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Unambiguous amplitude analysis of theNN˜DN transition from asymmetry measurements
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C. Lazard
Division de Physique The´orique, Institut de Physique Nucle´aire, F-91406 Orsay Cedex, France

~Received 10 February 1998!

For particularD-production angles, an unambiguous determination of theNN→DN transition amplitudes is
performed, fromNN→(Np)N experiments, in which the polarization states are measured in the entrance
channel only. A three-step method is developed, which determines, first, the magnitudes of the amplitudes,
second, independent relative phases, and third, some dependent relative phases for resolving the remaining
discrete ambiguities. A rule of ambiguity elimination is applied, which is based on the closure of a chain of
consecutive independent relative phases, by means of thead hocdependent one. A generalization of this rule
is given for the case of a nondiagonal matrix connecting observables and bilinear combinations of amplitudes.
@S0556-2813~98!04806-7#
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I. INTRODUCTION

In a previous work@1#, we proposed a two-step metho
for determining theNN→DN transition amplitudes from
NN→(Np)N experiments. The purpose was to selec
complete set of 31 observables, which determines first th
magnitudes of the amplitudes and, in a subsequent step
independent relative phases. The decay distribution was
pressed in the density matrix formalism. Helicity and tran
versity frames were studied. The determination of the he
ity amplitudes requires experiments involving polariz
states of four nucleons at a time. In the transversity fra
the use of Bohr’s rules simplifies the problem, avoiding t
necessity of measuring the polarization of the outgoing
cay nucleon.

At this stage of the analysis, however, many discrete a
biguities remain and it is not realistic to perform transform
tions between helicity and transversity amplitudes@2# or
combinations of them. The remaining ambiguities may
eliminated in a third step. Note that in the method we
advocating, each stage provides information independe
of the further stages@3,4#. Let us remark, also, that anNN
→(Np)N experiment provides manyNN→DN observables
which can be used in different stages of the analysis.

The main purpose of the present work is to apply t
three-step method to theNN→DN transition. In this frame-
work, we ask the question of whether it is possible to p
form an unambiguous determination of theNN→DN ampli-
tudes measuring the polarization states in the entra
channel only.

The problem is solved in terms of linear combinations
helicity amplitudes, chosen in such a way that the analy
avoids the detection of the polarization of the outgoi
nucleons. Using ‘‘the magnitude first’’ method requir
knowledge of the magnitudes of these amplitude comb
tions. With asymmetry experiments only, this resolution
obviously not possible in general, but we show that inde
this program is achievable at particularD-production angles,
570556-2813/98/57~6!/2847~11!/$15.00
a
16
15
x-
-
-

e,
e
-

-
-

e
e
tly

s

-

ce

f
is

-

d

namely, atp/2, 0, andp. Precise determination of th
amplitudes at these angles provides us with constraints
the general analysis.

An analysis in terms of helicity amplitude combination
with many ambiguous phases, does not provide a unique
of helicity magnitudes. The uniqueness is recovered by
solving ambiguities.

The elimination of the discrete ambiguities is perform
by the determination of some additional dependent rela
phases. The required number of the latter depends on th
of independent phases chosen in the second stage o
analysis, and their choice obeys precise rules of ambig
elimination.

In any formalism, observables are expressed in terms
bilinear combinations of amplitudes~‘‘bicoms’’ !. In general,
the matrix connecting observables and bicoms is far fr
diagonal and thus a given observable depends on many
coms and vice versa. If the matrix connecting observab
and bicoms is diagonal, each observable is written as the
or imaginary part of a single bicom. In this case, the meth
of ambiguity elimination@4# consists in closing an ope
chain of consecutive independent relative phases by me
of thead hocdependent relative phase, in such a way that
number of imaginary parts of bicoms along the closed ch
is an odd number. For an even number, the ambiguity eli
nation is partial, the degeneracy being of order 2.

In the present analysis, the matrix connecting observa
and bicoms being not diagonal, some observables o
called ‘‘primary observables,’’ are written as the real
imaginary part of a bicom. All others, called ‘‘seconda
observables,’’ are written as the real or imaginary part
sum of bicoms. Whereas the ambiguity elimination obe
rather obvious rules in the case of primary observables, t
generalization to the case of secondary observables is on
the key questions. The present work resolves this cru
point.

The paper is organized as follows. Section II is devoted
the relationships between observables and amplitudes, in
2847 © 1998 The American Physical Society
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2848 57J. P. AUGER AND C. LAZARD
helicity frame. The retained observables correspond to n
polarized and polarized states of beam and target. In
general production angle case, it is not possible to apply
method. Nevertheless, it is possible for particular product
angles. In Sec. III, the generalization of the rules of ambi
ity elimination is performed for the case of secondary o
servables. In Sec. IV, an unambiguous helicity amplitu
analysis is performed foruD5p/2, and in Sec. V, the case o
forward and backward angles is treated.

II. OBSERVABLES AND AMPLITUDES

Relationships between observables and amplitudes are
pressed in the helicity frame~see Fig. 1!, for any
D-production angle. The helicity amplitudes are denoted
D(l,l ;L,L), where the indicesl, l , L, andL are the mag-
netic projections along theẑ quantization axis of each par
ticle, D, beam, recoil, and target nucleons, respectively. T
three indicesl , L, andL take the two values1 1

2 and21
2 and

l the four values1 3
2 , 1 1

2 , 2 1
2, and2 3

2. To denote the spin

FIG. 1. Helicity frame.
n-
e
e
n
-
-
e

x-

y

e

observables, use is made of the generalization of the stan
nomenclaturer2l,2l8, for the spin-averaged density matr
elements. All the spin observables are denoted
Re(Pa

b Pb
t Pd

r r2l,2l8) and Im(Pa
b Pb

t Pd
r r2l,2l8), where Pa

b

means that the beam nucleon is 100% polarized along
Cartesiana axis. Similarly, Pb

t and Pd
r correspond to the

target and recoil nucleon 100% polarized along itsb andd
axes, respectively. In order to obtain a compact notation,
indices a, b, and d are set equal to zero for unpolarize
initial nucleons or undetected polarization of the rec
nucleon. Finally, the indicesa, b, andd take the four values
0, x, y, and z. More detailed information can be found i
Ref. @1# and in quoted references therein.

The purpose of this work is to restrict the analysis
NN→(Np)N experiments with nonpolarized and polarize
beam and target, the polarizations of the outgoing nucle
being undetected. The corresponding set of experiments
volves the cross sections and the asymmetriesA00ab . From
Eqs.~3.8! and~3.9! of Ref. @1#, this set provides the follow-
ing observables: Re(Pa

b Pb
t P0

r r2l,2l8), where an even numbe
of 0 andy appears globally among the two indicesa andb,
and Im(Pa

b Pb
t P0

r r2l,2l8), where an odd number of 0 andy
appears globally among the two indicesa andb. The elimi-
nation of the nonselected observables leads@see Eqs.~3.17!–
~3.20! of Ref. @1## to the use of new amplitudes. These ne
amplitudes are defined as linear combinations of helicity a
plitudes by

D6~l,l ;L,L !5D~l,l ;L,L !6D~l,2 l ;L,2L !.
~2.1!

The corresponding ‘‘bicoms’’ are related to the selected
servables by the three following expressions, forl5l8
5 3

2 , 1
2 and forl5 3

2 , l856 1
2:
1
(
L

ReFD1S l,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ReFD1S l,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,2

1

2D G
(
L

ReFD2S l,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,1

1

2D G
(
L

ReFD2S l,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,2

1

2D G 2 52I 0S 11 11 11 11

11 21 11 21

11 11 21 21

11 21 21 11

D S Re~P0
bP0

t P0
r r2l,2l8!

Re~Pz
bPz

t P0
r r2l,2l8!

Re~Px
bPx

t P0
r r2l,2l8!

2Re~Py
bPy

t P0
r r2l,2l8!

D , ~2.2!

S (
L

ReFD1S l,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,2

1

2D1D2S l,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ReFD2S l,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,2

1

2D1D1S l,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,1

1

2D G D
54I 0S 11 11

11 21D S Re~Pz
bPx

t P0
r r2l,2l8!

2Re~Px
bPz

t P0
r r2l,2l8!

D , ~2.3!

and
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S (
L

ImFD1S l,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,2

1

2D2D2S l,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ImFD2S l,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,2

1

2D2D1S l,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,1

1

2D G D
54I 0S 11 11

11 21D S Re~P0
bPy

t P0
r r2l,2l8!

2Re~Py
bP0

t P0
r r2l,2l8!

D . ~2.4!

The summation(L runs over6 1
2. Let us remark that, forl5l8, Eq. ~2.2! involves magnitude squares of the new amplitud

However, the summation overL prevents us from obtaining each magnitude separately, and then, the ‘‘magnitude
method is not applied to theuD general case.

For l5 3
2 , l856 1

2, bicoms are also related to selected observables by the four following expressions:

S (
L

ReFD1S 3

2
,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,1

1

2D2D2S 3

2
,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ReFD1S 3

2
,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,2

1

2D2D2S 3

2
,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,2

1

2D G D
54I 0S 11 11

11 21D S Im~Py
bPx

t P0
r r3,2l8!

Im~Px
bPy

t P0
r r3,2l8!

D , ~2.5!

S (
L

ImFD1S 3

2
,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,1

1

2D1D2S 3

2
,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ImFD1S 3

2
,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,2

1

2D1D2S 3

2
,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,2

1

2D G D
54I 0S 11 11

11 21D S Im~Pz
bP0

t P0
r r3,2l8!

Im~P0
bPz

t P0
r r3,2l8!

D , ~2.6!

S (
L

ReFD1S 3

2
,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,2

1

2D2D1S 3

2
,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ReFD2S 3

2
,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,2

1

2D2D2S 3

2
,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,1

1

2D G D
524I 0S 11 11

11 21D S Im~Pz
bPy

t P0
r r3,2l8!

Im~Py
bPz

t P0
r r3,2l8!

D , ~2.7!

and

S (
L

ImFD1S 3

2
,
1

2
;L,1

1

2DD1* S l8,
1

2
;L,2

1

2D1D1S 3

2
,
1

2
;L,2

1

2DD1* S l8,
1

2
;L,1

1

2D G
(
L

ImFD2S 3

2
,
1

2
;L,1

1

2DD2* S l8,
1

2
;L,2

1

2D1D2S 3

2
,
1

2
;L,2

1

2DD2* S l8,
1

2
;L,1

1

2D G D
54I 0S 11 11

11 21D S Im~P0
bPx

t P0
r r3,2l8!

Im~Px
bP0

t P0
r r3,2l8!

D . ~2.8!
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From invariance under parity, helicity amplitudes satis

D~l,l ;L,L !5~2 !l1 l 1L1L11D~2l,2 l ;2L,2L !.
~2.9!

Then, in Eqs.~2.2!–~2.8!, the new amplitudes, forl856 1
2 ,

are related to one another by

D6S 2
1

2
,
1

2
;L,L D56~2 !L2LD6S 1

1

2
,
1

2
;2L,L D .

~2.10!

Accounting for this relationship, the 16 linearly independe

amplitudes are chosen asD6(l, 1
2 ;L,L), with l5 3

2 , 1
2 , L

56 1
2 , andL56 1

2.
Relationships betweenuD and (p2uD) for helicity am-

plitudes, observables, and new amplitudes of Eq.~2.1! are
written as

D~l,l ;L,L !~uD!5~2 !l2LD~l,L;L,l !~p2uD!,
~2.11!

Re~Pa
b Pb

t P0
r r2l,2l8!~uD!

5~2 !l2l8Re~Pb
b Pa

t P0
r r2l,2l8!~p2uD!,

Im~Pa
b Pb

t P0
r r2l,2l8!~uD!

5~2 !l2l8Im~Pb
b Pa

t P0
r r2l,2l8!~p2uD!,

~2.12!

and

D6S l,
1

2
;L,1

1

2D ~uD!

5~2 !l2LD6S l,
1

2
;L,1

1

2D ~p2uD!,

D6S l,
1

2
;L,2

1

2D ~uD!

56~2 !l2LD6S l,
1

2
;L,2

1

2D ~p2uD!,

~2.13!

respectively.
For the particular caseuD5p/2, eight amplitudes vanish

for L51 1
2 or 2 1

2:

D6S l,
1

2
;L,1

1

2D ~p/2!

5D1S l,
1

2
;L,2

1

2D ~p/2!50 for ~l2L! odd ,

D2S l,
1

2
;L,2

1

2D ~p/2!50 for ~l2L! even.

~2.14!
t

The eight remaining amplitudes ar

D1(l, 1
2 ;1L,1 1

2 ),D1(l, 1
2 ;1L,2 1

2 ), D2(l, 1
2 ;1L,1 1

2 ),

and D2(l, 1
2 ;2L,2 1

2 ), for l5 3
2 , 1

2, and (2)l2L511.
Consequently, the sum in Eqs.~2.2!–~2.8! over the two val-
ues ofL vanishes, and Eq.~2.2! provides the magnitudes o
these eight remaining amplitudes. Then, the magnitude
method may be applied atuD5p/2. An unambiguous analy
sis at this angle is presented in Sec. IV.

At uD50 andp, 10 D6(l, 1
2 ;L,L) amplitudes vanish for

l2LÞ6( 1
2 2L). Among the six remaining amplitudes, tw

relationships give

D1S 3

2
,
1

2
;
1

2
,2

1

2D5exp~ iuD!D2S 3

2
,
1

2
;
1

2
,2

1

2D ,

D1S 1

2
,
1

2
;2

1

2
,2

1

2D5exp~ iuD!D2S 1

2
,
1

2
;2

1

2
,2

1

2D .

~2.15!

At forward and backward production angles, we choo

the four linearly independent amplitudesD6( 1
2 , 1

2 ; 1
2 , 1

2 ),

D2( 3
2 , 1

2 ; 1
2 ,2 1

2 ), andD2( 1
2 , 1

2 ;2 1
2 ,2 1

2 ). Again, the sum in
Eqs.~2.2!–~2.8! over the two values ofL vanishes, making
the magnitude first method applicable. From Eq.~2.13!, am-
plitudes atuD5p are obtained from those of the forwar
case. In Sec. V, the amplitude analysis is presented foruD

50.
In order to simplify the notation, in Secs. IV and V, whe

the explicit notationD(l,l ;L,L) is not necessary, the helic
ity amplitudes will be denoted by@5# Fi and Gi for i
51, . . . ,8, thecorrespondence being given in Table I. Sim
larly, Table II gives abbreviated notation for combinatio
D6(l,l ;L,L) of Eq. ~2.1!.

III. AMBIGUITY ELIMINATION RULES

There have been contributions@6–13# in the literature on
the formulation of rules which permit one to choose sets
observables for determining reaction amplitudes. Howev
selecting a set that eliminates all ambiguities is a probl
which has been much less discussed. It has been studie
the particular case of a diagonal matrix, connecting obse

TABLE I. Abbreviated notation for helicity amplitudes
D(l,l ;L,L).

l
1

1

2
2

1

2
1

1

2
2

1

2
1

1

2
2

1

2
1

1

2
2

1

2
L

1
1

2
1

1

2
1

1

2
1

1

2
2

1

2
2

1

2
2

1

2
2

1

2
L

1
1

2
2

1

2
2

1

2
1

1

2
1

1

2
2

1

2
2

1

2
1

1

2

DS32,l;L,LD G1 G2 F1 F2 F3 F4 G3 G4

DS12,l;L,LD F5 F6 G5 G6 G7 G8 F7 F8
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ables and ‘‘bicoms’’@3,4#. It is a prime necessity to exten
the investigation to the case of a nondiagonal matrix, wh
corresponds to observables expressed as sum of bicom

If the matrix connecting observables and bicoms is di
onal, each observable is a ‘‘primary observable’’ and is w
ten as the real or imaginary part of a single bicom.

Briefly, in polar notation, a complex amplitudeAj is de-
noted uAj uexp(ifj). The magnitudes being determine
knowledge of an observabledR5Re(A1A2* ) determines the
relative phase as a twofold solution

~f12f2!s1,25s1,2arccos
dR

uA1uuA2u
, ~3.1!

with s1,2561, the sum of which is

S1,25~f12f2!s1,21~f12f2!2s1,250. ~3.2!

Similarly, knowledge ofd I5Im(A1A2* ) determines the rela
tive phase from

~f12f2!s1,25
p

2
1s1,2arccos

d I

uA1uuA2u
, ~3.3!

with s1,2561, the sum of which is

S1,25~f12f2!s1,21~f12f2!2s1,25p. ~3.4!

In each case, the sum of the two solutions has a partic
value (0 orp). Such a sum will be called a ‘‘specific sum.
Contrarily, we shall refer to an ‘‘unspecific sum’’ if its valu
differs from 0 orp.

Let us consider an open chain of (n21) consecutive in-
dependent relative phases, (f12f2),
(f22f3), . . . , (fn212fn), n>2. Each phase, deter
mined either from Re(AiAi 11* ) or from Im(AiAi 11* ), presents
a twofold solution (f i2f i 11)si ,i 11 with si ,i 11561, the
sum

Si ,i 115~f i2f i 11!si ,i 111~f i2f i 11!2si ,i 11 ~3.5!

being a specific sum.
The global phase of the open chain (f12fn) presents

2n21 solutions, written as

TABLE II. Abbreviated notation for combinations
D6(l,l ;L,L) of Eq. ~2.1!.

l
1

1

2
1

1

2
1

1

2
1

1

2
L

1
1

2
1

1

2
2

1

2
2

1

2
L

1
1

2
2

1

2
1

1

2
2

1

2

D6S32,l;L,LD G16G2 F16F2 F36F4 G36G4

D6S12,l;L,LD F56F6 G56G6 G76G8 F76F8
h

-
-

ar

~f12fn!s1,2,s2,3,•••,sn21,n5~f12f2!s1,21~f22f3!s2,3

1•••1~fn212fn!sn21,n.

~3.6!

We remark that the sum of the following two solutions

~f12fn!s1,2,s2,3, . . . ,sn21,n1~f12fn!2s1,2,2s2,3, . . . ,2sn21,n

5S1,21S2,31•••1Sn21,n , ~3.7!

is again specific; i.e., it is equal to 0 orp ~mod 2p) accord-
ing to the even or odd number of observables taken as
imaginary part of a bicom, along the open chain, resp
tively.

The ambiguity elimination is achieved by adding the d
pendent relative phase (fn2f1) which closes the chain
This additional phase is determined by knowledge of an
servable Re(AnA1* ) or Im(AnA1* ). It presents a twofold so-
lution, the sum of which,

Sn,15~fn2f1!sn,11~fn2f1!2sn,1, ~3.8!

is specific. No ambiguity remains if the sum of the speci
sums, along the closed chain, is different from 0~mod 2p).
Obviously, accidental or numerical degeneracy is discard

This gives the ‘‘rule of the odd number of imaginar
parts’’ @4#: Let us consider a set of consecutive independ
relative phases~open chain!, each of them being known from
a ‘‘primary observable.’’ The elimination of ambiguities i
performed by determining an additional relative pha
which depends linearly on the others and closes the ch
All the ambiguities are eliminated if the number of imag
nary parts of bicoms along the closed chain is an odd nu
ber. For an even number, the ambiguity elimination is p
tial, the degeneracy being of order 2.

Let us remark that a relative phase exactly known,
means of any method, may be considered as a phase kn
from the real and imaginary parts of its bicom. Its presen
in a closed chain eliminates all the ambiguities. Yet such
exactly known phase may be considered as a set of two e
solutions, the sum of which being unspecific. The prese
of such a phase, in a closed chain, eliminates all the am
guities.

In the situation we want to analyze~see Sec. II!, the ma-
trix connecting observables and bicoms being not diago
some observables only are written as the real or imagin
part of a bicom. All other ‘‘secondary observables’’ are wr
ten as the real or imaginary part of sum of two bicoms. W
generalize the above prescription in the following way.

Knowledge of a secondary observabledR5Re(A1A2*
1A18A28* ) may determine the relative phase (f12f2) if

F5~f22f28!2~f12f18! ~3.9!

is known. Then, we define

a5uA1uuA2u1uA18uuA28ucosF, ~3.10!

b52uA18uuA28usin F, ~3.11!

andX ~mod 2p) by
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2852 57J. P. AUGER AND C. LAZARD
cosX5
a

Aa21b2
and sinX5

b

Aa21b2
. ~3.12!

The relative phase (f12f2) is expressed as a twofold solu
tion

~f12f2!s1,25X1s1,2arccos
dR

Aa21b2
, ~3.13!

with s1,2561, the sum of which, being equal to 2X, is un-
specific. Similarly, fromd I5Im(A1A2* 1A18A28* ), we obtain
two solutions

~f12f2!s1,25
p

2
1X1s1,2arccos

d I

Aa21b2
, ~3.14!

the sum of which, being equal top12X, is unspecific.
The simplest method to obtain the quantityF of Eq. ~3.9!

is to determine (f12f18) and (f22f28) from the corre-
sponding primary observables. Thus, let us conside
‘‘triad,’’ constituted by one secondary and two associa
primary observables. More precisely, we know Re(A1A2*
1A18A28* ) or Im(A1A2* 1A18A28* ), Re(A1A18* ) or
Im(A1A18* ), and Re(A2A28* ) or Im(A2A28* ). Knowledge of
the two primary observables determines the solutionsf1

2f18)
s1 and (f22f28)

s2, with s1561, s2561, the sums

S15~f12f18!s11~f12f18!2s1, ~3.15!

S25~f22f28!s21~f22f28!2s2 ~3.16!

being specific. Here, the simplified notations1 , s2 , S1,
andS2 stands for the quantities defined by Eqs.~3.1!–~3.4!,
s1,18, s2,28, S1,18, andS2,28, respectively. Then, the quan
tity F of Eq. ~3.9! takes four possible values

Fs1 ,s2
5~f22f28!s22~f12f18!s1. ~3.17!

From Eqs.~3.10!–~3.12!, a, b, andX depend ons1 and
s2, also. The relative phase (f12f2) is given, from such a
triad, as an eightfold solution

~f12f2!s1 ,s2

s1,2 5Xs1 ,s2
1s1,2arccos

dR

Aas1 ,s2

2 1bs1 ,s2

2

~3.18!

or

~f12f2!s1 ,s2

s1,2 5
p

2
1Xs1 ,s2

1s1,2arccos
d I

Aas1 ,s2

2 1bs1 ,s2

2
,

~3.19!

with s1,2561, the secondary observable beingdR or d I ,
respectively. Note that the total ambiguity eliminatio
among the eight solutions of (f12f2) also determines ex
actly (f12f18) and (f22f28).

The next key step answers the following question: amo
the eight solutions, do there exist paired solutions form
specific sums? One has
a
d

g
g

Fs1 ,s2
1F2s1 ,2s2

5S22S1 . ~3.20!

If S15S2, one gets, from Eqs.~3.10!–~3.12!,

Xs1 ,s2
1X2s1 ,2s2

50 ~3.21!

and

Aas1 ,s2

2 1bs1 ,s2

2 5Aa2s1 ,2s2

2 1b2s1 ,2s2

2 . ~3.22!

We find that the eight solutions (f12f2)s1 ,s2

s1,2 constitute four

sets of twofold solutions with a specific sum,

S1,25~f12f2!s1 ,s2

s1,2 1~f12f2!2s1 ,2s2

2s1,2 , ~3.23!

equal to 0 from Eq.~3.18! and equal top from Eq. ~3.19!.
Each set of twofold solutions is independent of the others
S1ÞS2, no such specific sums exist. Then, for a triad w
S15S2, there exists a twofold solution with a specific su
for the secondary observable (S1,250 or p), as for a primary
one.

Consider again an open chain of (n21) consecutive in-
dependent relative phases, (f12f2), (f22f3), . . . ,
(fn212fn), for n.2. Each phase is determined either fro
a primary observable or from a triad. For two consecut
triads, one of the associated primary observable may be
ferent or shared in common. To be explicit, the first triad
constituted by Re or Im(A1A2* 1A18A28* ), Re or
Im(A1A18* ), and Re or Im(A2A28* ). Similarly, the second
triad involves Re or Im(A2A3* 1A29A38* ), Re or Im(A2A29* ),
and Re or Im(A3A38* ). The two possible casesA28 and A29
being equal or different may be examined. If they are diff
ent, 82564 solutions exist for the two triads together; othe
wise, the number of solutions reduces to 82/2532. Actually,
A28 is equal toA29 in all the cases encountered in the pres
work.

The generalization of the rule of ambiguity eliminatio
for a mixed open chain is the following: Let us consider a
of (n21) consecutive independent relative phases~open
chain!, for n.2, each of them being known either from
primary observable or from a triad. A total or partial elim
nation of the ambiguities is performed by determining
additional relative phase, also known either from a prima
observable or from a triad, which depends linearly on
others and closes the chain. A partial ambiguity eliminat
gives a degeneracy of order 2. The elimination of all t
ambiguities is obtained by performing an investigation
each of then relative phases along the closed chain. For e
phase, the question is whether paired solutions forming s
cific sums exist among its solutions. If the answer is ne
tive, at least for one phase, the elimination is total. If t
answer is positive, for then phases, total elimination is ob
tained for an odd number of imaginary parts along the clo
chain.

Some remarks must be made regarding the applicatio
this rule. First, we recall that an exactly known phase,
means of any process, must be considered as paired solu
with unspecific sums. Second, while specifying ‘‘an o
number of imaginary parts along the closed chain,’’ o
must take into account, for a triad, only the imaginary part
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the secondary observable, and not those of the assoc
primary ones. Third, we remark that a process of ambigu
elimination, performed by means of a triad, determines a
the two associated relative phases, even if they are no
cluded into the closed chain, but are dangling.

The generalized rule of ambiguity elimination is not a
plicable in the following academic case. Let us conside
closed chain, then relative phases of which being know
from triads, with the associated primary observables of
triads shared in common. If all the magnitudes are eq
another symmetry appears in the problem and the orde
degeneracy increases. From Eqs.~3.9!–~3.12!, one gets for
the first triad

Xs1 ,s2
52

Fs1 ,s2

2
, ~3.24!

FIG. 2. Graphical code for relative phases.
ted
ty
o

in-

-
a

e
l,
of

with a Fs1 ,s2
determination between2p andp ~mod 2p).

Similarly, for the second triad, one has

Xs2 ,s3
52

Fs2 ,s3

2
, ~3.25!

and so on. The sum along the closed chain,

Fs1 ,s2
1Fs2 ,s3

1•••1Fsn ,s1
50, ~3.26!

provides a similar relation for theX quantities:

Xs1 ,s2
1Xs2 ,s3

1•••1Xsn ,s1
50, ~mod 2p!. ~3.27!

An additional degeneracy appears; it is not developed h
because of the academic nature of the problem, which d
not arise in a real amplitude analysis. Nevertheless, fon
52, the case is not academic and has been excluded in
terms of the rule.

To summarize, we propose a graphical code, which s
plifies the use of this generalized rule of ambiguity elimin
tion ~see Fig. 2!. Each amplitude is represented by a dot, a
each relative phase by a line joining the two correspond
dots. Three symbols are used for the relative pha
(f12f2). A solid or a dashed line indicates the presence
paired solutions with a specific sum equal to 0@Fig. 2(a1)# or
p @Fig. 2(a2)#, respectively. A dotted line means the absen
of paired solutions with a specific sum@Fig. 2(a3)#.

In the case in which the phase (f12f2) is known from a
primary observable, Fig. 2(a1) or 2(a2) corresponds to
knowledge of the real or imaginary part of (A1A2* ), respec-
tively. Figure 2(a3) is equivalent to knowledge of the rea
and imaginary parts of (A1A2* ).

If the phase (f12f2) is known from a triad, three ex-
amples are shown in Fig. 2~b!. In these examples, the asso
ciated phases (f12f18) and (f22f28) are visualized. Figure
2(b1) or 2(b2) corresponds to knowledge of the real o
imaginary part of (A1A2* 1A18A28* ), respectively, the associ
ated phases being known from Re(A1A18* ), and Re(A2A28* ).
Figure 2(b3) corresponds to knowledge of the real or imag
TABLE III. CombinationsD6(l,l ;L,L) for uD5p/2.

l
1

1

2
1

1

2
1

1

2
1

1

2
L

1
1

2
1

1

2
2

1

2
2

1

2
L

1
1

2
2

1

2
1

1

2
2

1

2

D1S32,l;L,LD G11G250 F11F250 F31F4 G31G452G3

D2S32,l;L,LD G12G250 F12F252F1 F32F4 G32G450

D1S12,l;L,LD F51F6 G51G652G5 G71G850 F71F850

D2S12,l;L,LD F52F6 G52G650 G72G850 F72F852F7
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nary part of (A1A2* 1A18A28* ), the associated phases bei
known from Im(A1A18* ), and Re(A2A28* ).

In Fig. 2~c!, the use of the generalized rule of ambigu
elimination is displayed for a square closed chain. Ea
phase is obtained from a primary observable or from a tr
the associated phases of the triad not being visualized
Fig. 2(c1), an example of a partial elimination is shown~de-
generacy of order 2!. In Figs. 2(c2) and 2(c3), examples of
total ambiguity elimination are shown.

In terms of a closed chain, all the ambiguities are elim
nated if the diagram satisfies one of the two following cri
ria: ~i! there exists at least one dotted line along the clo
i-
th

ut
c

bl
th
h
d,
In

-
-
d

chain @Fig. 2(c3)# or ~ii ! there exists an odd number o
dashed lines along the closed chain@Fig. 2(c2)#. If the num-
ber of dashed lines is even, a partial ambiguity elimination
performed, with a degeneracy of order 2@Fig. 2(c1)#.

IV. UNAMBIGUOUS ANALYSIS AT uD5p/2

In this section, use is made of the abbreviated notat
defined in Table I for the helicity amplitudesD(l,l ;L,L).
For uD5p/2, amplitude combinationsD6(l,l ;L,L) of Eq.
~2.1! are displayed in Table III. Then, forl5l85 3

2 , 1
2, Eq.

~2.2! provides the eight magnitudes
S u~F31F4!u2

4uG3u2

u~F32F4!u2

4uF1u2

D 52I 0S 11 11 11 11

11 21 11 21

11 11 21 21

11 21 21 11

D S Re~P0
bP0

t P0
r r3,3!

Re~Pz
bPz

t P0
r r3,3!

Re~Px
bPx

t P0
r r3,3!

2Re~Py
bPy

t P0
r r3,3!

D ~4.1!

and

S u~F51F6!u2

4uG5u2

u~F52F6!u2

4uF7u2

D 52I 0S 11 11 11 11

11 21 11 21

11 11 21 21

11 21 21 11

D S Re~P0
bP0

t P0
r r1,1!

Re~Pz
bPz

t P0
r r1,1!

Re~Px
bPx

t P0
r r1,1!

2Re~Py
bPy

t P0
r r1,1!

D . ~4.2!

Taking into account Eq.~2.10!, Eq. ~2.2! gives also, forl5 3
2 , l852 1

2, the four real parts of the ‘‘bicoms’’:

S 2Re@~F31F4!~F51F6!* #

4Re@G3G5* #

Re@~F32F4!~F52F6!* #

4Re@F1F7* #

D 52I 0S 11 11 11 11

11 21 11 21

11 11 21 21

11 21 21 11

D S Re~P0
bP0

t P0
r r3,21!

Re~Pz
bPz

t P0
r r3,21!

Re~Px
bPx

t P0
r r3,21!

2Re~Py
bPy

t P0
r r3,21!

D . ~4.3!
:

From Eqs.~4.1!–~4.3!, the determination of the eight magn
tudes and four phases is obtained from the knowledge of
12 observables Re(Pa

b Pa
t P0

r r2l,2l8), with a50,x,y,z, and
r2l,2l85r3,3,r1,1,r3,21. Such a determination is carried o
using fourNN→(Np)N experiments, namely, the cross se
tion s and the three asymmetriessA00aa , with a5x,y,z.
Let us remark that these experiments provide observa
used in the first step of the analysis, as well as part of
second step.

For l5l85 3
2 , 1

2, Eqs. ~2.3! and ~2.4! provide real and
imaginary parts of the bicoms:

Re@~F32F4!G3* #52I 0Re~Pz
bPx

t P0
r r3,3!,

Im@~F32F4!G3* #52I 0Re~Py
bP0

t P0
r r3,3! ~4.4!

and

Re@~F52F6!G5* #52I 0Re~Pz
bPx

t P0
r r1,1!,

Im@~F52F6!G5* #52I 0Re~Py
bP0

t P0
r r1,1!. ~4.5!
e

-

es
e

Also, for l5 3
2 , l856 1

2, Eqs.~2.3! and~2.4! provide real
and imaginary parts of sums of two bicoms:

Re@F1~F51F6!* 1F7~F31F4!* #54I 0Re~Pz
bPx

t P0
r r3,1!,

Im@F1~F51F6!* 1F7~F31F4!* #54I 0Re~Py
bP0

t P0
r r3,1!,

~4.6!

and

Re@~F32F4!G5* 1~F52F6!G3* #54I 0Re~Pz
bPx

t P0
r r3,21!,

Im@~F32F4!G5* 1~F52F6!G3* #54I 0Re~Py
bP0

t P0
r r3,21!.

~4.7!

Similarly, for l5 3
2 , l856, 1

2, Eqs. ~2.5!–~2.8! give real
and imaginary parts of the following sums of two bicoms
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Re@F1G5* 2F7G3* #52I 0Im~Px
bPy

t P0
r r3,1!,

Im@F1G5* 2F7G3* #52I 0Im~Pz
bP0

t P0
r r3,1!, ~4.8!

Re@~F31F4!~F52F6!* 1~F51F6!~F32F4!* #

58I 0Im~Px
bPy

t P0
r r3,21!,

Im@~F31F4!~F52F6!* 1~F51F6!~F32F4!* #

58I 0Im~Pz
bP0

t P0
r r3,21!, ~4.9!

Re@F1~F52F6!* 2F7~F32F4!* #

524I 0Im~Py
bPz

t P0
r r3,1!,

Im@F1~F52F6!* 2F7~F32F4!* #

524I 0Im~Px
bP0

t P0
r r3,1!, ~4.10!

and

Re@G5~F31F4!* 1G3~F51F6!* #

524I 0Im~Py
bPz

t P0
r r3,21!,

Im@G5~F31F4!* 1G3~F51F6!* #

524I 0Im~Px
bP0

t P0
r r3,21!. ~4.11!

For each bicom or each sum of two bicoms of Eqs.~4.4!–
~4.11!, its imaginary part is obtained from anA00a0 asymme-
try and its real part fromA00bg , with aÞbÞg. In the fol-
lowing example, which presents an amplitude analy
without ambiguity, asymmetriesA00bg , with bÞg, are not
taken into account. This is a choice among many others

From the imaginary part of each sum of two bicoms,
Eqs. ~4.6!–~4.11!, a ‘‘triad’’ may be constituted by adding
the two appropriated real parts of bicoms, given by Eq.~4.3!.
Such a triad presents four sets of twofold solutions with
‘‘specific sum’’ equal top.

The A00z0 asymmetry provides the observabl
Im(Pz

bP0
t P0

r r2l,2l8), for r2l,2l85r3,1,r3,21, which deter-
mine the phases betweenF1 andG5 @Eq. ~4.8!#, and between
(F31F4) and (F52F6) @Eq. ~4.9!#, respectively. Similarly,
the A00x0 asymmetry provides the observabl
Im(Px

bP0
t P0

r r2l,2l8), for r2l,2l85r3,1,r3,21, which deter-
mine the phases betweenF1 and (F52F6) @Eq. ~4.10!# and
betweenG5 and (F31F4) @Eq. ~4.11!#, respectively.

Knowledge of these four phases achieves the second
of the analysis~determination of the three remaining ind
pendent phases! and constitutes a convenient starting po
of the third step~elimination of the ambiguities!. In terms of
a graphical code, the addition of a fourth phase closes
square. These four triads are represented in Fig. 3. The n
ber of dashed lines being equal to 4 along the squ
F1 , G5 , (F31F4), (F52F6), we are left with a de-
generacy of order 2.

The A00y0 asymmetry provides the observabl
Re(Py

bP0
t P0

r r2l,2l8), for r2l,2l85r3,3,r1,1,r3,1,r3,21, which
determine the phases between (F32F4) andG3 @Eq. ~4.4!#,
between (F52F6) and G5 @Eq. ~4.5!#, between (F51F6)
and F1 @Eq. ~4.6!#, and between (F32F4) and G5 @Eq.
is

e

tep

t

e
m-
re

~4.7!#, respectively. Starting from Fig. 3, and adding the li
betweenG5 and (F52F6), yields Fig. 4. The number o
dashed lines being 3 along the triangleF1 , G5 ,
(F52F6) and 3 also along the triangl
(F31F4), G5 , (F52F6), all the ambiguities are elimi-
nated.

Then, knowledge of seven experiments on the reac
NN→(Np)N, namely, the cross sections, the three polar-
ized beam and target asymmetriessA00LL , sA00SS, and
sA00NN , and the three polarized beam asymmetr
sA00L0 , sA00S0, andsA00N0, allows us to perform an un
ambiguous amplitude analysis in terms of helicity amplitu
combinations. The transformation from these combinatio
to the helicity amplitudes is obvious. Here, in the fou
subscript notation used for asymmetries,L, S, andN stand
~see Fig. 1! for the direction~not oriented! of the ẑ, x̂, andŷ
axes of the beam and the target.

FIG. 3. Graphical code for phases atuD5p/2, with ambiguity
of order 2.

FIG. 4. Graphical code for unambiguous phases atuD5p/2.
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V. CASE OF uD50

In this section, use is made of the abbreviated notat
defined in Table I, for the helicity amplitudesD(l,l ;L,L).
For uD50, amplitude combinationsD6(l,l ;L,L) of Eq.
~2.1! are displayed in Table IV.

Then, forl5l85 3
2 , 1

2, Eq. ~2.2! provides the four magni-
tudes

uF1u254I 0Re~P0
bP0

t P0
r r3,3! ~5.1!

and

S u~F51F6!u2

u~F52F6!u2

uF7u2
D 52I 0S 11 11 22

11 11 12

11 21 0
D

3S Re~P0
bP0

t P0
r r1,1!

Re~Pz
bPz

t P0
r r1,1!

Re~Py
bPy

t P0
r r1,1!

D . ~5.2!

Taking into account Eq.~2.10!, Eq. ~2.2! gives also, forl
5 3

2 , l852 1
2, the real part of the ‘‘bicom’’:

Re@F1F7* #524I 0Re~Py
bPy

t P0
r r3,21!. ~5.3!

Also, for l5 3
2 , l85 1

2, Eqs. ~2.4! and ~2.7! provide real
and imaginary parts of the bicoms:

Re@F1~F51F6!* #54I 0@ Im~Pz
bPy

t P0
r r3,1!

1Im~Py
bPz

t P0
r r3,1!#,

Im@F1~F51F6!* #54I 0@Re~Py
bP0

t P0
r r3,1!

2Re~P0
bPy

t P0
r r3,1!# ~5.4!

and

Re@F1~F52F6!* #54I 0@ Im~Pz
bPy

t P0
r r3,1!

2Im~Py
bPz

t P0
r r3,1!#,

TABLE IV. CombinationsD6(l,l ;L,L) for uD50.

l
1

1

2
1

1

2
1

1

2
1

1

2
L

1
1

2
1

1

2
2

1

2
2

1

2
L

1
1

2
2

1

2
1

1

2
2

1

2

D1S32,l;L,LD G11G250 F11F25F1 F31F450 G31G450

D2S32,l;L,LD G12G250 F12F25F1 F32F450 G32G450

D1S12,l;L,LD F51F6 G51G650 G71G850 F71F85F7

D2S12,l;L,LD F52F6 G52G650 G72G850 F72F85F7
n,

Im@F1~F52F6!* #524I 0@Re~Py
bP0

t P0
r r3,1!

1Re~P0
bPy

t P0
r r3,1!#. ~5.5!

Knowledge of five experiments on the reactionNN
→(Np)N, namely, the cross sections and the four asym-
metriessA00LL , sA00NN , sA00N0, andsA000N , permits
one to determine the four magnitudes ofF1 , F7 ,
(F51F6), and (F52F6) and the three independent relativ
phases betweenF1 and each of the three others. An ambig
ity of order 23 remains.

From Eq.~5.4!, knowledge of the real and imaginary par
of the bicom F1(F51F6)* determines exactly the corre
sponding relative phase, and similarly from Eq.~5.5!. Then,
additional knowledge of the two asymmetriessA00LN and
sA00NL yields exactly the phases betweenF1 and
(F51F6) and betweenF1 and (F52F6). The transforma-
tion from these combinations to the helicity amplitud
F1 , F5, and F6 may be performed without ambiguity
Nevertheless, the sign of the phase betweenF1 and F7 re-
mains unknown~see Fig. 5!.

VI. CONCLUSION

The present work is devoted to an unambiguous am
tude analysis of theNN→DN transition, from NN
→(Np)N asymmetry measurements. The study is p
formed in the helicity frame. Restricting the analysis
asymmetry measurements requires one to work with lin
combinations of helicity amplitudes. Moreover, the mag
tudes of these combinations may be obtained for partic
D-production angles, only, namely, 0,p/2, and p. A
three-step method is developed, which determines, first,
magnitudes, second, independent relative phases, and
some dependent relative phases for resolving the remai
ambiguities.

The rule of ambiguity elimination is based on the closu
of a chain of consecutive independent relative phases
means of thead hocdependent one. If the matrix connectin
observables and ‘‘bicoms’’ is diagonal, each observable
written as the real or imaginary part of a bicom. A relati

FIG. 5. Graphical code for phases atuD50.
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phase, determined by such an observable, presents a tw
solution. All the ambiguities are eliminated if the number
imaginary parts of bicom along the closed chain is odd.
an even number, the ambiguity elimination is partial, t
degeneracy being of order 2.

In the present analysis, the matrix connecting observa
and bicoms is not diagonal. Many observables are written
the real or imaginary part of a sum of bicoms. A relati
phase, determined from such an observable, presents m
sets of twofold solutions. The generalization of the abo
‘‘rule of the odd number of imaginary parts’’ is based on t
study of the multiple solutions of a relative phase. Mo
precisely, it relies on the existence, among all the solutio
of paired solutions forming a ‘‘specific sum,’’ i.e., a su
equal to 0 orp. Contrarily, we refer to an ‘‘unspecific sum’
if the value of the sum differs from 0 orp. All the ambigu-
ities are eliminated if, at least, one phase with an unspe
sum appears along the closed chain. If such a phase doe
appear along the closed chain, total elimination is obtai
for an odd number of phases with a specific sum equal top.
For an even number, the degeneracy is of order 2. A gra
cal code is proposed to simplify the use of this rule of a
biguity elimination.

At uD5p/2 production angle, an unambiguously determ
nation of theNN→DN transition amplitudes is performed
The eight magnitudes and four phases are determined
means of four experiments, namely, the cross sections and
the three polarized beam and target asymmet
sA00LL , sA00SS, andsA00NN . Two asymmetries, chose
among the three polarized beam asymmetries, for exam
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sA00L0 and sA00S0, determine four phases, the three la
independent ones and one additional dependent phase
this stage, the remaining ambiguity is of order 2. It is r
moved by adding the third polarized beam asymme
sA00N0.

At uD50, the four magnitudes and a relative phase
determined by means of three experiments, the cross se
s and the two polarized beam and target asymmet
sA00LL and sA00NN . The two asymmetriessA000N and
sA00N0 determine two remaining independent phases. At t
second step of the analysis, an ambiguity of order 23 re-
mains. With two more experimentssA00LN andsA00NL , the
helicity amplitudes are determined up to an ambiguity
sign of one relative phase.

We recall that knowledge of the full multidimension
form of the data@14–18# must be sufficient to yield the
NN→DN observables. For this, we must perform integrati
over the polar and azimuthal angles of the decay nucleo
theD rest frame, with respect to the direction of theD and to
the production scattering plane@see Eqs.~3.8! and ~3.9! of
@1##. Presently, for any incident energy, there is no such co
plete set of measurements.
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