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o fields and chiral scalars in nuclear three-body potentials
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The scalar-isoscalar field of an effective chiral Lagrangian transforms differently in either linear or nonlinear
frameworks: in the former case it is the counterpart of the pion whereas in the latter it is chiral invariant on its
own. We compare the predictions from these two models for nucleon interactions and find results which are
identical for two-body and rather different for three-body potentials. Some qualitative features of three-body
interactions are discussd@®0556-28138)07105-2

PACS numbes): 11.30.Rd, 13.75.Gx, 21.36x

I. INTRODUCTION logical potentials, the actual two-pion dynamics is simulated
by the exchange of an effective scalar-isoscalar meson, with

Since the fundamental work of Yukawa, the meson ex-a mass around 550 MeV. In the framework of chiral symme-
change theory has been successfully applied to the descrifry, this meson is usually identified with the counterpart of
tion of the nucleon-nucleon force. Nowadays it is well estab-the pion in the lineawr model and one obtains a prediction
lished that the one-pion exchange potent{@PEB is  for its coupling constant to the nucleon. The existence of a
dominant at large distances, yielding a strong force with spirscalar-isoscalar meson is controversial, the main candidate
and isospin dependences. being thef, (400—-1200, which may be present ifr7 scat-

The next layer of the interaction is associated with thetering[9]. In the case oNN scattering, the TPEP is quite
exchange of two pions. This system has the lightest massell accounted for by nonlinear chiral dynamics, constrained
beyond the OPEP and involves an intermediate pion-nucleoby experimental information, and the scalar-isoscalar meson
(7vN) amplitude in a kinematical region which is not directly is unnecessary. According to the unwritten law of quantum
accessible to experiment. Therefore a proper theoreticahechanics, stating that processes which are not forbidden are
treatment of this component of the potential requires the useompulsory, the exchange of two pions must be considered
of information based on dispersion relations, as pointed ouh any realistic description of theN interaction and the use
long ago by Cottinghan and Vinh Mdud]. The implemen-  of the o field to simulate the actual TPEP gives rise to short-
tation of this idea led to the Paris potenti@], which is  comings. In particular, a scalar field with mass yields a
rather successful in describing experimental data. central NN potential proportional tee™™'/r, whereas the

An important feature of therN amplitude is chiral sym- spatial dependence of TPEP is closer ¢0%'/r)?, u being
metry, as emphasized more than 25 years ago by Brown anfle pion mas$6,8]. Moreover, the TPEP is proportional to
Durso[3]. Recently the application of chiral symmetry to the g*, whereg is the wN coupling constant, whereas the ex-
NN interaction has deserved much attention, initially in thechange of as is proportional tog?. In spite of all these
restricted framework of pion and nucleon degrees of freedomroblems, the use of an effective scalar field may be useful in
[4], and nowadays it is fair to say that the theoretical formu-problems where simplicity is more important than precision.
lation of this sector of the interaction is free of ambiguities.As far as the former is concerned an effective scalar field
However, a Lagrangian containing only pions and nucleongllows calculations at tree level, whereas the exchange of
cannot reproduce low-energyN data and hence this very two pions involves loop integrations.
reliable part of the model has to be complementgd]. The If one is willing to use an effective scalar field in a cal-
combination of chiral symmetry and experimental informa-culation, there are two possibilities at hand. The first one
tion about the intermediateN amplitude, based on disper- consists in employing the usual field of the linear model,
sion relations, was brought into this problem in the last twowhich is the chiral partner of the pion. The other possibility
years[6], with a successful description of asymptobiN is to use a scalar field in the framework of nonlinear
scattering dat@7,8]. Lagrangians, which is chiral invariant and appears naturally

In contrast with the OPEP, the two-pion exchange potenwhen the nonlinear fields are obtained from the linear ones
tial (TPEP produces an attractive interaction that depend$10]. These two scalars fields couple differently to pions and
little on spin and isospin, because it is dominated by thenucleons and hence lead to predictions which do not overlap
exchange of a scalar-isoscalar system. In many phenomenfsr some specific processes. The main purpose of this work

is to explore these predictions in the case of three-body
forces. Our presentation is divided as follows: in Sec. Il we
*Electronic address: maekawa@ift.unesp.br compare linear and nonlinear Lagrangians and in Sec. Il we
Electronic address: robilotta@if.usp.br motivate the physical predictions of the latter. In Sec. IV we
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derive the kernel of the three-body force, which is fully de- !
veloped in Sec. V. Finally, in Sec. VI we discuss qualita- I
tively some features of the force associated witls and (a) !

chiral scalars. —_—
Il. LAGRANGIANS
In this section we introduce the Lagrangians describing \ / \
both theo and the chiral scalar. In the framework of linear \ / \
dynamics the fieldr is the chiral partner of the pion fielg N \
since, for an axial transformatio#*, we haves*#— o and (b) _

80— — . In the case of nonlinear dynamics, the pion field
is represented byp and we also consider a new fiet
which corresponds to a generalization of the field intro-
duced long ago by Weinbeld 0]. The corresponding axial
transzformatLon aré” p=F (¢?), whereF (¢?) is a function .
of ¢* and 5"S=0. The last transformation implies th&tis PV_ - - —
o g ando s P LRY=Yiy, D =Myt 5y, ysmp- D b= 9SSy,

FIG. 1. Interactions of nucleorifull lines), pions(broken line$
and scalar-isoscalar mesofwgavy lineg present in both linear and
nonlinear model$a) and only in the lattecb).

The linear Lagrangiarf,, has the usual form 6)
1 ) 1 where is the nucleon field that transforms nonlineartyjs
Lo=5 (0,00 0+ 3,7 ') — M—(02+ )+ =f_ulo its mass, an_ajjS represents the C_oupl|ng of the nucleon_to the
2 2 2 scalar. In this expression the pion and nucleon covariant de-

rivatives are given by11]

+U(0?+ @)+ NidN—gN(o+iT mys)N, (1)
1
whereN is the nucleon field that transforms linearlfy, is DE¢=3,¢ f+f,,aﬂf¢’ ©)
the pion decay constanf; is the pion massg is the =N
coupling constant, and the terth(a?+ @) represents the ) T
self-interactions of the mesonic fields. In the framework of DHy=| o +i f(f+f,) E‘(‘f’x ) | ™
the linearo model the scalar fluctuations are associated with
a field ¢, related too by This Lagrangian has been used recently in the study of
7N form factors in constituent quarks modé¢l] and it is
o=f_+e. (2)  worth noting that its last term describes a chiral invariant

coupling between the scalar and the nucleon.

Replacing this in the Lagrangiai), we obtain In the case of PS coupling, one has

— — . Os — ., .
1 1 LRS=NisN—gN(f+i7 ¢ys)N— —SNf+i7 pys)N,
= Mo m2e2) 4 = gt 2 fr
Ly 2((9M6(? €—M:e )+2((?M17 M— pulad) ®
+U[(f,+ €)’+ 7]+ Ni 4N whereN is the nucleon field that transforms linearly. The last
term of this expression has the same meaning as the corre-

—gN(f,+e+ir ays)N. (3 sponding one in Eq(5).
On general grounds one knows that, in the framework of
In the nonlinear approach, the Lagrangi@gis written as  chiral symmetry, results should not depend on the choice of
Ly [13,14. The equivalence between the PS and PV
1 Lagrangians was verified explicitly in the case of TP[EBP
5(%8&"8— mgsﬁ) - U(S)} and of pion-nucleon interactions in constituent quark models
[12]. Because of this equivalence and of the similarity with
the linear Lagrangian, our discussions are set in the PS case.
+Ln, (4 Thus our complete nonlinear Lagrangian is written as

ES:

J’_

1
5 (040t 3,8 1) + £,

1 1

wheref corresponds to the functioh= /2 — ¢?. Formally, ﬁgszz(%saﬂs_ m&s?) + 5 (0, 0"t 9, f0m) + 1t
U(S) describes the self-interactions of the scalar field and
Ly represents both the nucleon sector and its interactions
with bosonic fields. This part of Lagrangian may be cast in
many different forms, two of which are widely employed in
the literature. In one of them, the pion-nucleon coupling is The interaction terms in Eq$9) and (3) have the same
pseudovectofPV) and, in the other, it is pseudoscal@9.  scalar-nucleon and pion-nucleon vertices depicted in Fig.
For PV coupling, one has 1(a). However, the nonlinear approach also yields extra ver-

g+%S)N(f+i7~¢'ys)N. 9

+U(S)+NidN— ;
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- ‘- ¥ —aN (b), andwN— 7aN (c) amplitudes.

FIG. 2. Dynamical content of the effective scalar-isoscalar field
in (a) nucleon-nucleon interaction&y) the #NN kernel, andc) the
seagull term; conventions are the same as in Fig. 1 and the crosses bea 3 )
in nucleon propagators indicate that they do not contain positive PP¢4=ig> (SabTc— OpcTa™ SacToT i €pad)
frequency components.

Xi K’ K
Ul Vs u
' IN2_ 2 2_m2
tices, representing seagull scalar-pion-nucleon and pion- (p"K)7=m= " (p+k)"=m
pion-nucleon interactions, among others, displayed in Fig. K’ 1
+ 8acTpU 75( e

1(b). These results indicate that, at tree level, both
Lagrangians produce the sa&N potential. On the other

D —— u
p'+k)2—m? 9fs

hand, the extra scalar-pion-nucleon vertex represents a genu- 1 K
ine difference between the two approaches and has conse- +5bc7-aﬁ[_—75 u}. (11)
guences in processes such as pion absorption by a two- 9z (p+k)2—m?

nucleon system or three-body forces.
The part of A corresponding to a scalar-isoscalar ex-
change is associated with the fact, in the #N amplitude

Ill. EEEECTIVE SEAGULL and hence it is proportional to

The purpose of this section is to discuss the meaning of bac. .3 k' k
the effective seagull interaction in terms of more basic pro- SapP> =19 7cU (0 +K ) - 75(p+k)2—m2
cesses. In order to do this, we note that, in the framework of
nonlinear Lagrangians, the TPEP in the pure nucleon sector K’ 1
is given by the five diagrams of Fig(& [6], which we may s o2 w2 af.
want to associate with an effective scalar exchange. When an (p'+k")7—m" glx
external pion is attached to these processes, we have the 1 K
three possibilities indicated in Fig(l®, the last one corre- -— ¥slu (12)
sponding to an effective seagull, whose dynamical meaning 9f, (p+k)?—m?

is given in Fig. Zc).

The nine diagrams associated with the effective seagull In order to identify the main contribution to this ampli-
interaction can be understood as arising from the product dude, we go to the soft pion limit, by usink=k’ = (k,0)
the amplitudes 2 and PP°3, where the former describes the and then take the limik,— 0. We thus obtain
pion-nucleon scattering2(k)N(p)— #°(k’)N(p’) and lat-
ter represents the contribution from pion production, soft ig® _—

T2 (K)N(p)— 7°(k") 7¢(q)N(p’), as indicated in Fig. 3. S8apP % ——— — —— T UysU, (13
The composite amplitude is denoted Ayand given by 4m

which has the same structure as the effective scalar-nucleon
seagull vertex predicted by the nonlinear Lagrangian given

d* 1 1
A= —if Q Tbapbca__— (10 by Eg.(9).
(277_)4 k2_M2 kIZ_MZ
IV. EFFECTIVE «#+NN VERTEX
whereQ=13(k—k’). As far asNN interactions are concerned both the linear

Using thenrN vertices obtained from Ed9), we have and nonlinear Lagrangians, given by E¢3). and(9), yield
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R A A B

(b) = — + — + A K
: ¢
- - FIG. 5. Basic diagram for the three-body force.

FIG. 4. (a) Amplitudes for the processesN— oN(A=0) and
7N—SN(A=1); (b) the correspondingrNN kernel. p+m 1 1

p2—m2= 2E p'—E

potentials at tree level, which are due to the exchanges of

one-pion and one-scalar meson associated with the diagrams X 2 u(PU(p) + —5——2> v(—p)v(— p)l.
of Fig. 1(a). In principle, the scalar coupling constants pre- S pr+Es
dicted by these Lagrangians could be different. However, we (16)

are interested only in dynamical distinctions betweendhe
and the chiral scalar and, from now on, weggtg inorder  \yhereE= \/m Thus
to force both models to simulate exactly the same two-body
potential.

On the other hand, these models produce different predic- p+m :i p+m _.0 (17)
tions for the effectiverNN vertex and in this section we p%—m? 2E| p°—E Y
consider the form of this interaction. The basic ingredients +)
are the amplituded , and T, that describe the processes . S
7N— N and #N— SN, respectively. The amplitud€,, is and the positive energy contribution is
determined by just the first two diagrams of Fig(ay
whereasT, also includes the seagull term. As the calcula- o, =, Kk
tions of T, and T, are quite similar, we denote both ampli- T()y=—ig"7eu(p’) E(00—E + SE(00—E
tudes byT and identify the seagull contribution by a param- d(Pa~ Ea) «(Px=Ed)
eter A, such thatT,=T(A=0) andT,=T(A=1). At tree 1
level, T is given by the diagrams depicted in Figay and _(f_ f) Y° | ysu(p). (18
we have, for a pion with isospin index d x

Subtracting Eq(18) from Eq. (15) we getT, the irreduc-

. — | pgtm P+ m ; i i
T()\)=—|gzrcu(p){ 2d > Y5+ ¥s 2>< - ible positive frequency amplitude
Pg—m Px—m
A T =—ig?rou(p’) .
=—ig°T.u . -
gt vs|uP) (14) 9 et 2E4(pJ+Eq)  2E.(pR+Ey)

1 1 0 A 19
+ Z_Ed_z_EnyrE Ysu(p). (19

with pg=p+Kk, p,=p’'—k. Using Dirac equation, we re-
write Eq.(14) as

This allows the proper kernel for the processl;N,, as
shown in Fig. 4b), to be written as

T(\) '2_('>{ S L pe
=—igr.u(p —5 | Ysu(p).
‘ pi—m® pi-m? 9fs (15 KO =—i 3{ ') K K
15 =—ig%) eu(p’)| = -
‘ 2E4(P3+E)  2E(PRHEY
()

It is worth pointing out that, as shown [42], this result I R DY u(p)
does not depend on our choice of the PS coupling in the 2By 2E, Y of, YsUiP
nonlinear Lagrangian and it would be the same if the PV
scheme were adopted. _ .

This amplitude contains positive frequency states, which X [u(p)u(p)1™, (20

2_m2
do not enter in the construction of the prope N kernel. In a=ms

order to isolate these contributions, we write the nucleon
propagator as whereq= py— Pi.
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V. THREE-BODY FORCE where k=p;—p’;and g=p’c—px. The full nonrelativistic

In this section we derive the three-nucleon force due tofl.rl]:plmjdet3N is given by the permutation over all indices

the simultaneous exchanges of one pion and one effectivé . ,
scalar meson and the basic diagram is shown in Fig. 5. It In momentum space the three-body poterifitls defined

produces the following three-nucleon amplitude: by

Tik(\) = g*#l). T(j)[U(p/),ysu(p)](i) - 1 ) (P1P2P3| WIp1p2ps)
K—n =—(2m)38%(py+ Po+P3—Pr— P2~ Pa)tan -
. (23
2E4(pd+Ed)  2EX(Py+Ey)

><|U(p’)

(i) We apply Fourier transform to EQ3) in order to obtain
Ysu(p)] the potential in configuration space and we have

1:0 T 1 —_ l(a)_

x———[u(p")u(p)]™. (21) o9 |- 5
q —mg \
In order to obtain the nonrelativistic limit of I*(\), de- o _—\ ]

1 1

- O,
1 28, 2Ex)y+gfw

noted byt*(\), we use

1 1 p

y (fm)
T

1 N 1 1 03 b
2E4(Pa+Eq) 2E(PRtE,) 2m?’ %
WpHu(p)—1, 01 m
ARV R AT
_ 1 0 0.1 0.3 0.5 0.7 0.9
' ——o-(D—0' X (fm
u(p") ysu(p)— 5o (p=p'), (fm)
1.0 T T T 7 1
_ 1
u(p') ¥*ysu(p)— 5o~ (p+p'), 091 (b}
up ) kysu(p)——o-k, o7l -
1 _ 1 T \, .
K—p? K+l E o5t -
>
1 _ 1
qz—mg_ q2+m§’ 03
where the arrows indicate that the normalization of the
spinors were also changed. Using these results and keeping %'E
only terms of the ordep/m, we get the nonrelativistic am-

plitude

N gt 1 . 1 A
tik(n) = AN AD gk O-(J)[(___>k . . .

(2m)2 k2+M2 FIG. 6. Equipotential plots for the expectation value of the
three-body force in the trinucleon ground state, calculated using Eq.
1 (38) with A=1.5 GeV for the lineaka) and nonlineab) models.
(22 One of the nucleons is fixed a=0.5 fm, another ak=—0.5 fm

ot Y
7 17+ mg and the position of the third one is varied.
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(rirara|Wirsrorg) = 8(ri—ry) 8(ry—rz) 8(rz—rs)W, PU(ur,A)  u?
(24) ooty = 3| SesUur A)=G(1)
and the componew/' ¥ of the local potentiaWV is given by 3
rar
o B
4 + —8ap |Ua(ur,A) |, (29
Wik = 9 '“ms,.(i),f(i)[(l_)\_m) r*
(4m)%(2m)2 m gf,
XU(mgry) o ViiaD- ViU (ur ) where
Am . —ur 2 —Ar
+—a<'>-vjiuwrﬁ)o“%vk,-u<msrkj>}, (25) I D L P
gf, Uq(ur,A)= Mr-i-l P +,u,2 1+ AT AT
whereU (ur)=exp(—ur)/ur andr;=r,—r;. )
We assume the approximate identityg f.=1 and, simi- 4 E A__l e AT (30)
larly to the procedure used in the two-pion exchange three- 2\ 2 '
nucleon force[15], we regularize the mesonic exchanges
with the following dipole form factor:
2 Us(ur,A) 1+3+3 e N
AZ_ILLz 2 /"Lrv = _r 2 2 r __3
G<k2>=( e 26) TS S "
3 |eA 1A[A?
whereA is a cutoff parameter. o v N2 At 2n ;_
The regularization changes the Yukawa-type function into
1
—ur —Ar 2 o Ar
U(ur A):e _é_e _Eﬁ A__l e Ar x 1+Ar ¢ 31
' rw Ar 2A1,2 '
(27)
1 M A? i —Ar
and its derivatives are given by G=5xl—=2"1 ™ (32
)72
aU(ur,A) Mo A 28
ar, el 1(pr,A), 28 Substituting these results into the potential, we have

4 4 - o
W'Jk=§(%) %%w.w (1-M[aV- e VU(mgry; , A) (U (urji ,A)—=G(rji ,A))

o Mg  n o mom
+ S (rji U Mgl , AU o(ur i 1A)]+7\7[3j(r]’i i) i oD DU (i AU (mgryg, A, (39)

where value A=1, in turn, indicates processes based on a chiral
invariant fieldS. It is worth pointing out that results with
Sj(i:ji ,fkj)zggﬁ).fjiUU').ka._Fji.Ekjg“). o). (34 =1 are, as they should be, independent of the representation

adopted for the pion field and, in particular, of the use of
either PS or PV pion-nucleon couplings. So the parameter
describes dynamical processes which are genuinely different.
Initially, we discuss the role of chiral symmetry in the  Attree level, these effects cannot be distinguishedl k
results of the previous section. Inspecting E25), one notes interactions, but they manifest themselves in the reactions
that all the terms of the potential contain two gradients, reNN— 7NN, 7wd« NN, in axial form factors of nuclei and in
flecting the fact that they come from E¢R2), which is a  three-body forces. In the present work we have considered
uniform second-order polynomial in meson momenta, as exenly the last kind of application.
pected from a calculation based on chiral symmetry. This Our results withh=1 coincide with that presented by
feature of the problem is independent of On the other Coon, Pem and Riskd16]. These authors also obtained a
hand, the detailed form of the potential is quite sensitive tacontact interaction, employing a PV pion-nucleon coupling
this parameter. The value=0 corresponds to a scalar field, and a scalar-meson coupled to nucleons. In the framework of
denoted byo, which is the chiral partner of the pion. The chiral symmetry, this combination means that they have tac-

VI. DISCUSSION
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itly used a Lagrangian equivalent of our E&) and hence whereC_, andCg are the strength coefficients afand chiral

their o field corresponds to ous. scalar, respectively, given by

In this work we are concerned mainly with the differences
between the cases=0 and\ =1 for three-body forces. The [ 9e f1omg
full exploration of this aspect of the problem would require a " 2m (477)2 7

precise calculation of trinucleon observables, especially the
binding energy. In order to produce a preliminary qualitative 4 1 2
= _s

indication of the role of the force considered in this work, we
evaluate the expectation valy§|W|S), where|S) repre-
sents the principab state of the trinucleon, which is the

2m/ (4m)?2

basic component of its ground-state wave function. Choosingms=550 MeV andg=13.5, the strength coeffi-
This state is written agl5] cients becom& =96 MeV andCs=378 MeV.

. In Fig. 6 we show equipotential plots for the choices

1S)=S(r;)T {13 (@), (35 =0 (grapha) and\=1 (graphb), constructed by keeping

) ] Y2my oy two nucleons 1 fm apart and varying the position of the third
whereS(r;;) is the spatial component ardt;5"(a) is the  gne. As the plots are symmetric under rotation aroundkthe
antisymmetric spin-isospin wave function witttomponents  axes the specification of a single quadrant describes the spa-
m andt, respectively. tial energy distribution. Inspecting this figure one learns that

The action of the tensor operatd8g over [S) results in  the predictions from both models are rather different, indi-
states with orbital angular momentum different from zero.cating that the effective seagull is very important. In the
Using linear approach, the interaction is attractive over a wide re-

: ion, whereas the nonlinear scalar produces a repulsion
[ }%{“(a)]*a-(') ol (J)Fﬁ%{n(a):_& (36) ground the triangular configuration aFr)1d these diffefences
should show up in observables.

we obtam(llz)m ik (L2m One is aware that a study based on jSstrinucleon
[Ty (A T'WHT (35 (a) waves can provide only rough indications, since it is well
known thatD waves do play an important role in trinucleons.
_ 9'“ m Nevertheless, in the absence of a detailed study, we may
=—4| 5= —H(L1=M)U(mgry A) . \ : ;
(47 )2 assume that the trends associated with our equipotential plots

would reflect in the binding energy. This assumption is sup-
ported by the results of Ref16] where a three-body force
given by our Eq.(22) with A=1 was shown to produce a
decrease of the binding energy which is rather welcome.

) ' As a final comment, it is important to point out that the

XUa(ury A)Ua(msTyg ’A)]’ S discussion presented in Sec. lll makes us biased towards the
chiral scalar, but final conclusions must wait for a complete

where cos,= r,I rk Using the results of15] and neglect- evaluation of the diagrams of Fig.(@, which is now in
ing the very short-range functioB(ur;; ,A) [17], we have  progress.

m
X[U(urji ,A)—G(urj ,A)]+cos «9,—)\75
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