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Elastic meson form factors with modified vector resonance propagators
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Sakurai’'s SY(3) universality symmetry is employed to provide a unified description of pseudoscalar meson
nonet elastic form factors calculated using a modified vector meson domit\dhidz) formalism. We incor-
porate excited resonances with modified propagators derived from analyticity and elastic unitarity, employing
a single channelN/D approximation to model nonresonant meson exchange contributions. Existing spacelike
and timelike data forr*, K*, andK® mesons indicate that finite width corrections to fh@ropagator and
couplings are essential for a precise theoretical description in the VMD framework. Our analysis verifies that
existing data cannot rule out the possible existence of two unconfirmed resorf@aneesarrow isoscalar and
one broad isovectpijust below and above thpﬁthreshold previously suggested to explain the anomalous
features observed in timelikB}, LEAR and GE FENICE data[S0556-28188)04905-X|

PACS numbeps): 14.40.Aq, 12.40.Vv, 13.40.Gp

[. INTRODUCTION parametergi.e., masses, decay widths, and couplingsre
adjusted to optimize agreement with the available data. To
Hadronic structure is a topic of fundamental importanceobtain a good phenomenological description of the timelike
in nuclear physics. The distribution of quarks and gluonsLEAR G}, [5] and FENICEGg [6] data, two unconfirmed
bound by nonperturbative interactions inside mesons angesonance states were included near gipethreshold(one
baryons give rise to a complicated many-body structurenarrow | =0 state below and one brodd=1 state above
which is up to the present time unsolvable from first prin-threshold. Since the timelike meson form factors are fully
ciples, except for very short distances where perturbativexposed in this regiofi.e., no phase space restrictiprasd
QCD (pQCD) applies. In order to study nonperturbative dy-these “new” resonances should also couple strongly to the
namics of hadronic structure, especially the resonant timelikenesons, we are interested in establishing if resonance signa-
behavior, we resort to a model calculation based on vectoires from these novel states are present or absent in the
meson dominancé/MD). Although this type of formalism €Xisting pion and kaon data. In R¢4] the baryon octet form
employs effective hadronic interactions with associated phefactors were calculated as an extension of the nucleon model
nomenology, a systematic improvement of the theoretical dg?y application of Sakurai's universality hypothesig],
scription is possibldin principle) by incorporating rigorous Which is an assumed dynamical symmetry relating vector

constraints imposed by unitarity, analyticity, and dynamicalm€son c,(,)up_lings to the conserved SU(3hadronic
symmetries. In this work we calculate finite width correc- carges,” third component of isospirl{), baryon number

tions to the vector meson resonance propagators and inclutg%)’ and strangenessS]. Unfortunately, there is no avail-

hadronic cutoff effects using a single chanh#D approxi- le d_ata for t_he_ strange baryon fo_rm fac'gors to test the uni-
. . T S versality predictions. However, universality symmetry can
mation. Elastic unitarity is imposed on individual resonanc

amplitudes and Cauchy analyticity is enforced, relating thzbe applied in the meson sectoeducing the phenomenologi-

X . tal freedom which can then be directly tested against the
real and imaginary parts of the propagatorsNiD theory, existing data.
the dynamcial width function of a resonance propagéer In the next section we discuss our implementation of uni-

lated to numeratoN of a unitaryN/D amplitudg can be  yergality symmetry and its consistency with charge conjuga-
consistently calculated from nonresonant exchange ampljon ang G-parity constraints. In Sec. Ill we discuss our
tudes possessing only left hand €LHC) singularities1,2]. el formalism, deriving modifications to the vector meson

Nonresonant exchange amplitudes are usually neglected [}onaqators from solutions to once subtracted dispersion re-
VMD models, however we derive the functions based on |tions. We present a derivation of the LHC functions in

t- andu-channel vector meson exchange amplitudes, therebie |y and discuss our numerical results compared with the
modeling effects from nonresonant loop contributions. availablew*, K*, andK® form factor data in Sec. V. Fi-

Our analysis is motivated in part by results of previously 5y “\we summarize our conclusions in Sec. VI. Additional

developed models of the nucle¢] and baryon octef4]  jetajls of theN/D method are presented in the Appendix.
form factors. In Ref[3] the nucleon form factors were ana-

lyzed in a VMD framework and excited vector resonance
Il. SUg(3) VECTOR MESON UNIVERSALITY
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ing to the S (3) flavor symmetry: F,=0, Fx-=—F¢+, F,_ =0,

n

1 Fxo=—Fgo, F_o0=0, F_-=—F_+. (7)
Q=|3+§(B+S). (D)

Universality symmetry is also consistent wiBiparity con-

Sakurai's universality hypothesis associates each of the coiférvation since the and ¢ states decouple from the pion.
served quantum numbers of strong interactions with dynami?Ve neglect the smat-parity violatingp-w mixing effect in
cal hadronic chargef7]. This is a natural consequence of this work. Finally, note that the couplings to the kaon are

boosting SW(3) to a local gauge symmetry with the suppressed by 1/2 relative to the pion, hence we recover the

p,w,d,K* K* vector mesons interpreted as the gaugeusual S(3) prediction.

bosons of hadronic interactions. Even without this dynamical ,!t IS Important to _reah_ze that the term_lnolog_y universal
) ; ' . . ity” symmetry used in this paper has entirely different mean-
interpretation, vector meson universality can be viewed as & : X NPT . .
special limit of SW(3) symmetry which may be a good Ing compared with the universalitfviolation) investigated
P L y y may 9 recently by Benayourt al.[11]. These(and othey research-
approximation for the vector meson couplings that should be ; . ; .
- eérs effectively use the term universality as the approximate
tested empirically.

L . . - equality between the hadrong, ., and leptonic {,) decay
In our phenomenological implementation of universality ; NN R
constants. However, this stronger form of universality is vio-
symmetry, to each of the three types of vector meson

; 0 : ; .
(p,w, ¢, including excited statg¢swe associate a coupling to Tated by_ ap.prOX|mate.Iy_ 204) experimentallyf couplmg
hadrons with strength in proportion tg, B, andS. Specifi- renormalization from finite width propagator corrections are

callv. the effectiv & vector meson couplings to a had- neglectegl hence Benayouet al. introduce a fitted param-
Y, ) &, w, ping eter (€), interpreted as a measure of universality violation, to
ron (H:|13,B,S)) are expressed as

account for the observed enhancementeire™ — 717~

_ data near the peak. We stress that our usage of the term
C,(H)=13-C, 2 ) : )
universality applies only to the symmetry of vector meson
Cw(H):B-CZJrS cs, 3) coupling strengths relative to different members in-&&)

multiplets. Consequently, we have a completely different in-
terpretation for the Benayoua parameter. Namely, in our
modelC () =9,,./f,~1 by optimization(not constrained

. . i . . niversality, and we reinterpret the Ben ram-
The eff_ectlve coupl_lngs are defined in VMD_as the ratio ofgile:' aseascacl)ljglir?gdconitaenttresar?oerzrtnglszat%ga{nogrﬁangta-
hadronic to leptonic decay constant,(H)=g,,, /T ,(V  {on) induced from finite width propagator corrections.
=p,0,¢). The w and ¢ each have two types of universal |n poth investigationg-coupling enhancement is necessary
couplings because the physicaland ¢ eigenstates are or- for a quantitative description of the dafa.e., C,(m)
thogonal combinations of the $(B) isoscalarw, (single)  _.c (w)(1+6,)], however, the physical interpretation of
and wg (octey states that couple in proportion to baryon the 5, (or €) enhancement depends on the treatnfenne-
number @) and hyperchargeY(=B+S), respectively[8].  glech of propagator corrections and the precise definition of
Only three of the four isoscal&@?®,C%* effective couplings  universality adopted. In the next section we derive the vector
are independent since they are related togthe 9,5 had-  meson propagator corrections and corresponding coupling
ronic couplings and the SU(3) mixing angt (given the  renormalizations calculated from dispersion relations using
experimentally knowrf ,,f , decay constants LHC vector meson exchange amplitudes derived in Sec. IV.

C4(H)=B-Ch+S.C5. €)

CP=1f,%(0,1C08 6+g,gsin 0), C5=f_%(g,esin 6), IIl. MODEL FORMALISM

©)
The most general current structure of a spin zero meson is
Co="f, (—g,sin 0+9g,gc080), CH=f;(g,gc0s0). expressed afl 2]

® I, (kk)=( +k)MF(q2,k2,k’2)+(k’ —k)MG(qz,kz,k’z),

The ¢ is a pures s state and the is purely nonstrange when (8)
ideal mixing occurs with tar®=1//2. Note that a nonzero wherek,k’,q= (k' —k) are the incident meson, final meson,
CZ violates the empirical Okubo-Zweig-lizuk@ZI) rule  and photon four-momentum, respectively. The coefficients
[9], but the possibility of intrinsic nucleon strangeness indi-of the two independent Lorentz current structurk$*(k) ,
cated by several experiments suggest OZl| evaditgN  are the meson form factors and G. The off-shell form
couplings may exigt10]. If the OZI rule is taken to be exact, factor G can be related to the function by application of
theng,g/g,1=tand (i.e., C‘;:O), and all of thew couplings  the Ward-Takahashi identify13,14
to the octet baryons are predicted by E®. and (5) with
0,5 and @ fixed by the kaon data. , , ,

An automatic consequence of universality symmetry is G(a% k% k 2):< 92 )[F(qz,kz,k )= FOKAK™)].
that six of the nine meson nonet form factors are determined (9)
and consistent with the fundamental constraints from charge
conjugation symmetry. Explicitly, we obtain six auxiliary In this paper, we consider only the elastic, on-shell meson
equations: form factors wheré®=k’?=M? and hence the off-she
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form factors vanishG(g?,k?,k’?)—0, and theF form fac-  ism[17]. In this work, we closely follow Renard’s approach.

tors depend only on they? virtuality of the photon, We calculate modified vector meson propagators of the form

F(9%,k?k'?)—=F(q%,M?,M?)=F(g?). The off-shell form

factor dependence is interesting and relevant to a variety of Ay(s)=MG—s+3y(s)—iMI(s). (15

topics in electronuclear physid45], however we do not . i

pursue a study of the off-shell dependence in this work. A_nalyt|C|ty is implemented through a once subtracted disper-

We now set up dispersion relations relating the real angion refation

imaginary parts of the meson form factors and vector meson s \p 4s

propagators. In naive VMD, meson form factors are ex- EV(S)=M\2, — _f MVI‘V(S,)‘|-
Mg/ TJ s'(s'—s)

. 5 —
pressed as a simple sum: v

0 (16
Ay(0)

AY(s)’

(10 Since the physical vector meson masses should not be shifted
ats=M?2, the subtraction consta@, is calculated from the

: 2y _ .
involving the effective vector meson couplings/(M) and ~ constraints,(My) =0 (for eachV state:
the bare resonance propagators

FM<s>=§ Cy(M)

P ds’
AY(s)=M2—s—iM T O (s—sy). (1) 5v:;f S(s M2 MyIv(s"). (17

The meson charge normalizations imply a sum rule cony

. . ote that in the narrow width approximation the propagator
straint on the vector meson couplings: P propag

modifications vanish:

Qu=2> Cy(M). (12 lim 8,=0, (18)
\ ry—o
Although the charge sum rules may indeed be approximately lim 3y(s)=0, (19
satisfied, we believe it is unlikely that they should hold ex- ry—0
actly due to a suspicious conspiracy between the low-lying
and excited vector meson couplings, unless the effective in- lim Ay(s)= lim A?,(s): M\Z,—s. (20
teractions reflect an underlying quark-meson duality. We Iy—0 Iy—0

note that the charge sum rules in naive VMD directly follow ) o .
from a y-V transition amplitude which is not gauge invariant 1h€ energy-dependent width function is governed by unitar-

for off-shell vector mesong = (M2/f\)e, ey (ie.,q-ey 'Y
=0 only wheng?= M\Z,). A more appropriatey-V transition

amplitude isC,y = (1/f\)F ) F{”, which gives the Feynman 2 Pi(s)N;i(s)
rule s/f, instead ofMZ/f for the y-V interaction vertex. M Ty(s)=MTy ' , (21)
With this gauge invariant choice, the vector mesons com-

gaug 20 Pi(M)N; (M)

pletely decouple from the current at the charge normalization
point s=0, which makes better sense if we view the meson
charges being built up by quark substructure independent ofherei sums over hadronic channels coupled to the vector
effective hadronic interactions. To be conservative about théneson /), P;(s) are phase space factorga@/@ for a
physical vector meson couplings and the assumed analytigyo-body P-wave channé| andN;;(s) are functiongdiago-
structure of the meson form factors, we employ VMD tong| elements of the N matrix”) which possess only left
derive resonance dominated spectral functions and then eRand cut singularities and incorporate hadronic cutoff effects
force analyticity through a once subtracted dispersion relanduced by nonresonant meson exchange. Renard has param-
tion: etrized theN;;(s) functions and studied inelastic threshold
. effects in the timelike region, neglecting contributions from
Fu(s)=ReFu(s)]+ilm[Fu(s)], (13 exctied resonancdd7]. Ig contra%t, wegchoose to include
ds’ excited resonances and derive tRefunctions from vector
_ S S , meson exchange amplitudes, neglecting a model-dependent
RG[FM(S)]_QMJFWPJ S,(S,_S)Im[FM(s - A9 eatment of inelastic threshold effects. This choice is not
arbitrary, rather it follows from a realization that substantial
In this work we consider finite width corrections to the vec- new timelike data has been compiled since Renard’s analysis
tor meson propagators induced by nonresortaréind u-  showing resonance structure which appear at energies corre-
channel vector meson exchange amplitudes. Gounaris argpponding to masses of confirmed vector meson excited
Sakurai were the first to study finite width corrections in states. We prefer to look for inelastic threshold signatures by
VMD using a generalized effective range formulatidr]. observing features in the timelike data which are not repro-
Subsequently, Renard showed that the Gounaris and Sakudiiced by the excited resonance states, producing quantitative
model was incompatible with updated experimental datalisagreement with our model. Admittedly, this approach
while demonstrating the importance of finite width effectsweakens the significance of our extracted resonance cou-
from parametrized LHC contributions using tNéD formal-  plings, however, treating inelastic channels introduces extra
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phenomenology and substantial complications which we dohe enhance@renormalizegivector meson couplings, Renard
not pursue. We comment further on possible inelastic threshkdemonstrated that a dynamical suppression of the decay
old signatures in the numerical results section. width function contributes to the observed timelike enhance-
For each(low lying and excited stajevector meson, the ment. Our model produces timelike enhancement for related
imaginary part of the resonance propagdtiynamical width put substantially different reasons. We de_monstrate the time-
function) S|mp||f|es according to our approximationS, tak|ng like enhancement effects in the numerical results section

the form along with a more detailed discussion.
MyIy(8)=MT'Py(S)Ly(S), (22) IV. LHC EXCHANGE AMPLITUDES
whereP,(s) is the normalized two-body phase space func- The most important finite width corrections apply to the
tion ground statep-meson propagator due to its large hadronic
couplings to therrsr and KK channels, and its relatively
(s=s )% wmy large decay widti{compared with thes and ¢). However,
Py(s)= > 7 (23)  we attempt to treat all vector mesons on equal footing, real-
Vs (MV_SV) izing that our derived\,,(s) functions for thew, ¢, and all

) _ ) ) excited states suffer from specific ambiguitidsscussed be-
depending on the threshold mas§/—(2MW) ,(3M )%, low) which do not apply to the ground stagemeson. For-
(2My)? for the p, w, and¢ propagators, respectivelly(s)  tunately, our treatment of the narraw ¢ produce negligible
is the normalized hadronic form factor derived from vectorpropagator corrections, and the broad excited states contrib-

meson exchangh,, functions: ute terms with very small effective couplings, rendering the
excited state propagator modifications inconsequential.

Ny(s) As a starting point, we explicitly consider the ground state

Lv(s)= NV(M\Z,)' (24 p-mesonN,, function and then discuss problems and ambi-

guities associated with the excited and isoscalar states. To
We discuss our derivation of thé,(s) functions in the next derive the LHCN,, function, we assume the dominant non-
section. resonant amplitude in elastics scattering comes frort

Before passing to our derivation of tid, functions, we and u-channel p-meson exchange. This approximation is
collect our results and obtain the mesdh==",K* K° borrowed from the Chew-Mandelstam bootstrap idea where

form factor spectral functions the p-resonance can be generated by a potential derived from
p-exchange amplitudg4.8]. In N/D theory, the pole struc-
Ay(0)) MyIy(s) ture and cut discontinuities of thid and D functions are
'm[FM(S)]:Z/: B(s—s,)Cv(M) 2%0) ) S [ay(s)? intimately related through crossing symmetry and analytic-
\%

ity. Several authors have studied bootstrap dynamics for the
resonantrm [19-22, pw [23], and KK [24] amplitudes
Our model spectral functions reproduce the naive VMD formemploying theN/D method and crossing symmetry. For a
factors in the limit when the vector resonance widths arereview of bootstrap applications using théD method see
taken to zero(narrow width approximation the excited Ref. [25]. In contrast to our approacti.e., calculating the
states are neglected, and the effective couplings are conHC N, function from meson exchanpehe recent work of
strained by the charge normalization sum rules. The factoBenayounet al. incorporates a VMD unitarization prescrip-
Ay(0)/AY(0)=1+ 8, gives a finite width enhancement to tion based on a minimal implementation KfD theory in-
the effective vector meson couplings and a correspondingorporating a best-fit phenomenological LHC parametriza-
enhancement of the resonant cross section. As noted in thion [11].

work of Renard 17], the timelike pion and kaon form factors ~ Consider the covariant tree-level elastier scattering
show an enhancement relative to naive VMD. In addition toamplitude based op-mesont- andu-channel exchanges:

(29

pmwT pmw

[F2 (D (U=M2)(s—u)+F2_(u)(t—M2)(t—s)]
(t=M2)(u—M?) ’

T? _(s,t)=g>

pm

(26)

whereF , . -(X) (x=t,u) is a purely real, hadronigw = ver-  F ). This approximation also reveals an embeded functional
tex form factor with no singularities for spacelike momen- dependence between the nonresonant L @&inctions and
tum transfer {,u<0). SinceF ,,.(x) should satisfy a once the resonant RH® functionsN(D(N(D(- - -)))). Adopting
subtracted dispersion relation with the same spectral functiothe naive VMD form factor

as the pion form factor, Iff . (s)]<Im[F_(s)]

(s>4MfT), a reasonable approximation is to take the M2
p-meson mass as the appropriate hadronic cutoff scale for Fpan(X)=— L, (27
spacelike momentum transfé@nalogous to naive VMD for M, —X
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we obtain the nonresonant, Borar scattering amplitude

depending only on the Mandelstam variablest,u), the
pm coupling constantd, ), and thep mass 1),

[(U=M2)3(s—u)+(t—M2)%(t— S)]

M4
(t=M2)3(u-M32)*

TfI)T‘IT( S't) gpww
(28)

Using the kinematic relation@n the =7 c.m. systen

s=4(|k|?+M2), (29)
t=2|k|?(cos9—1), (30)
u=—2|k|?(cosf+1), (31)

and projecting onto th@-wave partial amplitude, we find

g2
T\ alK?)

T ‘rr(s)||=1:

1 [A(s)x?+ B(s)]x?
. Jfl X[C(s)(l—x2)+ D(s)]®’ 32

TI7JT7T(SYSP)||:].: (49’2;77—71—||Z|2)M2

—32k[5+4[K|“(M2—s,)+6|KIPMa+MS 1

2609
where
A(s)=48K|®+4[K|*(3M2+4M?2), (33)
B(s)=801k|®+12k|*(7M2+4M2) + 24 k|>M?
X(M2+2M2) +MA(M2+12M2), (34)
C(s)=4[k|*, (35)
D(s)=M2(4[k]>+M?). (36)

The integral Eq(32) can be evaluated in closed form:

AC+BC+AD
4C?D?

T2 .(S)i-1= (492, [K> M4

5AC+BC+5AD BC-3A(C+D)
8C°D(C+D) 8C%(C+D)%?

/| C
—1
Xtanh CiD

: (37

2|K|>

Equation(38) is explicitly written in terms of the-threshold
variablesp=(2M,T)2 (the RHC threshold energwnticipat-

4|k|*MA(4]k|>+M2)2

(39

—tanh ! ————
8/k|® 2|k|2+|\/|§

merator function of the unitarjd/D amplitude (neglecting
overall constants which drop out due to the normalization

ing the generalization t@ and ¢ mesons. To identify the constraint

correct definition forN,,(s), we write the fullP-wave N/D

amplitude(including both resonant and nonresonant contri-

butiong for elastic# scattering

1 7(S)

Ton )_ W(s)’ 39
which satisfies the two-body elastic unitarity equation,
IM[ 72 (9)]= 76— K )|| - (8)]?0(s—4M2),

™ s
(40)
to define theN -function:
7T7T(S)__(4gp7T7T|k(S)|2) ( )2 (41)
p(Mp)
D, n(s)=RdAy(s)]=IM ' (s), (42)
@J,,Wlk(S)l3 N,(s)

Finally, we identify theN, function with the LHC amplitude

T (8,8, |1=1=[K(s,,))|*N,(s,5,), (44)
which givesN,(s)=N,(s,s,) as the expression inside the
square brackets of E¢38). In Eq. (44) the threshold energy
variables, is written explicitly, and the two-body c.m. mo-
mentum function is generalized f&=p,w, ¢ states:

R 1
[k(s,sv)|= E(S_ sy)2 (45)

Normalizing according to Eq24), Lp(s)=Np(s)/Np(M,§),

we obtain the LHC form factor of the propagator employed

in our numerical calculations. For the excitpdropagators
we originally assumed the same LHC form factor normalized
to the excited mass:

N,(s)

L, (s)=————.
ey

(46)

However, with this ansatz the minimum &f,,(s) does not
correspond to the' mass, which is necessary so that the
modified propagator reduces to the bare propagator when
nearly on mass shell.e., 3{(MZ)=0]. This constraint on

by factoring out the phase space factor appearing in the nahe minimum position would be automatically satisfied with
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a twice subtracted propagator dispersion relation, however, ' ' ' '

using the once subtracted dispersion relation (). we are 14| .

able to produce a consiste(@gpproximate minimum posi-

tion for the excited states if the mass is replaced by the M, My M. My

excitedp’ mass in thep cutoff function L2 ]
Npr(s):Np(S|Mp—>Mp/). (47) Lol

This excited state ansatz generalizes the crossing bootstrap

duality noted in the derivation of the-meson cutoff func- —

tion. We believe that thisbootstrap duality hypothesis g8/

(where the resonance mass sets the scale for the LHC form j

factor and vice vergds suspicious and even unlikely for the 06 L

excited states, however, we stress that our resulting meson
form factors are numerically insensitive to the excited state

propagator modifications, which are included so that all reso- 0.4
nance states are consistently treated using the same approxi- | p’(1465)
mations. | T - p7(1700)
Next consider thew and ¢ propagators where certain am- 02 —— p’”(2150) ]

biguities become aparent that do not affect phgropagator.
For example, thaw is not aw* 7~ resonancgneglecting ool o
p-w mixing) due to G-parity and thus thew propagator ) 1 2 3 4 5
should connect three-pion and/ptr, KK, ..., two-body q2 (GeVz)

states. We assume the LHG, function can be described by ) )

w exchange for elastip scattering, extrapolating to the FIG. 1. Normalized LHC form factors of the isovector reso-
three-pion threshold by the replacement nances.

IK[s,s,= (M,+ M,)2]|—|K[s,s,=(3M,)?]|. (48)  meson cutoff functions have similar shape and produce neg-
) ) ) ligible effects on the meson form factors, hence we do not
Although thewpr interaction has different Lorentz structure show them. In Fig. 2 we show the effect bf(s) on the
compared withpr 7, we assume the same functional form gynamicalp-width function by comparing the static width,
for the » cutoff functionN,(s) through the ansatz phase space modified width, and full dynamical widith-
_ cluding phase space and LHC form fagtdFhe cutoff form
Nw(s)_NP(S’SP_)S‘JMP—)M‘")' (49 factor gives very mild off-shell suppression, which gives a
The excitedw' states are treated using the same bootstraB_ragmat'C justification for our use of once subtracted disper-

duality prescription previously discussed for the states: sion relat.ions. We _plot the exact numerical .and a_pproximgte
parametrized solutions of the propagator dispersion relation

N, (S)=N,(s|M,—M,). (500  for % ,(s) Eq.(16) in Fig. 3. Our approximate solutions are
expressed in terms of a function depending on three param-
For the ¢-meson propagator, all types of vector mesoneters ¢, ,yy,By):
(p,w,¢) exchanges are allowable for the nonresonsakt
scattering amplitude. Also, the RHC threshold starts at
=(2My)?>>(2M,)2. In light of the fact that thep meson
is extremely narrow and we expect very small propagator
corrections, we are not motivated to develop a sophisticated
treatment for thep, hence we simply apply the bootstrap
duality prescription. Our treatment of all ground and excitedThis form automatically satisfies the Constrairﬁs(M\Z/)
state vector mesons can be summarized by the single equa and3(M2)=0. Note thatéy is a solution to the con-
tion straint Eq.(17) (for eachV) and thus is not a free parameter
_ of the fit. Physically,éy provides a finite width enhancement
Nu(8)=N,(s,8,—v[M,—Mv), B of the vector meson couplings nes=M?2. Our result for
wheresy=(2M )2 for V=p,p’.p".p", sy=(3M )2 for v  the p enhancement factos,=0.145 derived from Eq(17)

(&M +1)(ME—s)?

Sv(s)= > .
M2 BU(sIME) + &+ 1]

(52

=w,0',0", 0", ands,=(2M)? for V= ¢ propagators. compares favorably with the experimentally observed en-
hancement seen in the resonaie™ — 7" 7~ cross section
V. NUMERICAL RESULTS near thep peak, §,=0.13+0.08[26,27. All vector meson

parametergmasses, widths, couplingare listed in Table |
Before discussing our form factor results, we first showtogether with our model predictions fa,. The exact nu-
the numerical effects of the vector meson propagator modimerical solutions of the meson form factors using the disper-
fications. In Fig. 1 we show the normalized cutoff functionssion relation Eq.(14) with the spectral functions given by
of the p and excited isovector mesonsLy(s) Eq. (25 are well approximated by a simple sum of terms
=Nv(s)/NV(M\2,) for V=p,p’,p",p". All isoscalar vector analogous to naive VMD:
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FIG. 2. Imaginary part of the propagatoM I" ,(s) comparing FIG. 3. Finite width correction to the real part of tpepropa-

three approximations: static widtt,I',(s)=M,[',®(s—4M?)  gator comparing the exact numerical solution of Et6) (solid

(dashed ling phase space widthM I',(s)=M,I',P,(s)O(s |ine) and the approximate parametrized solution given by (58)
—4M?%)  (dotted ling, and full  width, M,I,(s) (dashed ling

=M, ,P,(s)L,(s)O(s—4M f,) (solid line).

availablerr™ ,K*,K° form factor data respecting the univer-

), (53 sality constraints and using our parametrized propagator so-
lutions with Eq.(53). The experimental data is taken from
several sources listed in R¢R9] (we do not distinguish data

expressed in terms of thealculated finite width enhance- points from different experimentsOlder references can be

ment factors §,) and modified vector meson propagatorsfound in the review by Gourdir{30]. The ground state

[Ay(s)] using the parametrized solutions of E§2). Be-  p,w,¢ couplings are fairly well known from independent

sides the modified propagators and coupling constant renomeasurements, however, we allow for small variations in the

malizations, Eq(53) differs from naive VMD by the factor couplings to optimize our fits while restricting the relative
of s in the numerator replacing the ustdf . As we previ- magnitude of the isoscalar couplin@s,(K) =3C 4(K) to be
ously discussed, this factor sffollows from a gauge invari- consistent with the three-pol@aive VMD prediction for

ant treatment of they-V interaction, and implies that the the K™ andK® form factors(known to be a very good ap-

vector mesons decouple from real photons, freeing the effedroximation. This constraint on the and ¢ couplings also

tive couplings from charge sum rule constraints. We now

discuss our form factor numerical results showing observable TABLE I. Vector meson parameters. Underlined masses and

effects following from our modifications to naive VMD. widths correspond to thg” and " resonance parameters deter-

We include all of the well-established vector mesons withmined in Ref[3]. All other resonances have mass and width values
mass below 2.0 GeVYexcept the¢* (1680)], fixing their  quoted in Ref[28]. The 8, entries are calculated from E@L7)
masses and decay widths to the experimentally measuredth MI'\(s) described in text.

values quoted in the Particle Data Group’s review of particle

properties[28]. We also investigate possible effects fromV My [GeV] I'y [GeV] Cy & Bv & w

e nesebished crcled sies, (e(IS) e, ome o 1c: 0w 100010 14

! ! 1.465 0.310 0.02 0.118 0.966 0.05 1.30

description of the precise LEARS}, data[5] near thepp " 1.700 0235 —002 0075 0954 005 1.30
threshold[3]. We note that these two novel states are not » 2150 0220 -002 0.053 0.901 005 1.40

_S
Ay(s)

FM<s>=QM+§ Cu(M)(1+6y)

predictedqameson states in quark models and their close+, 0782 0.008 0.175 0.008 1.0270.10 1.40
ness to theNN threshold suggests molecular structdie o’ 1.419 0.174 0.010 0.069 0.906 0.05 1.40
they indeed exigt although hybrid or exotic structure can ” 1.649 0.220 —-0.045 0.073 0.965 0.05 1.30

not be ruled out without direct observation and a detailed,”  1.830 0.010 0.003 0.003 0.971 0.05 1.30
study of decay modes. All vector meson resonafgreund ¢ 1.019 0.004 0.35 0.002 098 0.0 1.40
and excited stajecoupling constantsCy(M), were fit to the
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FIG. 4. (a) Square of ther* form factor in the timelike region
comparing results of naive dominance(dashed ling modifiedp
dominancedotted ling, and the full calculation including propaga-
tor corrections and excited isovector resonan@esid line). (b)
Blow-up of the squaredr* form factor near the(770) resonance
comparing naivep dominance(dashed lingand modifiedp domi-

nance with propagator correctiofsolid line).

corresponds to taking ideal mixing, #@#1/\2, in Egs.
(5),(6) with f_/f,*=1/y/2. All vector meson parameters
are listed in Table I.

tions (solid line) (from now on denoted fulland p domi-
nance with modified propagat@dotted ling compared with

the naivep-dominance predictioidashed ling Near thep
peak [where 3 ,(M2)=0], magnified in Fig. 4b), the ob-
served enhancement is due to the finite width correction fac-
tor 5,. The data also shows a signature of the well-known
p-o mixing effect(i.e., smallw peak which we have ne-
glected. Fog2> Mi the modifiedp-dominance curve of Fig.
4(a) shows additional enhancemefii., not simply a con-
stant times the naive VMD curyeNote in Fig. 3 thak. (s)

is positive definite(vanishing atMi) and thus produces
propagator suppression for spacelike momentum transfer
(g2<0) and enhancement for timelilgg> Mi. Additional
timelike enhancement comes from the energy-depengahnt
coupling. The modifiedo-dominance curve reduces to the
naive p-dominance curve a8,—0. We do not treab, as a
free parametefwhich would be slightly reduced in an opti-
mal fit) since its value is constrained by our model LHC
form factor and Eq(17). The available pion data fay*>2.0
Ge\2 is insufficient (with few points and low precisigrto
unambiguously assess the contributions of excited states. We
note that our full calculation showing excited state oscilla-
tions has a suggestive shape compatible with the pion data
except for the modifieg-tail contribution being too large.

In Fig. 5@ we plot the spacelike pion form factor with
the same curve labeling as Fig.(alt The modified
p-dominance result shows significant improvement with re-
spect to the data points neap?=-2 Ge\V? and ¢?
=—3.4 GeV compared with the naivp-dominance result.
The excited state contributions produce a small effect in the
spacelike regiorias expected Extrapolating our model re-
sult to higher spacelikig?|, we note that our modified VMD
pion form factor has a node gf~ —6 Ge\?. The position
of this node is very sensitive to the finite width enhancement
factor 5,, as demonstrated in Fig(l. The node disappears
when §,—0 (i.e., naive VMD does not produce a node
Similarly, if the naive VMD form Eq.(10) is used together
with the modifiedp propagator, the resulting pion form fac-
tor also does not have a node. It follows that the node struc-
ture is a consequence of the once subtracted dispersion rela-
tion together with the energy-dependemtV interaction
assumed for the spectral density and a questionable propaga-
tor extrapolation. We caution that the asymptotic behavior of
our propagator modifications are not well constrained and
other dynamics such as nonleading LHC and/or perturbative
QCD effects become increasingly important for large space-
like g2, and thus a naive extrapolation of our model is un-
justified. We are therefore suspicious of placing predictive
significance to the observed nodal signature of our model,
but only point it out as a curious conspiracy of model-
dependent effects.

In Fig. 6(a) we plot the squared kaon form factor in the
timelike region comparing our full result with naive and
modified p,w,¢ dominance. The contribution from the
modifiedp spectral function produces most of the difference
between the naive and modifigd w,¢» dominance curves
since the¢ and w propagator corrections and coupling con-
stant differences are very small. Note that our full result does
not reproduce the nearly constayftdependence seen in the

In Fig. 4(a) we present our model pion form factor in the precise data between &4;?<2.0 Ge\f. Since there is no
timelike region with all excited states and propagator correchroad resonance in this region, we speculate that this shoul-



FIG. 5. (a) Square of ther* form factor in the spacelike region
comparing results of naive dominance(dashed ling modified p
dominancgdotted ling, and the full calculation including propaga-
tor corrections and excited isovector resonangasdid line). (b)
Square of ther* form factor in the spacelike region at lardef|
showing nodal structure of modifiggddominance and sensitivity to

5,.

inelastic channeb,‘)rr—>waith a threshold neag?=1.35
GeV?. We present a blow-up of the timelike” and w
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FIG. 6. (a) Square of the&K* form factor in the timelike region
comparing the results of naive VMRlashed ling modified VMD

(dotted ling, and the full calculation including propagator correc-

tions and excited resonancdsolid line). (b) Blow-up of the
squaredK* form factor near the unconfirmed’(1830) and

p"(2150) resonance region comparing results including all excited

states(solid ling), without the p” (dotted ling, without the "
(short dashed lineand without bothp” andw” (long dashed ling

der feature may be the consequence of strong coupling to tHel! curves are calculated using modified propagators.

precise enough to strongly distinguish between the different
possibilities, however, the data cannot rule out the possible

region in Fig. @b) showing the results including different existence of a narrow resonance structure ng@ar 3.4
combinations of these unconfirmed states. The data is ndde\?.
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5 (b) FIG. 8. Square of th&* form factor in the spacelike region
comparing the results of naive VMIdotted ling, and the full
calculation including propagator corrections and excited resonances
(solid line).

7(b), we present the timelik&® results corresponding to
different combinations of the unconfirmed resonances.
Again, the present data does not have sufficient precision to
discriminate between the different possibilities.

We present our results for the spacelkké andK° form
factors in Figs. 8 and 9, respectively. Our full calculation is
nearly degenerate with the naigew, » dominance result of
the spacelikeK ™ form factor for small|g?|. The modifica-
tions to naive VMD produce substantial enhancement in the
spacelikeK® form factor as seen in Fig. 9. When all of the
finite width &, correction factors are artificially set to zero,
all of the propagator modifications vanish and we recover the
naive VMD result with a small deviation due to excited state
contributions and coupling constant differences. The Kl
10° E—— PEEE— form factor result(solid line) becomes nearly constant at

2 2 large spacelike?, which conflicts the expectation @iQCD
q (GeV) scaling. This result shows that a once subtracted dispersion
relation can produce unphysical behavior when analytic con-
comparing the results of naive VMQashed ling modified VMD tinuation is extended far away from the subtraction point if

(dotted ling, and the full calculation including propagator correc- the spectral function does not have the correct asymptotic
tions and excited resonancdsolid line). (b) Blow-up of the Pehavior or does not satisfy additional sum rule constraints.

squaredK® form factor near the unconfirmed”(1830) and Specifically, if we demand thi® form factor to vanish at
p”"(2150) resonance region comparing results including all excited= *°, we can take the limit of the dispersion relation Eq.
states(solid line), without the p” (dotted ling, without the »”  (14) to obtain a superconvergence constraint

(short-dashed lingand without botlp” andw™ (long dashed ling
All curves are calculated using modified propagators.

[}

— Full

........... Without p™’
—— Without w’”’
2 ——— Without p™ W’

FIG. 7. (a) Square of the&k® form factor in the timelike region

lim Re[FKo(s)]ziij d_slm[FKO(S,)]—)O. (54
In Fig. 7(a) we present the squardd timelike form fac- s Tls '

tor comparing the full, naive and modifigdw, » dominance

results. The contributions from excited states provide a sigObviously, the asymptotic power behavior of the spectral
nificant improvement with respect to the data compared witfunction must be restricted [ o(s)]esP, where p<0,

the naive and modifiegh, w,¢» dominance results. In Fig. otherwise the integral will diverge. Our model spectral func-
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resonance contributions. By comparing the relative strength
of resonance couplings between the pion and kaon, we have
verified that SW(3) universality symmetry is a good ap-
proximation for the couplings of both the low-lying and ex-
cited vector meson states to the light psuedoscalar mesons.

We observe interesting nodal structure at large spacefke
in the pion form factor resulting from a conspiracy of effects
due to our use of once subtracted dispersion relations with
energy-dependeny-V interactions and(questionable ex-
trapolated asymptotic behavior of the propagator modifica-
tions. The present meson form factor data does not have
sufficient precision to make definitive conclusions about the
0,002 \ | existence and/or propertiése., mass, widths, or couplings
e of the unconfirmedp”(2150) and »"'(1830) resonance
e states, however, the present data does not exclude the possi-
| bility of their existence. We suggest that newe~ experi-
ments looking for novel vector statés.g., molecules, hy-
brids, exoticy beyond the standardyq quark model
expectations should explore energies ne@=1.83,2.15
GeV in multimeson channels to confirm and establish the
structure of resonance states indicated by the LEAR data.

0.003 | b
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FIG. 9. Square of th&® form factor in the spacelike region This work was supported by NSF Grant No. HRD-
comparing results including all excited states and propagator cor9633750.
rections(solid line), including all excited states and bare propaga-
tors (dotted ling, and naive VMD(dashed ling
APPENDIX: N/D METHOD
tions do converge term by term, yielding finite constants af- \ve present here a review of the single chanNéD
ter integration, _however, the superconvergence is violateghethod. Further details can be found in2]. The method is
because there is not a perfect cancellation of the total aregerived from the assumption that partial wave scattering am-
(weighted by 13). Although it is possible to enforce super- pjitudesA,(s) are analytic functions possessing singularities
convergence relations to further constrain the vector mesofng cut discontinuites governed by unitarity. For equal mass
parameters, this is probably unjustified since the asymptotige ¢ 74) two-body elastic scattering, unitarity dictates that
behavior of the propagator modifications are highly uncertaifne amplitude must possess a right hand @HC) discon-

(model dependeptand other contributions such as inelastic tinyity for sy<s<= and a left hand cut_HC) discontinuity
threshold effects should be included, consistently constrainegh, ., <g< s., Wheresy=4M?2 ands _=4M2—M?2, as-
L) T o p )

by multichannel unitarity. suming thep meson is the lightest exchanged particle in the
t andu channel. Applying Cauchy’s theorem to a countour
distorted around the LHC and RHC,

We have attempted to incorporate several modifications to
naive VMD in order to study: observable effects from finite 1 é ds’
C

VI. CONCLUSIONS

width propagator corrections, the physical consequences ()= 5~ Al(s"), (A1)
using once subtracted dispersion relations with a gauge in-
variant y-V interaction, and to test whether or not existing

timelike data shows resonance structure compatible with the

existence of two unconfirmed vector states near pie
threshold. We derived resonant propagator modifications by
incorporating nonresonant LHC vector meson exchange am-

plitudes in the single chann®l/D approximation with elas- e analytic amplitude receives only LHC and RHC contri-
tic unitarity. We find thep propagator modifications and p tions (assuming proper convergence o). The

coupling constant renormalization are crucial for a quantita; ; ; o
tivepVMgD type description of the enhancement obsqerved inlmagmary part ofA,(s) is governed by unitarity fos=sg

the timelike pion data near and above fheeak. Our cal-

culatedp enhancement factof,=0.145 is consistent with IM[A(S)]= /S~ SR|A|(s)|2,

the observed timelike enhancement near theeak éﬁx" S

=0.13+0.08. We also investigated the reliability of Saku-

rai's SU=(3) universality symmetry for vector meson cou- adopting a convenient amplitude normalization. Cauchy’s
plings since the timelike data exposes and constrains thiéaeorem then reduces to a nonlinear integral equation

s'—s

:EFL o ,m[A(S,)]+Ef°° S mia (s ]
) —s msms—s
(A2)

(A3)
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depending on the LHC discontinuity functidy(s), and with

1 (s ds i
Al(s)= —j ——Im[A(s)] the kernel defined
TJ)-xs'—s
, ( —Sp) s' _SR
1 (> ds S— sR ) K,(s,s”)— lf
- ; |A(s)|%. (A4) s"—sR)
™ SR S —S
. . . . (s’ —sg)'ds’
The N/D method provides a self-consistent solution to this X ) (A13)
equation. The essential simplifications follow from repre- (8" =s)(s' =sp)(s' =5")

senting the solution as a rati{@riting the threshold energy

dependence explicitly Similarly, theN,(s) function satisfies

Ni(s) 1 f(s) [ (s'=s0)
=(s—s.) s)= 5 —
A(S)=(s=5)'5 5y wer - M) e s
whereN;(s) has only LHC and,(s) has only RHC discon- sp)' TS |
tinuities, respectively, and realizing the elastic unitarity rela- J’ \/7(3,, S )(s—s )ds’ ds’, (A14)
0

tion for the inverse imaginary amplitude is purely kinematic

IM[A? (s)] P _sB |(S)+— * [(s"~S0)Bi(S") — (S~ S0)Bi(S)]

Im[Afl(S)]=W=— S (AB) (s"—s)(s"—sp)
|

Defining the LHC discontinuity functioff(s),

(s —sg)'N,(s")d (A15)

fi(s)=Im[A(s)] (s<sp), (A7)
whereB,(s) is the nonresonant partial wave Born amplitude
coupled linear integral equations are obtainedNgfs) and

Dy(s), B/(s)= — JSL _ fshas” (A16)
| L
\ 1 (s fi(s") D(shds.  (A8) ~ (s'=s)(s' —sp)'
S)=— — s’)ds’, . . - .
1(8) ) - (s'—s)(s'—sg)! (s calculated in terms of the LHC discontinuity functidy(s).
In this work we truncate the self-consistent E415), taking
D(S)=5 (s—sp) (= (s’ —sg)' 17?2 Ny(s)ds the LHCN function in the Born approximation, although we
S)=6— s’)ds', i i 3
[ [ p o \/s—’(s’—s)(s’—so) [ employ a pmm vertex function which models the self

(A9) consisteniN(D) functional dependence. Also, we have taken
advantage of the Castillejo, Dalitz, and Dys@DD) ambi-

where guity [31] to ensure vector meson propagator poles indepen-
dent of the strength and functional behavior of the LHC am-
fi(s)D(s) plitudes. The CDD ambiguity addresses the fact that\tHe
Im[Ni(s)]= Ts—so)! (s<<sp), (A10)  solution forA,(s) is not unique. It is possible to add arbitrary

poles toD,(s) without spoilingA;(s) as a solution of the
s dispersion relation EqA4). The CDD poles have the physi-

R(S_ sp)'Ni(S)  (S>sR). cal interpretation oflementary particlesin the sense that

these poles persist even for arbitrarily weak LHC interac-
(A1D)  tions. Without CDD poles, solutions of th¢/D equations

We have assumed a single subtractiondofs) at the arbi- producing zeros in_th@ function ared_ynamicalboundstates
trary pointsy, 8=D,(So). Note the real(principal valug or resonances which only develop if the LHC produces at-
part of Eq.(A9) with |=1 ands,=0 corresponds to the traction with strength exceeding some critical value. Recall-
modified resonance propagator disperion relation &6). ing our definition of the modified propagators, Ef5), we .
Back substituting Eq(A8) into Eq. (A9) (and vice versa require all of the vector mesons to possess CDD poles since
the dispersion relations are decoupled yielding Freedholm we have made the replacement

type Integral equatlons (S)—>A (S) (MV S)+ D7T’77 V(S) (Al?)

71'71'V

Im[D,(s)]=—

D((s)=8,+ FL K,(s,s")f(s")D,(s")ds’, (A12)  Which reduces to the bafelementary vector meson propa-
— ' ' gator in the limit of vanishing LHC amplitudes.
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