
PHYSICAL REVIEW C JANUARY 1998VOLUME 57, NUMBER 1
Two-particle interferometry for noncentral heavy-ion collisions

Urs Achim Wiedemann
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg, Germany

~Received 15 August 1997!

In noncentral heavy-ion collisions, identical two-particle Hanbury-Brown–Twiss~HBT! correlations
C(K ,q) depend on the azimuthal direction of the pair momentumK . We investigate the consequences for a
harmonic analysis of the corresponding HBT radius parametersRi j

2 . Our discussion includes both, a model-
independent analysis of these parameters in the Gaussian approximation, and the study of a class of hydrody-
namical models which mimic essential geometrical and dynamical properties of peripheral heavy-ion colli-
sions. Also, we discuss the additional geometrical and dynamical information contained in the harmonic
coefficients ofRi j

2 . The leading contribution of their first and second harmonics are found to satisfy simple
constraints. This allows for a minimal, azimuthally sensitive parametrization of all first and second harmonic
coefficients in terms of only two additional fit parameters. We determine to what extent these parameters can
be extracted from experimental data despite finite multiplicity fluctuations and the resulting uncertainty in the
reconstruction of the reaction plane.@S0556-2813~98!02401-7#

PACS number~s!: 25.75.Gz, 05.30.Ch, 12.38.Mh, 24.10.Jv
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I. INTRODUCTION

The goal of the current and future experimental heavy-
programs at CERN and BNL is to test the equilibration pro
erties of hadronic matter at energy densities where qu
and gluons are the relevant physical degrees of freedom.
isotropic transverse flow is an important observable for t
program, since both hydrodynamic and thermodynamic
havior is based on equilibration processes between loca
grees of freedom. Hydrodynamical flow effects result fro
pressure gradients which due to compression of the hadr
matter build up during the collision process. Their stren
depends on the equation of state of the hot matter and
vides insight into the collision dynamics. Moreover, hadro
observables mainly test the final collision stage and a b
extrapolation is needed to extract from them informat
about the hot and dense earlier stages. For this to work,
lective and random~‘‘thermal’’ ! motion in the collision re-
gion have to be distinguished properly. Hence, concept
different types of collective flow play a central role in unde
standing the dynamics of heavy-ion collisions.

Anisotropic flow was observed in both AGS@1,2# and
SPS@3,4# experiments, as well as at lower BEVALAC/SI
energies@5#. Directivity @3,4#, two- and three-dimensiona
sphericity@6–8#, or the so-called deformation parameterRp
@5# are typical variables used in its characterization. W
minor differences, all of them are sensitive to azimuth
anisotropies in the triple-differential particle distribution
The most complete experimentally feasible parametriza
is obtained in a Fourier expansion in the azimuthal angle
different values of rapidity and transverse moment
@9,1,2,10#
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Here, the azimuthal anglecR allows for the determination o
the reaction plane and the harmonic coefficientsvn charac-
terize the size of the total vector sum of transverse mome
(n51), the approximate elliptic shape of the azimuthal d
tribution (n52) and higher order triangle-type (n53),
rectangle-type (n54), etc., deformations.

In Eq. ~1.1!, we have expressed the one-particle distrib
tion in terms of the emission functionS(x,p) which specifies
the collision region at freeze-out.S(x,p) is a Wigner distri-
bution and denotes the phase space probability that a par
of four momentump is emitted from a space-time pointx in
the collision region. Features of collective dynamics as, e
directed flow are encoded in the source functionS(x,p) as
x-p position-momentum correlations. Observables extrac
from the one-particle distributions~1.1! are not sensitive to
the space-time characteristics~anda fortiori to x-p correla-
tions! of the source. The question arises to what extent
servables which are sensitive tox-p correlations can suppor
and refine the picture obtained via the analysis of Eq.~1.1!.
This motivates an azimuthally sensitive Hanbury-Brown
Twiss ~HBT! analysis of two-particle correlation functions
which is the main focus of the present work.

Identical two-particle correlationsC(K ,q), here written
in terms of the averageK5 1

2 (p11p2) and relativeq5p1
2p2 pair momentum, are sensitive to space-time charac
istics of the source. Their space-time interpretation is ba
on the result@11–14#

C~K ,q!511u^eiq•~x2bW t !&u,

^ f ~x!&5
*d4x f~x!S~x,K !

*d4xS~x,K !
, ~1.2!

where we have used the on-shell conditionq•K50 to sub-
stitute the temporal componentq0 in the four-dimensional
Fourier transformbW 5K /K0 . According to Eq.~1.2!, deter-
mining K-dependent geometrical and dynamical source
formation reduces to a Fourier inversion problem~which due
266 © 1998 The American Physical Society
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57 267TWO-PARTICLE INTERFEROMETRY FOR NONCENTRAL . . .
to the on-shell constraint, however, does not have a un
solution!. In the standard analysis of Eq.~1.2!, one assumes
an azimuthally symmetric collision and characteriz
C(K ,q) with four Gaussian HBT radius parameters whi
depend onuK'u and the longitudinal pair rapidityY only
@16#. In contrast, the anisotropic case requires six HBT
dius parametersRi j which in addition depend on the az
muthal angleF of K' @15#. Previous discussions of the az
muthal dependence ofC(K ,q) were based on even
generator studies@17,18# for finite impact parameter colli-
sions, or exploited the Lorentz invariance of the correlato
derive azimuthally dependent HBT radius parameters@19#.
The present work is complementary to these and start
analogy to Eq.~1.1! from expanding the angular dependen
of C(K ,q) in a harmonic series:

C~K ,q!511expS (
i j

Ri j
2 qiqj D ,

Ri j
2 ~K' ,F,Y!5Ri j ,0

2 ~K' ,Y!12(
n51

`

Ri j ,n
c 2~K' ,Y!cosnF

12(
n51

`

Ri j ,n
s 2~K' ,Y!sin nF. ~1.3!

Here, the componentsi , j are given in the ‘‘out-side-long’’
(osl) system where the relative pair momentum has a tra
verseout componentqo parallel to the pair momentumK' ,
a longitudinallong componentql along the beam and a re
mainingsidecomponent. To discuss the azimuthalF depen-
dence of the two-particle correlator~1.3!, we frequently use
an impact-parameter fixed system. In this system, the di
tion of the impact parameterbW specifies thex axis, thez axis
is along the beam, and they axis is perpendicular to the
reaction plane spanned byx and z. Accordingly, the total
angular momentumLW of the system, with

Li5e i jk^^xj pk&&5e i jkE d3p

E E d4xxj pkS~x,p!,

~1.4!

points along they direction.
One central theme of the following is to determine tho

harmonic coefficientsRi j ,n
c 2, Ri j ,n

s 2, whose contributions are
not negligible. We shall find that there are very few indepe
dent ones. This makes a comparisons with experimental
feasible. Also, we aim at understanding which geometr
and dynamical information about the particle emitting sou
is contained in the harmonic coefficients. In Sec. II, we
tack both problems by deriving model-independent expr
sions for the HBT radius parameters. These allow for
calculation of HBT radii fromF-dependent space-time var
anceŝ xmxn& of arbitrary model emission functionsS(x,K).
Investigating theF dependence of̂xmxn& leads then to re-
lations between the harmonic coefficients in Eq.~1.3!. In the
more detailed model-independent discussion in Sec. III
the subsequent model study in Sec. IV, we restrict our inv
tigation to midrapidity and to symmetric collision system
Due to the reflection symmetry with respect to they-z plane,
all odd harmonic coefficients vanish in this case, and t
ue
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considerably simplifies the discussion. In Sec. V, we exte
this analysis to the fragmentation regions. Again, we der
simple relations between the nonvanishing first harmonic
efficients, and we illustrate our findings quantitatively in
subsequent model study. The discussion in Secs. II–V
plicitly assumes that the orientationcR of the reaction plane
is known. It hence neglects finite multiplicity fluctuation
which introduce in practice a significant uncertainty in det
mining cR . In Sec. VI we investigate to what extent info
mation about the anisotropy of the correlatorC(K ,q) can be
obtained despite these statistical constraints. The main
sults are then summarized in the Conclusion.

II. AZIMUTHAL DEPENDENCE OF CARTESIAN HBT
RADIUS PARAMETERS

Here, we derive model-independent expressions for
Cartesian HBT radius parameters~1.3! in terms of space-
time variances@16,15# of the emission functionS(x,K).
These radius parameters depend in general on the azim
orientation of the pair momentumK which we define with
respect to the direction of the impact parameterbW ,

F5/~K¢' ,bW !. ~2.1!

They can be calculated as second derivatives of the
relatorC(K ,q) with respect to the relative momentum com
ponentsi , j 5o,s,l in the osl system. In what follows, we
consider the emission functionS(x,K) to be given in the
impact parameter fixed coordinate system. Then, to exp
the HBT radii in terms of space-time variances, one has
rotate the coordinate system by the angleF,

~DFbW !5S b'

0
b l

D , DF x̃W 5S x̃ cosF1 ỹ sin F

2 x̃ sin F1 ỹ cosF

z̃
D ,

~2.2a!

Ri j
2 ~K !52

]2C~q,K !

]qi]qj
U

q50

5^@~DF x̃ ! i2~DFb! i t̃ #@~DF x̃ ! j2~DFb! j t̃ #&.

~2.2b!

Here, x̃m5xm2^xm&, and all coordinatesx, y, and z are
given in the impact-parameter fixed system. The space-t
variances specify the curvature of the correlator atq50 and
coincide with the experimentally determined half widths
C(K ,q) for Gaussian shapes only@20,21#. Deviations from a
Gaussian can be characterized by more refined methods@21#.
The present investigation is restricted to correlators of su
ciently Gaussian shape and makes no attempt to qua
~possibly F-dependent! non-Gaussian deviations. In th
analysis of azimuthally symmetric HBT correlation rad
this Gaussian approximation has led to a qualitative a
quantitative understanding of theK' dependence of correla
tion functions@15#. This motivates us to adopt the same sta
ing point for an azimuthally sensitive analysis. The sixF-
dependent HBT radius parameters~2.2b! read
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Rs
2~K' ,F,Y!5^ x̃2&sin2 F1^ ỹ2&cos2 F2^ x̃ ỹ &sin 2F,

Ro
2~K' ,F,Y!5^ x̃2&cos2 F1^ ỹ2&sin2 F1b'

2 ^ t̃ 2&

22b'^ t̃ x̃ &cosF22b'^ t̃ ỹ &sin F

1^ x̃ ỹ &sin 2F,

Ros
2 ~K' ,F,Y!5^ x̃ ỹ &cos 2F1

1

2
sin 2F~^ ỹ2&2^ x̃2&!

1b'^ t̃ x̃ &sin F2b'^ t̃ ỹ &cosF,

Rl
2~K' ,F,Y!5^~ z̃2b l t̃ !2&,

Rol
2 ~K' ,F,Y!5^~ z̃2b l t̃ !~ x̃ cosF1 ỹ sin F2b' t̃ !&,

Rsl
2 ~K' ,F,Y!5^~ z̃2b l t̃ !~ ỹ cosF2 x̃ sin F!&.

~2.3!

These equations separate theexplicit F dependence of the
HBT radii ~which is a consequence of the changing direct
of the pair momentumK with respect to the reaction plane!
from theimplicit F dependence of the spatiotemporal widt

^ x̃m x̃ n& ~which reflects aF-dependent change of the sha
of the effective emission region!. In general, both implicit
and explicit F dependence will show up in the harmon
coefficients

Ri j ,m
c 25

1

2p E
2p

p

Ri j
2 cos~mF!dF, ~2.4a!

Ri j ,m
s 25

1

2p E
2p

p

Ri j
2 sin~mF!dF, ~2.4b!

which determine the complete Gaussian parametriza
~1.3!.

The following discussion of theF-dependent HBT radius
parameters~2.3! is focussed mainly on the transverse para
etersRs

2 ,Ro
2 ,Ros

2 . Their harmonic coefficients depend on th
F dependence of the transverse spatial widths

Ti j
'5^ x̃ i x̃ j&, ~2.5!

i , j being components in the transverse plane. AnyF depen-
dence ofT' is a consequence of nontrivialx-F correlations
and a fortiori of position-momentum correlations in th
source. To illustrate this point, we have sketched in Fig
two simplified scenarios. If there are nox-F correlations,
then the transverse shape of the effective emission regio
F independent and reflects the global geometry of the co
sion region. For nontrivialx-F correlations, this simple re
lation between the emission region and the global geom
breaks down. In Secs. III and V, we find observable com
nations of first and second harmonic coefficients which
sensitive to this difference. More generally, we classify
possibleF dependences of Eq.~2.5! and discuss their impli-
cations for the harmonic analysis of HBT radius paramet

We conclude this section by shortly commenting on theF
dependence ofRl

2, Rol
2 , and Rsl

2 . The longitudinal radius
n

n

-

1

is
i-

ry
i-
e
e

s.

parameterRl
2 shows no explicitF dependence and coincide

formally with the expression for the azimuthally symmetr
case@16#. The radiiRol

2 andRsl
2 contain explicitF-dependent

terms proportional tô t̃ x̃ & or ^ t̃ ỹ &. These characterize
asymmetries of the particle emission probability around
point of highest emissivity and they vanish for models w
Gaussian emission functionsS(x,k). In the light of this, we
consider in what follows all harmonic coefficientsm>1 of
the HBT radiiRl

2 ,Rol
2 ,Rsl

2 to be negligible:

Rl ,m
c 25Rl ,m

s 2'0, ~2.6a!

Rol,m
c 25Rol,m

s 2'0, ~2.6b!

Rsl,m
c 25Rsl,m

s 2'0. ~2.6c!

This is a reasonable but model-dependent assumption. Fo
models studied below, we have checked Eq.~2.6! numeri-
cally, see Sec. IV B.

III. AZIMUTHAL ANALYSIS OF THE MIDRAPIDITY
REGION

In this section, we discuss the azimuthal analysis of o
and two-particle spectra for symmetric collision syste
such as Pb-Pb or Au-Au at midrapidity. The important si
plification at midrapidity is that all observables are invaria
underF→F1p, a 180° rotation in the transverse plane. A
odd harmonic coefficients vanish. This is different for t
fragmentation region or for nonsymmetric collision syste
where the only remaining symmetry is that with respect
the reaction plane. The arising complications are discusse
Sec. V. Here, we first discuss a scenario, for which
space-time variances~2.5! do not depend on the azimutha
direction ofK' . Then, we turn to the discussion of an arb
trary F dependence ofT'.

A. The elliptic approximation

We start by considering an elliptic approximation of th
transverse spatial widthsTi j

' . This toy example will be use-
ful in the sequel for comparisons with the general case
provides a simple picture for the consequences of a pu

FIG. 1. Schematic picture of a transverse cut through the co
sion region. Shaded is the effective emission region contributin
the correlator for pair momentumK. Two different scenarios are
shown: in~a! the anisotropy is determined by the global geome
of the collision, in~b! it is significantly influenced by the collective
dynamics of the source. Both scenarios can be distinguished ex
mentally, see the text.
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57 269TWO-PARTICLE INTERFEROMETRY FOR NONCENTRAL . . .
geometrical scenario, and it can account for some of
main features of the harmonic coefficients, calculated in
model study in Sec. IV.

In the elliptic approximation, we characterize the tens
T' by its principal axes~eigenvectors! gW 1 ,gW 2 , and the cor-
responding eigenvaluesg1 and g2 . If the orientation of the
reaction plane andgW 1 differs by an anglew, thenTi j

' takes a
simple form in the impact-parameter fixed system

T'5 ḡ S 11aT cos 2w 2aT sin 2w

2aT sin 2w 12aT cos 2w D , ~3.1a!

ḡ5
1

2
~g11g2!, aT5

g12g2

g11g2
. ~3.1b!

This is somewhat analogous to the expression of the tr
verse sphericity tensor in@7,8#. It provides a convenient pa
rametrization of the three independent expectation va

^ x̃ i x̃ j& in terms of the average sizeḡ of the homogeneity
region, its transverse spatial anisotropyaT and the orienta-
tion w of its principal axisgW 1 with respect to the reaction
plane. In case of an azimuthally symmetric collision w
vanishing impact parameter,w50, the cross term vanishe

^ x̃ sx̃ o&50, and the spatial asymmetryaT in Eqs. ~3.1a!,
~3.1b! describes the difference between the spatial width
the out and side directions. In terms of these parameters
‘‘transverse’’ HBT radiiRo , Rs , andRos read

Rs
2~K' ,F,Y!5 ḡ @12aT cos 2~w1F!#, ~3.2a!

Ro
2~K' ,F,Y!5 ḡ @11aT cos 2~w1F!#1b'

2 ^ t̃ 2&1Co ,
~3.2b!

Ros
2 ~K' ,F,Y!52 ḡaT sin 2~w1F!1Cos , ~3.2c!

Co522b'^ t̃ x̃ &cosF22b'^ t̃ ỹ &sin F, ~3.2d!

Cos51b'^ t̃ x̃ &sin F2b'^ t̃ ỹ &cosF. ~3.2e!

The two correction termsCo , Cos contain widths^ t̃ x̃ i&
which are linear int̃ and measure asymmetries of the sou
around the point of highest emissivity. At midrapidity, a
observables are invariant underF→F1p, and ^ x̃ t̃ &(F
1p)52^ x̃ t̃ &(F). The correction terms hence donot con-
tribute to the first harmonic coefficientsRi j ,1

2, but to the
second ones. Moreover, they vanish for emission functi
S(x,K) which are Gaussian in the spatial components. Th
contribution toRo

2 , Ros
2 is neglected in the remainder of th

section, and the validity of this approximation is checked
the numerical model study of Sec. IV.

The main assumption of the elliptic approximation whi
we avoid in Sec. III B, is that the parametersḡ and aT do
not depend on the azimuthal orientation ofK' . The homo-
geneity region is determined entirely by the geometry,
Fig. 1~a!. The eigenvectorsgW 1 ,gW 2 lie parallel and orthogona
to the reaction plane and the anglew should vanish; it hence
accounts only for the statistical uncertainty in determin
e
e

r

s-

s

in
he

e

s
ir

e

the reaction plane, see Sec. VI. Comparing the express
~3.2! with the Fourier expansion~1.3! of the HBT radius
parameters, we find forw50

Ro,0
25 ḡ1b'

2 ^ t̃ 2&, Rs,0
25 ḡ , ~3.3a!

Ro,2
c 252Rs,2

c 252Ros,2
s 25

1

2
aTḡ . ~3.3b!

The other second and higher order Fourier coefficients v
ish. According to Eq.~3.3!, the ansatz~1.3! for the correlator
contains redundant information. In the present case, nei
the shape ofT' nor the size of the homogeneity region d
pend onF while the anisotropy terms of the HBT radiu
parameters are sufficiently many to encode for such a n
trivial F dependence.

B. The general case

To discuss an arbitraryF dependence of the transvers
spatial widths, we start from a complete Fourier expansion
Ti j

'5^ x̃ i x̃ j&, respectively, of its linear combinations

A5
^ x̃2&1^ ỹ2&

2
5 (

n50

`

~An cosnF1An8 sin nF!,

B5
^ x̃2&2^ ỹ2&

2
5 (

n50

`

~Bn cosnF1Bn8 sin nF!,

C5^ x̃ ỹ &5 (
n50

`

~Cn8 cosnF1Cn sin nF!. ~3.4!

Here, the coefficientsAn , An8 , etc., are functions of the lon
gitudinal pair rapidityY and the transverse pair momentu
uK'u, only. The symmetry of the collision region with re
spect to the reaction plane implies that the terms^ x̃2&,^ ỹ2&
are invariant underF→2F, while the term^ x̃ ỹ & changes
its sign. Calculating the coefficients in Eq.~3.4! via Fourier
transform, it is easy to check that the primed ones vanis

An85Bn85Cn850. ~3.5!

The generalF-dependent HBT radius parameters~2.3! read

Rs
25A2B cos 2F2C sin 2F,

Ro
25A1B cos 2F1C sin 2F1b'

2 ^ t̃ 2&,

Ros
2 52B sin 2F1C cos 2F, ~3.6!

where we have dropped the small correction termsCo ,Cos .
From these HBT radius parameters~3.6! one can calculate
the harmonic coefficients~2.4!. Especially, we obtain the ze
roth harmonics

Rs,0
2 5A02

1

2
B22

1

2
C2 ,

Ro,0
2 5A01

1

2
B21

1

2
C21b'

2 ^ t̃ 2&,
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Ros,0
2 50, ~3.7!

and the second harmonic coefficients

Rs,2
c 252

1

2
B01

1

2
A22

1

4
B42

1

4
C4 ,

Ro,2
c 25

1

2
B01

1

2
A21

1

4
B41

1

4
C4 ,

Ros,2
s 252

1

2
B01

1

4
B41

1

4
C4 ,

Rs,2
s 25Ro,2

s 25Ros,2
c 250. ~3.8!

For the case ofF-independent spatial widthsT', only the
terms with index 0 survive on the right-hand side, and E
~3.8! coincides with Eq.~3.3b! for A05 ḡ andB05aTḡ . If
deviations from Eq.~3.3b! are observed, this is an unambig
ous sign for source gradients leading to aF dependence o
Ti j

' . From the absence of such deviations, however, one
not conclude that there are no source gradients. In the
lowing model study we shall find that even in the presence
sizable source gradients, such deviations can be small. T
the use of Eq.~3.3b! resides in reducing the number of fi
parameters in an azimuthal HBT analysis, see Sec. VI.

Let us finally anticipate that for the models studied belo
the fourth harmonic coefficientsA, B, andC are negligible.
It follows from Eq. ~3.8! that then the deviations of Eq
~3.3b! are essentially determined by the term1

2 A2 only, i.e.,

Ro,2
c 212Ros,2

s 2'Rs,2
c 2. ~3.9!

IV. A MODEL CALCULATION

We introduce now a simple hydrodynamical model for t
emission function of a heavy-ion collision which includ
anisotropy effects. For this model, we calculate both the o
and two-particle spectra, illustrating the main points of t
above model-independent discussion.

In the central rapidity region of a peripheral collision, th
initial distribution of the highly excited nuclear matter
given by the intersection of the nuclear spheres. The lar
pressure gradient developing from such initial conditions
expected to be aligned with the impact parameterbW @7,18#.
To mimic this scenario, we consider the class of model em
sion functions

S~x,K !5t0m' cosh~h2y!expS 2Kmum~x!

T DH~x!,

~4.1!

whose azimuthally symmetric versions have been discus
extensively in the literature. For a review, see@15#. These
models assume the emission of particles from a thermal
system with collective four-velocityum , confined in a space
time volume determined byH(x). The factor P•n(x)
5t0m' cosh(h2y) specifies a simple hyperbolic freeze-o
hypersurface. We introduce an azimuthal anisotropy in
source both via an elliptic shape of the geometrical emiss
region,
.

n-
l-
f

en,

,

e-
e

st
s

s-

ed

d

e
n

H~x!5expF2
~t2t0!2

2~Dt!2 2
~h2h0!2

2~Dh!2 2
x2

2rx
2 2

y2

2ry
2G ,

~4.2!

and via an azimuthally asymmetric flow patternum(x) which
is properly normalized,umum51,

um~x!5~ul coshh,ux ,uy ,ul sinh h!,

ux5
x

lx
, uy5

y

ly
, ul5A11ux

21uy
2. ~4.3!

In the longitudinal direction, we choose a boost invaria
flow pattern satisfying Bjorken scaling@22#, i.e., the main
energy flow is along the beam axis. Instead of the variab
rx , ry , lx , ly , we use in what follows the transverse sizeR
and its spatial anisotropyes , as well as the transverse flow
strengthh f and the corresponding flow anisotropye f :

rx5RA12es, ry5RA11es, ~4.4a!

ux5h fA11e f

x

R
, uy5h fA12e f

y

R
. ~4.4b!

We have chosen the principal axes of the transverse sp
time distribution aligned with those of the azimuthal mome
tum distribution, since the dynamical evolution of the col
sion region cannot break the reflection symmetry of
system with respect to the reaction plane. The spatial ani
ropy es takes values in the range21,es,1, i.e., for es
.0, the collision region is longer in the direction perpe
dicular tobW , rx,ry . For the flow anisotropye f , we allow
for 21,e f,1; the major flow component lies in the rea
tion plane if e f is positive. All numerical calculations ar
done for the input parametersT5150 MeV, m5mp

5139 MeV, t055 fm/c, Dt51 fm/c, Dh51.22 and R
55 fm. We study the dependence of the one- and tw
particle spectra on the size of the transverse flow, and
spatiales and dynamicale f anisotropies.

A. Harmonic analysis of azimuthal particle distributions

The harmonic coefficientsvn of the triple-differential
one-particle spectrum~1.1! are given in terms of the Fourie
transforms

S an

bn
D5

*0
2pE~dN/d3p!S cos~nf!

sin~nf! Ddf

*0
2pE ~dN/d3p! df

, ~4.5!

an5vn cos~ncR!, bn5vn sin~ncR!. ~4.6!

The anisotropy parametersvn characterize azimuthal asym
metries in the momentum distribution. According to Eq
~1.1! and~4.5!, they are normalized to the azimuthally ave
aged double differential particle distribution, andv051.

In the absence of transverse flow,h f50, the model~4.1!
does not contain source gradients in the transverse pl
Irrespective of whether the transverse geometry of the so
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is radially symmetric (es50) or not, particle emission is
isotropic in the transverse plane. All harmonic coefficie
vn , n>1, vanish.

In the presence of transverse flow, the reflection symm
try of the emission function~4.1! with respect to the direc
tion of the impact parameter implies af→f1p symmetry
of the particle spectra. All odd harmonic coefficientsvn van-
ish. The lowest nonvanishing anisotropy parameter isv2 .
This parameter is positive if the spectrumd3N/(ptdptdydf)
shows a maximum in the reaction plane, it is negative for
opposite case. Higher fourth~sixth, etc.! harmonic coeffi-
cients are found to be much smaller. They are not discus
further.

The transverse pair momentum dependence of the co
cientv2 is depicted in Fig. 2 for different physical scenario
Irrespective of the model parametersh f , es , and e f , the
coefficient v2 vanishes atK'50 and is growing monoto-
nously with the transverse pair momentum. This is a dir
consequence of the Lorentz-invariant Boltzmann term in
~4.1! which encodes the assumption of local thermal equi
rium

Kmum5
m'

T
cosh~h2Y!ul2

Kx

T
ux2

Ky

T
uy . ~4.7!

The terms which couple the flow componentsux ,uy linear to
the transverse momentum components are the only one
the model emission function~4.1! which can introduce aF

FIG. 2. The second harmonic coefficientv2 of the single particle
spectrum for the model~4.1!. The different plots show results fo
scenarios with different transverse flow strengthsh f and geometri-
cal anisotropieses . The lines denote different transverse flo
anisotropies:e f50.8 ~solid line!, e f50.4 ~dashed line!, e f50 ~dot-
ted line!, e f520.4 ~dash-dotted line!, and e f520.8 ~thin solid
line!. Positive values ofe f correspond to the major flow directio
lying in the reaction plane.
s

e-

e

ed

fi-
.

t
.
-

in

dependence. In the limitK'→0, theseF-dependent terms
vanish, the emission probabilities in different azimuthal
rections become equal, and

lim
K'→0

vn~K'!50 for all n>1. ~4.8!

More explicit expressions for the parametersvn of this
model can be obtained in a saddle-point approximation,
tails of which are presented in the Appendix. In this appro
mation, we find thatv2}K'

2 for small values ofK' . For
small transverse flow, the leading dependence on the an
ropy parameterses ande f is given by

v2}S ly
2

ry
22

lx
2

rx
2D}

2~e f2es!

~12e f
2!~12es

2!
. ~4.9!

Equation~4.9! describes correctly the main features of t
numerical results in Fig. 2. The coefficientv2(K') vanishes
for e f5es , and its sign coincides with that ofe f2es . In the
case of an azimuthally symmetric particle emission regi
es50, this behavior is entirely due to the transverse flo
anisotropye f . For positive values ofe f , the major trans-
verse flow component lies in the reaction plane andv2 is
positive. Negative values ofe f mimic a squeeze-out scenar
where the major flow component lies orthogonal to the re
tion plane. This explains thee f dependence ofv2 , shown in
Fig. 2. On the other hand, if we choose for a given flo
pattern ~h f ,e f fixed! more and more elongated transver
geometries, thenv2 decreases. The reason is that increas
es results in more emission points with a largeuy and small
ux flow component. It thus mimics a larger squeeze-out co
ponent of the transverse flow orthogonal to the react
plane. In the simple model discussed here, increasinges and
decreasinge f hence affects the azimuthal particle distrib
tions similarly. Spatial and dynamical information cannot
disentangled completely on the basis of single-particle sp
tra. For azimuthally symmetric scenarios, this is well know
@23#.

FIG. 3. The nonvanishing zeroth and second harmonic coe
cients of the nontransverse HBT radius parametersRl ,0

2 ~solid line!,
Rol,0

2 ~dashed line!, Rol,2
c 2 ~dotted line!, and Rsl,2

s 2 ~dash-dotted
line! for forward rapidityY51. The second harmonic coefficien

Rol,2
c 2 andRsl,2

s 2 are proportional tô x̃ & and^ ỹ &, which are generi-
cally small correction terms, see the discussion following E
~4.10!.
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B. Harmonic analysis of HBT radius parameters

Here, we check first that theF dependence of the rad
Rl

2 , Rol
2 , and Rsl

2 is negligible. At midrapidity,Y5b l50,
the emission function~4.1! is symmetric with respect to
z→2z, and the HBT radius parametersRol

2 andRsl
2 vanish:

Rol
2 ,Rsl

2 }^~ z̃2b l t̃ !&,

^~ z̃2b l t̃ !&uY5050 for all K' . ~4.10!

To study theirK' dependence, we hence choose the forw
rapidity Y51. Numerical results are presented in Fig. 3. T
zeroth harmonic coefficients show theK' dependence ex
pected from azimuthally symmetric model studies@20#. Es-
pecially, the longitudinal radius parameterRl ,0

2 has a steep
K' slope which reflects the strong longitudinal expansion
the source. Also, the out-longitudinal cross termRol,0

2 shows
the typicalK' dependence known from studies of azimu
ally symmetric models. It takes significant nonzero valu
and vanishes atK'50, whereRol

2 5Rsl
2 . The parameterRsl,0

2

e

s
n

ti
l
lly

a

ca
d
e

f

-
s

vanishes for allK' . For an azimuthally symmetric emissio
region, this would be a consequence of theqs→2qs reflec-
tion symmetry of the correlator. Contributions breaking th
symmetry introduce automatically aF dependence and
hence do not show up in the zeroth harmonics. Higher h
monics are found to be very small.Rl

2 shows noF depen-
dence, the only nonvanishing second harmonics areRsl,2

s 2

and Rol,2
c 2. From Fig. 3 we conclude that these higher h

monics are negligible. This illustrates the arguments lead
to Eq. ~2.6!. It suggests to restrict an azimuthally sensiti
HBT analysis to the ‘‘transverse’’ HBT radius paramete
Ro

2 , Rs
2 , andRos

2 .
For the transverse HBT radii of the model~4.1!, sugges-

tive analytical expressions can be obtained in the approxi
tion ul'11 1

2 ux
21 1

2 uy
2 . Deferring all technical details to the

Appendix, we merely state that in this approximation, theF
dependence ofT' is lost. The zeroth and second harmon
coefficients of all transverse HBT radii can be written
terms of an average sizeḡ and a spatial anisotropyaT ,
introduced in Sec. III, Eq.~3.3!,
ḡaT5
2R2@es1e f~m' /T!h f

2~12es
2!#

112@m'~12ese f !/T#h f
21@m'

2 ~12es
2!~12e f

2!/T2#h f
4 , ~4.11a!

ḡ5
R2@11~m' /T!h f

2~12es
2!#

112@m'~12ese f !/T#h f
21@m'

2 ~12es
2!~12e f

2!/T2#h f
4 . ~4.11b!
an-

e

ed

l of
ive
rms

i-
d

ce
r
oxi-
ery
can-
-
w

In the limit of vanishing transverse flow,h f→0, these ex-
pressions become exact. The value ofḡ which determines
the zeroth harmonic ofRs

2 is just given by the transvers

geometrical radiusR2. The anisotropyḡaT which specifies
the second harmonic coefficients, is proportional toes . This
is the case shown in Fig. 4. Forh f50, the model emission
function has no intrinsic position-momentum correlation
and the different harmonic coefficients satisfy the relatio
~3.3!. The componentsRs,2

c 2 and Ros,2
s 2 coincide and they

differ from Ro,2
c 2 by an overall sign only.

In the presence of realistic transverse flow strengthsh f ,
the approximationul'11 1

2 ux
21 1

2 uy
2 loses its validity. Nu-

merical calculations are needed to make precise quantita
statements, but the expressions~4.11! still describe essentia
qualitative features. In the limiting case of an azimutha
symmetric collision region with a finite transverse flowh f ,
the anisotropy parameteraT vanishes andḡ goes to the well-
known @16# lowest order expression for the side radius p
rameter

Rs
25 ḡ5

R2

@11~m' /T!h f
2#

for es5e f50. ~4.12!

This describes the leadingm' dependence ofRs,0
2 as a func-

tion of h f : the slope of the side radius parameter is indi
tive of the transverse flowh f .
,
s

ve

-

-

In the absence of dynamical anisotropies (e f50) the sec-
ond harmonicsRo,2

c 2, Rs,2
c 2, andRos,2

s 2 given essentially by
1
2 ḡaT , are sensitive to the strength of the geometrical
isotropy es . For small values ofh f

2 , the leadinges depen-
dence of Eq.~4.11a! is linear and this is consistent with th
scaling of the dashed and dash-dotted (e f50) lines in Fig. 4.
The K' slopes depicted in Fig. 4 are qualitatively explain
by Eq.~4.11a!. Also, we have investigated numerically thee f
dependence of the HBT radius parameters for the mode
Sec. IV A. Here, we merely state that the main qualitat
features of the numerical results can be understood in te
of the analytical approximations~4.11a!, ~4.11b!.

It is a remarkable feature of the model~4.1! that the trans-
verse spatial widthsTi j

' calculated in a saddle-point approx
mation do not show anyF dependence. This can be trace
back to theF-dependent terms in Eq.~4.7! being linear inx
and y, rather than, e.g., quadratic. The slight differen
Rs,2

c 22Ros,2
s 2 found in the numerical calculation of Fig. 4 fo

h f50.3 stems from the error made in the Gaussian appr
mation. To avoid drawing conclusions on the basis of a v
model-dependent feature such as this almost complete
celation of F-dependent contributions for linear flow pro
files, we have investigated the following two nonlinear flo
profiles as well:

ui5h fA16e f

xi

ARuxi u
, @square root profile#,

~4.13a!
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ui5h fA16e f

xi uxi u
R2 , @quadratic profile#.

~4.13b!

Here the indexi runs overx,y. Results for vanishing flow
anisotropye f are shown in Fig. 5. In the limitK'→0, the
dependence ofT' on the azimuthal direction ofK' has to
vanish and hence, all scenarios depicted in Figs. 4 an
confirm the purely geometrical relation~3.3b!, Ro,2

c 2

52Rs,2
c 252Ros,2

s 2. For increasing values ofK' , we find
deviations from this relation which are clearly more sign
cant for the nonlinear flow profiles. These, however, are v
well accounted for by the modified relation~3.9! amongst the
second harmonic coefficientsRo,2

c 212Ros,2
s 25Rs,2

c 2. The de-
viations from a purely geometrical scenario seen in Fig. 5
hence not due to the correction termsCo ,Cos , which are
generically negligible, but to the leadingF dependence o
T' which enters Eq.~3.7! via the termA2 .

For the sake of completeness, the zeroth harmonic co
cients are presented in Fig. 5 as well. Details of theirK'

dependence can be understood by investigating the de
dence of̂ x̃2& and ^ ỹ2& on the pair momentum@24#.

Let us sum up the results of our model study. All seco
harmonic coefficients of nontransverse HBT radius para
eters are negligible. Amongst the transverse HBT radii, th
second harmonic coefficients are non-negligible, nam

FIG. 4. Zeroth and second harmonic coefficients for the tra
verse HBT radius parameters of the model~4.1! without (h f50)
and with (h f50.3) transverse flow, and for different sizes of t
spatial anisotropyes . Thin and thick solid lines denote the zero
coefficientsRo,0

2 andRs,0
2 , respectively. The plot shows all nonvan

ishing second harmonic coefficientsRo,2
c 2 ~dash-dotted line!, Rs,2

c 2

~dashed line!, andRos,2
s 2 ~dotted line!. For h f50, Rs,2

c 25Ros,2
s 2, see

Eq. ~3.3b!.
5,

y

re

fi-

en-

d
-
e

y,

Ro,2
c 2, Rs,2

c 2, andRos,2
s 2. Their leading contribution is deter

mined by one parameter only, see Eq.~3.3b!. The leading
deviation from Eq.~3.3b! satisfies Eq.~3.9! and is indicative
of strongx-F correlations in the source.

V. AZIMUTHAL ANALYSIS OF THE FRAGMENTATION
REGION

For finite impact parameter, the collision system has
finite total angular momentumLW , Li5e i jk^^xj pk&&. In
heavy-ion collisions,LW and L tot5uLW u, is not directly observ-
able but has to be inferred indirectly on the basis of imp
parameter dependent measurable quantities such as tota
ticle multiplicities or transverse energy. In general, angu
momentum conservation is a constraint which can affect
shape of two-particle correlations@25#.

For the incoming nuclei, the angular momentum is e
tirely determined byL tot5^^xpz&&, but depending on the col
lision dynamics, the component^^zpx&& can carry in the final
state part ofL tot . To illustrate the possible consequences,
consider a longitudinally expanding collision scenario, f
which the space-time rapidity of the emission pointsh
5 1

2 ln(t2z)/(t1z) is linearly related to the momentum rapid
ity Y of the emitted particles,h5h l•Y. Using z5t sinhh
5t sinh(hlY), one sees that a nonvanishing contributi
^^zpx&& to the total angular momentum leads in this case t
nonvanishing total vector sum ofpx in noncentral rapidity
bins, and hence to a nonvanishing Fourier coefficientv1 in
Eq. ~1.1!. This effect is more enhanced for larger rapiditi

- FIG. 5. Same as Fig. 4, but for a square root and a quadr
transverse flow profile, for which a Gaussian approximation of
emission function is notF independent. In these cases, the diffe
enceRs,2

c 22Ros,2
s 2 is more significant, butRo,2

c 212Ros,2
s 2'Rs,2

c 2 is
still valid, see Eq.~3.9! and text below.
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Y, it vanishes at midrapidityY50, and it has opposite sig
for backward rapidities. We hasten to remark, however, t
this is just one possible reason why the 180° symmetry of
transverse collision region can be lost.

Irrespective of the particular scenario discussed above
odd harmonic coefficients of the one- and two-particle sp
tra do not have to vanish any more in the fragmentat
region. In this section, we investigate the implications for
first harmonics of the HBT radius parameters.

A. Properties of first harmonics

To calculate odd harmonic coefficients of the transve
HBT radius parameters~2.3!, we start again from the har
monic expansion~3.4! of T'. It is a remarkable property tha
in the radii Ri j ,m

c 2, Ri j ,m
s 2, even and odd harmonic coeffi

cients An , A8n , etc., do not mix. Form even, only terms
with n even appear, and form odd, only terms withn odd.
Especially, we find for the first harmonic coefficients

Rs,1
c 25

1

2
A12

1

4
B12

1

4
C12

1

4
B32

1

4
C3 , ~5.1a!

Ro,1
c 25

1

2
A11

1

4
B11

1

4
C11

1

4
B31

1

4
C3 , ~5.1b!

Ros,1
s 252

1

4
B12

1

4
C11

1

4
B31

1

4
C3 , ~5.1c!

Rs,1
s 25Ro,1

s 25Ros,1
c 250. ~5.1d!

It follows immediately that all first harmonics vanish in th
absence of source gradients:

Ri j ,1
c 25Ri j ,1

s 250, @no source gradients#. ~5.2!

The physical reason is that for a source without gradients,
effective emission region has the sameside and out exten-
sion irrespective of whether it is viewed under an angleF or
an angleF1p.

For the case that all third harmonic coefficients in E
~5.1! are negligible, the three nonvanishing HBT radii in E
~5.1! satisfy

Rs,1
c 2'Ro,1

c 212Ros,1
s 2. ~5.3!

This equation is reminiscent of Eq.~3.9!. There, however,
the contributionB0 is typically an order of magnitude large
than the second harmonic contributionA2 , and this allows
for the further simplification~3.3b!. Here, in contrast, all
leading terms are first harmonics. The first harmonic coe
cient of ^ x̃2& should be much larger than that of^ ỹ2& since
asymmetries with respect to the beam axis will occur in
direction of the impact parameter only. In this limiting ca
which is relevant for the models studied below, we ha
A15B1@C1 , and

Ro,1
c 2:Rs,1

c 2:Ros,1
s 2'3:1:21. ~5.4!
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B. Model extensions for noncentral rapidities

The model emission function~4.1! investigated in Sec. IV
describes a collision with vanishing angular momentu
Here, we introduce a simple extension which allows for
nite angular momentumL tot but coincides with the mode
~4.1! at midrapidity. Clearly, such extensions are numero
One can, e.g., shift the transverse flow pattern in thex direc-
tion:

ux
x5h fA11e f

x1xY

R
. ~5.5!

Sincex multiplies the rapidityY, the flow pattern shows a
forward-backward anticorrelation inY and will result in non-
vanishing odd coefficientsvn and a finite total angular mo
mentum ~1.4!. Alternatively, one can introduce a rapidity
dependent deformation of the transverse geometry, e.g.
introducing a dependence of the Gaussian widths in Eq.~4.2!
on the azimuthal directionw, x5r cosw,

rx5~R1xY cosw!A12es,

ry5~R1xY cosw!A11es. ~5.6!

For finite transverse flow, this again results in nonvanish
odd coefficientsvn and a finiteL tot . Both these modifications
~5.5! and~5.6! reduce at midrapidityY50 to the model stud-
ied in Sec. IV. We have investigated theK' dependence of
their first and second harmonics and the~approximate! rela-
tions which they satisfy. The linear coupling of Eq.~5.5! on
F-dependent terms in Eq.~4.7! makes thex dependence of
the model~5.5! very weak.~The termKmux

xm does not intro-
duce an additional position-momentum correlation, and
only x dependence of the correlator stems fromul .! Here, we
hence present results for the model~5.6! only. To isolate the
effect of thex displacement, we have set the other anisotro
parameters to zero,es5e f50. All calculations are done a
forward rapidity,Y51.

For vanishing transverse flow,h f50, our model contains
no source gradients. The zeroth harmonic coefficients sh
the expected behavior:Rs,0 is a K'-independent constan
from which the out radiusRo,0 differs by the factorb'

2 ^ t̃ 2&
only. Also, in the absence of source gradients, all first h
monics vanish, and Eq.~5.2! holds. The second harmonic
do not vanish: they areK'-independent parameters dete
mining the elliptic approximation of the transverse sour
geometry. Also, they satisfy the geometrical relation~3.3b!
as expected for sources without position-momentum corr
tions. Qualitatively, their behavior is completely consiste
with the case discussed forh f50 in Fig. 4. Quantitatively,
we find for the nonvanishing componentsuRi j ,2* 2u'0.5 if x
52 fm anduRi j ,2* 2u '1.5 if x52. This is slightly larger than
the values obtained for the caseh f50.3 atK'50 ~see Fig.
6! and the minimalh f dependence can be traced back to
ul-dependent term in the Boltzmann factor~4.7!.

For finite transverse flowh f50.3, numerical results are
presented in Fig. 6. Due to source gradients, the azimu
eccentricity introduced via Eq.~5.6! now shows up in the
first harmonic coefficients. They vanish at vanishing tra
verse pair momentum:
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lim
K'→0

Ri j ,1
c 2~K' ,Y!5 lim

K'→0
Ri j ,1

s 2~K' ,Y!50, ~5.7!

since the correlator is atK'50 sensitive to the geometry o
the source only. More importantly, over the completeK'

range, the first harmonics in the out, side, and out-side di
tions satisfy up to a few percent the relation 3:1:21 as we
have argued in deriving Eq.~5.4!. The second harmonic co
efficients satisfy forK'50 the relation21:1:1 as suggeste
by Eq. ~3.3b!. For finiteK' , dynamically introduced devia
tions are found, but the modified relation~3.9!, Ro,2

c 2

12Ros,2
s 25Rs,2

c 2 describes all results up to a few percent.

VI. FINITE EVENT STATISTICS AND FINITE
MULTIPLICITY FLUCTUATIONS

For the particle multiplicities obtained at the AGS a
SPS, a determination of HBT radius parameters on an ev
by-event basis is not possible. Finite event statistics lim
the possibilities of a multidimensional HBT analysis for t
now typical samples of the order of 105– 106 events. To ex-
tract despite these statistical constraints at least the m
anisotropic HBT characteristics, it is clearly helpful to sta
from a parametrization ofC(K ,q) in terms of a minimal set
of fit parameters. Such a parametrization is discussed in
VI A.

In contrast to constraints from finite event statistics,
statistical uncertainties stemming from finite multiplici
fluctuations cannot be overcome by investigating lar
event samples. They constitute a fundamental limitation
any investigation of anisotropy measures, and they are

FIG. 6. Zeroth, first, and second harmonic coefficients of the
~dash-dotted lines!, side ~dashed lines!, and out-side~dotted lines!
HBT radius parameters for the model~4.1! with the modification
~5.6! at forward rapidityY51. To high accuracy, the first harmon
coefficients satisfy the relation~5.4! and the second harmonics th
relation ~3.9!.
c-

nt-
s

jor
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c.

e
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ticularly important in reconstructing the reaction plane.
Sec. VI B we investigate to what extent this affects the d
termination of anisotropy measures from two-particle co
elators.

A. A minimal azimuthal parametrization

On the basis of our discussion in the Secs. II–V, we p
pose as minimal parametrization of a two-particle correla
for peripheral collisions the Gaussian ansatz

CcR
~K ,q!'11lCsym~K ,q!C1~K ,q,cR!C2~K ,q,cR!

~6.1a!

Csym~K ,q!5exp@2Ro,0
2qo

22Rs,0
2qs

22Rl ,0
2ql

2

22Rol,0
2qoql # ~6.1b!

C1~K ,q,cR!5exp@2a1~3qo
21qs

2!cos~F2cR!

12a1qoqs sin~F2cR!# ~6.1c!

C2~K ,q,cR!5exp@2a2~qo
22qs

2!cos 2~F2cR!

12a2qoqs sin 2~F2cR!#. ~6.1d!

The zeroth harmonic coefficients in this parametrization p
vide the complete Cartesian parametrization for the azimu
ally symmetric case. Especially, the cross termRol,0

2 van-
ishes in the c.m.s. at midrapidity, and due to the symme
arguments made in Sec. IV, the parametera1 vanishes under
these conditions as well. The parametrization for the eff
tive harmonic coefficientsa1 and a2 is motivated by the
relations~5.4! and ~3.3b!, i.e., it is based on setting

a1~K' ,Y!'Rs,1
c 2'

1

3
Ro,1

c 2'2Ros,1
s 2, ~6.2a!

a2~K' ,Y!'Ro,2
c 2'2Rs,2

c 2'2Ros,2
s 2. ~6.2b!

In the model studies in Secs. IV and V, we have assum
thatF50 corresponds to the pair momentumK lying in the
reaction plane. Experimentally, this reaction plane is u
known a priori. The parametercR which determines its ori-
entation has to be included in a comparison with experime
A discussion of the statistical uncertainty in its determinat
and the implication for the extraction of the anisotropy p
rametersa1 ,a2 is given in Sec. VI B.

In the model-independent analysis of theF-dependent
HBT radius parameters in Secs. III and IV, we have argu
that corrections to these relations can be expected to be c
paratively small on general grounds. Also, we have qua
fied deviations from Eq.~6.2! in the model studies of Secs
IV and V. According to these studies, the most reasona
nonminimal extension of the parametrization~6.1! is to
implement the constraintRo,2

c 212Ros,2
s 2'Rs,2

c 2 instead of
Eq. ~3.3b!, i.e., to replace Eq.~6.2b! by two parameters for
the second harmonics.

Clearly, it would be preferable to fit to the most gene
parametrization~1.3!, and to quantify corrections to thes
relations. However, as long as finite event statistics for
one to restrict the space of fit parameters as far as poss

t
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the relations~6.2! provide in the light of our analysis th
most reasonable set of constraints to adopt.

B. Event samples with oriented reaction plane

The main problem in extracting the fit parametersa1 ,a2
from experimental data is, that due to finite event multipl
ity, a multidimensional analysis of two-particle correlatio
is not possible on an event-by-event basis. Fits have to
done on event samples and the use of Eq.~6.1! presupposes
that the different events are sampled with a fixed orienta
of the reaction plane. The reaction plane can be reconstru
from an azimuthal analysis of the single particle distributi
~1.1!, but its event-by-event determination is subject to s
nificant statistical uncertainties. Since the parametriza
~6.1! depends on the anglecR , these uncertainties affect th
determination of the HBT radius parameters as well. He
we investigate quantitatively to what extent these uncert
ties affect the determination of the anisotropy parame
a1 ,a2 from the experimental data.

Our starting point is the assumption that the probabi
distributionsW(v1 ,cR) of the first harmonic coefficients o
the one-particle spectrum around (v̄ 1 ,c̄R) is given by@7–9#

W~v1 ,cR!5
1

2ps2 expS 2
v̄ 1

21v1
222 v̄ 1v1 coscR

2s2 D .

~6.3!

We consider the case that the reaction plane is reconstru
from the first harmonic coefficients only. For ideas abo
improving this reconstruction by taking higher order ha
monics into account as well, see@9#. Here and in what fol-
lows, we orient the most likely, ‘‘true’’ direction along thex
axis, c̄R50. The Gaussian distribution~6.3! can be used if
event multiplicitiesN are sufficiently large to apply the cen
tral limit theorem. The variances2 then scales as 1/N, and
the reaction plane is well defined for extremely large ev
multiplicities

lim
N→`

W~v1 ,cR!5d~cR!. ~6.4!

For finite multiplicitiesN in the hundreds, however, the un
certainty in the eventwise determination ofc̄R cannot be
neglected. The event sample with oriented reaction pl
should not be compared directly to Eq.~6.1!, but to an effec-
tive correlator which takes the probability distributionW of
experimentally determined reaction plane orientations pr
erly into account:

Cc̄R

eff
~K ,q!5E v1dv1dcRW~v1 ,cR!CcR

~K ,q!. ~6.5!

It follows from the form of Eq.~6.3! that this effective cor-
relator does not depend onv̄ 1 and s separately, but is a
function of j̄ 5 v̄ 1 /s only. The parameterj̄ is a direct mea-
sure of the accuracy for the reaction plane orientation@7–9#.
From the investigation of Voloshin and Zhang~see Fig. 4 in
@9#!, we conclude that a value ofj̄ '2 corresponds to an
uncertainty of approximately 30°. This is the current expe
-
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mental standard which will improve with the larger eve
multiplicities at RHIC and LHC.

We investigate now in a simplified example to what e
tent finite anisotropies of the single events leave traces in
event sample constructed as outlined above. To this aim
calculate for given anisotropiesa1 ,a2 the effective cor-
relatorCc̄R

eff which is then fitted to the Gaussian ansatz~6.1!.

The anisotropy parameters^a1&,^a2& determined in this fit
are then compared to the parametersa1 ,a2 of the single
events one has started with. In Fig. 7 the fitted averages^a i&
are shown as function of the statistical uncertaintyj̄ in the
reconstruction of the reaction plane from first harmonic c
efficients. For a realistic uncertainty of 30° (j̄ '2), approxi-
mately 85% of the ‘‘true’’ first anisotropy parametersa1 and
approximately 55% of the second anisotropy parametera2 is
obtained. These ratios are independent of the size ofa1 and
a2 .

The correlator of an unoriented event sample is obtai
from Eq. ~6.1! by averagingCc̄R

over all orientations of the
reaction plane. It is known that in fits to such ‘‘unoriented
correlators, HBT radius parameters receive artificial con
butions due to the averaging procedure@19#. Since we aver-
age inCc̄R

eff over different reaction planes, such artificial co

tributions exist forCc̄R

eff too. Especially, the zeroth harmon

coefficients of the HBT radius parameters should show aj̄
dependence. In the numerical analysis of the curvature of
correlator, we found this to be negligible. To understand
reason, we consider the casea250 when the integral~6.5!
can be evaluated analytically. ThecR-dependent part reads

C1
eff~K ,q!5E v1dv1dcRW~v1 ,cR!C1~K ,q,cR!

5E jdj expS 2
1

2
~j21 j̄ 2! D I 0~Z!. ~6.6!

FIG. 7. The HBT anisotropy parameters^a i& as a function of

the parameterj̄ which characterizes the event-by-event reconstr
tion uncertainty in the orientation of the reaction plane. The para
eters ^a1&,^a2& are determined by fitting Eq.~6.1! to an event
sample~6.5! of correlators whose reaction planes are oriented al
the x axis according to the probability distribution~6.3!. The value

j̄ 52 corresponds to a reconstruction uncertainty of approxima
30°.
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The argumentZ of the Bessel function depends on the re
tive pair momentum componentsqo , qs and the anisotropy
parametersa1 :

Z5~ j̄ j !222 j̄ j@Fc cos~F!1Fs sin~F!#

14FcFs sin~F!cos~F!1Fc
21Fs

2, ~6.7a!

Fc5a1~3qo
21qs

2!, Fs522a1qoqs . ~6.7b!

The limit j̄→0 in Eq. ~6.5! corresponds to an unoriente
correlator. For this case, the argumentZ is quadratic in the
components ofq and expandingI 0 for small arguments, we
find, Eq. ~A5!,

]2I 0~Z!

]qi]qj
U

q50

50 for j̄ 50. ~6.8!

This illustrates for a simple example that the unweigh
averaging over different event orientations discussed in@19#
does affect the shape of the correlator inq, but not its cur-
vature. It hence has to be determined by quantifying the
viations ofCc̄R

eff from a Gaussian shape@21#. Here, we do not

pursue this point further.
The calculation leading to Fig. 7 is based on simplifi

assumptions. Especially, we have not considered event
fluctuations in the size of thea i . Since both anisotropy fi
parameters can take positive and negative values, such
tuations do not fake anisotropy signals. We hence concl
from the above that with a typical 30° resolution of the r
action plane orientation, a determination of the anisotro
parametersa1 ,a2 from experimental data is feasible.

VII. CONCLUSION

In the present work, we have studied the possibilities o
harmonic analysis of two-particle HBT radius paramete
We have clarified to what extent the two fundamental pr
lems of such an analysis can be overcome.

First, the harmonic Fourier expansion of HBT radius p
rameters introduces a plethora of additional fit parame
which make a comparison with experimental data difficu
We have argued that under reasonable assumptions on
geometry and dynamics of the collision region, only ve
few of them are non-negligible. For the first harmonic co
ficients, these areRo,1

c 2, Rs,1
c 2, Ros,1

s 2, and they can be de
scribed by one single parameter since their leading contr
tions scale as 3:1:21. Amongst the second harmon
coefficients, onlyRo,2

c 2, Rs,2
c 2, Ros,2

s 2 are non-negligible and
their leading contributions scale as21:1:1. Higher harmonic
coefficients were found in all studies to be an order of m
nitude smaller. Based on these observations, our main re
is the parametrization~6.1! which describes the leading an
isotropy of the two-particle correlator by two additional
parameters only. If deviations from this parametrization tu
out to be important, than this will provide an important co
straint on further model studies. A first nonminimal para
etrization suggested by our studies quantifies deviation
the second harmonic coefficients from21:1:1 by one addi-
tional fit parameter.

The second fundamental problem in the determination
-
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anisotropy signals fromC(K ,q) is the statistical uncertainty
in the eventwise reconstruction of the reaction plane.
have shown that for event samples with a typical 30° unc
tainty in the eventwise orientation, the major part of the a
isotropy measuresa1 ,a2 survives. An analysis of experi
mental data on the basis of the parametrization~6.1! seems
hence feasible.

We finally discuss which physical information can be e
tracted from the anisotropy parametersa1 ,a2 . From the dis-
cussion in Secs. III–V, we conclude that a nonvanishing fi
harmonic coefficienta1 automatically implies the existenc
of dynamical source gradients, see Eq.~5.2!. In contrast, the
leading contribution toa2 is determined by the geometry o
the collision region and specifies essentially the ellip
shape of its transverse extension. More explicitly, in the c
text of the hydrodynamical model of Sec. III, there is a te
tative strategy to determine the geometrical and dynam
anisotropieses ,e f , respectively. According to Eq.~4.9!, ex-
perimental data on the harmonic coefficientv2 restricts the
allowed parameter space in (es ,e f) to a one-dimensiona
one. According to Eq.~4.11a!, the second harmonic coeffi
cients of the transverse HBT radii show a different dep
dence ones and e f and can hence be used to constrain
remaining freedom. This illustrates that in noncentral co
sions, as in azimuthally symmetric ones, only a combinat
of one- and two-particle spectra will allow to disentang
geometrical and dynamical information.
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APPENDIX: CALCULATION OF AZIMUTHAL PARTICLE
DISTRIBUTIONS AND HBT RADIUS PARAMETERS

In this appendix, we give details of how to calculate t
harmonic coefficients of the single particle distributions~1.1!
and the two-particle correlations~1.3! for the model in Sec.
IV:

vn}E
0

2p

df cosnfE d4xS~x,K !5t0m'E DhGn~h!,

~A1!

E Dh5E t dt dh cosh~h2Y!e2 ~t2t0!2/2~Dt!2 2 h2/2~Dh!2
.

~A2!

For n odd, all coefficientsvn vanish due to the 180° symme
try in the transverse plane. In the approximationul'1
1 1

2 ux
21 1

2 uy
2 , the Boltzmann termKmum is quadratic inx

andy, and
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Gn~h!5E
0

2p

df cosnfE dxdye2 Kmum /T 2 x2/2rx
2

2 y2/2ry
2

52p2lxlyAgxgye
2A1 ~K'

2 /2T2!@~gx1gy!/2#I n/2~Z!,

~A3!

where we have used

gx51Y S A1
lx

2

rx
2D , A5

m'

T
cosh~h2Y!,

Z5S K'
2

2T2

gx2gy

2 D 5
K'

2

2T2

~ly
2/ry

22 lx
2/rx

2!

~A1 lx
2/rx

2!~A1 ly
2/ry

2!
.

~A4!

The modified Bessel functionI n/2 in Eq. ~A3! is obtained by
doing thef integral. To extract the leading dependence inZ,
we expand for small arguments,

I n/2~Z!5
1

2p E
0

2p

df cosnfeZ cos 2f

5 (
k50

`
1

k!G~n/21k11! S Z

2D n/2 12k

. ~A5!

For the coefficientn52, the leadingZ dependence in Eq
~A4! is linear. This implies Eq.~4.9!. Also, for smallK' , A
is approximately constant andZ}K'

2 . SinceA depends on
h, theh integration in Eq.~A1! has to be done numerically
To obtain simple expressions for the main qualitative f
tures, one may use

A'
m'

T
. ~A6!
n

.

-

This amounts to cosh(h2Y)'1 and allows for the approxi-
mate analytical calculation of HBT radius parameters. T
latter are calculated via space-time variances which we
press here in terms of the averages

^ f ~x,y!&* 5E dxdy f~x,y!e2 Kmum /T 2 x2/2rx
2

2 y2/2ry
2
,

~A7!

^xmxn&5
*Dh^xmxn&*

*Dh^1&*
. ~A8!

Again, in the approximationul'11 1
2 ux

21 1
2 uy

2 , the Boltz-
mann termKmum is quadratic inx andy, which allows for an
analytical calculation of thex and y integration. We find
^xy&* 50, and

^x2&* 5
lx

2^1&*
21

A1 rx
2/lx

2 5
R2~12es!^1&*

21

11Ah f
2~12es!~11e f !

,

^y2&* 5
ly

2^1&*
21

A1 ry
2/ly

2 5
R2~11es!^1&*

21

11Ah f
2~11es!~12e f !

. ~A9!

These averages are the building blocks for the space-
variance~A8! which determine the HBT radius paramete
SinceA depends onh, the remainingh integration has to be
done numerically. With the help of the approximation~A6!,
however, theh integration in Eq.~A8! drops out and the
analytical expressions~4.11! for ḡ and ḡaT can be obtained.
Their validity is subject to the approximations made abo
but they give a qualitatively correct, simple and intuitiv
description of the numerical results. Most remarkably, th
approximate expressions do not depend on the azimutha
rection ofK , see the discussion in Sec. IV B.
v.
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