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s fields and chiral scalars in nuclear three-body potentials
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The scalar-isoscalar field of an effective chiral Lagrangian transforms differently in either linear or nonlinear
frameworks: in the former case it is the counterpart of the pion whereas in the latter it is chiral invariant on its
own. We compare the predictions from these two models for nucleon interactions and find results which are
identical for two-body and rather different for three-body potentials. Some qualitative features of three-body
interactions are discussed.@S0556-2813~98!07105-2#
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I. INTRODUCTION

Since the fundamental work of Yukawa, the meson
change theory has been successfully applied to the des
tion of the nucleon-nucleon force. Nowadays it is well esta
lished that the one-pion exchange potential~OPEP! is
dominant at large distances, yielding a strong force with s
and isospin dependences.

The next layer of the interaction is associated with
exchange of two pions. This system has the lightest m
beyond the OPEP and involves an intermediate pion-nuc
(pN) amplitude in a kinematical region which is not direct
accessible to experiment. Therefore a proper theore
treatment of this component of the potential requires the
of information based on dispersion relations, as pointed
long ago by Cottinghan and Vinh Mau@1#. The implemen-
tation of this idea led to the Paris potential@2#, which is
rather successful in describing experimental data.

An important feature of thepN amplitude is chiral sym-
metry, as emphasized more than 25 years ago by Brown
Durso@3#. Recently the application of chiral symmetry to th
NN interaction has deserved much attention, initially in t
restricted framework of pion and nucleon degrees of freed
@4#, and nowadays it is fair to say that the theoretical form
lation of this sector of the interaction is free of ambiguitie
However, a Lagrangian containing only pions and nucle
cannot reproduce low-energypN data and hence this ver
reliable part of the model has to be complemented@5,6#. The
combination of chiral symmetry and experimental inform
tion about the intermediatepN amplitude, based on dispe
sion relations, was brought into this problem in the last t
years @6#, with a successful description of asymptoticNN
scattering data@7,8#.

In contrast with the OPEP, the two-pion exchange pot
tial ~TPEP! produces an attractive interaction that depen
little on spin and isospin, because it is dominated by
exchange of a scalar-isoscalar system. In many phenom
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logical potentials, the actual two-pion dynamics is simula
by the exchange of an effective scalar-isoscalar meson,
a mass around 550 MeV. In the framework of chiral symm
try, this meson is usually identified with the counterpart
the pion in the linears model and one obtains a predictio
for its coupling constant to the nucleon. The existence o
scalar-isoscalar meson is controversial, the main candi
being thef 0 ~400–1200!, which may be present inpp scat-
tering @9#. In the case ofNN scattering, the TPEP is quit
well accounted for by nonlinear chiral dynamics, constrain
by experimental information, and the scalar-isoscalar me
is unnecessary. According to the unwritten law of quant
mechanics, stating that processes which are not forbidden
compulsory, the exchange of two pions must be conside
in any realistic description of theNN interaction and the use
of thes field to simulate the actual TPEP gives rise to sho
comings. In particular, a scalar field with massms yields a
central NN potential proportional toe2msr /r , whereas the
spatial dependence of TPEP is closer to (e2mr /r )2, m being
the pion mass@6,8#. Moreover, the TPEP is proportional t
g4, whereg is the pN coupling constant, whereas the e
change of as is proportional tog2. In spite of all these
problems, the use of an effective scalar field may be usefu
problems where simplicity is more important than precisio
As far as the former is concerned an effective scalar fi
allows calculations at tree level, whereas the exchange
two pions involves loop integrations.

If one is willing to use an effective scalar field in a ca
culation, there are two possibilities at hand. The first o
consists in employing the usuals field of the linear model,
which is the chiral partner of the pion. The other possibil
is to use a scalar field in the framework of nonline
Lagrangians, which is chiral invariant and appears natur
when the nonlinear fields are obtained from the linear o
@10#. These two scalars fields couple differently to pions a
nucleons and hence lead to predictions which do not ove
for some specific processes. The main purpose of this w
is to explore these predictions in the case of three-b
forces. Our presentation is divided as follows: in Sec. II
compare linear and nonlinear Lagrangians and in Sec. III
motivate the physical predictions of the latter. In Sec. IV w
2839 © 1998 The American Physical Society
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2840 57C. M. MAEKAWA AND M. R. ROBILOTTA
derive the kernel of the three-body force, which is fully d
veloped in Sec. V. Finally, in Sec. VI we discuss quali
tively some features of the force associated withs ’s and
chiral scalars.

II. LAGRANGIANS

In this section we introduce the Lagrangians describ
both thes and the chiral scalar. In the framework of line
dynamics the fields is the chiral partner of the pion fieldp
since, for an axial transformationdA, we havedAp→s and
dAs→2p. In the case of nonlinear dynamics, the pion fie
is represented byf and we also consider a new fieldS,
which corresponds to a generalization of the fields8, intro-
duced long ago by Weinberg@10#. The corresponding axia
transformation aredAf5F(f2), whereF(f2) is a function
of f2 anddAS50. The last transformation implies thatS is
a chiral scalar.

The linear LagrangianLs has the usual form

Ls5
1

2
~]ms]ms1]mp•]mp!2

m2

2
~s21p2!1

1

2
f pm2s

1U~s21p2!1N̄i ]”N2gN̄~s1 i t•pg5!N, ~1!

whereN is the nucleon field that transforms linearly,f p is
the pion decay constant,m is the pion mass,g is the pN
coupling constant, and the termU(s21p2) represents the
self-interactions of the mesonic fields. In the framework
the linears model the scalar fluctuations are associated w
a field e, related tos by

s5 f p1e. ~2!

Replacing this in the Lagrangian~1!, we obtain

Ls5
1

2
~]me]me2me

2e2!1
1

2
~]mp•]mp2m2p2!

1U@~ f p1e!21p2#1N̄i ]”N

2gN̄~ f p1e1 i t•pg5!N. ~3!

In the nonlinear approach, the LagrangianLS is written as

LS5F1

2
~]mS]mS2ms

2S2!2U~S!G
1F1

2
~]mf•]mf1]m f ]m f !1 f pm2f G1LN , ~4!

where f corresponds to the functionf 5Af p
2 2f2. Formally,

U(S) describes the self-interactions of the scalar field a
LN represents both the nucleon sector and its interact
with bosonic fields. This part of Lagrangian may be cast
many different forms, two of which are widely employed
the literature. In one of them, the pion-nucleon coupling
pseudovector~PV! and, in the other, it is pseudoscalar~PS!.
For PV coupling, one has
-
-

g

f
h

d
ns
n

s

LN
PV5c̄ igmDmc2mc̄c1

g

2m
c̄gmg5tc•Dmf2gsSc̄c,

~5!

wherec is the nucleon field that transforms nonlinearly,m is
its mass, andgs represents the coupling of the nucleon to t
scalar. In this expression the pion and nucleon covariant
rivatives are given by@11#

Dmf5]mf2
1

f 1 f p
]m f f, ~6!

Dmc5F]m1 i
1

f p~ f 1 f p!

t

2
•~f3]mf!Gc. ~7!

This Lagrangian has been used recently in the study
pN form factors in constituent quarks models@12# and it is
worth noting that its last term describes a chiral invaria
coupling between the scalar and the nucleon.

In the case of PS coupling, one has

LN
PS5N̄i ]”N2gN̄~ f 1 i t•fg5!N2

gs

f p
SN̄~ f 1 i t•fg5!N,

~8!

whereN is the nucleon field that transforms linearly. The la
term of this expression has the same meaning as the c
sponding one in Eq.~5!.

On general grounds one knows that, in the framework
chiral symmetry, results should not depend on the choice
LN @13,14#. The equivalence between the PS and P
Lagrangians was verified explicitly in the case of TPEP@6#
and of pion-nucleon interactions in constituent quark mod
@12#. Because of this equivalence and of the similarity w
the linear Lagrangian, our discussions are set in the PS c
Thus our complete nonlinear Lagrangian is written as

LS
PS5

1

2
~]mS]mS2mS

2S2!1
1

2
~]mf•]mf1]m f ]m f !1 f pm2f

1U~S!1N̄i ]”N2S g1
gs

f p
SD N̄~ f 1 i t•fg5!N. ~9!

The interaction terms in Eqs.~9! and ~3! have the same
scalar-nucleon and pion-nucleon vertices depicted in F
1~a!. However, the nonlinear approach also yields extra v

FIG. 1. Interactions of nucleons~full lines!, pions~broken lines!
and scalar-isoscalar mesons~wavy lines! present in both linear and
nonlinear models~a! and only in the latter~b!.
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57 2841s FIELDS AND CHIRAL SCALARS IN NUCLEAR . . .
tices, representing seagull scalar-pion-nucleon and p
pion-nucleon interactions, among others, displayed in F
1~b!. These results indicate that, at tree level, bo
Lagrangians produce the sameNN potential. On the other
hand, the extra scalar-pion-nucleon vertex represents a g
ine difference between the two approaches and has co
quences in processes such as pion absorption by a
nucleon system or three-body forces.

III. EFFECTIVE SEAGULL

The purpose of this section is to discuss the meaning
the effective seagull interaction in terms of more basic p
cesses. In order to do this, we note that, in the framewor
nonlinear Lagrangians, the TPEP in the pure nucleon se
is given by the five diagrams of Fig. 2~a! @6#, which we may
want to associate with an effective scalar exchange. Whe
external pion is attached to these processes, we have
three possibilities indicated in Fig. 2~b!, the last one corre-
sponding to an effective seagull, whose dynamical mean
is given in Fig. 2~c!.

The nine diagrams associated with the effective sea
interaction can be understood as arising from the produc
the amplitudesTba andPbca, where the former describes th
pion-nucleon scatteringpa(k)N(p)→pb(k8)N(p8) and lat-
ter represents the contribution from pion productio
pa(k)N(p)→pb(k8)pc(q)N(p8), as indicated in Fig. 3.
The composite amplitude is denoted byA and given by

A52 i E d4Q

~2p!4
TbaPbca

1

k22m2

1

k822m2
, ~10!

whereQ5 1
2 (k2k8).

Using thepN vertices obtained from Eq.~9!, we have

FIG. 2. Dynamical content of the effective scalar-isoscalar fi
in ~a! nucleon-nucleon interactions,~b! thepNN kernel, and~c! the
seagull term; conventions are the same as in Fig. 1 and the cro
in nucleon propagators indicate that they do not contain posi
frequency components.
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Pbca5 ig3H ~dabtc2dbcta2dactb1 i ebac!

3ūF k” 8

~p81k8!22m2
g5

k”

~p1k!22m2Gu

1dactbūFg5

k” 8

~p81k8!22m2

1

g fp
Gu

1dbctaūF 1

g fp

k”

~p1k!22m2
g5GuJ . ~11!

The part of A corresponding to a scalar-isoscalar e
change is associated with the factordab in thepN amplitude
and hence it is proportional to

dabP
bac5 ig3tcūF k” 8

~p81k8!22m2
g5

k”

~p1k!22m2

2g5

k” 8

~p81k8!22m2

1

g fp

2
1

g fp

k”

~p1k!22m2
g5Gu. ~12!

In order to identify the main contribution to this ampl
tude, we go to the soft pion limit, by usingk5k85(k0,0)
and then take the limitk0→0. We thus obtain

dabP
bca ——→

soft
2

ig3

4m2
tcūg5u, ~13!

which has the same structure as the effective scalar-nuc
seagull vertex predicted by the nonlinear Lagrangian giv
by Eq. ~9!.

IV. EFFECTIVE pNN VERTEX

As far asNN interactions are concerned both the line
and nonlinear Lagrangians, given by Eqs.~3! and ~9!, yield

FIG. 3. The effective seagull~a! as composed by thepN
→pN ~b!, andpN→ppN ~c! amplitudes.
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2842 57C. M. MAEKAWA AND M. R. ROBILOTTA
potentials at tree level, which are due to the exchange
one-pion and one-scalar meson associated with the diag
of Fig. 1~a!. In principle, the scalar coupling constants pr
dicted by these Lagrangians could be different. However,
are interested only in dynamical distinctions between thes
and the chiral scalar and, from now on, we setgs5g in order
to force both models to simulate exactly the same two-b
potential.

On the other hand, these models produce different pre
tions for the effectivepNN vertex and in this section we
consider the form of this interaction. The basic ingredie
are the amplitudesTs and Ts , that describe the processe
pN→sN and pN→SN, respectively. The amplitudeTs is
determined by just the first two diagrams of Fig. 4~a!
whereasTs also includes the seagull term. As the calcu
tions of Ts andTs are quite similar, we denote both amp
tudes byT and identify the seagull contribution by a param
eter l, such thatTs5T(l50) and Ts5T(l51). At tree
level, T is given by the diagrams depicted in Fig. 4~a!, and
we have, for a pion with isospin indexc,

T~l!52 ig2tcū~p8!F p” d1m

pd
22m2

g51g5

p” x1m

px
22m2

1
l

g fp
g5Gu~p!. ~14!

with pd5p1k, px5p82k. Using Dirac equation, we re
write Eq. ~14! as

T~l!52 ig2tcū~p8!F k”

pd
22m2

1
k”

px
22m2

1
l

g fp
Gg5u~p!.

~15!

It is worth pointing out that, as shown in@12#, this result
does not depend on our choice of the PS coupling in
nonlinear Lagrangian and it would be the same if the
scheme were adopted.

This amplitude contains positive frequency states, wh
do not enter in the construction of the properpNN kernel. In
order to isolate these contributions, we write the nucle
propagator as

FIG. 4. ~a! Amplitudes for the processespN→sN(l50) and
pN→SN(l51); ~b! the correspondingpNN kernel.
of
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e
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n

p”1m

p22m2
5

1

2EF 1

p02E

3 (
s

us~p!ūs~p!1
1

p01E
(

s
vs~2p!v̄s~2p!G ,

~16!

whereE5Ap 21m2. Thus

F p”1m

p22m2G
~1 !

5
1

2EF p”1m

p02E
2g0G ~17!

and the positive energy contribution is

T~1 !52 ig2tcū~p8!F k”

2Ed~pd
02Ed!

1
k”

2Ex~px
02Ex!

2S 1

2Ed
2

1

2Ex
Dg0Gg5u~p!. ~18!

Subtracting Eq.~18! from Eq. ~15! we getT̄, the irreduc-
ible positive frequency amplitude

T̄~l!52 ig2tcū~p8!F2
k”

2Ed~pd
01Ed!

2
k”

2Ex~px
01Ex!

1S 1

2Ed
2

1

2Ex
Dg01

l

g fp
Gg5u~p!. ~19!

This allows the proper kernel for the processpNjNk, as
shown in Fig. 4~b!, to be written as

K~l!52 ig3H tcū~p8!F2
k”

2Ed~pd
01Ed!

2
k”

2Ex~px
01Ex!

1S 1

2Ed
2

1

2Ex
Dg01

l

g fp
Gg5u~p!J ~ j !

3
1

q22ms
2 @ ū~p8!u~p!#~k!, ~20!

whereq5pk82pk.

FIG. 5. Basic diagram for the three-body force.
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V. THREE-BODY FORCE

In this section we derive the three-nucleon force due
the simultaneous exchanges of one pion and one effec
scalar meson and the basic diagram is shown in Fig. 5
produces the following three-nucleon amplitude:

Ti jk~l!5g4t~ i !
•t~ j !@ ū~p8!g5u~p!#~ i !

1

k22m2

3H ū~p8!F2
k”

2Ed~pd
01Ed!

2
k”

2Ex~px
01Ex!

1S 1

2Ed
2

1

2Ex
Dg01

l

g fp
Gg5u~p!J ~ j !

3
1

q22ms
2 @ ū~p8!u~p!#~k!. ~21!

In order to obtain the nonrelativistic limit ofTi jk(l), de-
noted byt i jk(l), we use

1

2Ed
2

1

2Ex
;

p2

m3
,

1

2Ed~pd
01Ed!

1
1

2Ex~px
01Ex!

;
1

2m2
,

ū~p8!u~p!→I ,

ū~p8!g5u~p!→
1

2m
s•~p2p8!,

ū~p8!g0g5u~p!→
1

2m
s•~p1p8!,

ū~p8!k”g5u~p!→2s•k,

1

k22m2
>2

1

k21m2
,

1

q22ms
2

>2
1

q21ms
2

,

where the arrows indicate that the normalization of
spinors were also changed. Using these results and kee
only terms of the orderp/m, we get the nonrelativistic am
plitude

t i jk~l!5
g4

~2m!2
t~ i !

•t~ j !s~ i !
•k

1

k21m2
s~ j !

•F S 1

m
2

l

g fp
D k

1
l

g fp
qG 1

q21ms
2

, ~22!
o
ve
It

e
ing

where k5pi2p8iand q5p8k2pk . The full nonrelativistic
amplitudet3N is given by the permutation over all indice
i jk .

In momentum space the three-body potentialW is defined
by

^p18p28p38uWup1p2p3&

52~2p!3d3~p181p281p382p12p22p3!t3N .

~23!

We apply Fourier transform to Eq.~23! in order to obtain
the potential in configuration space and we have

FIG. 6. Equipotential plots for the expectation value of t
three-body force in the trinucleon ground state, calculated using
~38! with L51.5 GeV for the linear~a! and nonlinear~b! models.
One of the nucleons is fixed atx50.5 fm, another atx520.5 fm
and the position of the third one is varied.
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^r18r28r38uWur1r2r3&5d~r182r1!d~r282r2!d~r382r3!W,
~24!

and the componentWi jk of the local potentialW is given by

Wi jk5
g4

~4p!2~2m!2

mms

m
t~ i !

•t~ j !F S 12
lm

g fp
D

3U~msr k j!s~ i !
•¹j i s

~ j !
•¹j i U~mr j i !

1
lm

g fp
s~ i !

•¹j i U~mr j i !s~ j !
•¹k jU~msr k j!G , ~25!

whereU(mr )5exp(2mr)/mr and r k j5r k2r j .
We assume the approximate identitym/g fp.1 and, simi-

larly to the procedure used in the two-pion exchange thr
nucleon force@15#, we regularize the mesonic exchang
with the following dipole form factor:

G~k2!5S L22m2

L22k2 D 2

, ~26!

whereL is a cutoff parameter.
The regularization changes the Yukawa-type function i

U~mr ,L!5
e2mr

mr
2

L

m

e2Lr

Lr
2

1

2

m

LS L2

m2
21D e2Lr ,

~27!

and its derivatives are given by

]U~mr ,L!

]r a
5m

r a

r
U1~mr ,L!, ~28!
e

re

e
h

t
,

e

e-

o

]2U~mr ,L!

]r a]r b
5

m2

3 Fdab„U~mr ,L!2G~r !…

1S 3r ar b

r 2
2dabD U2~mr ,L!G , ~29!

where

U1~mr ,L!52S 1

mr
11De2mr

mr
1

L2

m2S 11
1

Lr De2Lr

Lr

1
1

2S L2

m2
21D e2Lr , ~30!

U2~mr ,L!5S 11
3

mr
1

3

m2r 2D e2mr

mr
2

L3

m3

3S 11
3

Lr
1

3

L2r 2D e2Lr

Lr
2

1

2

L

m S L2

m2
21D

3S 11
1

Lr De2Lr , ~31!

G~r !5
1

2

m

LS L2

m2
21D 2

e2Lr . ~32!

Substituting these results into the potential, we have
Wi jk5
4

3S gm

2mD 4 m

~4p!2

ms

m
t~ i !

•t~ j !H ~12l!@s~ i !
•s~ j !U~msr k j ,L!„U~mr j i ,L!2G~r j i ,L!…

1Si j ~ r̂ j i , r̂ j i !U~msr k j ,L!U2~mr j i ,L!#1l
ms

m
@Si j ~ r̂ j i , r̂k j!1 r̂ j i • r̂k js

~ i !
•s~ j !#U1~mr j i ,L!U1~msr k j ,L!J , ~33!
iral

tion
of
r
ent.

ons

red

y
a
ng
k of
ac-
where

Si j ~ r̂ j i , r̂k j!53s~ i !
• r̂ j i s

~ j !
• r̂k j2 r̂ j i • r̂k js

~ i !
•s~ j !. ~34!

VI. DISCUSSION

Initially, we discuss the role of chiral symmetry in th
results of the previous section. Inspecting Eq.~25!, one notes
that all the terms of the potential contain two gradients,
flecting the fact that they come from Eq.~22!, which is a
uniform second-order polynomial in meson momenta, as
pected from a calculation based on chiral symmetry. T
feature of the problem is independent ofl. On the other
hand, the detailed form of the potential is quite sensitive
this parameter. The valuel50 corresponds to a scalar field
denoted bys, which is the chiral partner of the pion. Th
-

x-
is

o

value l51, in turn, indicates processes based on a ch
invariant fieldS. It is worth pointing out that results withl
51 are, as they should be, independent of the representa
adopted for the pion field and, in particular, of the use
either PS or PV pion-nucleon couplings. So the parametel
describes dynamical processes which are genuinely differ

At tree level, these effects cannot be distinguished inNN
interactions, but they manifest themselves in the reacti
NN→pNN, pd↔NN, in axial form factors of nuclei and in
three-body forces. In the present work we have conside
only the last kind of application.

Our results withl51 coincide with that presented b
Coon, Pen˜a, and Riska@16#. These authors also obtained
contact interaction, employing a PV pion-nucleon coupli
and a scalar-meson coupled to nucleons. In the framewor
chiral symmetry, this combination means that they have t
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itly used a Lagrangian equivalent of our Eq.~5! and hence
their s field corresponds to ourS.

In this work we are concerned mainly with the differenc
between the casesl50 andl51 for three-body forces. The
full exploration of this aspect of the problem would require
precise calculation of trinucleon observables, especially
binding energy. In order to produce a preliminary qualitat
indication of the role of the force considered in this work, w
evaluate the expectation value^SuWuS&, where uS& repre-
sents the principalS state of the trinucleon, which is th
basic component of its ground-state wave function.

This state is written as@15#

uS&5S~ r̂ j i !G~1/2!t
~1/2!m~a!, ~35!

whereS(r j i ) is the spatial component andG (1/2)t
(1/2)m(a) is the

antisymmetric spin-isospin wave function withz components
m and t, respectively.

The action of the tensor operatorsSi j over uS& results in
states with orbital angular momentum different from ze
Using

@G~1/2!t
~1/2!m~a!#†t~ i !

•t~ j !s~ i !
•s~ j !G~1/2!t

~1/2!m~a!523, ~36!

we obtain

@G~1/2!t
~1/2!m~a!#†Wi jkG~1/2!t

~1/2!m~a!

524S gm

2mD 4 m

~4p!2

ms

m H ~12l!U~msr k j ,L!

3@U~mr j i ,L!2G~mr j i ,L!#1cosu jl
ms

m

3U1~mr j i ,L!U1~msr k j ,L!J , ~37!

where cosuj5r̂ j i • r̂k j . Using the results of@15# and neglect-
ing the very short-range functionG(mr j i ,L) @17#, we have

@G~1/2!t
~1/2!m~a!#†Wi jkG~1/2!t

~1/2!m~a!

52$~12l!CsU~msr k j ,L!U~mr j i ,L!

1lCS cosu jU1~mr j i ,L!U1~msr k j ,L!%, ~38!
d,

R

. C
e

.

whereCs andCS are the strength coefficients ofs and chiral
scalar, respectively, given by

Cs54S gm

2mD 4 1

~4p!2

ms

m
m,

CS54S gm

2mD 4 1

~4p!2S ms

m D 2

m.

Choosingms5550 MeV andg513.5, the strength coeffi
cients becomeCs596 MeV andCS5378 MeV.

In Fig. 6 we show equipotential plots for the choicesl
50 ~grapha) and l51 ~graphb), constructed by keeping
two nucleons 1 fm apart and varying the position of the th
one. As the plots are symmetric under rotation around thx
axes the specification of a single quadrant describes the
tial energy distribution. Inspecting this figure one learns t
the predictions from both models are rather different, in
cating that the effective seagull is very important. In t
linear approach, the interaction is attractive over a wide
gion, whereas the nonlinear scalar produces a repul
around the triangular configuration and these differen
should show up in observables.

One is aware that a study based on justS trinucleon
waves can provide only rough indications, since it is w
known thatD waves do play an important role in trinucleon
Nevertheless, in the absence of a detailed study, we
assume that the trends associated with our equipotential p
would reflect in the binding energy. This assumption is su
ported by the results of Ref.@16# where a three-body force
given by our Eq.~22! with l51 was shown to produce
decrease of the binding energy which is rather welcome.

As a final comment, it is important to point out that th
discussion presented in Sec. III makes us biased towards
chiral scalar, but final conclusions must wait for a comple
evaluation of the diagrams of Fig. 2~c!, which is now in
progress.
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