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Electron-screening correction for the proton-proton reaction
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We test the Salpeter formalism for the electron screening of the solar proton-proton fusion reaction by
solving numerically the relevant Schro¨dinger equation. We evaluate exactly the square of the overlap integral
of the two-proton wave function and the deuteron wave function and compare with the usual analytic approxi-
mation. The usual WKB solution agrees with the numerical result toO(1024). The WKB approximation
should be even more precise for the other nuclear fusion reactions in thepp chain and CNO cycles.
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PACS number~s!: 26.65.1t, 25.40.2h, 96.60.Hv, 97.10.Cv
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Because of the importance of calculating precise nuc
fusion rates at low energy in connection with increasin
precise solar-neutrino experiments, attention has rece
been drawn to the question of electron screening in s
fusion reactions@1–4#. Other authors have investigated
detail the validity of the determination of the screening p
tential @4#. The purpose of the present paper is to addres
discrete and separate issue, namely, whether the stan
WKB analytic approximation is sufficiently accurate to d
termine the screening correction to fusion rates to a per
or better given a specified screening potential.

We test in this paper the robustness of the standard W
analytic treatment due to Salpeter@1# by solving numerically
the relevant Schro¨dinger equation, including a Debye-Huck
screening potential, for the fundamental proton-proton (pp)
reaction. The unscreened rate of this reaction can be ca
lated precisely@5# using standard weak-interaction theor
accurate laboratory data for the two-proton system, and
fined deuteron wave functions in agreement with a variety
nuclear-physics measurements. Radiative corrections are
included in the most recent calculation@5#.

For our purposes, it is sufficient to use the stand
Debye-Huckel potential, which a number of authors ha
recently found to be an accurate description of the scree
effect around fusing ions in the solar interior@4#. However,
our results do not depend upon the specific form of the
tential we use. For completeness, we also carry out sim
calculations with a different potential suggested by Dzit
et al. @2#. We obtain, as expected, a similarly precise desc
tion of the solution in the presence of the Dzitkoet al. po-
tential as for the standard Debye-Huckel potential.

In the following, we rederive Salpeter’s analytic result f
the weak-screening limit using a kinetic-theory approa
~rather than Salpeter’s thermodynamic arguments!. Then, we
calculate the proton-proton wave function in both a scree
and unscreened Coulomb potential by numerical solution
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the Schro¨dinger equation. We then use these results to ev
ate numerically the electron-screening correction to
proton-proton reaction for both the Debye-Huckel and
Dzitko et al. potential, thereby testing the validity of th
standard WKB calculation. Finally, we also calculate a c
rection to Salpeter’s result and find it to be negligibly sma

To begin, we rederive Salpeter’s screening correction.
do so, we use kinetic theory to calculate reaction rates
both a screened and unscreened plasma. Although Salpe
derivation was based on a thermodynamic argument, this
ternative approach recovers the same results, and it wil
useful for understanding the numerical work that follow
With our analytic approach, a very small correction to S
peter’s results is obtained and presented at the end of
paper.

The nuclear fusion rates in the solar interior are control
primarily by Coulomb barriers. Therefore, the energy dep
dence of the fusion cross section is usually written as

s~E! [S~E!exp~22ph!/E, ~1!

whereS(E) is a function that varies smoothly in the absen
of resonances, andh5Z1Z2e2/\v. Here,Z1e and Z2e are
the charges of the two colliding nuclei, andv is their relative
velocity.

The controlling factor, exp(22ph), in Eq. ~1! takes into
account the probability for the nuclei to tunnel through t
Coulomb barrier. It is obtained from the Coulomb potent
V(r )5Z1Z2e2/r through the WKB approximation,

G~E!5expS 22

\ E
0

r c
@2m„VCoul~r !2E…#1/2dr D

5expS 22Z1Z2

e2

\
A2m

E E
0

1A1

u
21duD

5e22ph, ~2!
2756 © 1998 The American Physical Society



t-

ll

g
pe
ng
ne

b
fe
th
ns

ic

y,

he

he

or
a

y

mb
e
rate

ve

-

p-

ave
n
l
ing
our
nt.

-
gth
t
the
ter-
-
ec-

57 2757BRIEF REPORTS
wherer c is the classical turning point, defined byVCoul(r c)
5E, E is the kinetic energy, andm5m1m2/(m11m2) is the
reduced mass. Here,m1 andm2 are the masses of the reac
ing nuclei.

If the energies of the reacting nuclei have a Maxwe
Boltzmann distribution at a temperatureT, the thermally-
averaged cross section times relative velocity is@6#

^sv&5A 8

pm~kBT!3E0

`

dE S~E!exp~22ph2E/kBT!.

~3!

However, in the stellar interior each nucleus, even thou
completely ionized, attracts neighboring electrons and re
neighboring nuclei; thus, the potential between two collidi
nuclei is no longer a pure Coulomb potential, but a scree
potential Vsc(r ). In the weak-screening case, the Coulom
interaction energy between a nucleus and its nearest
electrons and nuclei of the gas is small compared with
thermal energykBT. In this case, the surrounding electro
and ions are only slightly displaced, and we obtain
screened potential of the form@1#

Vsc~r !5
Z1Z2e2

r
exp~2r /r D!, ~4!

were r D5z21/2(kBTA/e2)1/2a is the Debye radius for the
cloud; A5A1A2 /(A11A2) is the reduced mass in atom
mass units;z5A( i(XiZi

2/Ai1XiZi /Ai); Xi , Zi , andAi are
the mass fraction, charge, and mass number, respectivel
nucleusi ;

a5
1

~4prN0!1/3
5r21/3~0.5131028 cm! ~5!

is a measure of interparticle distance;r is the density in units
of g cm23; andN0 is Avogadro’s constant.

For the screened potential, the penetration factor is t
given by

G~E!5 expS 22r c

\
A2mEE

0

1F1

u
exp„x~12u!…21G1/2

duD ,

~6!

where x5x(E)5r c /r D . Here, r c is the classical turning-
point radius defined byVsc(r c)5E. However, ifx is small,
then r c for the screened potential is roughly that for t
unscreened potential:r c.Z1Z2e2/E. By expanding the ex-
ponential in the small-x limit ~to be justified below!, we ob-
tain

G~E!5exp@22ph~12x/2!#5e22phexph. ~7!

Although xph depends on the energy, the effect of the c
rection on the thermally-averaged cross section can be
proximated by evaluatingxph at the most probable energ
of interaction,

E05@~paZ1Z2kBT!2~mAc2/2!#1/3

51.2204~Z1
2Z2

2AT6
2!1/3 keV ~8!
-
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wherem is the atomic mass unit, andT6 is the temperature in
units of 106 K. Then,

^sv&.A 8

pm~kBT!3
f 0E

0

`

dES~E!exp~22ph2E/kBT!,

~9!

where the Salpeter factorf 0 is given by

f 05ex0ph5exp~0.188Z1Z2zr1/2T6
23/2!, ~10!

and

x05x~E0!50.0133~Z1Z2!1/3A21/3r1/2T6
27/6z. ~11!

For the pp reaction,x0.0.01, which justifies the small-x
approximation used above. Equations~3!–~11! provide an
alternative derivation of the Salpeter@1# weak-screening for-
mula.

We now calculate numerically the cross section for thepp
reaction for a Coulomb potential and a screened Coulo
potential to compare with the WKB calculation of th
screening correction. To do so, we note that the reaction
is proportional toL2 @7#, whereL is the overlap integral of
the proton-proton wave function and the deuteron wa
function,

L5Aap
2g3

2 E ud~r !upp~r !dr, ~12!

whereap is pp scattering length,g5A2mEd is the deuteron
binding wave number, andEd is the deuteron binding en
ergy. The functionud(r ) is the radial part of theS-state
deuteron wave function. Our calculation here follows the a
proach and notation of Ref.@5#.

For the purposes of this exercise, we use the McGee w
function @8# for the deuteron. If another wave functio
~which fits the deuteron data! is used, the overlap integra
changes only slightly. Since we are here only investigat
the effect of the screening correction to the reaction rate,
specific choice of the deuteron wave function is unimporta

The radial wave functionupp(r ) satisfies the radial Schro¨-
dinger equation,

d2u

dr2
2F 1

Rr
1V nuc~r !Gu52k2u, ~13!

where R5\2(2me2)21528.8198 fm, k5mv/\ is the
center-of-mass momentum, andVnuc(r ) is the short-range
nuclear potential. ForVnuc(r ) we use an exponential poten
tial which yields the observed value for the scattering len
and effective range@5#. Again, the overlap integral turns ou
to be practically independent of the detailed shape of
nuclear potential~as long as it matches the measured scat
ing length and effective range!, so the choice of nuclear po
tential is unimportant for determining the screening corr
tion.

In the weak-screening case, Eq.~13! is replaced by

d2u

dr2
2Fe2r /r D

Rr
1V nuc~r !Gu52k2u. ~14!
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The solution to the Schro¨dinger equation is unique once th
two boundary conditions are given. The first condition
u(0)50. The other boundary condition is obtained by noti
that the asymptotic behavior of the wave function forr @r D
must be@9#,

upp
Coul~r !;NCoulsinS kr2

1

2kR
ln~2kr !1d0

CoulD , ~15!

for the Coulomb potential, and

upp
sc ~r !;Nscsin~kr2d0

sc!, ~16!

for the screened potential, wheredCoul and dsc are phase
shifts. Fixing the incident flux of protons for the Coulom
and the screened-Coulomb interactions requiresNCoul
5Nsc.

To solve this boundary-value problem, we integrate E
~13! and ~14! from r 50 with the conditionu(0)50 and
u8(0)51 to a large distance~about 10r D), and then test tha
the solutions converge to the form of Eqs.~15! and ~16!,
respectively. From these numerical solutions, we obtain
normalizationsNsc and NCoul. We then use the calculate
wave functions to evaluate the overlap integral in Eq.~12!
both with and without screening. By squaring the ratio of t
two overlap integrals, we determine numerically the scre
ing correction to the cross section for thepp reaction.

The difference between the WKB approximation and
numerical result for thepp reaction in the Sun is negligible
For example, with the Debye-Huckel potential, the WK
and numerical screening corrections agree fork50.012
fm 21 to better than 1024. At even smaller values ofk, the
relative error is even smaller because the WKB approxim
tion becomes increasingly valid ash becomes larger@cf. Eq.
~2!#, which occurs as the center-of-mass energy beco
smaller@9#. We have also compared the WKB and numeri
results for the alternative screening potential suggested
Dzitko et al. @2#. ~For this potential, the WKB integral wa
evaluated numerically.! The WKB and Schro¨dinger results
for the screening correction for this potential also agree
better than 1024.

Our main result is that a numerical solution of th
screened Schro¨dinger equation for the proton-proton reactio
gives results in excellent agreement@to O(1024)# with the
rate calculated analytically using the usual WKB approxim
tion, as originally formulated by Salpeter. We have a
shown that this agreement is independent of the precise
tails of the screening potential.

The cross sections for other fusion reactions in thepp
chain and CNO cycle are determined from extrapolation
laboratory measurements; they are not determined from
principles. Therefore, calculations analogous to those car
out here for thepp reaction cannot be generalized straig
forwardly to these other reactions. However, the WKB a
proximation becomes increasingly accurate ash becomes
larger. When evaluated at the energy of the Gamow pe
h}(Z1

2Z2
2A)1/3, and this is smallest for thepp reaction.

Therefore, the WKB approximation should be even mo
.
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accurate for the other fusion reactions in thepp chain and
CNO cycle.

A small correction.Here, we calculate a correction to Sa
peter’s screening formula and find it to be negligibly sma
The integral in Eq.~9! is usually evaluated by expanding in
power series of the inverse of a large quantityt,

t53E0 /kBT542.487~Z1
2Z2

2AT6
21!1/3. ~17!

The average product can then be written in a compact fo
@6#:

^sv&51.3005310215FZ1Z2

AT6
2 G 1/3

f 0Seff exp~2t! cm3 s21

~18!

whereSeff is expressed in keV barns. To first order int21

@10#,

Seff5S~E0!S 11t21F 5

12
1

5S8E0

2S
1

S9E0
2

S G
E5E0

D .

~19!

Expressing the various quantities in terms of their values
E50, we find@10#

Seff~E0!.S~0!F 11
5

12t
1

S8S E01
35

36
kBTD

S

1
S9E0

S S E0

2
1

89

72
kBTD G

E50

. ~20!

More accurately, however, we should include the fac
exph in the thermal-average integral, Eq.~7!. To do so, we
rewrite the integral as

^sv&5A 8

pm~kBT!3E0

`

dES~E!

3exp~22ph2E/kBT1xph!. ~21!

Introducing the dimensionless quantityz5E/E0, the expo-
nential can be written as

22ph2E/kBT1xph52
2t

3
z21/22

t

3
z1

x0t

3
z23/2.

~22!

To first order inx0, the minimum point of the exponent i
thus shifted toz512x0, or E5E0(12x0). Using Laplace’s
method@11# for asymptotic expansion of integrals, we fin
that the onlyO(x0) correction to Eq.~18! is in the expres-
sion for Seff . To O(t21,x0), Seff is obtained simply by re-
placingE0 by E0(12x) in Eq. ~19!. Expressed asS(0), we
have
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Seff.S~0!F 11
5

12t
1

S8~0!XE0~12x!1
35

36
kBTC

S~0!

1
S9~0!E0

S~0! S E0

2
~122x!1

89

72
kBTD G , ~23!

where we have neglected terms of orderO(x0 /t). We see
that there is anO(x) correction to theS8 andS9 terms. Since
x is small (;1022 for the pp reaction at the core of the
Sun!, and theS8 andS9 terms are generally small compare
with the lowest-order term, these corrections are very sm
typically ;0.1%. Therefore, the standard multiplicative co
rection factor (f 0) should give a screened interaction ra
-

od
ll,

which is accurate toO(1%) in theweak-screening regime
Furthermore, sincex0 increases only very slowly with in-
creasing mass number, the standard correction should als
accurate for other fusion reactions which are in the we
screening regime.
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