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Unambiguous amplitude analysis of theNN— AN transition from asymmetry measurements
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For particularA-production angles, an unambiguous determination of\thie~ AN transition amplitudes is
performed, fromNN— (N7)N experiments, in which the polarization states are measured in the entrance
channel only. A three-step method is developed, which determines, first, the magnitudes of the amplitudes,
second, independent relative phases, and third, some dependent relative phases for resolving the remaining
discrete ambiguities. A rule of ambiguity elimination is applied, which is based on the closure of a chain of
consecutive independent relative phases, by means @dimcdependent one. A generalization of this rule
is given for the case of a nondiagonal matrix connecting observables and bilinear combinations of amplitudes.
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[. INTRODUCTION namely, atw/2, 0, andw. Precise determination of the
amplitudes at these angles provides us with constraints on

In a previous work{1], we proposed a two-step method the general analysis.
for determining theNN— AN transition amplitudes from An analysis in terms of helicity amplitude combinations,
NN—(Nm7)N experiments. The purpose was to select awith many ambiguous phases, does not provide a unique set
complete set of 31 observables, which determines first the 16f helicity magnitudes. The uniqueness is recovered by re-
magnitudes of the amplitudes and, in a subsequent step, Kolving ambiguities.
independent relative phases. The decay distribution was ex- The elimination of the discrete ambiguities is performed
pressed in the density matrix formalism. Helicity and trans-by the determination of some additional dependent relative
versity frames were studied. The determination of the helicphases. The required number of the latter depends on the set
ity amplitudes requires experiments involving polarizedof independent phases chosen in the second stage of the
states of four nucleons at a time. In the transversity frameanalysis, and their choice obeys precise rules of ambiguity
the use of Bohr’s rules simplifies the problem, avoiding theelimination.
necessity of measuring the polarization of the outgoing de- In any formalism, observables are expressed in terms of
cay nucleon. bilinear combinations of amplitudgsbicoms™). In general,

At this stage of the analysis, however, many discrete amthe matrix connecting observables and bicoms is far from
biguities remain and it is not realistic to perform transforma-diagonal and thus a given observable depends on many bi-
tions between helicity and transversity amplitud€ or  coms and vice versa. If the matrix connecting observables
combinations of them. The remaining ambiguities may beand bicoms is diagonal, each observable is written as the real
eliminated in a third step. Note that in the method we areor imaginary part of a single bicom. In this case, the method
advocating, each stage provides information independentlgf ambiguity elimination[4] consists in closing an open
of the further stagef3,4]. Let us remark, also, that &dN  chain of consecutive independent relative phases by means
—(N7)N experiment provides marmyN— AN observables of thead hocdependent relative phase, in such a way that the
which can be used in different stages of the analysis. number of imaginary parts of bicoms along the closed chain

The main purpose of the present work is to apply thisis an odd number. For an even number, the ambiguity elimi-
three-step method to tHéN— AN transition. In this frame- nation is partial, the degeneracy being of order 2.
work, we ask the question of whether it is possible to per- In the present analysis, the matrix connecting observables

form an unambiguous determination of tR&l— AN ampli- and bicoms being not diagonal, some observables only,
tudes measuring the polarization states in the entrancealled “primary observables,” are written as the real or
channel only. imaginary part of a bicom. All others, called “secondary

The problem is solved in terms of linear combinations ofobservables,” are written as the real or imaginary part of
helicity amplitudes, chosen in such a way that the analysisum of bicoms. Whereas the ambiguity elimination obeys
avoids the detection of the polarization of the outgoingrather obvious rules in the case of primary observables, their
nucleons. Using “the magnitude first” method requires generalization to the case of secondary observables is one of
knowledge of the magnitudes of these amplitude combinathe key questions. The present work resolves this crucial
tions. With asymmetry experiments only, this resolution ispoint.
obviously not possible in general, but we show that indeed The paper is organized as follows. Section Il is devoted to
this program is achievable at particulasproduction angles, the relationships between observables and amplitudes, in the
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observables, use is made of the generalization of the standard

&
3 nomenclaturep,, ,,, for the spin-averaged density matrix
g elements. All the spin observables are denoted as
Z4

& Ay @ Re(PoPPspar ) and IMPOPPypo 211), Where PO,
N /4 means that the beam nucleon is 100% polarized along its
i . 2 ] Cartesiana axis. Similarly, P‘ﬁ and P; correspond to the
3 Ny target and recoil nucleon 100% polarized alonggtand
axes, respectively. In order to obtain a compact notation, the
] N; indices @, B, and § are set equal to zero for unpolarized
5 initial nucleons or undetected polarization of the recoil

nucleon. Finally, the indicea, 8, andé take the four values
FIG. 1. Helicity frame. 0, X, y, andz. More detailed information can be found in
Ref.[1] and in quoted references therein.
helicity frame. The retained observables correspond to non- The purpose of this work is to restrict the analysis to
polarized and polarized states of beam and target. In thBlN—(N7)N experiments with nonpolarized and polarized
general production angle case, it is not possible to apply thbeam and target, the polarizations of the outgoing nucleons
method. Nevertheless, it is possible for particular productiorbeing undetected. The corresponding set of experiments in-
angles. In Sec. lll, the generalization of the rules of ambiguvolves the cross sectian and the asymmetrieyg, ;. From
ity elimination is performed for the case of secondary ob-Egs.(3.8 and(3.9) of Ref.[1], this set provides the follow-
servables. In Sec. IV, an unambiguous helicity amplitudeng observables: R@@P;P{)pzxﬂ,),where an even number
analysis is performed fof, = 7/2, and in Sec. V, the case of of 0 andy appears globally among the two indicesand 3,

forward and backward angles is treated. and |m(P2P;3PBp2)\’2}\,), where an odd number of 0 and
appears globally among the two indicesand 8. The elimi-
1. OBSERVABLES AND AMPLITUDES nation of the nonselected observables |d:8&9 Eqs(3.l7)—

(3.20 of Ref.[1]] to the use of new amplitudes. These new

Relationships between observables and amplitudes are e¥mplitudes are defined as linear combinations of helicity am-
pressed in the helicity frame(see Fig. ], for any plitudes by
A-production angle. The helicity amplitudes are denoted by
D(\,I;A,L), where the indices, |, A, andL are the mag- D.(NEAL)=D(ALAL)ED(N, LA, —L).
netic projections along the quantization axis of each par- 2D
ticle, A, beam, recoil, and target nucleons, respectively. Théhe corresponding “bicoms” are related to the selected ob-
three indiced, A, andL take the two values- ; and-3 and  servables by the three following expressions, for\’

\ the four valuest 3, +3, —3, and—3. To denote the spin =32, and forn=3, N ==x1:

> ReD )\l'A+1 D* )\’1'A+1
A H ot 2T 2772
2 R%DJF()\,E;A,—E)D’;()\’,E; ,_E) +1 +1 +1 +1 RG(PSPBPBsz,zw)
X 2 2 2 2 | *T "L+l Re(PYPLPEp2y 217) .
> R{D_(x,%;A,Jr% D*()\’,%;A,Jr% °l+1 +1 -1 -1|| RAPPPooL) |
X ) X ) 1: +1 =1 =1 +1/ | —RePIPP{psr 2/)
. _ * ro__ . _
EA: R%D()\az'l/\y Z)D()\ 121 ’ 2)_
S RADL (N iA 2| D% [N m A - S|+ D (N EA - Dt A A
T + !21 ] 2 — 121 1] 2 - 121 L] 2 + 121 1 2
S RED.(hsid 2 |DE (NS iA = 24D, hmiA - 2 D[N iAo
< — IE) l E + ’E’ ’ E + 15! l E — 151 H E
a7 (RO | s
N +1 -1/ —Re(PEPLPhps) o1 1) '

and
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> Im D+()\,E;A,+E)D’i()\’,£;A,—E)—D_()\,E;A,—E)D’;()\’,E;A&E

< 2 2 2 2 2 2 2 2

> Im[D_()\,E;A,wLE)Di()\’,l;A,—1)—D+<)\,£;A,—l)D’i()\’,E;A,nLl

< 2 2 2 2 2 2 2 2

i, +1 +1 Re(PBPé,P{,pZ)\,ZM) ) 04
+1 —1/\ —Re(PyP;Phpo o1 7)

The summatior® , runs over+ 3. Let us remark that, fox=\", Eq.(2.2) involves magnitude squares of the new amplitudes.
However, the summation oveX prevents us from obtaining each magnitude separately, and then, the “magnitude first”
method is not applied to the, general case.

Foran=32, \’==1 bicoms are also related to selected observables by the four following expressions:

> RED 31'A+1D* x’l-A+1 D 31'A+1D* )\’l'A+1
T + E!Ea ] E — 151 ) z - Eyi! ) E + 151 ) E
> ReD 31'1\ 1D*)\’1'A L D 31/\ 1D*)\’1'A !
< fl2r2h 2 o\t 2 T 22t 2 2 2
o +1 +1 |m(P§P‘Xngm,)> o5
N1 —1)/\Im(PEPLPhps o)) '
> Im/D 31'A+1D* )\’1'A+1+D 31'A+1D* ’1'A+1
< MBPe| 5T Po{ s Ty “\2v2h o)\ P T
> D31'A 1D*)\’ A ! D31A 1D*)\’1 !
n m + Elz’ y E — 151 ] 2 + — EYEI ] E + 121 ] E
+1 +1\/[Im(P2P{Pps 1)
=4l, bt s (2.6
+1 -1 |m(POPZPOp312>\I)
ZRD31A+ D*| N =:A ! D31A 1D*)\’1A+1
< + 2121 ] 2 + 121 ] 2 —+ 212| ] 2 + 121 1 2
DO 2 [T Bt R 131 Bty el N ety Wt [ POy
A - E!E! b E _— 151 L 2 _ EIE! 1 E —_ !E! 7 E
o +1 +1\(Im(PPyPGpz /) .
N 0 +1 _1 |m(PSPtZPr0p3‘2}\r) ' ’
and
DO [T Sty it [0 Pty Wl IS G WO 009 PNt W
< mb. PECIEREY s 2T + 20T 5P ot
> Im/D 31'A+1D* )\’1'/\ +D 31/\ 1D* >\’1-/\+1
< MP-|5. 0T3P Mgy “\2v2th 2o\t T 2
IR Im(PYPPhp32 1) 08
%41 —1)Uim(PRPLPLps ) ) '
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From invariance under parity, helicity amplitudes satisfy

D\ LAL)=(=)MFATLFID (=N, —1; = A, —L).

—~

2.9

Then, in Eqs(2.2—(2.8), the new amplitudes, fox’ =+ 1,
are related to one another by

1
J— — 4+ ( — A—-L
D-| 5. 5iAL|==(-)" "D

Ll AL
+§,§,_ ! !
(2.10

Accounting for this relationship, the 16 linearly independent

amplitudes are chosen &.(\,3;A,L), with A=32,3, A
==+1 andL==+3.

Relationships betweefl, and (7— 6,) for helicity am-
plitudes, observables, and new amplitudes of €g1) are
written as

DONAL)(60)=(=)*""D(N\,L;A 1) (7= 6,),
(2.1)

Re(PYPLPLp2) 21 /) (6,)
=(—=)* N Re(PYPLPhpor o) (7= 64),
IM(PEPLPLp2y 27) (65)

= (=) MIm(PRPLPipor o) (71— ,),

(2.12
and
D 1'A
+ )\,E, ,+§ (QA)
1 1
(=)D N 5iA+ 5| (7= 6y),
1 1
=+(—)""D. )\,E;A,—E)(W—%),
(2.13
respectively.

For the particular casé, = /2, eight amplitudes vanish

for A=+3or — 3

DL A 1'A +1
+ 121 1] 2

(ml2)

1 1
=D+<)\,§;A,—§)(7ﬂ2)=0 for (\—A) odd,

1
D()\'%;A’_E>(W/2):O for (\—A) even.
(2.19
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TABLE 1. Abbreviated notation for helicity amplitudes
D(A,;AL).
I 1 1 1 1 1 1 1 1
T2 73 Y3 73 T3 73 Tz 73
A 1 1 1 1 1 1 1 1
T2 Y32 Y3 f3 73 T3 T2 T3
L +1 1 1 +1 +1 1 1 +1
2 2 2 "2 "2 "2 "2 "2

@
[y
Q)
N
m
i
m
N
m
w
T
N
@
w
]
N

ol

1
D(E,I;A,L) Fs Fs Gs Gg G; Gg F; Fg

The eight remaining amplitudes are
Di(\3i+A,+3).D(\ 5+ A,—3), D-(\3i+A,+3),
and D_(\,3;—A,—3), for \=2,%, and ()" A=+1.
Consequently, the sum in Eg&.2—(2.8) over the two val-
ues of A vanishes, and Ed2.2) provides the magnitudes of
these eight remaining amplitudes. Then, the magnitude first
method may be applied &t = 7r/2. An unambiguous analy-
sis at this angle is presented in Sec. IV.

At 6,=0 andm, 10D (\,3;A,L) amplitudes vanish for

A—A#+(3—L). Among the six remaining amplitudes, two
relationships give

b 311 _ b 311 1
202727 2| TP 305127 3)
11 1 1 ) 11 1 1
+\2020 73T g TERID |5 5im 5 )
(2.19
At forward and backward production angles, we choose
11.11

the four linearly independent amplitudd3.(3,5;5,5),
D_(3,3:3,—3), andD _(3,3;—3,—3). Again, the sum in
Egs.(2.2—(2.8) over the two values o\ vanishes, making
the magnitude first method applicable. From E2j13), am-
plitudes atf,= = are obtained from those of the forward
case. In Sec. V, the amplitude analysis is presentedfor
=0.

In order to simplify the notation, in Secs. IV and V, where
the explicit notatiorD(\,l; A,L) is not necessary, the helic-
ity amplitudes will be denoted by5] F; and G; for i
=1,...,8, thecorrespondence being given in Table I. Simi-
larly, Table Il gives abbreviated notation for combinations
D.(N,I;A L) of Eq. (2.D).

I1l. AMBIGUITY ELIMINATION RULES

There have been contributiop—13] in the literature on
the formulation of rules which permit one to choose sets of
observables for determining reaction amplitudes. However,
selecting a set that eliminates all ambiguities is a problem
which has been much less discussed. It has been studied in
the particular case of a diagonal matrix, connecting observ-
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TABLE Il. Abbreviated notation for combinations — $1,2:52,3 " Sn—1n= — S1,2 — $2,3
DL (VALY of Eq (2.0) (1~ ¢n) (1= h2)*12+ (o~ ¢h3)
+o (P Pp)Stn
| 1 1 1 1 36
+3 +3 +3 +3 (3.6
A 1 1 1 1 We remark that the sum of the following two solutions
+= += —= -
2 2 2 2 (d’l_ ¢n)51,2v52,3» e vSn—l,n+(¢l— d,n)*sl,zfsz,s ----- “Sn-1n
L 1 1 1 1
"2 "2 "2 "2 =S1o+Soat +Sap, 37
3 is again specific; i.e., it is equal to 0 ar(mod 27) accord-
Di(é,l;A,L) GG, Fi*Fy Fe*Fy Ga*Gy ing to the even or odd number of observables taken as the

1 imaginary part of a bicom, along the open chain, respec-
Di(_,“A’L) FsiFe GsiGG G7iGg F7iF3 t|Ve|y

2 The ambiguity elimination is achieved by adding the de-
pendent relative phasepf— ¢,) which closes the chain.
ables and “bicoms”[3,4]. It is a prime necessity to extend This additional phase is determined by knowledge of an ob-

* *
the investigation to the case of a nondiagonal matrix, Whicqservable RefnAr) or Im(AqAT). It presents a twofold so-

corresponds to observables expressed as sum of bicoms, Ution, the sum of which,
If the matrix connecting observables and bicoms is diag- _
J 0 Su1=($n— b0+ (go— b)) 1, (38

onal, each observable is a “primary observable” and is writ-
is specific. No ambiguity remains if the sum of the specific

ten as the real or imaginary part of a single bicom.
sums, along the closed chain, is different frontndod 27).

Briefly, in polar notation, a complex amplitudg is de-
noted |A;|exp(¢). The magnitudes being determined, Obviously, accidental or numerical degeneracy is discarded.
This gives the “rule of the odd number of imaginary

knowledge of an observablé;=Re(A;A%) determines the

relative phase as a twofold solution parts” [4]: Let us consider a set of consecutive independent
relative phase&pen chaip, each of them being known from

Sr - " AT T

b \S12— a “primary observable.” The elimination of ambiguities is

(617 $2)712=s, Areco Aql|Ay]” 39 performed by determining an additional relative phase,
which depends linearly on the others and closes the chain.

with s, ,=*1, the sum of which is All the ambiguities are eliminated if the number of imagi-
nary parts of bicoms along the closed chain is an odd num-

S1,2= (1= )12+ (1 — ) *12=0. (32 per. For an even number, the ambiguity elimination is par-

tial, the degeneracy being of order 2.

Similarly, knowledge of3, =Im(A,A7) determines the rela- | et us remark that a relative phase exactly known, by

tive phase from means of any method, may be considered as a phase known

from the real and imaginary parts of its bicom. Its presence

in a closed chain eliminates all the ambiguities. Yet such an
(3.3 :

exactly known phase may be considered as a set of two equal

solutions, the sum of which being unspecific. The presence

aa 5|
—¢p)%12= 5 +s rcco?i,
(¢1 ¢2) 2 l,Za Al||A2|

with s; ,=*1, the sum of which is of such a phase, in a closed chain, eliminates all the ambi-
guities.
S12= (1= ¢2)%12+ (1 — )~ Sr2=17. (3.9 In the situation we want to analyZzeee Sec. )| the ma-

trix connecting observables and bicoms being not diagonal,
In each case, the sum of the two solutions has a particulasome observables only are written as the real or imaginary
value (0 orm). Such a sum will be called a “specific sum.” part of a bicom. All other “secondary observables” are writ-
Contrarily, we shall refer to an “unspecific sum” if its value ten as the real or imaginary part of sum of two bicoms. We

differs from O orr. generalize the above prescription in the following way.
Let us consider an open chain ai{ 1) consecutive in- Knowledge of a secondary observabliy=Re(A;A5

dependent relative phases, 1 d2),  +A;AL*) may determine the relative phase,(— ¢,) if

(po—3), ..., (Pn_1— ), n=2. Each phase, deter-

mined either from Re§;Af, ;) or from Im(A;Af, ), presents D= (py— p3)— (1~ 1) (3.9

a twofold solution @;— ¢;.1)%i+1 with s;;,;==*1, the

sum is known. Then, we define

Siit1=(¢i— dir )% 1+ (di— pip1) Wi+t (3.9 a=|Aq|[Az|+|A]|Az|cos D, (3.10
being a specific sum. B=—|Al||A}|sin @, (3.11

The global phase of the open chaig,( ¢,) presents
2"~ 1 solutions, written as andX (mod 21) by
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X . d sinX A (3.12 ®51v52+q)—81,—52252_51- (3.20
cosX= and  sinX= —2— (3.
2 2 7 >
Va+ B va ™+ If S;=S,, one gets, from Eqg3.10—(3.12,
';li-gr? relative phased; — ¢,) is expressed as a twofold solu- Xep ot X_o, om0 a1
S and
R
(¢p1— p)12=X+s; Arccos—=——=,  (3.13
Vol + B2 \/a§1,52+,3§1,52= \/az_sl’_sz-f— Bz—sl,—sz' (3.22

with s, ,= =1, the sum of which, being equal toX2is un- s
. We find that th ht solutions; — 1.2 titute f
specific. Slmllarly, froms, = Im(A;AS +AJAL*), we obtain e find that the eight solution ¢2)S s, CONSHTE four

two solutions sets of twofold solutions with a specmc sum,

jun T 5 314 S12=(¢1= ¢ % + (41 ¢2) 0%, (323
- 12=—4+X+$; AarCC0S——;, A
(¢1 ¢2 2 1,2a \/CYZTBZ
equal to 0 from Eq(3.18 and equal tor from Eq. (3.19.

the sum of which, being equal 8+ 2X, is unspecific. Each set of twofold solutions is independent of the others. If

The simplest method to obtain the quantityof Eq. (3.9) S;#S,, no such specific sums exist. Then, for a triad with
is to determine ¢,—¢)) and (¢,— ¢}) from the corre- S,=S,, there exists a twofold solution with a specific sum
sponding primary observables. Thus, let us consider 4°' the secondary observablg,(;=0 or ), as for a primary
“triad,” constituted by one secondary and two associated®"€:

primary observables. More precisely, we know Re&} g CondS|d?r agfll? an ophen chain of£1) consecutive in-
+AAY)  or |m(A1A*+A1A§*) Re(MA*)  or ependent relative phases, ¢y~ ¢;), (d2— ¢3), .

IM(AAL*), and Ref,AL*) or Im(A,AL%). Knowledge of (¢n,.1—¢n), for n>2. Each phase is determined eitherfrom

a primary observable or from a triad. For two consecutive
the ’tv!o primary opsservaples determines the solutiong ( triads, one of the associated primary observable may be dif-
—¢1)%t and (pr— ¢5)%2, withs;=*1, s,==*1, the sums

ferent or shared in common. To be explicit, the first triad is

1 * ! %
S, =(1— )51+ (by— B!) 51, 3.1 constituted by Re or In#f;A5+AA*), Re or
1= (917 P14 (917 ) (313 Im(A;AL*), and Re or ImQAAS*). Similarly, the second
S,=(hr— )2+ (dy— ) %2 (3.1 triad involves Re or IM@,A% +AZAL%), Re or ImALAZ*),

and Re or ImAzAL*). The two possible cases; and A
being specific. Here, the simplified notatisp, s,, S, being equal or different may be examined. If they are differ-
andS, stands for the quantities defined by E¢81)—(3.4),  ent, &=64 solutions exist for the two triads together; other-
S11, Sz, Spy, andS, ., respectively. Then, the quan- wise, the number of solutions reduces t628=32. Actually,

tity @ of Eq. (3.9 takes four possible values A} is equal toA in all the cases encountered in the present
work.
D, s,= (2= )%= (1~ 1) (3.17 The generalization of the rule of ambiguity elimination

for a mixed open chain is the following: Let us consider a set
From Egs.(3.10-(3.12, «, B, andX depend ors; and  of (n—1) consecutive independent relative phagepen
Sz, also. The relative phasep{— ¢,) is given, from such a chain, for n>2, each of them being known either from a
triad, as an eightfold solution primary observable or from a triad. A total or partial elimi-
nation of the ambiguities is performed by determining an
(by— ¢2)21’252:X51152+Sl LAICCO Or additional relative phase, also known either from a primary

[ ﬁZ observable or from a triad, which depends linearly on the
ssy Py, others and closes the chain. A partial ambiguity elimination

(318 gives a degeneracy of order 2. The elimination of all the
or ambiguities is obtained by performing an investigation for
each of then relative phases along the closed chain. For each
. 5 phase, the question is whether paired solutions forming spe-
(hp1— ¢2)§1 5= 5 T Xs 5,51, ArCCoS ————, cific sums exist among its solutions. If the answer is nega-
122 \/agl s, ,831 s, tive, at least for one phase, the elimination is total. If the

(3.19 answer is positive, for tha phases, total elimination is ob-

tained for an odd number of imaginary parts along the closed
with s, ,=*1, the secondary observable beiag or &, chain.
respectively. Note that the total ambiguity elimination Some remarks must be made regarding the application of
among the eight solutions ok — ¢,) also determines ex- this rule. First, we recall that an exactly known phase, by
actly (¢p,— 1) and (po— ¢3). means of any process, must be considered as paired solutions

The next key step answers the following question: amongvith unspecific sums. Second, while specifying “an odd

the eight solutions, do there exist paired solutions forminghumber of imaginary parts along the closed chain,” one
specific sums? One has must take into account, for a triad, only the imaginary part of
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Ar 4 A 4 Ay with a s ¢ determination betweer 7 and 7 (mod 2m).
Similarly, for the second triad, one has
(1) (@2) (as)
X Deass (3.25
A As A A, A A, S2:% 2 , .
______ roeeeemserennasecs
I and so on. The sum along the closed chain,
|
| D5, 5,7 Ps, 5,7+ Ps 5, =0, (3.26
|
. ‘ , ¢ l, X provides a similar relation for th¥ quantities:
Al A2 Al A2 Al A2
() (b2) (&) Xs, 5,1 Xsy s, T+ Xs 5, =0, (mod2m). (3.27)
A 4, A 4, A 4, An additional degeneracy appears; it is not developed here,
) A because of the academic nature of the problem, which does
I not arise in a real amplitude analysis. Nevertheless,nfor
| =2, the case is not academic and has been excluded in the
| terms of the rule.
Il To summarize, we propose a graphical code, which sim-
4, 4 4, 4 A 4 plifies the use of this generalized rule of ambiguity elimina-
(@) (©) (cs) tion (see F_ig. 2 Each amplitudga i.s 'represented by a dot, a_nd
each relative phase by a line joining the two corresponding
FIG. 2. Graphical code for relative phases. dots. Three symbols are used for the relative phase

the secondary observable, and not those of the associatég.l_ ¢2). A solid or a dashed line indicates the presence of

primary ones. Third, we remark that a process of ambiguityP@i'éd solutions with a specific sum equal tpFg. 2(a)] or

elimination, performed by means of a triad, determines alsd’ [Fig. 2(3)], respectively. A dotted line means the absence

: ; ; - of paired solutions with a specific suffig. 2(a&) .
the t ted relative phases, f th t i P 1ons v P g
© WO assoclated relalive pnases, even i fey are not In the case in which the phasé{— ¢,) is known from a

cluded into the closed chain, but are dangling. . )
The generalized rule of ambiguity elimination is not ap- Primary observable, Fig. 2(p or 2(a) corresponds to

plicable in the following academic case. Let us consider &nowledge of the real or imaginary part oA{A3), respec-
closed chain, the relative phases of which being known tively. Figure 2(g) is equivalent to knowledge of the real
from triads, with the associated primary observables of thénd imaginary parts ofA;A3).
triads shared in common. If all the magnitudes are equal, If the phase §;—¢,) is known from a triad, three ex-
another symmetry appears in the problem and the order gimples are shown in Fig(. In these examples, the asso-
degeneracy increases. From E(&9—(3.12, one gets for Ciated phasesd; — ¢;) and (¢, — ¢,) are visualized. Figure
the first triad 2(b;) or 2(hb,) corresponds to knowledge of the real or
imaginary part of A;A5 +A1AY), respectively, the associ-
N P55, (3.24 ated phases being known from Re@;*), and Ref\,A%*).
5152 2 ' Figure 2(k) corresponds to knowledge of the real or imagi-

TABLE lll. CombinationsD ..(\,l;A,L) for ,= /2.

iz 2 iz -
2 2 2 2
A 1 1 1 1
"2 "3 "2 "2
L 1 1 1 1
3 3 3 3
3
D, EJ;A,L G1+G,=0 F,+F,=0 Fs+F, G3+G,=2G,
3
D-|5.LAL G1-G2=0 Fi—F=2F,; Fs—F4 G3—G,4=0
D+(%.|;A,L) Fs+Fs Gs+Ge=2Gs G7+Gg=0 F7+Fg=0
1
D—(EJ;A,L) Fs—Fs G5—Gg=0 G,—Gg=0 Fo—Fg=2F,




2854 J. P. AUGER AND C. LAZARD 57

nary part of @;A5 +AjA5*), the associated phases being chain [Fig. 2(g)] or (i) there exists an odd number of
known from Im@A;A1*), and Ref,A ). dashed lines along the closed chfiig. 2(c)]. If the num-

In Fig. 2(c), the use of the generalized rule of ambiguity ber of dashed lines is even, a partial ambiguity elimination is
elimination is displayed for a square closed chain. Eaclperformed, with a degeneracy of ordefFg. 2(g)].
phase is obtained from a primary observable or from a triad,

the associated phases of the triad not being visualized. In IV. UNAMBIGUOUS ANALYSIS AT 6, = /2

Fig. 2(c), an example of a partial elimination is shoade-

generacy of order)2 In Figs. 2(g) and 2(g), examples of In this section, use is made of the abbreviated notation
total ambiguity elimination are shown. defined in Table | for the helicity amplitudd3(\,1;A,L).

In terms of a closed chain, all the ambiguities are elimi-For 6,= /2, amplitude combination® . (\,l;A,L) of Eq.
nated if the diagram satisfies one of the two following crite-(2.1) are displayed in Table IIl. Then, for=\"=3,3, Eq.

ria: (i) there exists at least one dotted line along the closed2.2) provides the eight magnitudes

|(Fa+Fy)|2 +1 +1 +1 +1| [Re(P§PiPhps2)
4]G,4|? +1 -1 +1 -1|| RePEP.PHps2)
[(Fa—Fa)l? ~2lo +1 +1 -1 -1 RE(PSP;PB%,S) @0
4|F,|? +1 -1 -1 +1/ | —ReP5PLPyps2)
and
|(Fs+Fg)|? +1 41 +1 +1\ [ReP§PyPopy )
4|Gg|? +1 -1 +1 —1|| ReP2PLPhpyy)
(Fs—Fol2| ~2°l +1 +1 1 —1]| Re(PEPLPIpyy) 42
4[F |2 +1 -1 -1 +1/ | —RePyP}Pp11)
Taking into account Eq(2.10, Eq. (2.2) gives also, fon=3, \’'=—3, the four real parts of the “bicoms”:
~ R (F3+F,)(Fs+Fe)*] +1 +1 +1 +1| | RePEP,Phps 1)
ARq G3G{ ] +1 —1 +1 -1|| ReP2PLPhps 1)
RE(Fa—Fo)(Fs—Fo)*] | 20 +1 +1 -1 -1 Re(P2PLPIp; 1) “3
4R¢FFY] 1 -1 -1 +1/ | —Re(P)P}Pips 1)

From Eqgs.(4.1)—(4.3), the determination of the eight magni- Also, forA=3, \'=+3, Egs.(2.3) and(2.4) provide real

tudes and four phases is obtained from the knowledge of thand imaginary parts of sums of two bicoms:

12 observables REEP!,Pfp,, 2/), with a=0x,y,z, and

Pax2v = P33:P11:P3-1. Such a determination is carried out

using fourNN— (N7)N experiments, namely, the cross sec-

tion o and the three asymmetriesAyg,, . With a=X,y,z.

Let us remark that these experiments provide observable * *7_ bpt pr

used in the first step of the analysis, as well as part of theﬁm[Fl(FerFG) TFa(Fs+Fa)™]=410Re PVPOPO%('Z)’G)

second step. '
For \=\"=21 Egs. (2.3 and (2.4 provide real and

imaginary parts of the bicoms: and

Re[(F3—F4)G31=21,Re(PPLP)p3.2),

IM[(F3—F4)G31=21oRe(PIP{Phpsd (4.9

ReF1(Fs+Fg)* +F7(Fat+Fy)*1=41 Re(PIPIPyps3 ),

Re[(F3—F4) G2 +(Fs— Fg)G% 1=41 jRe(P2PLPhps 1),

and Im[(F3—F,)G2 +(F5—F6>G§]=4loRe(P;’PBPBm,_(g.?)
Re (Fs—Fg)GE]=21,Re(P2PLPLpy 1),

. bt Similarly, for A=32, \'==*,31 Egs.(2.5-(2.9 give real
Im[(Fs—Fe)G51=2IoRe(PyPoPop11). (45  and imaginary parts of the following sums of two bicoms:
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R F,GE —F,G31=21oIm(P2PPhps 1), Gs

IM[F,GE —F,G3]1=21oIm(P2P5Phps), (4.9

R (F3+F,4)(Fs—Fg)* +(FstFg)(F3—F4)*] Gs
=8loIm(PSP Phps 1), SN
e AN
IM[(F3+F4)(Fs—Fg)* +(Fs+Fg)(F3—F4)*] 4 N
bt r F Ry (F3+F4) (F5+F6)
=8lolm(P;PoPops 1), (4.9 . '<\ />‘ *
* * \\ //
REF(Fs—Fg)* —F7(F3—F4)*] N y
bptpr N\ /
=—4loIm(PyP;Pgp3 1), N
(Fs — Fy)

IM[F(Fs—Fg)* —F7(F3—F4)*]
= —41lm(P2PLPp3 ), (4.10
and (Fs — Fy)

RE Gs(F3+F4)* +Ga(Fs+Fg)*] FIG. 3. Graphical code for phases &= /2, with ambiguity
of order 2.
- _ bptpr
4lolm(PyPzPops 1), (4.7)], respectively. Starting from Fig. 3, and adding the line
betweenGs and (F5—Fg), yields Fig. 4. The number of

* *
IM[Gs(FatFa)™ +Gs(Fs+Fe)”] dashed lines being 3 along the trianglE;, Gs,

= _4|0|m(p2p5p6p371)_ (4.10) (Fs—Fg) and 3 also along the triangle
' (F3+F4), Gs, (Fs—Fg), all the ambiguities are elimi-
For each bicom or each sum of two bicoms of Eds4)—  hated. _ .
(4.11), its imaginary part is obtained from ag,o asymme- Then, knowledge of seven exper[ments on the reaction
try and its real part fromAggs,, with @+ B+ . In the fol- NN— (N7)N, namely, the cross sectian, the three polar-

lowing example, which presents an amplitude analysid?€d beam and target asymmetrieBoo , oAqss, and
without ambiguity, asymmetrieBogs, , With 8+ y, are not oAgnn, and the three polarized beam asymmetries

taken into account. This is a choice among many others. /000, Acuso, aNdoAgao, allows us to perform an un-
From the imaginary part of each sum of two bicoms, in2MPiguous amplitude analysis in terms of helicity amplitude
Egs. (4.6—(4.11), a “triad” may be constituted by addin’g combinations. The transformation from these combinations

the two appropriated real parts of bicoms, given by @) to the.helicity_amplitudes is obviou_s. Here, in the four-
. ’ : o subscript notation used for asymmetries, S, andN stand

Such a triad presents four sets of twofold solutions with the . o ) ~ ~

“specific sum” equal torr. (see Fig. 1for the direction(not oriented of the z, x, andy
The Apye asymmetry provides the observables axes of the beam and the target.

IM(P2PGPopax 1), TOF poy 201 =p31.p3-1, Which deter- Gs

mine the phases betweén andG; [Eq. (4.8)], and between

(F3+F,) and Fs—Fg) [Eq. (4.9)], respectively. Similarly,

the Agwx asymmetry provides the observables

IM(PYPGPop2x 217), TOr poyani=psa,pa_1, Which deter- G

mine the phases betweé&n and (F5—Fg) [Eq. (4.10] and s

betweenG; and (F3+F,) [Eq. (4.11)], respectively. /

Knowledge of these four phases achieves the second step /
of the analysidetermination of the three remaining inde- %
pendent phas¢sand constitutes a convenient starting point .7—1<
of the third step(elimination of the ambiguities In terms of \
a graphical code, the addition of a fourth phase closes the N
square. These four triads are represented in Fig. 3. The num- N\
ber of dashed lines being equal to 4 along the square AN
Fi., Gs, (Fzt+F,), (Fs—Fg), we are left with a de- (Fs — F)
generacy of order 2.

The Agye asymmetry provides the observables
Re(PSPBPBPm,z«)y for pax 2v' = p33:P1,1,P3.1,P3,-1, Which
determine the phases betwedf; - F,) andG; [Eq. (4.4)],
between Fs—Fg) and G5 [Eq. (4.5], between F5+Fg)
and F; [Eqg. (4.6)], and between F3;—F,) and G5 [Eq. FIG. 4. Graphical code for unambiguous phaseé,at /2.

N\

: (Fs+Fy) (Fy+Fg)

(Fs — Fy)
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TABLE IV. CombinationsD. (\,l;A,L) for 6,=0.

1 1 1 1
+§ +§ +§ +§
A L 1 1 1
2 2 2 2
L 1 1 1 1
2 "2 "2 "2
3
D+(§,|,A,L) G1+G,=0 Fi+F,=F; F3+F,=0 G3+G,=0
3
D_ (§,|,A,L) G;—G,=0 F;—F,=F; F3—F4=0 G3—G,=0
D+(;,I,A,L) Fs+Fs Gs+Gg=0 G,+Gg=0 F,;+Fg=F,
1
D (E,I A,L) ~Ge=0 G,~Gg=0 Fy—Fg=F;

V. CASE OF 6,=0

In this section, use is made of the abbreviated notation,

defined in Table I, for the helicity amplitudé€3(\,l;A,L).
For 6,=0, amplitude combination® . (\,I;A,L) of Eq.
(2.1) are displayed in Table V.

Then, forn=\"=32,1 Eq. (2.2 provides the four magni-
tudes

|F1|?=41,Re(PgPGPGps 9 (5.2)
and

|(Fs+Fg)|? +1 +1 -2
|(Fs—Fe)l? | =21, +1 +1 +2
|F,|2 +1 -1 0
Re(PgPoPop1,)

x| Re(PEPLPLp; ) (5.2
Re(PyPyP{p1.)

Taking into account Eq(2.10, Eq. (2.2) gives also, forx
=3 N'=-1 the real part of the “bicom”:

R F1F3]=—41,Re(PYP,Pips _1). (5.3

Also, for A\=%, \'=3, Egs.(2.4) and (2.7) provide real
and imaginary parts of the bicoms:
Re[F1(F5+Fg)* ]=41o[IM(PIPyPps 1)

+Im(P PP oP3D ],

IM[F1(Fs+Fg)*1=41 o[ Re(PYP{PGp3.)

—Re(PgPPp3 1] (5.4
and
R F1(F5—Fe)*1=41o[Im(P2P,Pgp3.)

—Im(PYPLPGp3 1)1,
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(F5 + Fg)

* (Fs - F)
FIG. 5. Graphical code for phases&=0.

Fe)*1=—41[Re(PYP,P)p3 1)
+Re(POPyPOp3 )]

Im[F(Fs—
(5.5

Knowledge of five experiments on the reactidviN
—(N#)N, namely, the cross sectian and the four asym-
metrieSO'AOOLL y O-AO(]\IN y O.AOONOI and(TAOO(N y pel‘mits
one to determine the four magnitudes &f;, F-,
(Fs+Fg), and F5—Fg) and the three independent relative
phases betwee; and each of the three others. An ambigu-
ity of order 2° remains.

From Eq.(5.4), knowledge of the real and imaginary parts
of the bicomF(Fs+Fg)* determines exactly the corre-
sponding relative phase, and similarly from E§.5). Then,
additional knowledge of the two asymmetrieg\yq y and
oAgy. VYields exactly the phases betweeR; and
(F5+Fg) and betweerF; and (F5—Fg). The transforma-
tion from these combinations to the helicity amplitudes
F., Fs5 andFg may be performed without ambiguity.
Nevertheless, the sign of the phase betwEerand F- re-
mains unknowr(see Fig. 5.

VI. CONCLUSION

The present work is devoted to an unambiguous ampli-
tude analysis of theNN—AN transition, from NN
—(Nm7)N asymmetry measurements. The study is per-
formed in the helicity frame. Restricting the analysis to
asymmetry measurements requires one to work with linear
combinations of helicity amplitudes. Moreover, the magni-
tudes of these combinations may be obtained for particular
A-production angles, only, namely, 0,7/2, and 7. A
three-step method is developed, which determines, first, the
magnitudes, second, independent relative phases, and third,
some dependent relative phases for resolving the remaining
ambiguities.

The rule of ambiguity elimination is based on the closure
of a chain of consecutive independent relative phases, by
means of thewd hocdependent one. If the matrix connecting
observables and “bicoms” is diagonal, each observable is
written as the real or imaginary part of a bicom. A relative
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phase, determined by such an observable, presents a twofalthyy o and oAy, determine four phases, the three last
solution. All the ambiguities are eliminated if the number ofindependent ones and one additional dependent phase. At
imaginary parts of bicom along the closed chain is odd. Fothis stage, the remaining ambiguity is of order 2. It is re-
an even number, the ambiguity elimination is partial, themoved by adding the third polarized beam asymmetry
degeneracy being of order 2. Aoono-

In the present analysis, the matrix connecting observables At 6,=0, the four magnitudes and a relative phase are
and bicoms is not diagonal. Many observables are written agetermined by means of three experiments, the cross section
the real or imaginary part of a sum of bicoms. A relative ; and the two polarized beam and target asymmetries
phase, determined from such an observable, presents magy . and ¢Ayyy. The two asymmetriesrAgyy and
sets of twofold solutions. The generalization of the above;a . determine two remaining independent phases. At this

rule of the odd number of imaginary parts” is based on the gecong step of the analysis, an ambiguity of ord&rré-
study of the multiple solutions of a relative phase. Moremains. With two more experimentsigy  andoAgy, , the
precisely, it relies on the existence, among all the solutionsyejicity amplitudes are determined up to an ambiguity of
of paired solutions forming a “specific sum,” i.e., a SUM gjgn of one relative phase.

equal to 0 orm. Contrarily, we refer to an “unspecific sum”  “we recall that knowledge of the full multidimensional
if the value of the sum differs from O ar. All the ambigu-  form of the data[14—18 must be sufficient to yield the
ities are eliminated if, at least, one phase with an unspecifig N, AN observables. For this, we must perform integration
sum appears along the closed chain. If such a phase does ngfer the polar and azimuthal angles of the decay nucleon in
appear along the closed chain, total elimination is obtaineghe A rest frame, with respect to the direction of theand to

for an odd number of phases with a specific sum equal.to the production scattering plarisee Egs(3.8) and (3.9) of

For an even number, the degeneracy is of order 2. A graphi1]. presently, for any incident energy, there is no such com-
cal code is proposed to simplify the use of this rule of am-pjete set of measurements.

biguity elimination.

At 6, = 7/2 production angle, an unambiguously determi-
nation of theNN— AN transition amplitudes is performed.
The eight magnitudes and four phases are determined by
means of four experiments, namely, the cross secti@nd We wish to thank R. J. Lombard for many stimulating
the three polarized beam and target asymmetriegliscussions and a careful reading of the manuscript. Division
Ao L, 0Agess, andaAggn- TWo asymmetries, chosen de Physique Tharique is a “Unifede Recherche des Uni-
among the three polarized beam asymmetries, for examplegrsites Paris X| et Paris VI asso@eau CNRS.”
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