq.~33! in terms of the correspondin
dynamical quantitities. A straightforward calculation gives
d
h
-
ce
-

ted
by

l-

e

y,
d

d

tan d5
11m tan dB

DM

m2tan dB
DM , ~38!

with

m5
1

tan dR
DM , ~39!

where tandR
DM is given in Eq.~19!.

Equating now Eqs.~38! with ~33!, one can expresse(s)
as function of the DM variablesdR

DM anddB
DM , the EL back-

ground phasedB
EL , and the unitarization parameterh;

e~s!5
m~12h tan dB

DM tan dB
EL!2~ tan dB

DM1h tan dB
EL!

11m~ tan dB
DM2tan dB

EL!1tan dB
DM tan dB

EL .

~40!

By means of Eq.~34!, the EL quantititiesMD andGD can be
expressed through DM quantities. In addition, they will al
depend on the EL background phasedB

EL and the unitariza-
tion parameterh. For example, one finds for the resonan
mass parameter

MD5mD1
tan dB

DM1h tan dB
EL

12h tan dB
DM tan dB

EL Im SD , ~41!

where the right-hand side is to be taken ats05MD
2 and the

dressed energy-dependent massmD is defined in Eq.~20!.
The dependence on both the EL background phasedB

EL and
the DM background phasedB

DM reflects the representatio
dependence mentioned above in the discussion of the D

If now we assume the same representation, i.e., iden
the background phasesdB5dB

EL5dB
DM , then the expression

simplify considerably, yielding

e~s!5
m~12h tan2 dB!2tan dB~11h!

11tan2 dB
, ~42!

MD5mD1
~11h!tan dB

12h tan2 dB
ImSD . ~43!

This is an implicit equation for the massMD in the respec-
tive unitarization scheme. One has in detail

MD5mD~MD! ~Noelle!, ~44!

MD5mD~MD!1Im SD~MD! ~K-matrix!, ~45!

MD5mD~MD!12
Im SD~MD!

12tan2 dB~MD!
~Olsson!

5mD~MD!12 Im SD~MD!1O~ tan2 dB!. ~46!

It is easily seen that in the case of theK-matrix method,MD

corresponds to the energy at which the full phase shiftd is
equal top/2. Note that the sign of ImSD is not fixed a
priori . For the model B of Tanabe and Ohta, upon which o
later comparison is based, one obtains a negative sign
thus within this model MD~Olsson!,MD~K-matrix!
,MD~Noelle!.
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Turning now to pion photoproduction, we begin with
brief summary of the treatment of this process as given
@3#. In the EL, one starts from the tree level contributions
background and resonance terms

tpg~ tree!5AB1
N

e
. ~47!

For our purpose, it is not necessary to specify the exp
expressions for the real numbersAB andN, which are given
in @3#. The unitarized amplitude then has the form

tpg5 t̄ pgeid, ~48!

with

t̄ pg5Ñ sin~dR
EL1dp

EL!. ~49!

The real amplitudeÑ and the photoproduction backgroun
phasedp

EL are functions ofN, AB and the phasesdR
EL anddB

EL

whose explicit form depends on the unitarization method
which will be given below. The ratioREM

R is then given in
terms of the appropriate electric and magnetic amplitu
NE/M defined correspondingly as in Eq.~47!:

REM
R ~EL!:5

NE~EL!

NM~EL!
. ~50!

In the literature, the ratiosREM
R (EL) are quoted just at the

energyMD of the respective unitarization scheme.
Now we can establish the relations between the EL a

plitudesNE/M and the DM quantities on the basis that t
total pN phase shiftd and the total multipole amplitudes ca
be identified, i.e., give a satisfactory fit to experimental da
In Olsson’s method, the unitarized amplitude is given in
form

t̄ pg5AB cosdR
EL1N sin dR

EL cosdp
EL , ~51!

with

sin dp
EL5

AB

N
, ~52!

leading to the correspondenceÑ(Olsson)5N. As already
pointed out by Olsson@18#, no solution arises in the cas
whenuABu.uNu, as is the case for theE2 excitation of theD.
This problem is avoided, when the helicity amplitudes a
unitarized instead of the multipoles@3#. However, this trick
would not work in the case of a weak resonance which
produced by one e.m. multipole only. The comparison w
the DM, which has already been performed by Tanabe
Ohta @1#, is based on the identification of Eq.~49! with Eq.
~25!. It yields the relation

N5
sin~dR

DM1dp
DM!

sin~dR
EL1dp

EL!

t̄ pg
R

sin dR
DM . ~53!

It is worth noting that, when identifying the respective bac
ground contributions in EL and DM, the caseuABu.uNu can-
not appear, because in the dynamical model the photo
n
f

it

d

s

-

.
e

e

s
h
d

-

o-

duction background phasedp
DM is a well defined quantity.

Although this relation betweenN and the dressed amplitud
t̄ pg

R depends also on the various phases of DM and EL
thus does not allow a simple interpretation, one sees tha
ratio REM is just the ratio of the moduli of the dressed mu
tipoles in the DM@see Eq.~32!#:

REM
R ~Olsson!5

t̄ pg
R ~E2!

t̄ pg
R ~M1!

5R̃EM
R ~DM!. ~54!

In Noelle’s scheme, the unitarized amplitude is given

t̄ pg5AB cosd1N sin dR
EL , ~55!

which leads to the expressions

Ñ25N2 cos2 dB
EL1~N sin dB

EL2AB!2, ~56!

tan dp
EL5

AB cosdB
EL

N2AB sin dB
EL . ~57!

The connection betweenN and the DM amplitudes reads

N~Noelle!5
t̄ pg cosdB

EL2 t̄ pg
B cosd

sin dR
EL cosdB

EL . ~58!

Due to the explicit appearance of the background contri
tions, there is again no simple interpretation forN(Noelle) in
terms of the dynamically calculated quantities. On the ot
hand, the ratioREM becomes quite simple

REM
R ~Noelle!5

t̄ pg~E2!cosdB
EL2 t̄ pg

B ~E2!cosd

t̄ pg~M1!cosdB
EL2 t̄ pg

B ~M1!cosd
.

~59!

Obviously, there is no simple relation between this ratio a
the dynamical resonance parameters. However, if one ev
ates this ratio atd5p/2, one finds

REM
R ~Noelle!ud5p/25REM~DM!ud5p/2 . ~60!

In the K-matrix approach, one identifies the tree lev
contributions asK-matrix elements. The full unitarized pho
toproduction amplitude reads then

t̄ pg5S AB1
N

e D cosd. ~61!

Since here the relation

1

e
5tan d2tan dB

EL ~62!

holds, one finds

t̄ pg5AB cosd1
N

cosdB
EL sin dR

EL . ~63!

Comparing Eq.~63! with Eq. ~55! one finds the relation
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300 57TH. WILBOIS, P. WILHELM, AND H. ARENHÖVEL
N~K-matrix!5cosdB
ELN~Noelle!, ~64!

which immediately leads to the same energy dependentREM
R

for the K-matrix as in Noelle’s approach, and thus in t
K-matrix approach the ratio quoted in the literature is no
ing else than the ratio of the experimental multipoles
d5p/2.

We close this Section by comparing the explicit numeri
values for the various ratiosREM and other quantities
introduced above with the dynamical model of Tana
and Ohta~model B in @1#!. From their model one deduce
from Eqs. ~46! and ~45! the following D masses:
MD~Olsson!51220 MeV, MD(K-matrix)51230 MeV, and
MD~Noelle!51243 MeV. The ordering of the masses is d
to the negative self-energy contribution of this model.
turns out, that the values obtained in this manner are no
away from the numbers quoted in@3#, which are 1217, 1232
and 1250 MeV, respectively. The small difference in t
K-matrix method has its origin in the fact that different da
for d had been fitted in both papers@1,3#.

As next we calculate on the basis of the DM the coupl
‘‘constant’’ gpND(s) for the different ELs via the deca
width GD(s) given in Eq. ~35! using Eqs.~34!, ~42!, and
~43!. The result is shown in Fig. 3. One readily notices
15% variation of the coupling strength between the Ols
andK-matrix method. Furthermore, the energy dependen
which can be traced back to the energy dependence o
self-energy in the DM, is rather weak and similar for all thr
schemes but not negligible at all. At least for the simp
model of Tanabe and Ohta, it is larger than the energy
pendence allowed for by Davidsonet al. @3#.

In Fig. 4 we show the variousE2/M1 ratios as a function
of the photon lab energy. There are basically three differ
dressed ratios,R̃EM

R ~DM!5REM
R ~Olsson!, Re@REM

R (DM) #,
and REM

R ~Noelle!5REM
R ~K-matrix!. Note that these identifi-

cations are based on the assumption that the background
tributions, which may formally be obtained by puttin
gpND50 in DM and EL, can be identified. The differenc
between the ratios is obvious. In particular, compar
REM

R ~Olsson! with Re@REM
R (DM) #, one readily notes quite a

distinct different energy dependence, whileREM
R ~K-matrix!

behaves qualitatively similar as Re@REM
R (DM) #, although dif-

ferences remain in detail. If evaluated at the respec
masses MD , we find REM

R ~Olsson!525.7%,

FIG. 3. The coupling strengthgpND as function of the invariant
energy of thepN system for the different ELs. The dotted, dashe
and solid curves correspond to the Olsson, Noelle, andK-matrix
method, respectively.
-
t

l

e

t
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REM
R ~Noelle!520.2%, andREM

R (K-matrix)520.7%. The
difference to the results of@3# can be traced back mainly t
different prescriptions for the e.m. and hadronic backgrou
contributions. Since all ratios are based on the same D
these different results clearly reflect the fact that a mean
ful comparison is not possible. In this context we recall th
except forREM

R ~K-matrix!, the dressed ratios are represen
tion dependent.

IV. SPEED PLOT ANALYSIS

The essential idea of the speed plot analysis~SP! rests on
the analytic properties of the partial wave amplitude. A re
nance manifests itself as a pole in the lower half plane of
second Riemann sheet when continuing the amplitude
the complex energy plane. The aim of the SP is to locate
pole position and to determine the corresponding resi
from the experimental data. This method, originally used
pion scattering, has been applied very recently to pion p
toproduction by Hanstein, Drechsel, and Tiator@12#. Assum-
ing a well isolated pole for theD resonance, one can separa
it by performing a Laurent expansion in the vicinity of th
pole, resulting in the form

tpg~W!5tpole
SP ~W!1t regular

SP ~W!, ~65!

with the pole term

tpole
SP ~W!5

reifGR/2

WR2W
, ~66!

and the regular part

t regular
SP ~W!5 (

n50

`

tn~W2WR!n, ~67!

with constant complex coefficients tn . Here,
WR5MR2 ( i /2) GR denotes the pole position with consta
resonance massMR and widthGR , andr andf characterize
modulus and phase of the residue.

If we apply this analysis to the DM, the pole is dete
mined as solution of

z5mD
0 1SD~z! ~68!

on the second Riemann sheet, which leads to a sytem
coupled equations for the resonance mass and width:

,
FIG. 4. The differentE2/M1 ratios as function of the photon

laboratory energy:R̃EM
R ~DM!5REM

R ~Olsson! ~solid!, Re@REM
R ~DM!#

~dashed!, andREM
R ~Noelle!5REM

R ~K matrix! ~dotted!.
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MR5mD
0 1ReFSDS MR2

i

2
GRD G , ~69!

GR522 ImFSDS MR2
i

2
GRD G . ~70!

Expanding then the DM amplitude as in Eq.~65!, one imme-
diately sees that the splitting into a pole and a regular p
formally is not identical with the splitting into a resonan
and a background part because of an additional energy
pendence of the dressed resonance amplitude beside
pole contribution.

However, this formal criticism may not be too relevant
the actual application if the background amplitude is ve
weakly energy dependent. To this end, let us first brie
review the SP of elasticpN scattering as performed b
Höhler @21,22# to determine the resonance pole parame
~MR , GR!. It is based on the following parametrization of
resonant partial wave amplitudetpp by splitting it into a
backgroundtpp

b and a pole parttpp
pole:

tpp~W!5tpp
b ~W!1tpp

pole~W!, ~71!

where

tpp
pole~W!5z~W!tpp

r ~W!, ~72!

with

tpp
r ~W!5

GR/2

MR2W2 iGR/2
. ~73!

Since theD resonance lies in the elastic region, Ho¨hler’s
parametrization requires in addition separate unitarity for
background. Thus a real phase shiftdb can be assigned by

tpp
b ~W!5sin db~W!eidb~W!. ~74!

As discussed in Sec. II, Eq.~74! is a natural consequence
any dynamical model. In the elastic region, of course, a
the full amplitude is unitary,

tpp~W!5sin d~W!eid~W!, ~75!

which fixes the quantityz:

z~W!5e2idb~W!. ~76!

Assumingtpp
b ~and thusdb andz! to be energy indepen

dent, one can extract the pole parametersMR andGR directly
from the speed of the full amplitude, which is defined as

SPpp~W!5Udtpp~W!

dW U. ~77!

Then one finds from Eq.~71!

SPpp~W!5
zGR/2

~MR2W!21GR
2/4

. ~78!

Thus the maximum of the speed is located atW5MR , de-
termining the resonance mass. Furthermore, the width is
obtained from the half maximum values
rt

e-
the

y
y

rs

e

o

en

SPpp~MR6GR/2!5SPpp~MR!/2, ~79!

or from the curvature at maximum speed

GR
2528

SPpp~MR!

d2SPpp~MR!/dW2 . ~80!

The latter should be preferred for a broad resonance
might be more difficult to evaluate numerically. Ho¨hler @21#
finds

MR51210 MeV, GR5100 MeV. ~81!

These values may be used to calculatedb from Eq. ~71! for
the whole energy range and to check the initial assump
with respect to the energy dependence oftpp

b . Indeed, one
finds at resonancedb(W5MR)5223.5° and only a very
small variation ofdb with energy which justifies the method
An important point to note so far is thattpp

b and tpp
pole in

Höhler’s analysis may well be considered as approximati
to background and dressed amplitudestpp

B and tpp
R of a cer-

tain dynamical model in a limited energy interval around t
resonance position. In view of the fact that one can gene
a whole family of phase equivalent dynamical models
means of unitary transformations without changing the p
position in the complex plane, one may conclude that
speed plot analysis singles out from this family the o
which predicts a dressed amplitudetpp

R that is most accu-
rately approximated by its pole term and which gives t
weakest energy dependence of the backgroundtpp

B . On the
mass shell, it would provide dynamical amplitudestpp

B and
tpp
R which are closest to Ho¨hler’s amplitudestpp

b and tpp
pole,

respectively. This observation could also provide a poss
explanation for the fact that the resulting background ph
is repulsive in contrast to standard attractive background
teractions as has been noted already by Ho¨hler @22#.

The recent extension of the SP to pion photoproduct
by Hansteinet al. @12# takes as the starting point the follow
ing ansatz for the photoproduction amplitude,

tpg~W!5tpg
born~W!1 t̃ pg

b 1zgtpp
r ~W!, ~82!

wheretpg
born is the photoproduction Born amplitude calculat

from the pseudoscalarpN Lagrangian. Assumingt̃ pg
b to be

energy independent, they could determine the pole par
eters MR , GR , and the residuezg from the speed of the
difference between the full and the Born amplitude:

SPpg~Hanstein!5Ud@ tpg~W!2tpg
born~W!#

dW
U. ~83!

The main reason for criticizing this procedure is twofol
~i! In the original SP ofpN scattering@21,22# Born terms
have not been subtracted, i.e., the speed of the full amplit
determines the pole parameters. Moreover, only the spee
the full amplitude is related to the time delay between
arrival of the incident wave packet at the collision region a
the departure of the outgoing packet.~ii ! There is no reason
to give up the separate unitarity constraint for the ba
ground amplitude and to treat the hadronic and e.m. react
in a different manner.
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Therefore, we propose as a consequent extension
Höhler’s ansatz~71! to e.m. pion production in the elasti
region the form

tpg~W!5b~W!eidb~W!1zg~W!tpp
r ~W!, ~84!

where again it is assumed that the background termbeidb

obeys itself the unitarity constraint, i.e., it fulfills Watson
theorem which implies thatb is real. The constraint from
Watson’s theorem for the full amplitudetpg , which can be
written as

tan d~W!5
Im@ tpg~W!#

Re@ tpg~W!#
, ~85!

finally allows to eliminate the unknown modulus of the bac
ground amplitudeb(W) in Eq. ~84!. One finds

b~W!52sin db~W!Re@zg~W!#1cosdb~W!Im@zg~W!#.
~86!

Of course, the information contained in Eqs.~84! and~86! is
not sufficient to fix the complex functionzg(W) over a larger
energy range from available experimental multipole d
sets. However, it allows to check whether the data can
described at all over a limited energy range around the re
nance position replacingzg(W) by the residuezg(MR).

We have performed such a SP taking as input ‘‘data’’
multipoles from the fixed-t dispersion analysis of Hanstei
et al. @12#. By construction, these multipoles exactly ob
Watson’s theorem, and thus they provide at the same tim
‘‘data’’ set for thepN scattering phase shiftd. Writing the
residuezg(MR)5r exp(if), it is obvious@see Eqs.~84! and
~86!# that its modulusr is given by the ratio of the speeds o
the hadronic and e.m. amplitudes

r 5
udtpg /dWu
udtpp /dWu

. ~87!

This ratio is plotted as a function of the energy in the l
panel of Fig. 5. The plateau aroundW5MR already indicates
that the assumption of a constant residue may provide a g

FIG. 5. Left panel: The modulus ofzg(W) for electric~dashed!

and magnetic multipoles~solid!. Right panel: The modulus ofz̃g of
MSP.
of
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approximation in an energy interval around the resona
position. The phasef of the residue can be calculated fro
the relation

Im@ tpg~MR!#5
r

11tan2 db
@cosf1tan db sin f#,

~88!

which follows directly from Eqs.~84! and ~86!. Our values
for zg(MR) are compared with the ones of Ref.@12# in Table
I. In the case of the electric multipoleE11

3/2 , both values
agree very well. However, a somewhat larger deviation
found for M11

3/2 . For the ratio of the residues of electric t
magnetic multipoles we obtain

REM~SP!5
zg

E~MR!

zg
M~MR!

520.04020.047i . ~89!

Comparison to the result of@12# (20.03520.046i ) shows a
good agreement for the imaginary part while the real par
10% smaller.

Most of the difference between the approach of Hanst
et al. and ours can be traced back to the phase of the b
ground of the magnetic multipole. Whereas in our ansatz
phases of both background amplitudes agree by defini
with db , which is already fixed in the analysis ofpN scat-
tering, the phase of the backgroundtpg

born1 t̃ pg
b in Eq. ~82! is

unconstrained sincet̃ pg
b is an arbitrary complex number. A

shown in Fig. 6, they differ even in sign for both multipole
Only the electric background phase~dotted curve! is close to
db ~solid curve!. Consequently, the background and po
terms found in@12# cannot, even approximately, be identifie

TABLE I. Residueszg(MR)5r exp(if) for the E11
3/2 and M11

3/2

multipoles from various speed plots.

present~SP! present~MSP! from @12#

r E (1023/mp) 2.47 2.24 2.46
fE ~deg! 2156 2162 2154.7
r M (1023/mp) 39.9 41.5 42.32
fM ~deg! 226.0 236.5 227.5

FIG. 6. Background phase shifts as function of the photon
energy from the analysis of@12#. The dotted and dashed curve
correspond to the electric and magnetic multipoles, respectiv
The solid curve shows the background phase obtained by Ho¨hler
from pN scattering@21#.
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with the background and dressed multipolestpg
B and tpg

R ,
respectively, of any dynamical model. However, this is p
sible for our results in the approximate way discussed abo
Figure 7 shows the quality of the pole approximation, i.
evaluating Eq.~84! with zg(W)5zg(MR), in comparison
with the full multipoles. Clearly, the pole approximatio
cannot reproduce the data below and above the reson
region as it not need to. In particular, it is obvious that
definition the pole approximation leads to a wrong lo
energy behavior.

There remains one final point to be mentioned. It conce
the proper normalization of the amplitude for which t
speed is calculated since any energy-dependent norma
tion factor would affect the result. According to@22#, two
times the speed of theT matrix ~which is related to theS
matrix throughS5112iT! defines the quantity which ca
be interpreted as a time delay. This suggests to study
speed of the product ofAqk times the multipole, whereq
andk are the c.m. momenta of pion and photon, respectiv
~The relation between theT matrix and multipoles can be
found, e.g., in@17#.! SincedAqk/dW'0.9 in the resonance
region, this factor is not negligible. We have performed t
modified speed analysis~MSP!, i.e., identifiedtpg in Eq. ~84!
with Aqk times the multipole, instead of taking the multipo
itself as before and in Ref.@12#. The results are summarize
in Fig. 5 ~right panel! and Table I~middle column!. In order
to allow a direct comparison with the foregoing SP, w
present the MSP results in terms ofz̃g[zg /Aq0k0 whereq0
and k0 are the momenta atW5MR . From Table I one ob-
tains

REM~MSP!520.03220.044i , ~90!

which differs significantly fromREM(SP) in Eq. ~89!. In
addition, we have checked that the quality of the pole
proximation, which can be achieved within the MSP, is ve
similar to the one shown in Fig. 7.

This last point shows the following. Without reference
the physical interpretation of the speed in terms of the ab

FIG. 7. The pole approximation as obtained in our analy
~dashed! compared to the complete multipoles from Hansteinet al.
@12# ~solid!.
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mentioned time delay, one would not have an unique p
scription for the choice of the amplitude for which the spe
should be calculated and thus the whole procedure wo
become rather ambiguous.

V. SUMMARY AND CONCLUSIONS

We have analyzed in detail different theoretical descr
tions of pion photoproduction in the region of theD reso-
nance, namely, dynamical models, effective Lagrangian
proaches, and the recently proposed speed plot analysis
main emphasis has been laid on the question to what ex
genuine resonance contributions to the e.m. multipoles
be extracted, in particular, the interesting and controvers
discussedE2/M1 ratio REM for the e.m.D excitation.

As a theoretical basis we have chosen a dynamical mo
for which we have briefly reviewed the treatment of pio
nucleon scattering and pion photoproduction, in particu
the separation of background and resonance properties
the effective Lagrangian approaches, we have discussed
different unitarization schemes resulting in different bac
ground and resonance contributions as pointed out alread
@3#. It turns out thata priori there is no direct relation o
background and resonance contributions of a DM to the c
responding ones of a EL. The main reason for this is t
unitarity is put in by hand in the EL which does not allow th
identification of the background part. Only on the premis
that the hadronic background phases could be identified,
various resonance parameters such as resonance mass,
width, andE2/M1 ratio could be related. This reflects th
fact that the largely phenomenological treatment of the ba
ground introduces a unitary ambiguity or representation
pendence@5#. Therefore, almost allE2/M1 ratios discussed
so far are representation dependent quantities which imp
that they are not observable in the strict sense. There is
exception, namely, the ratios in the Noelle andK-matrix ap-
proach, when evaluated at the resonance position, bec
they are simply given by the ratio of the full multipoles
this energy.

The main problem, however, how these numbers sho
be compared to a given microscopic hadron model, rema
unresolved. The only safe solution is to calculate the co
plete pion production amplitude within such a model in ord
to have an unambiguous and direct comparison to exp
mentally observable quantities.

As a last topic, we have studied the recently propos
speed plot analysis of Hansteinet al.We could show that the
separated resonance and background contributions of
analysis cannot be identified with corresponding DM qua
tities, since their ansatz for the background is not constrai
by unitarity. For this reason, we have proposed an alterna
speed plot analysis which respects the separate unitarity
dition for the background. In such an analysis, the regu
and pole contributions can be viewed as approximations
the background and dressed resonant contribution of a
tain dynamical model. Applied to the same input as Hanst
et al., we find a similar result for the residue of the electr
multipole, whereas differences of the order of 10% app
for the magnetic multipole. Accordingly, we obtain a slight
changed ratioREM(SP). In addition, we have proposed
further modification of the speed analysis which was guid

s
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by the physical interpretation of the speed in terms of
time delay between incoming and outgoing wave pack
This modification leads to a 20% change in theREM(SP)
ratio. But again it remains unclear howREM(SP) could be
compared to any microscopic hadron model.

Even though we have focused here on thegN↔D, the
conclusions are also valid for the case of electroexcita
and/or the excitation of higher resonances. In the latter c
the situation is even worse due to overlapping resonan
ys

ev

v.

C

.

ys
e
s.

n
e,
es

and the coupling to many pion channels, which make
realistic dynamical calculation more difficult.
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