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Two-particle interferometry for noncentral heavy-ion collisions
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In noncentral heavy-ion collisions, identical two-particle Hanbury-Brown—-Twid8T) correlations
C(K,q) depend on the azimuthal direction of the pair momentimNe investigate the consequences for a
harmonic analysis of the corresponding HBT radius paramﬂér.sOur discussion includes both, a model-
independent analysis of these parameters in the Gaussian approximation, and the study of a class of hydrody-
namical models which mimic essential geometrical and dynamical properties of peripheral heavy-ion colli-
sions. Also, we discuss the additional geometrical and dynamical information contained in the harmonic
coefficients ofRﬁ . The leading contribution of their first and second harmonics are found to satisfy simple
constraints. This allows for a minimal, azimuthally sensitive parametrization of all first and second harmonic
coefficients in terms of only two additional fit parameters. We determine to what extent these parameters can
be extracted from experimental data despite finite multiplicity fluctuations and the resulting uncertainty in the
reconstruction of the reaction plarf&0556-28188)02401-1

PACS numbses): 25.75.Gz, 05.30.Ch, 12.38.Mh, 24.10.Jv

I. INTRODUCTION Here, the azimuthal anglég allows for the determination of
the reaction plane and the harmonic coefficiantscharac-
The goal of the current and future experimental heavy-iorterize the size of the total vector sum of transverse momenta

programs at CERN and BNL is to test the equilibration prop-(n=1), the approximate elliptic shape of the azimuthal dis-
erties of hadronic matter at energy densities where quarkgibution (n=2) and higher order triangle-typen€3),
and gluons are the relevant physical degrees of freedom. Afectangle-typerf=4), etc., deformations.
isotropic transverse flow is an important observable for this |5 £q. (1.1), we have expressed the one-particle distribu-
program, since both hydrodynamic and thermodynamic begon, in terms of the emission functid(x,p) which specifies
havior is based on equilibration processes between local dgrq qlision region at freeze-ou&(x,p) is a Wigner distri-

grees of freedom. Hydrodynamical flow effects result fromy yion and denotes the phase space probability that a particle
pressure gradients which due to compression of the hadron four momentunp is emitted from a space-time poiktin

matter build up duringl the collision process. Their strengththe collision region. Features of collective dynamics as, e.g
depends on the equation of state of the hot matter and PrQy; ' LT

vides insight into the collision dynamics. Moreover, hadronic irected flow are encoded in the source functii(,p) as
observables mainly test the final collision stage and a bac -P position-momentum correlations. Observables extracted

2 . .—“from the one-particle distributiond..1) are not sensitive to
extrapolation is needed to extract from them information . - o
Ihe space-time characteristi@nda fortiori to x-p correla-

about the hot and dense earlier stages. For this to work, coJ: f th h ) : h b
lective and randong“thermal”) motion in the collision re- lons) of the source. The question arises to what extent ob-
gion have to be distinguished properly. Hence, concepts O§ervabl_es which are sensitivextep correlations can support
different types of collective flow play a central role in under- anq refln(_a the picture pbtamed via th.e_ analysis of @db.
This motivates an azimuthally sensitive Hanbury-Brown—

standing the dynamics of heavy-ion collisions. ; . . ) .
Anisotropic flow was observed in both AGE,2] and Tw_|ss (_HBT) angly5|s of two-particle correlation functions,
which is the main focus of the present work.

SPS[3,4] experiments, as well as at lower BEVALAC/SIS Identical two-particle correlation€(K,q), here written
energies[5]. Directivity [3,4], two- and three-dimensional . P " 4), ner B
in terms of the averag&=3(p;+p,) and relativeq=p,

sphericity[6—8], or the so-called deformation parame . - -
P y[6-§] P Ry p, pair momentum, are sensitive to space-time character-

[5] are typical variables used in its characterization. With. ' ) o o
minor differences. all of them are sensitive to azimuthaI'St'CS of the source. Their space-time interpretation is based

anisotropies in the triple-differential particle distributions. on the resul{11-14
The most complete experimentally feasible parametrization

is obtained in a Fourier expansion in the azimuthal angle for C(K,q)=1+[(e'% ™A,
different values of rapidity and transverse momentum A
[9,1,2,19 JaA™f(x)S(x,K)
(FO)= —FamaxK) 1.2
dN d*N , xS(x,K)
ET:—:J d*xS(x,p)
d*p  pdpdydd where we have used the on-shell conditaprK =0 to sub-
1 d2N o stitute the temporal componenf in the four-dimensional
= 27 pdpdy 1+221 Up COSN(P— 4R |. Fourier transform3=K/K,. According to Eq.(1.2), deter-
t t n=

mining K-dependent geometrical and dynamical source in-
(1.1)  formation reduces to a Fourier inversion problémtich due
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to the on-shell constraint, however, does not have a uniqueonsiderably simplifies the discussion. In Sec. V, we extend
solution. In the standard analysis of E(]..2), one assumes this analysis to the fragmentation regions. Again, we derive
an azimuthally symmetric collision and characterizessimple relations between the nonvanishing first harmonic co-
C(K,q) with four Gaussian HBT radius parameters whichefficients, and we illustrate our findings quantitatively in a
depend on|K, | and the longitudinal pair rapidit)y only  subsequent model study. The discussion in Secs. II-V im-
[16]. In contrast, the anisotropic case requires six HBT raplicitly assumes that the orientatiaty of the reaction plane
dius parameter®;; which in addition depend on the azi- is known. It hence neglects finite multiplicity fluctuations
muthal angle® of K, [15]. Previous discussions of the azi- which introduce in practice a significant uncertainty in deter-
muthal dependence ofC(K,q) were based on event mining ¢r. In Sec. VI we investigate to what extent infor-
generator studiefl7,18 for finite impact parameter colli- mation about the anisotropy of the correla@(K,q) can be
sions, or exploited the Lorentz invariance of the correlator taobtained despite these statistical constraints. The main re-
derive azimuthally dependent HBT radius paramefé®.  sults are then summarized in the Conclusion.

The present work is complementary to these and starts in

analogy to.Eq(l.l) from expa}nding the angular dependence || AzIMUTHAL DEPENDENCE OF CARTESIAN HBT
of C(K,q) in a harmonic series: RADIUS PARAMETERS

2 Here, we derive model-independent expressions for the
C(K,q)=1+ex %‘4 Rijqiq; | Cartesian HBT radius parametefs.3) in terms of space-
time variances[16,15 of the emission functionS(x,K).
= These radius parameters depend in general on the azimuthal
Rizj(KL ,cp,y):Rﬁ oKL ,Y)+22 RiCJ.’nZ(KL ,Y)cosnd orientation of the pair momentutd which we adefine with
n=1 respect to the direction of the impact paraméter

+22l RS 12K, ,Y)sinnd. (1.3 d=, (K, ,b). (2.2)
e

They can be calculated as second derivatives of the cor-

Here, the componentsj are given in the “out-side-long” : .
(osl) system where the relative pair momentum has a transr_elatorC(K,q) with respect to the relative momentum com-

verseout componeng, parallel to the pair momentuid  , poﬂeigtsﬁ'{ﬁo’s;;:i mi tzefoﬁlt%gtf?' Itn vghat if\?"r?vzlr?’txve

a longitudinallong componenty, along the beam and a re- consiger the emission functio (x,K) to be give c
mainingsidecomponent. To discuss the azimutdadepen- Impact parameter fixed coordlnatt_a system. Then, to express
dence of the two-particle correlat¢t.3), we frequently use tg?ag%;eriggrlg'r:;?z (:;esngag e:[t;]rgzvarlances, one has to
an impact-parameter fixed system. In this system, the direc? ! Y y nie

tion of the impact parametd;rspecifies thex axis, thez axis

is along the beam, and the axis is perpendicular to the . BL = XNCO_S(IML{S'”(D
reaction plane spanned by and z. Accordingly, the total (DpB)=| O |, Dex=| —x sin®+y cosd |,
angular momentuni of the system, with Bi z
(2.23
d’p [,
Li:6i1k<<xjpk>>:€iij = f d*xx;piS(x,p), i _ #CaK)
(14) IJ( )_ o7q,(9q] 4=0

points along they direction. _ v e v hre

One central theme of the following is to determine those ([(DpX)i— (DpB)it [ (DgpX);j— (DpB);t 1).
harmonic coefficient®" 2, R 2, whose contributions are (2.2b

ij,n ij,n
not negligible. We shall find trjlat there are very few indepen- _
dent ones. This makes a comparisons with experimental datdere, x,=x,—(x,), and all coordinate, y, andz are
feasible. Also, we aim at understanding which geometricafiven in the impact-parameter fixed system. The space-time
and dynamical information about the particle emitting sourcevariances specify the curvature of the correlatogat0 and
is contained in the harmonic coefficients. In Sec. Il, we at-coincide with the experimentally determined half widths of
tack both problems by deriving model-independent expres€(K,q) for Gaussian shapes orl20,21]. Deviations from a
sions for the HBT radius parameters. These allow for theGaussian can be characterized by more refined mefl2ddls
calculation of HBT radii fromd-dependent space-time vari- The present investigation is restricted to correlators of suffi-
ances(x,x,) of arbitrary model emission functior(x,K). ciently Gaussian shape and makes no attempt to quantify
Investigating theP dependence ofx,x,) leads then to re- (possibly ®-dependent non-Gaussian deviations. In the
lations between the harmonic coefficients in EQ3). In the  analysis of azimuthally symmetric HBT correlation radii,
more detailed model-independent discussion in Sec. Il anthis Gaussian approximation has led to a qualitative and
the subsequent model study in Sec. IV, we restrict our invesguantitative understanding of tie, dependence of correla-
tigation to midrapidity and to symmetric collision systems. tion functions[15]. This motivates us to adopt the same start-
Due to the reflection symmetry with respect to tha plane, ing point for an azimuthally sensitive analysis. The dix
all odd harmonic coefficients vanish in this case, and thidlependent HBT radius parameté®s2b read
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R2(K, ,®,Y)=(X2)sir? ®+(y2)coZ d—(Xy)sin 2b, (@)

R3(K, ,®,Y)=(X2)co &+ (y2)sir? &+ p>(T?) e K
—2B,(tx)cos® -2, (Ty)sin ® v

+(Xy)sin 20,

Ro(K, . @,Y)=(Xy S y2)—(x?
os(KL, @, y)cos 2b+ 7 sin 2b((y ) —(x*))

FIG. 1. Schematic picture of a transverse cut through the colli-
sion region. Shaded is the effective emission region contributing to
the correlator for pair momentutd. Two different scenarios are

+B,(tTx)sin®—B,(tTy)cosd,

RI(K,,®,Y)=((z-B1)?, shown: in(a) the anisotropy is determined by the global geometry
of the collision, in(b) it is significantly influenced by the collective
R¢2)|(KL D ,Y)= <('Z_ﬁ|'{)('§ cos® +'y sin® — ,BLT))- dynamics of the source. Both scenarios can be distinguished experi-

mentally, see the text.

2 =~ ~
R @) =((z= A1)y cos®=x sin®)). 2.3 parameteR? shows no explicitb dependence and coincides

' formally with the expression for the azimuthally symmetric
These equations separate tplicit & dependence of the casd16]. The radiiRgI andR§I contain explicitd-dependent
HBT radii (which is a consequence of the changing directionierms proportional to{tX) or (Ty). These characterize
of the pair momentunK with respect to the reaction plane asymmetries of the particle emission probability around the
from theimplicit & dependence of the spatiotemporal widthspoint of highest emissivity and they vanish for models with
(x,x,) (which reflects ab-dependent change of the shape Gaussian emission functioigx,k). In the light of this, we
of the effective emission regignin general, both implicit consider in what follows all harmonic coefficiems=1 of
and explicit® dependence will show up in the harmonic the HBT radiiR?,R?,,R?, to be negligible:
coefficients

1 (= Rlc,mzles,mzwo’ (2.63

c 2__— 2
Rim =54 f_WR.J cogme)do, (243 ol.m =Ro1.m*=0, (2.6
RS m2= RS m2~0. (2.60

1 (= _
Rim =5 f_ R sin(md)dd, (2.4b . _
H This is a reasonable but model-dependent assumption. For all

which determine the complete Gaussian parametrizatiof/0de!S studied below, we have checked E36) numeri-
1.3 cally, see Sec. IV B.

The following discussion of thé-dependent HBT radius
parameter$2.3) is focussed mainly on the transverse param- !ll- AZIMUTHAL ANALYSIS OF THE MIDRAPIDITY
etersR? ,R2,R2,. Their harmonic coefficients depend on the REGION

@ dependence of the transverse spatial widths In this section, we discuss the azimuthal analysis of one-
L~ and two-particle spectra for symmetric collision systems

T =(XiX}), (2.9 such as Pb-Pb or Au-Au at midrapidity. The important sim-

L ) plification at midrapidity is that all observables are invariant
',] being clomponents in the transverse plane. Angepen- ngerd— @+ 77, a 180° rotation in the transverse plane. All
dence ofT" is a consequence of nontriviat® correlations 4y harmonic coefficients vanish. This is different for the

and a fortiori of position-momentum correlations in the gagmentation region or for nonsymmetric collision systems
source. To illustrate this point, we have sketched in Fig. 1 here the only remaining symmetry is that with respect to

two simplified scenarios. If there are ne® correlations,  he reaction plane. The arising complications are discussed in
then the transverse shape of the effective emission region e v Here. we first discuss a scenario. for which the

& independent and reflects the global geometry of the Co”i'space-time variance®.5) do not depend on the azimuthal

siqn region. For nontri'via'k-(b correlationS, this simple re- irection ofK, . Then, we turn to the discussion of an arbi-
lation between the emission region and the global geometrﬁ,aryq) dependence of*.

breaks down. In Secs. Ill and V, we find observable combi-
nations of first and second harmonic coefficients which are
sensitive to this difference. More generally, we classify the
possibled dependences of E¢R.5) and discuss their impli- We start by considering an elliptic approximation of the
cations for the harmonic analysis of HBT radius parametersransverse spatial WidthTsﬁ . This toy example will be use-
We conclude this section by shortly commenting ondhe ful in the sequel for comparisons with the general case. It
dependence oR|2, R§|, and R§|. The longitudinal radius provides a simple picture for the consequences of a purely

A. The elliptic approximation
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geometrical scenario, and it can account for some of théhe reaction plane, see Sec. VI. Comparing the expressions
main features of the harmonic coefficients, calculated in th€3.2) with the Fourier expansioiil.3 of the HBT radius

model study in Sec. IV. parameters, we find fop=0
In the elliptic approximation, we characterize the tensor s — p=s , —
T by its principal axegeigenvectorsg,,g,, and the cor- Roo*=9+Bi(t%), Rso' =0, (3.39
responding eigenvalues, andg,. If the orientation of the 1
reaction plane and, differs by an anglep, thenTﬁj takes a Rg'22: — Rgvzzz — st,zzz EQTE (3.3b

simple form in the impact-parameter fixed system

l+arcos2p —arsin2e The other second and higher order Fourier coefficients van-
Tt =E( . ,  (3.13 ish. According to Eq(3.3), the ansatz1.3) for the correlator
—arsin2y  l-arcos contains redundant information. In the present case, neither
the shape off* nor the size of the homogeneity region de-
poll }( +g,) _9170 (3.10 pend on® while the anisotropy terms of the HBT radius
g 2 917G2), ar 01+t9, ' parameters are sufficiently many to encode for such a non-

trivial ® dependence.
This is somewhat analogous to the expression of the trans-
verse sphericity tensor if¥,8]. It provides a convenient pa- B. The general case

rametrization of the three independent expectation values . .
pend P To discuss an arbitrarp dependence of the transverse

{Xix;) in terms of the average sizg of the homogeneity g qiiq| widths, we start from a complete Fourier expansion of
region, its transverse spatial anisotropy and the orienta- _| ~ ~ . oo L
Tij=(XiX;), respectively, of its linear combinations

tion ¢ of its principal axisg*1 with respect to the reaction
plane. In case of an azimuthally symmetric collision with <;(“z>+<3;2> *
vanishing impact parameteg,=0, the cross term vanishes, A= — = > (A, cos nd+A/ sinnd),
(XsX,)=0, and the spatial asymmetry; in Egs. (3.13, n=0

(3.1b describes the difference between the spatial widths in ~s = w

the out and side directions. In terms of these parameters, the g_ (x99 _ 2 (B, cosnd +B! sin nd)
“transverse” HBT radiiR,, Ry, andR, read 2 =0 n ’

5 = %
(KL @ V)=gl1mar cosZer @) (329 C=(xy)= X (C} cosn®+C, sinn®). (3.4
e
R2(K, ,®,Y)=g[1+ar cos e+ ®)]+B3(T?)+C,,
(3.2b Here, the coefficientd,, A/, etc., are functions of the lon-
gitudinal pair rapidityY and the transverse pair momentum
R2(K, ,®,Y)=—gar sin Ao+ ®)+Cpq, (3.20 |K .|, only. The symmetry of the collision regign ijh re-
spect to the reaction plane implies that the tefm$),(y?)
Co=—28,(TX)cos®—28,(Ty)sind, (3.29 are invariant unde>— — @, while the term(xy) changes
its sign. Calculating the coefficients in E@.4) via Fourier
Com +,8L(”t">?>sin q’—ﬁﬂTWCOS@- (3.20 transform, it is easy to check that the primed ones vanish,
. Al=B!=C/=0. (3.5
The two correction term<,, C,s contain widths{t x;)
which are linear it and measure asymmetries of the source! "€ generaib-dependent HBT radius paramet¢2s3) read
around the point of highest emissivity. At midrapidity, all

. sk R2=A-B cos 2b—C sin 2b,
observables are invariant undér—® + 7, and (xt)(®

+m)=—(X1)(®). The correction terms hence dot con- RZ=A+B cos 2b+C sin 2b+ B2(T?)
tribute to the first harmonic coefficienl%ij,f, but to the ° *
. i issi i 2 _ i
second ones. Moreover, they vanish for emission functions R2.=—B sin 2b+C cos 2b, (3.6

S(x,K) which are Gaussian in the spatial components. Their

contribution toRZ, R is neglected in the remainder of this where we have dropped the small correction te@gsC,s.
section, and the validity of this approximation is checked inFrom these HBT radius parametéf6) one can calculate
the numerical model study of Sec. IV. the harmonic coefficient®.4). Especially, we obtain the ze-

The main assumption of the elliptic approximation which roth harmonics
we avoid in Sec. Il B, is that the parametegsand a1 do
not depend on the azimuthal orientationkof . The homo- RZ —A.— EB _ EC

. o . . 5,0~ Ao 2 2

geneity region is determined entirely by the geometry, see 2 2

Fig. 1(a). The eigenvectorg; ,g, lie parallel and orthogonal
to the reaction plane and the angleshould vanish; it hence

1 1 ~
e Ve . R2 ;=Ap+ =B,+ = C,+ B2(1?),
accounts only for the statistical uncertainty in determining 0,070 2t 5ot B ()

2
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R3s0=0, 3.7 HO0—ex p[ (1=70)% (n=m)° X* ¥
. - S 2A07 289 22 2p%)
and the second harmonic coefficients (A7) ()" 2pi 2py .2
1
2‘22: _ §B°+ EAz— 1 B,— ZC4, gnd via an azimuthally asymmetric flow patterp(x) which
is properly normalizedy ,u*=1,
1 1 1 1 :
RS °=5Bo+ 5A,+ B4+ +Cy, u,(x)=(u; coshn,u,,uy,u; sinh z),
2 2 4 4
X y
1 1 1 - -7 _ 2. .2
5s2°=~ 5Bo+ 7Bat 7Ca, Loy Wy, U Vi+uZ+ul. 4.3
Rs 2_Rs 2_ 052 ~0. 3.9 In the longitudinal direction, we choose a boost invariant

flow pattern satisfying Bjorken scalini®2], i.e., the main
For the case ofb-independent spatial width", only the ~ €N€ray flow is along the beam axis. Instead of the variables

terms with index O survive on the right-hand side, and EqPx ’dp¥, Ax t)\ I » we u?e in what follcl)lws t?ﬁ trtansverse sﬁe
(3.8) coincides with Eq(3.3b for A;—g andBg—ayg, If 210 IS spatia anisotropys, as well as the transverse flow

deviations from Eq(3.3b) are observed, this is an unambigu- strength; and the corresponding flow anisotropy.

ous sign for source gradients leading t@badependence of

Ti; . From the absence of such deviations, however, one can- px=RVl=es  py=Rylte,

not conclude that there are no source gradients. In the fol-

lowing model study we shall find that even in the presence of _ X _

sizable source gradients, such deviations can be small. Then, U= eVt € R WT 1=e R’ (4.49

the use of Eq(3.3b resides in reducing the number of fit

parameters in an azimuthal HBT analysis, see Sec. VI.  We have chosen the principal axes of the transverse space-
Let us finally anticipate that for the models studied below,time distribution aligned with those of the azimuthal momen-

the fourth harmonic coefficients, B, andC are negligible.  tum distribution, since the dynamical evolution of the colli-

It follows from Eq. (3.8) that then the deviations of Eq. sion region cannot break the reflection symmetry of the

(3.3b are essentially determined by the teg, only, i.e.,  system with respect to the reaction plane. The spatial anisot-

ropy eg takes values in the range 1<e,<1, i.e., for e

(4.43

¢ 2 > e . o e

R52+ 2R3 ,°~Re /. (3.9 >0, the collision region is longer in the direction perpen-
dicular tob, p,<p,. For the flow anisotropy;, we allow

IV. A MODEL CALCULATION for —1<e;<1; the major flow component lies in the reac-

tion plane if e; is positive. All numerical calculations are
done for the input parameter§ =150 MeV, m=m_
=139 MeV, 7o=5fm/c, Ar=1fm/c, A»p=1.22 and R
=5fm. We study the dependence of the one- and two-
particle spectra on the size of the transverse flow, and the
spatiale; and dynamicak; anisotropies.

We introduce now a simple hydrodynamical model for the
emission function of a heavy-ion collision which includes
anisotropy effects. For this model, we calculate both the one-
and two-particle spectra, illustrating the main points of the
above model-independent discussion.

In the central rapidity region of a peripheral collision, the
initial distribution of the highly excited nuclear matter is
given by the intersection of the nuclear spheres. The largest A. Harmonic analysis of azimuthal particle distributions

pressure gradient developing from such initial conditions is  The harmonic coefficients,, of the triple-differential

expected to be aligned with the impact paramété,18..  one-particle spectrurfL.1) are given in terms of the Fourier
To mimic this scenario, we consider the class of model emistransforms
sion functions

2n 3,,,[ COINP)
S(K) e oo 2q) 1 E N P sinng,) |94
X,K)=719m, cosin—y)expg ——=———|H(x n—
Tofm, oSy T (bn) E@Ndpde 4D
(4.7
whose azimuthally symmetric versions have been discussed an=vy CONYR), by=v, sin(Nypg). (4.6)

extensively in the literature. For a review, sdé]. These

models assume the emission of particles from a thermalizedlhe anisotropy parameters, characterize azimuthal asym-
system with collective four-velocity,, , confined in a space- metries in the momentum distribution. According to Egs.
time volume determined byH(x). The factor P-n(x)  (1.1) and(4.5), they are normalized to the azimuthally aver-
=71om, cosh@—Yy) specifies a simple hyperbolic freeze-out aged double differential particle distribution, ang= 1.
hypersurface. We introduce an azimuthal anisotropy in the In the absence of transverse flow;,=0, the model4.1)
source both via an elliptic shape of the geometrical emissiodoes not contain source gradients in the transverse plane.
region, Irrespective of whether the transverse geometry of the source
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dependence. In the limiK, —0, these®-dependent terms
vanish, the emission probabilities in different azimuthal di-
rections become equal, and

lim v,(K,)=0 for all n=1. (4.8
K, —0

More explicit expressions for the parametarg of this
model can be obtained in a saddle-point approximation, de-
tails of which are presented in the Appendix. In this approxi-
mation, we find thaw,*K? for small values ofK, . For
small transverse flow, the leading dependence on the anisot-
ropy parametergg ande; is given by

>\2_ A2 2(€&— €g)

-y _X>o<—
py pel (1—€)(1-€d)

Vo (49)

Equation(4.9) describes correctly the main features of the
numerical results in Fig. 2. The coefficiesy(K ) vanishes
for e;= €5, and its sign coincides with that ef— €. In the
) case of an azimuthally symmetric particle emission region,
200 00 800 8000 % ‘650 = €= 0, this behavior is_ _entirely due to the tran_sverse flow
K, (MeV) K| (MeV) anisotropye;. For positive values ok;, the major trans-
verse flow component lies in the reaction plane andis
positive. Negative values af mimic a squeeze-out scenario
where the major flow component lies orthogonal to the reac-

0.4
0

FIG. 2. The second harmonic coefficientof the single particle
spectrum for the modgl.1). The different plots show results for

scenarios with different transverse flow strengthsand geometri- tion plane. This explains the: dependence af, shown in
cal anisotropieses. The lines denote different transverse flow P ) P € dep 2

anisotropiesi;=0.8 (solid line), e;=0.4 (dashed ling ;=0 (dot- Fig. 2. On the_Other hand, if we choose for a given fiow
ted lind, e;=—0.4 (dash-dotted ling and ;= —0.8 (thin solid  Pattem (7, fixed more and more elongated transverse
line). Positive values of; correspond to the major flow direction 9€0metries, them, decreases. The reason is that increasing
lying in the reaction plane. €5 results in more emission points with a langgand small

u, flow component. It thus mimics a larger squeeze-out com-
is radially symmetric é,=0) or not, particle emission is ponent of the_ transverse fI_ow orthogonal_to the_reaction
isotropic in the transverse plane. All harmonic coefficientsPlane. In the simple model discussed here, increasjrand
v,, N=1, vanish. decrea_smgef hence_ affects the aglmu_thal par_tlcle distribu-

In the presence of transverse flow, the reflection symmetions similarly. Spatial and dynamical information cannot be
try of the emission functiori4.1) with respect to the direc- disentangled completely on the basis of single-particle spec-
tion of the impact parameter impliesda— ¢+ = symmetry tra. For azimuthally symmetric scenarios, this is well known
of the particle spectra. All odd harmonic coefficientsvan- [23].
ish. The lowest nonvanishing anisotropy parameteo js . . . . . .
This parameter is positive if the spectra?iN/(p,dp,dy de¢) “E 03 £.20 6.208
shows a maximum in the reaction plane, it is negative for the =15} M= 0 8= 0 &= 05
opposite case. Higher fourtfsixth, etc) harmonic coeffi-
cients are found to be much smaller. They are not discussed
further.

The transverse pair momentum dependence of the coeffi-
cientv, is depicted in Fig. 2 for different physical scenarios. O
Irrespective of the model parameters, €, and ¢, the ~
coefficientv, vanishes atk, =0 and is growing monoto-
nously with the transverse pair momentum. This is a direct
consequence of the Lorentz-invariant Boltzmann term in Eq.
(4.2) which encodes the assumption of local thermal equilib-

10}

‘ 0 200 400 800 800
rium K, (MeV)
K FIG. 3. The nonvanishing zeroth and second harmonic coeffi-

—yuy . 4.7 cients of the nontransverse HBT radius parame@r% (solid line),

T Roio” (dashed ling RS, ,* (dotted ling, and R ,* (dash-dotted
line) for forward rapidityY=1. The second harmonic coefficients

The terms which couple the flow componenisuy linearto RS ,2 andRS, ;? are proportional td¢x) and(y), which are generi-

the transverse momentum components are the only ones bally small correction terms, see the discussion following Eq.

the model emission functio.1) which can introduce & (4.10.

m, Kx
K“u#=? cosiinp—Y)u,— T U
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B. Harmonic analysis of HBT radius parameters vanishes for alK | . For an azimuthally symmetric emission
Here, we check first that thé dependence of the radii "€9ion, this would be a consequence of the- —q; reflec-
R|2, Rcz)l, and R§| is negligible. At midrapidity,Y = 3,=0, tion symme_try of the correlato_r. Contributions breaking this
symmetry introduce automatically & dependence and
hence do not show up in the zeroth harmonics. Higher har-
monics are found to be very smaRf shows no® depen-

the emission function4.1) is symmetric with respect to
z——z, and the HBT radius parameteRs, and R vanish:

R2|,R2|“((E—B|T)>, dence, the only nonvanishing second harmonicsl%@r,g2
o andR§, ;2. From Fig. 3 we conclude that these higher har-
<(E—,3|T)>|Y:o=0 for all K, . (4.10 monics are negligible. This illustrates the arguments leading

to Eq. (2.6). It suggests to restrict an azimuthally sensitive
To study theirk ;| dependence, we hence choose the forwarddBT analysis to the “transverse” HBT radius parameters
rapidity Y= 1. Numerical results are presented in Fig. 3. TheR2, RZ, andRZ,.
zeroth harmonic coefficients show tlke, dependence ex- For the transverse HBT radii of the moddl.1), sugges-
pected from azimuthally symmetric model studj@g]. Es- tive analytical expressions can be obtained in the approxima-
pecially, the longitudinal radius parameﬂéﬁ0 has a steep tion u.wl+%u§+%u§. Deferring all technical details to the
K, slope which reflects the strong longitudinal expansion ofAppendix, we merely state that in this approximation, dhe
the source. Also, the out-longitudinal cross teRf) , shows — dependence of* is lost. The zeroth and second harmonic
the typicalK, dependence known from studies of azimuth- coefficients of all transverse HBT radii can be written in
ally symmetric models. It takes significant nonzero valueserms of an average sizg_and a spatial anisotropyr,
and vanishes &, =0, whereR%,=R?. The parameteRZ , introduced in Sec. IlI, Eq(3.3),

—RY[ s+ e(m, IT)p2(1—€2)]

gar= , 4.11
9T T 2Im, (1 eoen I 7+ (M2 (1— (1 DITo (@113
— R[1+(m, /T)nf(1-€d)]
g= — 2 R PR N e (4.11h
1+2[m, (1—eser)/ T]ms+[mi(1—€5)(1—€7)/T ] s
|
In the limit of vanishing transverse flowy;— 0, these ex- In the absence of dynamical anisotropies=0) the sec-

pressions become exact. The valuegofwhich determines ond harmonicsRg >, RS, andR5s,” given essentially by
the zeroth harmonic oRi is just given by the transverse 3gar, are sensitive to the strength of the geometrical an-
geometrical radiu®?. The anisotropyg e which specifies SOty €s. For small values ofyf, the leadinge, depen-
the second harmonic coefficients, is proportionakgo This ~ dence of Eq(4.113 is linear and this is consistent with the
is the case shown in Fig. 4. Far;=0, the model emission Scaling of the dashed and dash-dottegH0) lines in Fig. 4.
function has no intrinsic position-momentum correlations, "€ K. slopes depicted in Fig. 4 are qualitatively explained

and the different harmonic coefficients satisfy the relation%)y Eq'é4'1la' ?Isho, we hav%_investigated nur?erichally thg | of
2 and Rgs,zz coincide and they ependence of the HBT radius parameters for the model o

3.3. The component®RS . oo
fjiffe)r from RC Zpb an O\S/'éra” sian onl Sec. IV A. Here, we merely state that the main qualitative
02 0¥ rall sig Y- features of the numerical results can be understood in terms
In the presence of realistic transverse flow strengghs of the analytical approximationi.114, (4.11H
. . 2 2 . T . f . .
the approximation~1+;u;+uy loses its validity. Nu- It is a remarkable feature of the moddl1) that the trans-
Werse spatial widthéfﬁj calculated in a saddle-point approxi-

merical calculations are needed to make precise quantitati
statements, but the expressiddsl]) still describe essential mation do not show angp dependence. This can be traced
back to thed-dependent terms in E¢4.7) being linear inx

gualitative features. In the limiting case of an azimuthally
symmetric collision region with a finite transverse flayy, and y, rather than, e.g., quadratic. The slight difference

the anisotropy parametes; vanishes ang goes to the well- e 2—R3_,2 found in the numerical calculation of Fig. 4 for

. . - S,
known [16] lowest order expression for the side radius Pa-,, "~ 0.3 stems from the error made in the Gaussian approxi-

rameter mation. To avoid drawing conclusions on the basis of a very
model-dependent feature such as this almost complete can-
- R2 celation of ®-dependent contributions for linear flow pro-
RZ=g= T m A for es=¢;=0. (4.12 files, we have investigated the following two nonlinear flow
[1+(m./T) 7] profiles as well:
This describes the leading, dependence d?RS,O2 as a func- N e Xi ;
tion of »;: the slope of the side radius parameter is indica- U= VL e VRIXi] - [square root profils

tive of the transverse flow; . (4.133
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FIG. 5. Same as Fig. 4, but for a square root and a quadratic
transverse flow profile, for which a Gaussian approximation of the

and with (;=0.3) transverse flow, and for different sizes of the emission function is no® independent. In these cases, the differ-
spatial anisotropy. Thin and thick solid lines denote the zeroth enceR$,*— RS ,” is more significant, buR§ ,°+ 2RS >~ RS ,? is

coefficientngvo and Rgo, respectively. The plot shows all nonvan-

ishing second harmonic coefficier®§ ,? (dash-dotted ling RS,
(dashed ling andRj,” (dotted ling. For =0, RS ,*= RS %, see
Eqg. (3.3b.

Xi| i
R? ’

Ui = 75\ 1i€f

[quadratic profilg.
(4.13b

Here the index runs overx,y. Results for vanishing flow
anisotropye; are shown in Fig. 5. In the limiK, —0, the
dependence of* on the azimuthal direction ok, has to
vanish and hence, all scenarios depicted in Figs. 4 and
confirm the purely geometrical relation3.3b), Rg;

still valid, see Eq(3.9) and text below.

2 RS2 andRS, % Their leading contribution is deter-
mined by one parameter only, see Eg.3h. The leading
deviation from Eq(3.3b satisfies Eq(3.9) and is indicative
of strongx-® correlations in the source.

V. AZIMUTHAL ANALYSIS OF THE FRAGMENTATION
REGION

For finite impact parameter, the collision system has a
finite total angular momentundi, Li= €iji{(Xjpk)). In

Heavy-ion collisions) and Le=|L|, is not directly observ-
able but has to be inferred indirectly on the basis of impact

—RS,°=—Rgs,°. For increasing values df, , we find  parameter dependent measurable quantities such as total par-
deviations from this relation which are clearly more signifi- ticle multiplicities or transverse energy. In general, angular
cant for the nonlinear flow profiles. These, however, are verynomentum conservation is a constraint which can affect the
well accounted for by the modified relati¢8.9) amongst the shape of two-particle correlatiofigs].
second harmonic coefficiengf ,2+ 2R, ,>=R: 2. The de- For the incoming nuclei, the angular momentum is en-
viations from a purely geometrical scenario seen in Fig. 5 areérely determined by ,,={(xp,)), but depending on the col-
hence not due to the correction ter@g,C,s, which are lision dynamics, the compone(tzp,)) can carry in the final
generically negligible, but to the leading dependence of state part ot . To illustrate the possible consequences, we
T+ which enters Eq(3.7) via the termA,. consider a longitudinally expanding collision scenario, for
For the sake of completeness, the zeroth harmonic coeffivhich the space-time rapidity of the emission poings
cients are presented in Fig. 5 as well. Details of thejr =1 In(t—2)/(t+2) is linearly related to the momentum rapid-
dependence can be understood by investigating the depeity Y of the emitted particlesy=7,- Y. Usingz= 7 sinh
dence of(x?) and(y?) on the pair momenturf24]. =rsinh(nY), one sees that a nonvanishing contribution
Let us sum up the results of our model study. All second((zp,)) to the total angular momentum leads in this case to a
harmonic coefficients of nontransverse HBT radius paramnonvanishing total vector sum gf, in noncentral rapidity
eters are negligible. Amongst the transverse HBT radii, thre®ins, and hence to a nonvanishing Fourier coefficientn
second harmonic coefficients are non-negligible, namelyEq. (1.1). This effect is more enhanced for larger rapidities
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Y, it vanishes at midrapidityy =0, and it has opposite sign

URS ACHIM WIEDEMANN

B. Model extensions for noncentral rapidities

for backward rapidities. We hasten to remark, however, that The model emission functiof#.1) investigated in Sec. IV

this is just one possible reason why the 180°
transverse collision region can be lost.

Irrespective of the particular scenario discussed above, theq angular momentunt. .,
Of

symmetry of th@escribes a collision with vanishing angular momentum.

Here, we introduce a simple extension which allows for fi-
but coincides with the model

odd harmonic coefficients of the one- and two-particle specry 1) gt midrapidity. Clearly, such extensions are numerous.

tra do not have to vanish any more in the fragmentatio

ne can, e.g., shift the transverse flow pattern inclagrec-

region. In this section, we investigate the implications for the;;,.

first harmonics of the HBT radius parameters.

A. Properties of first harmonics

To calculate odd harmonic coefficients of the transvers

HBT radius parameter€.3), we start again from the har-
monic expansiori3.4) of T*. It is a remarkable property that
in the radii R\ ,°, Rf 2, even and odd harmonic coeffi-
cientsA,, A’',, etc., do not mix. Fom even, only terms
with n even appear, and fon odd, only terms witm odd.

Especially, we find for the first harmonic coefficients

¢, 1 1 1 1
o1 :EAl—ZBl—ch_ZBg_ZC:g; (513
¢ o 1 1 1 1 1
RO,l :§A1+ ZB]_"F ZC1+ ZB3+ ZC3; (slb)
s o 1 1 1 1
OS,l :_ZBl_ ZC1+ ZB3+ ZCg, (51@
RS =R = Ris =0 5.1

It follows immediately that all first harmonics vanish in the
absence of source gradients:

f°=R} ”=0, [no source gradients (5.2

X+ xY
R

U%Z 77f\/1+ €5 (55)

eSince)( multiplies the rapidityY, the flow pattern shows a

forward-backward anticorrelation i and will result in non-
vanishing odd coefficients,, and a finite total angular mo-
mentum (1.4). Alternatively, one can introduce a rapidity-
dependent deformation of the transverse geometry, e.g., by
introducing a dependence of the Gaussian widths in(4&8)

on the azimuthal directiop, x=r cos¢,

px=(R+xY cos ) V1-—e¢,

py=(R+xY cos¢)V1+es. (5.9

For finite transverse flow, this again results in nonvanishing
odd coefficients , and a finitel,;. Both these modifications
(5.5 and(5.6) reduce at midrapidit)f =0 to the model stud-
ied in Sec. IV. We have investigated the dependence of
their first and second harmonics and tagproximatg rela-
tions which they satisfy. The linear coupling of E§.5) on
d-dependent terms in E¢4.7) makes they dependence of
the model(5.5 very weak.(The termK ,u¥* does not intro-
duce an additional position-momentum correlation, and the
only y dependence of the correlator stems from Here, we
hence present results for the mo¢®l6) only. To isolate the
effect of they displacement, we have set the other anisotropy
parameters to zerass= €;=0. All calculations are done at

The physical reason is that for a source without gradients, thféjrwaerI rapidity,Y =1.

effective emission region has the saside and out exten-
sion irrespective of whether it is viewed under an anler
an angle® + 7.

For the case that all third harmonic coefficients in Eq.
(5.1 are negligible, the three nonvanishing HBT radii in Eq.

(5.1) satisfy

cC 2__.pC 2 s 2
Rs,l "’Ro,l +2Ros,l .

(5.3
This equation is reminiscent of E€¢3.9). There, however,
the contributionBy, is typically an order of magnitude larger
than the second harmonic contributidg, and this allows
for the further simplification(3.3b. Here, in contrast, all

leading terms are first harmonics. The first harmonic coeffi

cient of (x2) should be much larger than that @f2) since
asymmetries with respect to the beam axis will occur in th

A]_: Bl>C1, and

RS 1% RS 2R3 2~ 31— 1. (5.4)

For vanishing transverse flow; =0, our model contains
no source gradients. The zeroth harmonic coefficients show
the expected behavioRsq is a K, -independent constant

from which the out radiu®, , differs by the factor?(t2)
only. Also, in the absence of source gradients, all first har-
monics vanish, and Ed5.2) holds. The second harmonics
do not vanish: they ar&, -independent parameters deter-
mining the elliptic approximation of the transverse source
geometry. Also, they satisfy the geometrical relati@m3b

as expected for sources without position-momentum correla-
tions. Qualitatively, their behavior is completely consistent
with the case discussed faf;=0 in Fig. 4. Quantitatively,
we find for the nonvanishing componen&; 2|=~05 if x
=2fm and|R}, 2| =~1.5if y=2. This is slightly larger than
the values obtained for the cagg=0.3 atK, =0 (see Fig.

6) and the minimakly; dependence can be traced back to the

A . L %rdependent term in the Boltzmann factdr?).
direction of the impact parameter only. In this limiting case

which is relevant for the models studied below, we have

For finite transverse flowy;=0.3, numerical results are
presented in Fig. 6. Due to source gradients, the azimuthal
eccentricity introduced via Eq5.6) now shows up in the
first harmonic coefficients. They vanish at vanishing trans-
verse pair momentum:
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x=2fm Y=1 x =4fm ticularly important in reconstructing the reaction plane. In
Sec. VI B we investigate to what extent this affects the de-
termination of anisotropy measures from two-particle corr-
elators.

A. A minimal azimuthal parametrization

On the basis of our discussion in the Secs. II-V, we pro-
pose as minimal parametrization of a two-particle correlator
for peripheral collisions the Gaussian ansatz

C:J/R(Kvq)%1+)\Csym(Kiq)Cl(K!qva)CZ(KiqvlpR)
(6.19

Csym( K ,CI) = eXF[ - Ro,qug_ Rs,qug_ RI ,qulz
- 2RoI,OZQOQI] (6-lb)

C1(K,q,¥r) = exfl — a1(392+q2) cog  — y)

+2a1000s SIN(P — ¢g) ] (6.10
0 200 400 600 0 200 400 600 800
K, (MeV) K, (MeV) Co(K, 0, ¥r) =exi — (g5 —0a3)cos 2P — i)
FIG. 6. Zeroth, first, and second harmonic coefficients of the out +2a,0,0s Sin AP —yr)]. (6.10

(dash-dotted lings side (dashed lines and out-side(dotted lineg ) o o o
HBT radius parameters for the mod@.1) with the modification ~ The zeroth harmonic coefficients in this parametrization pro-

(5.6) at forward rapidityY = 1. To high accuracy, the first harmonic Vide the complete Cartesian parametrization for the azimuth-
coefficients satisfy the relatiofs.4) and the second harmonics the ally symmetric case. Especially, the cross tdﬂ;nvoz van-
relation (3.9). ishes in the c.m.s. at midrapidity, and due to the symmetry
arguments made in Sec. 1V, the parametgvanishes under
lim Ricj AK,,Y)= lim R?j AK,,Y)=0, (5.7 these condit_ions as_vyell. The param_etrizat?on for the effec-
K,—~0 K,—0 tive harmonic coefficientsy; and a, is motivated by the
relations(5.4) and(3.3b), i.e., it is based on setting

since the correlator is &, =0 sensitive to the geometry of 1

the source only. More importantly, over the compléte Pt 2_"pCt 2 __ps 2

range, the first harmonics in the out, side, and out-side direc- 1K, Y)~Rsy 3Rod Rosi™ 6.23

tions satisfy up to a few percent the relation 311 as we

have argued in deriving E¢5.4). The second harmonic co- ay(K, ,y)ng;% — Rg'zzm — RESQZ_ (6.2b

efficients satisfy folK, =0 the relation—1:1:1 as suggested

by Eq.(3.3b. For finiteK, , dynamically introduced devia- In the model studies in Secs. IV and V, we have assumed

tions are found, but the modified relatio8.9), RS>  thatd®=0 corresponds to the pair momentidrlying in the

+2RS,°=R:,? describes all results up to a few percent. reaction plane. Experimentally, this reaction plane is un-
known a priori. The parameteyz which determines its ori-

entation has to be included in a comparison with experiment.

A discussion of the statistical uncertainty in its determination

and the implication for the extraction of the anisotropy pa-

For the particle multiplicities obtained at the AGS and rametersa, a5 is given in Sec. VI B.

SPS, a determination of HBT radius parameters on an event- In the model-independent analysis of tdedependent

by-event basis is not possible. Finite event statistics limitddBT radius parameters in Secs. lll and IV, we have argued

the possibilities of a multidimensional HBT analysis for the that corrections to these relations can be expected to be com-

now typical samples of the order of 201(f events. To ex- paratively small on general grounds. Also, we have quanti-

tract despite these statistical constraints at least the majdied deviations from Eq(6.2) in the model studies of Secs.

anisotropic HBT characteristics, it is clearly helpful to startlV and V. According to these studies, the most reasonable

from a parametrization of(K,q) in terms of a minimal set nonminimal extension of the parametrizati¢f.1) is to

of fit parameters. Such a parametrization is discussed in Semplement the constrainRS ,?+ 2R ,>~R¢,? instead of

VIA. Eq. (3.3b), i.e., to replace Eq(6.2b by two parameters for

In contrast to constraints from finite event statistics, thethe second harmonics.

statistical uncertainties stemming from finite multiplicity  Clearly, it would be preferable to fit to the most general

fluctuations cannot be overcome by investigating largeparametrization(1.3), and to quantify corrections to these

event samples. They constitute a fundamental limitation taelations. However, as long as finite event statistics forces

any investigation of anisotropy measures, and they are papne to restrict the space of fit parameters as far as possible,

VI. FINITE EVENT STATISTICS AND FINITE
MULTIPLICITY FLUCTUATIONS
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the relations(6.2) provide in the light of our analysis the
most reasonable set of constraints to adopt.

<> (fm?)

B. Event samples with oriented reaction plane I

The main problem in extracting the fit parameters «,
from experimental data is, that due to finite event multiplic- 3r
ity, a multidimensional analysis of two-particle correlations
. . . . / <0L1>
is not possible on an event-by-event basis. Fits have to be 2t /
done on event samples and the use of Bdl) presupposes / <%
that the different events are sampled with a fixed orientation i/ 7
of the reaction plane. The reaction plane can be reconstructed
from an azimuthal analysis of the single particle distribution 0L
(1.2), but its event-by-event determination is subject to sig- z
nificant statistical uncertainties. Since the parametrization
(6.1) depends on the anglg, these uncertainties affect the  FIG. 7. The HBT anisotropy parametefa;) as a function of
determination of the HBT radius parameters as well. Herethe parameteg which characterizes the event-by-event reconstruc-
we investigate quantitatively to what extent these uncertaintion uncertainty in the orientation of the reaction plane. The param-
ties affect the determination of the anisotropy parametersters{a;),(a,) are determined by fitting Eq6.1) to an event
aq,a, from the experimental data. sample(6.5) of correlators whose reaction planes are oriented along

Our starting point is the assumption that the probabilitythex axis according to the probability distributid6.3). The value
distributionsW(v 1, #g) of the first harmonic coefficients of ¢=2 corresponds to a reconstruction uncertainty of approximately

the one-particle spectrum around(, ) is given by[7—9]  30°:

v2+v2-20 v, COS PR mental standard which will improve with the larger event
W(vy,¥r) =5 exp — 252 : multiplicities at RHIC and LHC.
6.3 We investigate now in a simplified example to what ex-

tent finite anisotropies of the single events leave traces in an

We consider the case that the reaction plane is reconstruct&y€nt sample constructed as outlined above. To this aim, we
from the first harmonic coefficients only. For ideas aboutC"’“CUlalte for given anisotropies, ,a, the effective cor-
improving this reconstruction by taking higher order har—“"‘kﬂorC - which is then fitted to the Gaussian ans@2).
monics into account as well, Ség] Here and in what fol- The a_msotropy paramete(&l>,<a2> determined in this fit
lows, we orient the most Ilkely, “true” direction along the are then Compared to the paramet@rls as of the Sing|e
axis, 1,//R 0. The Gaussian distributiof®.3) can be used if events one has started with. In Fig. 7 the fitted average)s

event multiplicitiesN are suff|C|entIy large to apply the cen- gre shown as function of the statistical uncertaigtyn the
tral limit theorem. The variance” then scales as M/ and  reconstruction of the reaction plane from first harmonic co-

the reaction plane is well defined for extremely large eventsicients. For a realistic uncertainty of 30¢ €2), approxi-

multiplicities mately 85% of the “true” first anisotropy parametets and
. B approximately 55% of the second anisotropy paramejds
hll'inm W(vy,ir)=0(¥r)- (6.4 obtained. These ratios are independent of the size, aind
as.
The correlator of an unoriented event sample is obtained
from Eq.(6.1) by averagingCy,_ over all orientations of the

react|on plane. It is known that in fits to such “unoriented”

For finite multiplicitiesN in the hundreds, however, the un-

certainty in the eventwise determination ?ﬁ; cannot be

neglected. The event sample with oriented reaction plane
correlators, HBT radius parameters receive artificial contri-

should not be compared directly to E§.1), but to an effec-

! . A butions due to the averaging proced{it8]. Since we aver-

tive correlator which takes the probability distributit of & | h artificial

experimentally determined reaction plane orientations prop29€ |nC  over different reaction planes, such artificial con-

erly into account: tr|but|ons exist forCJR too. Especially, the zeroth harmonic

coefficients of the HBT radius parameters should shoﬁa
Cfbff;(K,q)=f v1dv dyrW(v1,¥r)C,(K,q). (6.5  dependence. In the numerical analysis of the curvature of the

correlator, we found this to be negligible. To understand the
reason, we consider the caag=0 when the integra(6.5

It follows from the form of Eq.(6.3) that this effective cor- can be evaluated analytically. Thi-dependent part reads

relator does not depend om; and o separately, but is a

function of ¢ = v, /o only. The parametef is a direct mea- o

sure of the accuracy for the reaction plane orientafiorg]. Ci (K-Q):f v1dv dgrW(vy, ¥r)C1(K, 0, ¥r)
From the investigation of Voloshin and Zhafgge Fig. 4 in
[9]), we conclude that a value af~2 corresponds to an
uncertainty of approximately 30°. This is the current experi-

1 —
=f §d¢ eXD(—E(§2+ 52))|o(2)- (6.6)
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The argumenZ of the Bessel function depends on the rela-anisotropy signals fron€(K,q) is the statistical uncertainty
tive pair momentum componentg, gs and the anisotropy in the eventwise reconstruction of the reaction plane. We

parametersy; : have shown that for event samples with a typical 30° uncer-
_ _ . tainty in the eventwise orientation, the major part of the an-
Z=(££)°—2£¢F, cog®)+Fgsin(®)] isotropy measuresy;,a, survives. An analysis of experi-

mental data on the basis of the parametrizati®d) seems
hence feasible.

We finally discuss which physical information can be ex-
tracted from the anisotropy parameters «,. From the dis-
cussion in Secs. IlI-V, we conclude that a nonvanishing first
harmonic coefficienkx; automatically implies the existence
of dynamical source gradients, see E82). In contrast, the
leading contribution tax, is determined by the geometry of

+4F Fg sin(®)cog @)+ F 2+ Fg2, (6.79
Fc:a1(3qg+q§)a Fs=—2a100s- (6.7
The limit €—0 in Eq. (6.5 corresponds to an unoriented

correlator. For this case, the arguménts quadratic in the
components of] and expandind, for small arguments, we

find, Eq. (A5), the collision region and specifies essentially the elliptic
#1o(Z) . shape of its transverse extension. More explicitly, in the con-

=0 for ¢=0. (6.9  text of the hydrodynamical model of Sec. lll, there is a ten-

9099 q=0 tative strategy to determine the geometrical and dynamical

anisotropiess,, €, respectively. According to Ed4.9), ex-

This illustrates for a simple example that the unweighted,q imental data on the harmonic coefficient restricts the

averaging over different event orientations discussdd & allowed parameter space iree;) to a one-dimensional

does affect the shape of the corr(_alatorq'mbut no.t it_s CU™  one. According to Eq(4.113, the second harmonic coeffi-

vature. It hegﬁce has to be dgtermlned by quantifying the degjents of the transverse HBT radii show a different depen-

viations OfCIR from a Gaussian shaf21]. Here, we do not  gence one, and ¢; and can hence be used to constrain the

pursue this point further. remaining freedom. This illustrates that in noncentral colli-
The calculation leading to Fig. 7 is based on simplifiedsions, as in azimuthally symmetric ones, only a combination

assumptions. Especially, we have not considered eventwig¥f one- and two-particle spectra will allow to disentangle

fluctuations in the size of the;. Since both anisotropy fit geometrical and dynamical information.

parameters can take positive and negative values, such fluc-

tuations do not fake anisotropy signals. We hence conclude

from the above that with a typical 30° resolution of the re- ACKNOWLEDGMENTS
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In the present work, we have studied the possibilities of ¥ BMBF and DFG.
harmonic analysis of two-particle HBT radius parameters.
We have clarified to what extent the two fundamental prob-
lems of such an analysis can be overcome. APPENDIX: CALCULATION OF AZIMUTHAL PARTICLE
First, the harmonic Fourier expansion of HBT radius pa- DISTRIBUTIONS AND HBT RADIUS PARAMETERS
rameters introduces a plethora of additional fit parameters
which make a comparison with experimental data difficult.
We have argued that under reasonable assumptions on t
geometry and dynamics of the collision region, only very
few of them are non-negligible. For the first harmonic coef-
ficients, these ar&; %, RS, R3s,% and they can be de-
scribed by one single parameter since their leading contribu- o
tions scale as 3:::1. Amongst the second harmonic 1y, Jo do coansJ d4XSX1K):TOmLJ D3Gn(7n),

¢ 2
(A1)

VIl. CONCLUSION

In this appendix, we give details of how to calculate the
ngrmonic coefficients of the single particle distributighsl)
and the two-particle correlatior(¢.3) for the model in Sec.
IV:

coefficients, onlyR ,?, RS,?, R3¢, are non-negligible and
their leading contributions scale asl:1:1. Higher harmonic
coefficients were found in all studies to be an order of mag-
nitude smaller. Based on these observations, our main result
is the parametrizatiof6.1) which describes the leading an- _ (= 1) 2I2AA P2 — p2I2(A )2
isotropF;/ of the two-particle correlator by two additior?al fit f Dn_f ™ dr dy costiy—Y)er (7o AT A,
parameters only. If deviations from this parametrization turn (A2)
out to be important, than this will provide an important con-
straint on further model studies. A first nonminimal param-
etrization suggested by our studies quantifies deviations dforn odd, all coefficients , vanish due to the 180° symme-
the second harmonic coefficients froml:1:1 by one addi- try in the transverse plane. In the approximatiap~1
tional fit parameter. +%uf+%u§, the Boltzmann ternK“u,, is quadratic inx
The second fundamental problem in the determination oandy, and
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2w
Gn(7)= f do COSﬂ(ﬁf dxdye” KHu, IT - x2/2p§ - y2/2P§
0

_ sz)\x)\y gxgye—A+ (K212T2)[ (g + 92| (2),

(A3)
where we have used
)\>2< m,
0x=1 A+ —|, A=-—coshn—Y),
" T
:(K_Jz_ gx_gy):K_Jz_ ()\i/pi_ 7\>2(/P>2()
2T? 2 2T% (A+ Nl p) (A+ NSIpy)
(A4)

The modified Bessel functioh,, in Eq. (A3) is obtained by
doing the integral. To extract the leading dependencé jn
we expand for small arguments,

1 2w
l(2)=5— fo d¢ cosnge” s ¥

* 1 Z n/2 + 2k
2 ( ) (A5)

& KIT(n2+k+1) |2

For the coefficientn=2, the leadingZ dependence in Eq.
(A4) is linear. This implies Eq4.9). Also, for smallK, , A

is approximately constant arih- Kf. SinceA depends on
7, the 5 integration in Eq(A1) has to be done numerically.
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This amounts to cosh(-Y)~1 and allows for the approxi-
mate analytical calculation of HBT radius parameters. The
latter are calculated via space-time variances which we ex-
press here in terms of the averages

<f(X,y)>* — J dxdyf(x,y)e_ K""uM/T — X2/2p)2( - y2/2p§,
(AT)

fD”’]<XMXV>*
f,D77< 1)«

Again, in the approximation~1+ 3u2+3u?, the Boltz-
mann termK*u,, is quadratic inx andy, which allows for an
analytical calculation of thex andy integration. We find
(xy), =0, and

(XuX,) = (A8)

o), = MDDt R(1-e)(1), !
*TA+pIUNZ T 1+ARA(1-eg)(1+€)’
2011 R%(1 1)t
(), AL, (1+e€)(1), (A9)

At p2N2 T+AZ(Lte)(l-€)

These averages are the building blocks for the space-time
variance(A8) which determine the HBT radius parameters.
SinceA depends ony, the remainingy integration has to be
done numerically. With the help of the approximati@ke),
however, they integration in Eq.(A8) drops out and the

analytical expression@.11) for g andg ay can be obtained.

To obtain simple expressions for the main qualitative fea-Their validity is subject to the approximations made above

tures, one may use

RS

T (AB)

but they give a qualitatively correct, simple and intuitive
description of the numerical results. Most remarkably, these
approximate expressions do not depend on the azimuthal di-
rection ofK, see the discussion in Sec. IV B.
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