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Electron-screening correction for the proton-proton reaction

John N. Bahcafl
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540

Xuelei Chert and Marc Kamionkowski
Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027
(Received 23 December 1996; revised manuscript received 13 Januany 1998

We test the Salpeter formalism for the electron screening of the solar proton-proton fusion reaction by
solving numerically the relevant Schiinger equation. We evaluate exactly the square of the overlap integral
of the two-proton wave function and the deuteron wave function and compare with the usual analytic approxi-
mation. The usual WKB solution agrees with the numerical resul®(@0~4). The WKB approximation
should be even more precise for the other nuclear fusion reactions ipghehain and CNO cycles.
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PACS numbg(s): 26.65+t, 25.40—h, 96.60.Hv, 97.10.Cv

Because of the importance of calculating precise nucleathe Schrdinger equation. We then use these results to evalu-
fusion rates at low energy in connection with increasinglyate numerically the electron-screening correction to the
precise solar-neutrino experiments, attention has recentlgroton-proton reaction for both the Debye-Huckel and the
been drawn to the question of electron screening in solaDzitko et al. potential, thereby testing the validity of the
fusion reactiond1-4]. Other authors have investigated in standard WKB calculation. Finally, we also calculate a cor-
detail the validity of the determination of the screening po-rection to Salpeter’s result and find it to be negligibly small.
tential [4]. The purpose of the present paper is to address a To begin, we rederive Salpeter’s screening correction. To
discrete and separate issue, namely, whether the standagé so, we use kinetic theory to calculate reaction rates in
WKB analytic approximation is sufficiently accurate to de- hoth a screened and unscreened plasma. Although Salpeter's
termine the Screening correction to fusion rates to a percerd:erivation was based on a thermodynamic argument, this al-
or better given a specified screening potential. ternative approach recovers the same results, and it will be

We test in this paper the robustness of the standard WKBsefy| for understanding the numerical work that follows.
analytic treatment due to Salpetail by solving numerically \yjth our analytic approach, a very small correction to Sal-

the relgvant Sch'lqb'nger equation, including a Debye-Huckel peter’s results is obtained and presented at the end of this
screening potential, for the fundamental proton-protpp)( paper

reaction. The unscreened rate of this reaction can be calcu- The nuclear fusion rates in the solar interior are controlled

lated precisely{5] using standard weak-interaction theory, . "~ .
rimarily by Coulomb barriers. Therefore, the energy depen-
accurate laboratory data for the two-proton system, and re- . o .
]dence of the fusion cross section is usually written as

fined deuteron wave functions in agreement with a variety o
nuclear-physics measurements. Radiative corrections are also
included in the most recent calculati@s.
For our purposes, it is sufficient to use the standard o(E) =S(E)exp(—2m7)/E, @
Debye-Huckel potential, which a number of authors have
recently found to be an accurate description of the screening ) ) _ _
effect around fusing ions in the solar interiet]. However, whereS(E) is a function that varies smoothly in the absence
our results do not depend upon the specific form of the poOf resonances, ang=Z2,Z,e’/#v. Here,Z,e and Z,e are
tential we use. For completeness, we also carry out similaie charges of the two colliding nuclei, ands their relative
calculations with a different potential suggested by DzitkoVelocity.
et al.[2]. We obtain, as expected, a similarly precise descrip- The controlling factor, exp{27), in Eq. (1) takes into
tion of the solution in the presence of the Dzitkbal. po_ account the probablllty for the nuclei to tunnel through the
tential as for the standard Debye-Huckel potential. Coulomb barrier. It is obtained from the Coulomb potential
In the following, we rederive Salpeter's analytic result for V() =Z1Z,€?/r through the WKB approximation,
the weak-screening limit using a kinetic-theory approach
(rather than Salpeter’s thermodynamic argumefitken, we )
calculate the proton-proton wave function in both a screened —Z(Te
and unscreened Coulomb potential by numerical solution of F(E)=ex;{ Tfo [2,u(VC0u|(r)—E)]1’2dr)
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57 BRIEF REPORTS 2757
wherer. is the classical turning point, defined Mg, (rc) wherem is the atomic mass unit, afg; is the temperature in
=E, E is the kinetic energy, and=m;m,/(m;+m,) is the  units of 1¢ K. Then,

reduced mass. Here); andm, are the masses of the react-

ing nuclei. 8 *
If the energies of the reacting nuclei have a Maxwell- (oV)=\/ mfofo dESE)exp(—2mn—E/kgT),
B

Boltzmann distribution at a temperatuiie the thermally- 9)
averaged cross section times relative velocitj6is

where the Salpeter factdy is given by

8 ©
<m,>:\/—3f dE SE)exp—2mn—E/KkgT). fo=e%0m7=exp(0.18&,Z,{p"2T; *?), (10)
WM(kBT) 0
@3  and
However, in the stellar interior each nucleus, even though Xo=X(Eo)=0.01332122)1’3A’1’3p1’2Tg7’6§. (11)

completely ionized, attracts neighboring electrons and repels

neighboring nuclei; thus, the potential between two collidingrFor the pp reaction,x,=0.01, which justifies the smak-
nuclei is no longer a pure Coulomb potential, but a screeneglpproximation used above. Equatiof®—(11) provide an
potential V{r). In the weak-screening case, the Coulombaternative derivation of the Salpeter] weak-screening for-
interaction energy between a nucleus and its nearest feyula.

electrons and nuclei of the gas is small compared with the we now calculate numerically the cross section forgiipe
thermal energykgT. In this case, the surrounding electrons reaction for a Coulomb potential and a screened Coulomb
and ions are only slightly displaced, and we obtain apotential to compare with the WKB calculation of the

screened potential of the forf] screening correction. To do so, we note that the reaction rate
s is proportional toA? [7], whereA is the overlap integral of
Vsc(r):ZlZZe exp(—rirp), (4) the proton—proton wave function and the deuteron wave
r function,
were rp={ YAk TA/e?)Y?a is the Debye radius for the aZy®
cloud; A=A;A,/(A,+A,) is the reduced mass in atomic A= Tf Ug(r)upp(r)dr, (12

mass unitsg ==, (X;ZZ/A+ X ZiIA); Xi, Z;, andA; are
the mass fraction, charge, and mass number, respectively, w‘hereap is pp scattering lengthy= \2uE, is the deuteron
nucleusi; binding wave number, ané, is the deuteron binding en-
ergy. The functionuy(r) is the radial part of theS-state
B 1 T o deuteron wave function. Our calculation here follows the ap-
a= (47pN )1/3_p (0.51x10"" cm) (3 proach and notation of Reff5].
0 For the purposes of this exercise, we use the McGee wave

is a measure of interparticle distangeis the density in units  function [8] for the deuteron. If another wave function

of g cm~3; andN, is Avogadro’s constant. (which fits the deuteron datas used, the overlap integral
For the screened potential, the penetration factor is thefhanges only slightly. Since we are here only investigating
given by the effect of the screening correction to the reaction rate, our

specific choice of the deuteron wave function is unimportant.

—-2r, 11 12 The radial wave function,,(r) satisfies the radial Schro
['(E)= exp — VZMEJO [ &Px(1-uw)-1 dul, dinger equation,
(6) du [1 v e 13
where x=x(E)=r./rp. Here,r. is the classical turning- dr2 Rr TV nudr) U= =k, (13

point radius defined by {r.)=E. However, ifx is small,
then r for the screened potential is roughly that for the where R=#2%(2ue?) 1=28.8198 fm, k=uv/f is the
unscreened potentiat,=Z,Z,e’/E. By expanding the ex- center-of-mass momentum, ant,,{r) is the short-range
ponential in the smalk limit (to be justified beloy we ob-  nuclear potential. Fo¥,,{r) we use an exponential poten-
tain tial which yields the observed value for the scattering length
and effective rangg5]. Again, the overlap integral turns out
I(E)=exd —2mn(1-x/2)]=e 2"7e*"7. (1) to be practically independent of the detailed shape of the

nuclear potentiafas long as it matches the measured scatter-
Although x777 depends on the energy, the effect of the cor-jng |ength and effective rangieso the choice of nuclear po-

rection on the thermally-averaged cross section can be apantial is unimportant for determining the screening correc-
proximated by evaluatings» at the most probable energy tion.

of interaction, In the weak-screening case, H3) is replaced by
Eo=[(maZ,Z,kgT)2(MAZ/2)]3 d2u
= 1.2204Z2Z2AT2) Y keV 8) dr?

efr/rD

—+Vnuc(r)

)
=T u k-u. (14
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The solution to the Schdinger equation is unique once the accurate for the other fusion reactions in e chain and

two boundary conditions are given. The first condition iSCNO cycle.

u(0)=0. The other boundary condition is obtained by noting A small correctionHere, we calculate a correction to Sal-

that the asymptotic behavior of the wave function ferr peter’'s screening formula and find it to be negligibly small.

must be[9], The integral in Eq(9) is usually evaluated by expanding in a
power series of the inverse of a large quantity

UsSU(r) ~Negysin kr—% In(2kr)+ 85|, (15 7=3Eo/kgT=42.487ZiZ5AT 1), (17)
The average product can then be written in a compact form
for the Coulomb potential, and [6]:
sc ; —15 212, ” —1
Ups(F)~Nsgsin(kr — 559, (16) (ov)=1.3005< 10 [ATJ foSe €XP(— 7) CNT S

(18)
for the screened potential, whe@°" and 5° are phase
shifts. Fixing the incident flux of protons for the Coulomb where S, is expressed in keV barns. To first orderin®
and the screened-Coulomb interactions requitds,, [10],

=Nsgc.
To solve this boundary-value problem, we integrate Egs. 5 5S'E, S”Eg
(13) and (14) from r=0 with the conditionu(0)=0 and Ser=S(Eg)| 1+ 771 T 25 T )
u’(0)=1 to a large distanc@bout 10y), and then test that E=Ep
the solutions converge to the form of Eq45) and (16), (19

respectively. From these numerical solutions, we obtain the
normalizationsNg. and N¢,,. We then use the calculated EXpressing the various quantities in terms of their values at
wave functions to evaluate the overlap integral in Etp)  E=0, we find[10]
both with and without screening. By squaring the ratio of the
two overlap integrals, we determine numerically the screen- ) 35
ing correction to the cross section for th@ reaction. S E0+§5kBT)
The difference between the WKB approximation and the Se(Eq)=S(0)| 1+ [ ——
. . . . .. T
numerical result for the p reaction in the Sun is negligible.
For example, with the Debye-Huckel potential, the WKB
and numerical screening corrections agree ker0.012 S'E./E. 89
fm ~1 to better than 10*. At even smaller values , the O<—°+ —kBT) : (20)
relative error is even smaller because the WKB approxima- Si\2 72 E=0
tion becomes increasingly valid asbecomes largdrcf. Eg.
(2)], which occurs as the center-of-mass energy becomes More accurately, however, we should include the factor
smaller[9]. We have also compared the WKB and numericale*”” in the thermal-average integral, E@). To do so, we
results for the alternative screening potential suggested bigwrite the integral as
Dzitko et al.[2]. (For this potential, the WKB integral was
evaluated numerically.The WKB and Schrdinger results / 8 o
for the screening correction for this potential also agree to (ov)= —3J dESE)
better than 10%. mu(kgT)>Jo
Our main result is that a numerical solution of the
screened Schdinger equation for the proton-proton reaction
gives results in excellent agreemdit O(10 #)] with the . . . .
rate calculated analytically using the usual WKB approxima—'ntro_ducmg the d!mensuonless quantity- E/E,, the expo-
tion, as originally formulated by Salpeter. We have also€ntial can be written as
shown that this agreement is independent of the precise de- )
tails of the screening potential. B _ _ AT L T R0 _ap
The cross sections for other fusion reactions in phe 2mn—BlkgT+xmn= 37 SZJr 3%
chain and CNO cycle are determined from extrapolation of (22
laboratory measurements; they are not determined from first
principles. Therefore, calculations analogous to those carrie@o first order inx,, the minimum point of the exponent is
out here for thepp reaction cannot be generalized straight-thus shifted t@=1—Xx,, or E=Ey(1—X,). Using Laplace’s
forwardly to these other reactions. However, the WKB ap-method[11] for asymptotic expansion of integrals, we find
proximation becomes increasingly accurate jadecomes that the onlyO(x,) correction to Eq(18) is in the expres-
larger. When evaluated at the energy of the Gamow pealgion for Se. To O(7 1,%,), Serr iS obtained simply by re-
n=(Z2Z3A)*3, and this is smallest for the@p reaction. placingE, by Eq(1—X) in Eq. (19). Expressed aS(0), we
Therefore, the WKB approximation should be even morehave

Xexp(—2wnp—E/kgT+xm7). (21

T XoT
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S,(O)(Eo(l_x)+2_ZkBT)
SeffZS(O) 1+ E’+ S(O)
S'(0)Eq[ Eq 89
+W(7(1_2X)+ 7—2kBT> , (23

where we have neglected terms of ord®x,/7). We see
that there is ai®(x) correction to thes' andS” terms. Since
x is small (~10 2 for the pp reaction at the core of the

which is accurate t®(1%) in theweak-screening regime.
Furthermore, since, increases only very slowly with in-
creasing mass number, the standard correction should also be
accurate for other fusion reactions which are in the weak-
screening regime.
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Sun), and theS’ andS’ terms are generally small compared work was initiated in response to a conjecture by A. Dar that
with the lowest-order term, these corrections are very smallthe standard treatment of screening could cause an error of
typically ~0.1%. Therefore, the standard multiplicative cor- order 5% in the proton-proton reaction rate in the sun. We
rection factor €,) should give a screened interaction rateare grateful to A. Dar for this stimulating discussion.
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