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Stability and representation dependence of the quantum skyrmion
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A constructive realization of Skyrme’s conjecture that an effective pion mass “may arise as a self-consistent
guantal effect” based on aab initio quantum treatment of the Skyrme model is presented. In this quantum-
mechanical Skyrme model the spectrum of states Withd, which appears in the collective quantization,
terminates without any infinite tower of unphysical states. The termination point depends on the model pa-
rameters and the dimension of the @Wrepresentation. Representations, in which the nucleon Apd
resonance are the only stable states, exist. The model is developed for both irreducible and reducible repre-
sentations of general dimension. States with spin larger than 1/2 are shown to be deformed. The representation
dependence of the baryon observables is illustrated numerifa56-28188)05505-9

PACS numbes): 24.85+p, 12.39.Dc

I. INTRODUCTION dimension of the representation employed. This representa-
tion dependence is a quantum effect, which is absent in the
The modern view of Skyrme’s topological soliton model classical Skyrme mod¢r].
of the baryond1] is that it represents a chiral symmetric ~ The present work builds on the development of tie
effective mesonic representation of the approximately chirainitio quantized version of the Skyrme model in R}, but
symmetric QCD Lagrangian in the lardé, limit, in which ~ goes beyond the treatment of the quantum corrections as
the baryons have to be constructed as topological solitongerturbations of the classical skyrmion. The methodabf
[2]. The mass of the pion, which is the Goldstone boson ofnitio treatment of the Skyrme model in $2) representa-
the spontaneously broken mode of chiral symmetry, is contions of arbitrary dimension is that suggested in R&f.for
ventionally introduced through an external chiral symmetrythe fundamental representation. The narrow stability con-
breaking term in the Lagrangian densf]. Skyrme, how- Straints of the fundamental representat[dg] are avoided
ever, originally suggested a very different origin for the pionby the development of the model in general representations.
mass as “a self-consistent quantal effe¢t]. The ab initio quantum-mechanical treatment differs from
We provide here a constructive realization of this conjecthat of Ref.[11], in which the systematic quantization of the
ture, by demonstrating that in aab initio quantum- Skyrme model was developed on the classical Hamiltonian
mechanical treatment of the Skyrme model Lagrangian, &f the model.
term, which may be interpreted as an effective pion mass The present manuscript is organized as follows. In Sec. Il
term, automatically arises. Moreover, with typical values forwe review the basic formalism of the Skyrme model in a
the parameters in the Skyrme Lagrangian, this mass terffepresentation of arbitrary dimension. In Sec. Ill we con-
takes values close to that of the physical pion mass, althougsfruct the quantum Skyrme model in representations of arbi-
it is state dependent as a consequence of the quantizatidi@ry dimension building on the formalism developed in Ref.
procedure. This effective pion mass may naturally be com{8]. In Sec. IV we derive the equations of motion and the
bined with the pion mass that may be introduced by addingssociated effective pion mass. The Noether currents are de-
an explicitly chiral symmetry breaking pion mass term to therived in Sec. V. Numerical results for the baryon observables
Lagrangian density of the model. are presented in Sec. VI. Section VIl contains a concluding
The effective pion mass appears through an additionafliscussion.
term in the Euler-Lagrange equation of the quantum Skyrme
model, the asymptotic form of which is consistent with a Il. THE CLASSICAL SKYRMION
partial conservation law for the axial currel®CAC). This IN A GENERAL REPRESENTATION
term restores the stability of the soliton solutions, which is . .
lost in a direct var|at|ongl solution of the Skyrme model, 1he Lagrangian density of the Skyrme mofiE] depends
when the rotational energy introduced by projection ontgon @ unitary fieldU(r,t), which in a general reducible rep-
states of good spin and isospin is includ&g6]. The quan-  resentation for the S(2) group may be expressed as direct
tum Skyrme model describes the baryon states with spigum of Wigner'sD matrices
larger than 1/2 as deformed, but only in representations with
larger dimension than the fundamental one. Finally the spec- u(r,t)=>, @D a(r,t)]. (1)
trum of states with equal spin and isospin, which appears in k
the collective quantization, terminates in the quantum
Skyrme model, and therefore unphysical states with large Herea represents a triplet of Euler angles(r,t), a(r.t),
=J do not appear. The termination point in this spectruma3(r,t), which form the set of dynamical variables. The ma-
depends on the parameters in the model as well as on theces DIk have dimension (B+1)X (2j,+1).
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The Lagrangian density has the fofi2] §2 2
LIF(r)]=—NM(F(r))= —N{?” F2+ —zsin2F>
. f2 1 , '
,C[U(I’,t)]Z—ZTI‘{R’U_R“}-i- ETF{[RM,RV] }, 2 +isin2F( , sinzF) o
8e? r? r

where the “right” currentR, is defined as
The requirement that the soliton mass be stationary yields the
RM=((9HU)U*, (3)  same differential equation for the chiral andir) as in
[12]:
andf . (the pion decay constanande are parameters.
The trace of a bilinear combination of generatﬁ)gsaf the 74 oF SirfF N F,zSi” 2F 2 sin2F

SU(2) group depends on the representation as v T2 T2 T2
A 1o .. . sin 2F sireF
Tr( - [3adeli- )= ()25 Tl D20t 1) 34, b - ——=,—=0. (10)
r
al T ~
=(=)77Ndg —p. (4)  Here the dimensionless variable is defined asr =ef,r.

The boundary conditions for solitons with unit baryon num-
ber areF(0)=m, F()=0. The classical soliton is obvi-
ously independent of the the representation.

After the renormalization the hedgehog mass in any rep-
- resentation has the form

Je- 5

The commutator relations for these generators are

1 1 1
b c

[Ja 1‘]b] =

fre
_ 3 —
The factor in the square brackets on the right-hand side is theM(F) f d*r M(F(r) e M(F)

Clebsch-Gordan coefficient é1Lb|1c) in a more convenient

notation than the standard one. Here we have used the nor- fr( ~~yl_,, SIFF ., SIMFF
A A =27— | drr 4 F'“+ ——| 2+2F "+ —< .
malizations). = —J.,/\2 andJo=—Jo//2. e r2 F2
In the classical treatment of the Skyrme model the La- (11)

grangian density depends on the dimension of the irreducible

representation only through the overall scalar fadtiof4) . .
[7]. In the case of a reducible representation this overall fac: For the hedgehog solution the baryon density takes the

tor is a sum over separate factors for the different irreducibl orm

representations: )
50 eOVﬁyT 2 R.R 1 sir’F
= r v = —_- —
247°N p 272 r?

F'. (12
N=2/32 jiljit D(2jict D). (6)
The renormalization factdX ensures that the lowest nonva-

BecauseN is an overall factor the equations of motion for Nishing baryon number iB=1 for the hedgehog in an arbi-

the dynamical variablea are independent of the dimension trary representation.
of the representation.

The static “spherically symmetric” hedgehog ansatz in a . QUANTIZATION IN THE COLLECTIVE
general representation is invariant under the combined spa- COORDINATE APPROACH

tial and isospin rotations: The quantization of the Skyrme model in a general di-

. . R . mension[8] can be achieved by means of collective rota-
i[rXV]U(r)+2[3,,U(r)]=0. (7)  tional coordinates that separate the variables which depend
on the time and spatial coordinatel?]:
Here circular components are used. The solution of(Bqgs

the generalization of the usual hedgehog ansatz U(r,g(t)=A@(t)Ug(NAT(@q(t)). (13
e Uo(r) =exp{ —i V23, T3F (1)}, (8  The set of three real, independent parameteyd)

=[q*(t),q?(t),q3(t)] are quantum variable€Euler angles

wheret is the unit vector expressed in terms of circular fepresenting rotations of the skyrmiorin a general repre-

components. sentation the unconstrained variabtgd) are more conve-
With the hedgehog ansat8) the Lagrangian densit{2)  nient than the four constrained Euler-Rodrigues parameters

reduces to the following simple form: with the constraint used ifi12]. When the Skyrme La-
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grangian(2) is considered quantum mechanica#lp initio

the generalized coordinatei(t) and velocitiesa(t) satisfy
the commutation relation®]

[a%,9°]=—if*"(q). (14
Here the tensofab(ﬁ) is a function of generalized coordi-

natesci only, the explicit form of which is determined after
the quantization condition has been imposed. The teff$or
is symmetric with respect to interchange of the indiaend

b as a consequence of the relat{af,q°]=0. The commu-
tation relation between a generalized velocity compoiw@nt

and arbitrary functiorG(q) is given by

. . , - d .
[qa,G(q>]=—|2 fa%q)a—q,G(q). (15)
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1 . R
=— Za(F){qﬂ,g(q)ﬁa}, (21

where the curly bracket denotes an anticommutator. The ca-
nonical commutation relations

[pa(aia!F)lqﬁ]:_ib‘aﬁi (22)

then yield the following explicit form for the functions
f2(a):

fo0(d)= - ——g.4(d) (23
a(F) ep
Because of the nonlinearity of the Skyrme model the ca-
nonical momenta defined in this way do not necessarily sat-

isfy the relation[p,,pz]=0. As shown in9], there exists a
local transformation of the set of variabléswhich makes it

Here Weyl ordering of the operators has been employedy,ssible to satisfy these relations. Following Fejiial. [9],

(. 9
&oG(q)=§(q“,WG(q)}- (16)

With this choice of operator ordering no further ordering

ambiguity appears.
After making the substitutior{13) into the Lagrangian

density(2) the dependence of Lagrangian on the generalize

velocities can be expressed as
.o 1( 5  --
L(q,q,F)=NJ d>r L(r,q(t),F(r))

1 . .- .
:_Za(F)qag(q)anﬁ+O(qo)- 17

Here the soliton moment of inert&(F) is given as

1 -
a(F)zf d3rA(F(r))=§a(F)

w

1 87 -
. 24i
& 3 fdrr sirF

., SIFF
1+F +? , (18

where A(F(r)) is the moment of inertia density.
The 3X3 metric tensorg(ﬁ)aB is defined as the scalar
product of a set of function@flm)(a) [7]

9(Aap=2 (5)"CVCE™=2 (—)"CMCy ™
m m
= =28, 2(8,10p3+ 843051)COS. (19
Here the functionsC/(™ are defined in8] and related to
c™ as

ci,"‘)(&):; Dy (DCL™(). (20)

The canonical momentump,, which is conjugate t@®, is
defined as

we define an angular momentum operator:

. N XLa P
Ja= = 5P . Cla (@} =(=)"—7—{a".C/ ()}, (29

the components of which satisfy the commutation relations

4(15)' It is readily verified that the operatal’, is a D/(q)

right rotation” generator. The explicit form for the La-
grangian of the consistently quantized Skyrme model now

takes the form

1 j/Z

L(6,8,F)= —M(F) =AMy, (F)+ —

1 .
:—lv|(|:)—m\/|zj(|:)+m.]2 (25)

where

Asz(F):f d3r AMs;(F(r))

=e*f .- AMy;(F)
21 —
=—ef, ——— fdrr2
15a %(F)
><sir12F| 15+ 4d,sirPF(1—F'?)

SireF
T2

+2d; +2le’2]. (26)

The coefficientd; in these expressions are given as
1. . : o
dy=52 Iict D@ic+ DIBlikt =11, (27
NN , . ,
do= 2 Ikt DIt D)= 120+ 3), (28)

lg . . .
ds=2 Il D@ict DI2jdict D11 (29
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The corresponding Hamilton operator is

H;(F)=M(F)+AM;(F)+ ﬁyz

1
=M(F)+AM;(F)+ ——J°. (30)

a(F)
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which j=1/2, the second rank tensor part of E§4) van-
ishes. This implies that the quadrupole moment of Ahg
resonance cannot be described with the fundamental repre-
sentation.

The Hamiltonian density, which corresponds to the quan-
tum Lagrangian33) has the following matrix elements for
baryon states with spin and isospif> 1/2:

This result differs from the semiclassical one in the ap-

pearance of the negative quantum correctiod ;(F) [9],

which depends on the dimension of the representation of the

SU(2) group|8].

For the Hamiltonian(30) the normalized state vectors

with fixed spin and isospin” are

/ N2/+1 .
m m/> = 47T Dm'm’(q)|0>’ (31)
with the eigenvalues
o Z(/+1)
H(j./,F)=M(F)+AM;(F)+ ——=— (32

2a(F)

Substitution of the rotated hedgehdf3) into the La-
grangian density?2) yields the following expression for the

Lagrangian density for the quantum Skyrme model in a gen-

eral reducible representation:
A(F(r))

a*(F)
—AMsj(F(r)) = M(F(r)).

L(r,q(1), l:(r))— ———Q*-J"-nA"1)

(33

The angular momentum operator on the right-hand side olfa
Eq. (33) can be separated into scalar and tensor terms in thg

usual way:
3 7 ’ 2A/2 Am
-3 n= 33 Vamew(D0)
1 1 A
X , J/ J mr (34)
m m m+m’

whereY, n(9,¢) is a spherical harmonic.
The volume integral of the Lagrangian dendi83) gives

=M(F(r)+AMs;(F(r))

N
+ ZaZ(F)< ( 1)_ §7T[3ms_/(/+1)]

XYoo %) | (35

For nucleons”=1/2 the dependence on angles is absent and
the quantum skyrmion is therefore spherically symmetric as
required. The states with larger spin than 1/2 are, however,
described as deformed.

IV. THE CHIRAL ANGLE AND THE PION MASS

Thel=J=/=1/2 andl =J= /= 3/2 skyrmions are to be
identified with the nucleons and th;; resonances. Minimi-
zation of the classical expression for the miEd) Eq.(11)
leads to the conventional differential equation for the chiral
angleF(r) Eq. (10) according to whichF(r) falls as 1f? at
rge distances.

In the semiclassical approach the quantum mass term
My; is absent from the mass expressi@0). Its absence
has the consequence that variation of the truncated quantum
mass expression yields no stable solutiérb]. The semi-
classical approach describes the skyrmion as a “rotating”
rigid body with fixedF(r) [12]. In contrast the full energy
expression(30) that is obtained in the consistent canonical
quantization procedure in the collective coordinates ap-
proach gives stable solutions.

Minimization of the quantum mass expressi@0), leads
to the following integrodifferential equation for the chiral

the Lagrangian(25). In the fundamental representation, for angleF(r):

- , e’r %sifF ~ , ,
Frl —2T72_ 4sirfF + =0 {80a(F)AMy;(F)+207(/+1)+4d; — 8d,sir’F}
a
_ e*r %sin2Fk  _ ~ , ,
+F'?| —2sin F+ {40a(F)AMg;(F)+107(/+1)+2d; — 8d,sir’F}
~ e'rsirfF
+F'| =47 + ———{160a(F)AMs;(F)+40/(/+ 1)+ 8d; — 16d,sir’F}
15a 2(F)
_ SirPF et
+sin F|24+2——— — {(40a(F)AMs;(F)+10/(/+1))(T 2+ 2sirfF)
r2 15a%(F)

+ 157 2+ 4d,sin’F +8d,r 2sir?F}|=0,

(36)
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with the usual boundary conditiod§0)= 7 andF(«)=0. parameter value$, ande [10]. Moreover positivity of the
The state dependence of this equation of motion is a direqtion mass(38), can obviously only be achieved for states
consequence of the fact that quantization preceded variatiomith sufficiently small values of spirf. This implies that the

(cf. Ref.[13)]). spectrum of states with equal spin and isospin will necessar-
At large distances this equation reduces to the asymptotity terminate at some finite value of the spin quantum num-
form ber. As the negative quantum mass correctiddly; in the
_ _ o expression(26) grows in magnitude with the dimension of
r2F"+2rF'—(2+m?2r 2)F =0, (37)  the representation, it is always possible to find a representa-
~ tion in which the nucleon and th&;; resonance are the only
where the quantitynﬁ is defined as stable particles, as required by experiment. This argument is

, more general than the method of self-consistent dynamical
2/(/ + 1)+3] @9 truncation of the spectrum suggested in Ré#].

a(F)

The corresponding asymptotic solution takes the form

e4

m2=— ——1 8AMy;(F)+
3a(F)
V. THE NOETHER CURRENTS
The Lagrangian density of the Skyrme model is invariant
under left and right transformations of the unitary fild
Xp(—m,T). (399  The corresponding Noether currents can be expressed in
terms of the collective coordinaté$3). The vector and axial

) -~ o Noether currents that are associated with the transformations
The requirement of stability of the quantum skyrmion is that

the integralg11), (18), and(26) converge. This requirement

is satisfied only ifr71 >0. For that the presence of the nega-
tive quantum correctlomM j(F) is necessary. It is the ab- are nevertheless simpler and directly related to physical ob-
sence of this term which Ieads to the instability of the skyr-servables. The factor 22 before generators is needed in
mion in the semiclassical approa¢B]. Note that in the the casej=1/2 to match the transformatio0) with the
guantum treatment the chiral angle has the asymptotimfinitesimal transformation ifl2]. The Noether currents are
Yukawa behaviof39) even in the chiral limi{9]. The posi- operators that depend on the generalized collective coordi-

tive quantitym_=ef_m, should obviously be interpreted as natesq and the generalized angular momentum operaiprs
an effective mass for the pion field in the skyrmion mass. (24).

In contrast to the classical skyrmion the stability of the  The explicit expression for the spatial components of the
guantum-mechanical skyrmion depends on the Lagrangiawector current density is

1
F(T)= k(—-l—,...—
r

U(x)vf)(l—izﬁwaja)U(x)[lJr(—)izfzwaja], (40)

v 0L SirPF| | , 1[_, siPF  2d,+5 ) 11 1} Lo
Vb_a(V wa) \/— [fw+e2 F = 4.5.612“:)Q|n2F y s bDa,s(Q)Xu
S|r\2F SITY v 1 /= TRV ~ 00 -~ 1 2ra, o
_—\/E.ez.az(F)(_) {[3"XT]- DL (DI[I' XTIXT T +[[I' XT]Xr]pD2 (DI Xr]_g}]. (42)

Here VX is a circular component of the gradient operator. The indicaadb denote isospin and spin components. The time
(charge component of the vector current density has the expression

1 S|n2F>

. L 2
a— vV - —\/—ssz

= 124 —
C Haows) _ a(F) P

.|:2

(=)%D3 (@)= D7 (DX -1} (42

The explicit expression for the axial current density takes the form

Ao 7L _{ 2SIN2F 1 sin 2F{F,2+sin2|:_ Shas ) o1 (6
"V [[TT e 1 Z aaxm) |0
fz(ZF,_sin 2F)_£<F,2sin2F_4F,sin2F+sin2F sin 2F_sin2Fsin2F) (=)D (R
i e? r r2 rd 4.-3%(F)-r a.s PX-Xb
2F’ sirfF R S T L eon al Al Al Al
- Z(F)( )S{D s(q)x—s‘]l +J’ Da,s(q)x—s_2Da,s(q)x—s(‘],'r)(‘],'r)}rb
sinstinZFSA,AAlﬁA,AA ) mr g e s e
_ez.az—(F)_r(—) {[[J"XTr]Xr]_sDg ([I" Xr]Xr]p+[[I"Xr]Xr]sDa {(A)[[I"XTIXr]_g}|. (43
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The operatorg41)—(43) are well defined for all representa- / Va /

tionsj of the classical soliton and for fixed spin and isospin < [1=0l3 > —< j d3xr[F X B, >

/ of the quantum skyrmion. The new terms, which are ab- s MMs mms|2 MM

sent in the corresponding semiclassical expression, are those [/(/+1)]"%

that have the factoa?(F) in the denominator. =——F—(T_o)

The conserved topological current density in Skyrme 3-a(F)f,

model is the baryon current density, the components of J 1 7

which are X / } (45)
mg 0 mg

Here the isoscalar mean-square radius is given as

1 -
B.(r,F(r))= SIPF-F'[J' Xr],. (44 <ré.:o>=ﬁ<r.:o>= ?—frsszFdr (46)

1
J27%a(F) r

and the quantitya is defined in Eq(18).
The matrix elements of the third component of the isovec-
The matrix elements of the third component of the iso-tor part of the magnetic moment operator, which is obtained

scalar magnetic moment operator have the form from the vector current densif@l), have the form
|
/ / j & 5 /
= X-r[r XV
MM [mi=1]3 mm, mmg| 2 [ lo mm,

a(F 8- -~ d, /(/+1
= as( )+ Te fdr-rsin“F(l——2 A+
e’-f. 3-f..a(F)

2.5 3

12( 1 2 1
{/ / /})

. (_)z/[5/(/+ 1)(2/-1)(2/+1)(2/+3)
2

e om0 m

| 2-3 ms 0 mg/lmi 0 m
(47)
|
Here the symbol in the curly brackets is a éoefficient. 1 _
The volume integral of the axial current densi®?2) <ré,=1)=?<r5,=o>
yields the axial coupling constagi, as ef
jd??“ SIPF[1+F'2+sirfF/T ]
172 o | 12 T2 [ ~
9a=3\ 15 1/ fd XRol _ 1191 ™ J drr? sirF[1+F'2+sirPF/T ]
1 erz (50
91( ( =0 (48)
The isoscalar magnetic mean-square radius has the ex-
where pression
~ 4 - . - . ~~4: y
g.(F)= = dr| T F'+7 sin 2F+T sin 2F-F'? 1 drr4sirF-F
(Fi-o)= f2<rMI 0= 2f2 ,
SireF Jdrrssz F’
+2 sirfF-F' + = sin 2F |. (49 (51)

For nucleons the the isovector charge mean-square radi@gsd the isovector magnetic mean-square radius has the ex-
becomes pression
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3 d,
4 10

3 dy |
4 10

f drrsirPF| 1+ F'2+sirPF/T +e?sir’Fla (F)

(roi-= 2<?M,I:O>: 2 (52
ef e?f ~— ~ ~
™ ™ J drr2siPF| 1+ F'2+sirPF/T +e’sirPF/a (F)

bvg

The matrix element of the divergence of the vector cur-3/2, and 5/2, and therefore appears to be empirically con-
rent (41) vanishes traindicated.
The two parameters of the modél, ande, may be de-
/7 termined in the usual way by fitting two empirical baryon
mm v mm =0. (53 observables. The procedure adopted here was to first deter-
ths vhs mine these two parameters by using the chiral angle of the
The asymptotic equation of motiaB7), valid for larger, classical Skyrme model, whi(;h is i_ndependent of both the
is recovered if the matrix element of the divergence of the[mOdeI parameters and the dimension of the; rgpresentaﬂon
axial current(43) for the proton is taken to be 7],_by afitto the ngcleon mass39 MeV) qnd |ts_|§oscalar
radius(0.72 fm) for different values of the dimensignof the
Vi representation. These parameters were then used in a numeri-
< | VPAR > =f2m2F(r). (54)  cal solution of Eq(36). That solution was subsequently used
meMs to determine new values df, ande. This procedure was
iterated until a converged solution was obtained. The nu-
This is the usual equation for a “partially conserved axialmerical results are shown in Table I. For the irreducible rep-
current” (PCAC), and supports the interpretation of, as  resentation withj=1 the proton magnetic moment calcu-

Mg

an effective pion mass. lated in this way is within 10% of the empirical value. The
calculated values of both the neutron magnetic moment and
VI. NUMERICAL RESULTS the axial coupling constant agree with the corresponding em-

pirical values to within 1%. The\ ;3 resonance observables

The equation of motion for the quantum Skyrme modelfor different representations as obtained with fixed values for
(36) depends—in contrast to the classical case—on the pg_ ande are presented in Table II.

rametere and representation. Moreover the differential equa-
tion for the chiral angle is state dependent.

For nucleons {'=1/2) solutions for the chiral angle, VIl. DISCUSSION
which describe stable solitons with spin 1/2, exist when

. . . There are two main aspects of the qguantum corrections to
<7.5. The largest value &, which admits stable solutions, P q

AP i ) ; X the Skyrme model based description of the baryons. One is
decreases with increasing dimensionality of the representgge reatment of the dynamical field variables of the Lagrang-
tion. ForA 3 resonances/(=3/2) there are no stable soliton o, gensity as quantum-mechanical variatesinitio. This
solutiqns in .thg fundamental representation, nor in the rePr&jery likely formed the basis for Skyrme’s conjecture for the
sentation withj=1 in the quantum Skyrme model. In the iy of the pion masg4]. The development of thab initio
representations witly=3/2 and 2 there are stable soliton 4,antym-mechanical treatment of the model was pioneered
solutions only for baryons with spirf=1/2 and 3/2. A di- i, Ref. [9], and was developed above to realize Skyrme’s
mension withj =5/2 allows stable solitons with spii=1/2,  conjecture constructively. The other main aspect is the treat-
) _ o ment of quantum fluctuations of the pion field as loop cor-
TABLE I. The predicted static nucleon observables in dmerentrections[lS].
representations with fixed empirical values for the isoscalar radius Both types of quantum effects lead to substantial modifi-
0.72 fm and nucleon mass 939 MeV. cations of the phenomenological description of the baryons

j 1/2 1 32 52 leie; Expt , _ ,
TABLE Il. The predicted staticA 33 resonance observables in

my Input Input Input Input Input 939 MeVv different representations with fixed values for the parameters
f 59.8 585 57.7 56.6 58.8 93 MeV =4.15 andf ,.=58.5(determined by a fit to the nucleon observables
eﬁ 4.46 415 3.86 3.41 4.24 mN=939,<r2)|1’:20=0.72, in a representation with=1).
Hp 2.60 2.52 2.51 2.52 2.53 2.79 I 3 1 3
o ~201 -1.93 —-1.97 -205 -193 -191 ! 29193 2 2 Expt.
da 1.20 1.25 1.33 1.52 1.23 1.26 my 1055 1029 910 1232 MeV
m, 79.5 180 248 336 155 138 MeVv ., 7.38 6.40 4.20 37275
V(rd)—o Input Input Input Input Input 0.72fm . 3.02 273 201

(rgyj=; 133 1.03 0.97 0.93 1.07 0.88fm 4,0 -1.33 ~0.94 ~0.19
Y2y _, 105 101 100 1.00 1.01  0.81fm p,- —5.69 —461 —2.38

JrZy_, 132 103 097 093 107 080fm \{rZ)_, 0.91 0.87 0.72
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based on the Skyrme model. Both also lead to negative quamegative for sufficiently large spin. Moreover it describes the
tum corrections to the skyrmion mass. In the present worlstates with spin larger than 1/2 as deformed. That deforma-
this negative mass correction was shown to allow stablgion is inherent in Skyrme models with terminating spectra
variational solutions for the quantized Hamiltonian and tohas also been been noted[it6], although in that work the
generate a positive effective mass for the pion field in theabsence of states with large spin and isospin was achieved by
skyrmion. Chiral symmetry is broken here only “spontane-associating very large decay widths with those states.
ously” through the boundary conditiolJ(«)=1 [4], The present systematic quantum-mechanical treatment of
whereas the Lagrangian density remains chiral symmetridhe skyrmion was shown to imply the need to employ repre-
Perturbative treatments of the quantum corrections, whiclsentations of larger dimension than the fundamental one for
employ the classical solution for the chiral angle cannot rethe description of the nucleon and the;; resonance as
veal the presence of a finite effective pion mass, and hence stable solitons with spin and isospin 1/2 and 3/2, respec-
such the chiral symmetry has to be broken by an explicitively, in the same representation. The quantum treatment
pion mass term in the Lagrangian density. implies that the tower of states witk=J terminates, and that

The spectrum of states with=J terminates in the quan- there therefore is no infinite tower of unphysical states as in
tum Skyrme model, because the effective pion mass becomdise semiclassical approach.
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