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Stability and representation dependence of the quantum skyrmion
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A constructive realization of Skyrme’s conjecture that an effective pion mass ‘‘may arise as a self-consistent
quantal effect’’ based on anab initio quantum treatment of the Skyrme model is presented. In this quantum-
mechanical Skyrme model the spectrum of states withI 5J, which appears in the collective quantization,
terminates without any infinite tower of unphysical states. The termination point depends on the model pa-
rameters and the dimension of the SU~2! representation. Representations, in which the nucleon andD33

resonance are the only stable states, exist. The model is developed for both irreducible and reducible repre-
sentations of general dimension. States with spin larger than 1/2 are shown to be deformed. The representation
dependence of the baryon observables is illustrated numerically.@S0556-2813~98!05505-8#

PACS number~s!: 24.85.1p, 12.39.Dc
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I. INTRODUCTION

The modern view of Skyrme’s topological soliton mod
of the baryons@1# is that it represents a chiral symmetr
effective mesonic representation of the approximately ch
symmetric QCD Lagrangian in the largeNc limit, in which
the baryons have to be constructed as topological soli
@2#. The mass of the pion, which is the Goldstone boson
the spontaneously broken mode of chiral symmetry, is c
ventionally introduced through an external chiral symme
breaking term in the Lagrangian density@3#. Skyrme, how-
ever, originally suggested a very different origin for the pi
mass as ‘‘a self-consistent quantal effect’’@4#.

We provide here a constructive realization of this conj
ture, by demonstrating that in anab initio quantum-
mechanical treatment of the Skyrme model Lagrangian
term, which may be interpreted as an effective pion m
term, automatically arises. Moreover, with typical values
the parameters in the Skyrme Lagrangian, this mass t
takes values close to that of the physical pion mass, altho
it is state dependent as a consequence of the quantiz
procedure. This effective pion mass may naturally be co
bined with the pion mass that may be introduced by add
an explicitly chiral symmetry breaking pion mass term to t
Lagrangian density of the model.

The effective pion mass appears through an additio
term in the Euler-Lagrange equation of the quantum Skyr
model, the asymptotic form of which is consistent with
partial conservation law for the axial current~PCAC!. This
term restores the stability of the soliton solutions, which
lost in a direct variational solution of the Skyrme mod
when the rotational energy introduced by projection o
states of good spin and isospin is included@5,6#. The quan-
tum Skyrme model describes the baryon states with s
larger than 1/2 as deformed, but only in representations w
larger dimension than the fundamental one. Finally the sp
trum of states with equal spin and isospin, which appear
the collective quantization, terminates in the quant
Skyrme model, and therefore unphysical states with largI
5J do not appear. The termination point in this spectru
depends on the parameters in the model as well as on
570556-2813/98/57~5!/2597~8!/$15.00
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dimension of the representation employed. This represe
tion dependence is a quantum effect, which is absent in
classical Skyrme model@7#.

The present work builds on the development of theab
initio quantized version of the Skyrme model in Ref.@8#, but
goes beyond the treatment of the quantum corrections
perturbations of the classical skyrmion. The method ofab
initio treatment of the Skyrme model in SU~2! representa-
tions of arbitrary dimension is that suggested in Ref.@9# for
the fundamental representation. The narrow stability c
straints of the fundamental representation@10# are avoided
by the development of the model in general representatio
The ab initio quantum-mechanical treatment differs fro
that of Ref.@11#, in which the systematic quantization of th
Skyrme model was developed on the classical Hamilton
of the model.

The present manuscript is organized as follows. In Sec
we review the basic formalism of the Skyrme model in
representation of arbitrary dimension. In Sec. III we co
struct the quantum Skyrme model in representations of a
trary dimension building on the formalism developed in R
@8#. In Sec. IV we derive the equations of motion and t
associated effective pion mass. The Noether currents are
rived in Sec. V. Numerical results for the baryon observab
are presented in Sec. VI. Section VII contains a conclud
discussion.

II. THE CLASSICAL SKYRMION
IN A GENERAL REPRESENTATION

The Lagrangian density of the Skyrme model@1# depends
on a unitary fieldU(rW,t), which in a general reducible rep
resentation for the SU~2! group may be expressed as dire
sum of Wigner’sD matrices

U~rW,t !5(
k

% D j k@aW ~rW,t !#. ~1!

HereaW represents a triplet of Euler anglesa1(rW,t), a2(rW,t),
a3~rW,t !, which form the set of dynamical variables. The m
tricesD j k have dimension (2j k11)3(2 j k11).
2597 © 1998 The American Physical Society
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The Lagrangian density has the form@12#

L@U~rW,t !#52
f p

2

4
Tr$RmRm%1

1

32e2
Tr$@Rm ,Rn#2%, ~2!

where the ‘‘right’’ currentRm is defined as

Rm5~]mU !U†, ~3!

and f p ~the pion decay constant! ande are parameters.
The trace of a bilinear combination of generatorsĴa of the

SU~2! group depends on the representation as

Tr^ j •uĴaĴbu j •&5~2 !a
1

6(k
j k~ j k11!~2 j k11!da,2b

[~2 !a
1

4
Nda,2b . ~4!

The commutator relations for these generators are

@ Ĵa ,Ĵb#5F1 1 1

a b cG Ĵc . ~5!

The factor in the square brackets on the right-hand side is
Clebsch-Gordan coefficient (1a1bu1c) in a more convenien
notation than the standard one. Here we have used the
malizationsĴ652J61 /A2 andĴ052J0 /A2.

In the classical treatment of the Skyrme model the L
grangian density depends on the dimension of the irreduc
representation only through the overall scalar factorN ~4!
@7#. In the case of a reducible representation this overall f
tor is a sum over separate factors for the different irreduc
representations:

N52/3(
k

j k~ j k11!~2 j k11!. ~6!

BecauseN is an overall factor the equations of motion f
the dynamical variablesaW are independent of the dimensio
of the representation.

The static ‘‘spherically symmetric’’ hedgehog ansatz in
general representation is invariant under the combined
tial and isospin rotations:

i @rW3¹#aU~rW !1A2@ Ĵa ,U~rW !#50. ~7!

Here circular components are used. The solution of Eq.~7! is
the generalization of the usual hedgehog ansatz

ei tW•rWF~r !⇒U0~rW !5exp$2 iA2Ĵa• r̂ aF~r !%, ~8!

where r̂ is the unit vector expressed in terms of circu
components.

With the hedgehog ansatz~8! the Lagrangian density~2!
reduces to the following simple form:
he

or-

-
le

c-
le

a-

L@F~r !#52NM„F~r !…52NH f p
2

2 S F82 1
2

r 2
sin2F D

1
1

8e2

sin2F

r 2 S 2F82 1
sin2F

r 2 D J . ~9!

The requirement that the soliton mass be stationary yields
same differential equation for the chiral angleF(r ) as in
@12#:

F912F9
sin2F

r̃ 2
1F82

sin 2F

r̃ 2
1

2

r̃ 2
F82

sin 2F

r̃ 2

2
sin 2F sin2F

r̃ 4
50. ~10!

Here the dimensionless variabler̃ is defined asr̃ 5e fpr .
The boundary conditions for solitons with unit baryon num
ber areF(0)5p, F(`)50. The classical soliton is obvi
ously independent of the the representation.

After the renormalization the hedgehog mass in any r
resentation has the form

M ~F !5E d3rM„F~r !…5
f p

e
M̃ ~F !

52p
f p

e E d r̃ r̃ 2FF821
sin2F

r̃ 2 S 212F821
sin2F

r̃ 2 D G .

~11!

For the hedgehog solution the baryon density takes
form

B05
e0nbg

24p2N
Tr Rn Rb Rg52

1

2p2

sin2F

r 2
F8. ~12!

The renormalization factorN ensures that the lowest nonva
nishing baryon number isB51 for the hedgehog in an arbi
trary representation.

III. QUANTIZATION IN THE COLLECTIVE
COORDINATE APPROACH

The quantization of the Skyrme model in a general
mension@8# can be achieved by means of collective ro
tional coordinates that separate the variables which dep
on the time and spatial coordinates@12#:

U„rW,qW ~ t !…5A„qW ~ t !…U0~rW !A†
„qW ~ t !…. ~13!

The set of three real, independent parametersqW (t)
5@q1(t),q2(t),q3(t)# are quantum variables~Euler angles
representing rotations of the skyrmion!. In a general repre-
sentation the unconstrained variablesqW (t) are more conve-
nient than the four constrained Euler-Rodrigues parame
with the constraint used in@12#. When the Skyrme La-
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57 2599STABILITY AND REPRESENTATION DEPENDENCE OF . . .
grangian~2! is considered quantum mechanicallyab initio

the generalized coordinatesqW (t) and velocitiesq̇W (t) satisfy
the commutation relations@9#

@ q̇a,qb#52 i f ab~qW !. ~14!

Here the tensorf ab(qW ) is a function of generalized coord
natesqW only, the explicit form of which is determined afte
the quantization condition has been imposed. The tensorf ab

is symmetric with respect to interchange of the indicesa and
b as a consequence of the relation@qa,qb#50. The commu-
tation relation between a generalized velocity componenq̇a

and arbitrary functionG(qW ) is given by

@ q̇a ,G~qW !#52 i(
r

f ar~qW !
]

]qr
G~qW !. ~15!

Here Weyl ordering of the operators has been employ

]0G~q!5
1

2H q̇a,
]

]qa G~q!J . ~16!

With this choice of operator ordering no further orderi
ambiguity appears.

After making the substitution~13! into the Lagrangian
density~2! the dependence of Lagrangian on the generali
velocities can be expressed as

L~qW ,q̇W ,F !5
1

NE d3rL„rW,qW ~ t !,F~r !…

52
1

4
a~F !q̇ag~qW !abq̇b1O~ q̇0!. ~17!

Here the soliton moment of inertiaa(F) is given as

a~F !5E d3rA„F~r !…5
1

e3f p

ã~F !

5
1

e3f p

8p

3 E d r̃ r̃ 2sin2FF11F821
sin2F

r̃ 2 G , ~18!

whereA„F(r )… is the moment of inertia density.
The 333 metric tensorg(qW )ab is defined as the scala

product of a set of functionsCa
(m)(qW ) @7#

g~qW !ab5(
m

~2 !mCa
~m!Cb

~2m!5(
m

~2 !mCa8
~m!Cb8

~2m!

522dab22~da1db31da3db1!cosq2. ~19!

Here the functionsCa8
(m) are defined in@8# and related to

Ca
(m) as

Ca
~m!~qW !5(

m
Dm,m8

1
~qW !Ca8

~m!~qW !. ~20!

The canonical momentumpa , which is conjugate toqa, is
defined as
d:

d

pa~qW ,q̇W ,F !5
]L~qW ,q̇W ,F !

]q̇a
52

1

4
a~F !$q̇b,g~qW !ba%, ~21!

where the curly bracket denotes an anticommutator. The
nonical commutation relations

@pa~qW ,q̇W ,F !,qb#52 idab , ~22!

then yield the following explicit form for the functions
f ab(qW ):

f ab~qW !52
2

a~F !
gab

21~qW !. ~23!

Because of the nonlinearity of the Skyrme model the
nonical momenta defined in this way do not necessarily
isfy the relation@pa ,pb#50. As shown in@9#, there exists a
local transformation of the set of variablesqW , which makes it
possible to satisfy these relations. Following Fujiiet al. @9#,
we define an angular momentum operator:

Ĵa852
i

2
$pr ,C~2a!8r ~qW !%5~2 !a

ia~F !

4
$q̇r ,Cr8

~2a!~qW !%, ~24!

the components of which satisfy the commutation relatio
~5!. It is readily verified that the operatorĴa8 is a D j (qW )
‘‘right rotation’’ generator. The explicit form for the La-
grangian of the consistently quantized Skyrme model n
takes the form

L~qW ,q̇W ,F !52M ~F !2DMS j~F !1
1

a~F !
Ĵ82

52M ~F !2DMS j~F !1
1

a~F !
Ĵ2, ~25!

where

DMS j~F !5E d3rDMS j„F~r !…

5e3f p•DM̃S j~F !

52e3f p

2p

15ã 2~F !
E d r̃ r̃ 2

3sin2FH 1514d2sin2F~12F82!

12d3

sin2F

r̃ 2
12d1F82J . ~26!

The coefficientsdj in these expressions are given as

d15
1

N(
k

j k~ j k11!~2 j k11!@8 j k~ j k11!21#, ~27!

d25
1

N(
k

j k~ j k11!~2 j k11!~2 j k21!~2 j k13!, ~28!

d35
1

N(
k

j k~ j k11!~2 j k11!@2 j k~ j k11!11#. ~29!



p

th

s

e
en

t

or

pre-

an-
r

and
as

ver,

ral

erm

tum

g’’

al
ap-

l

2600 57A. ACUS, E. NORVAIŠAS, AND D. O. RISKA
The corresponding Hamilton operator is

H j~F !5M ~F !1DM j~F !1
1

a~F !
Ĵ82

5M ~F !1DM j~F !1
1

a~F !
Ĵ2. ~30!

This result differs from the semiclassical one in the a
pearance of the negative quantum correctionDM j (F) @9#,
which depends on the dimension of the representation of
SU~2! group @8#.

For the Hamiltonian~30! the normalized state vector
with fixed spin and isospinl are

U l

m,m8
L 5

A2l 11

4p
Dm,m8

l
~qW !u0&, ~31!

with the eigenvalues

H~ j ,l ,F !5M ~F !1DM j~F !1
l ~ l 11!

2a~F !
. ~32!

Substitution of the rotated hedgehog~13! into the La-
grangian density~2! yields the following expression for th
Lagrangian density for the quantum Skyrme model in a g
eral reducible representation:

L„rW,qW ~ t !,F~r !…5
3A„F~r !…

2a2~F !
„Ĵ822~ Ĵ8• r̂ !~ Ĵ8• r̂ !…

2DMS j„F~r !…2M„F~r !…. ~33!

The angular momentum operator on the right-hand side
Eq. ~33! can be separated into scalar and tensor terms in
usual way:

Ĵ822~ Ĵ8• r̂ !~ Ĵ8• r̂ !5
2

3
Ĵ822

4p

3
Y2,m1m8

* ~q,w!

3F 1 1 2

m m8 m1m8
G Ĵm8 Ĵm8

8 ,~34!

whereYl ,m(q,w) is a spherical harmonic.
The volume integral of the Lagrangian density~33! gives

the Lagrangian~25!. In the fundamental representation, f
-

e

-

of
he

which j 51/2, the second rank tensor part of Eq.~34! van-
ishes. This implies that the quadrupole moment of theD33
resonance cannot be described with the fundamental re
sentation.

The Hamiltonian density, which corresponds to the qu
tum Lagrangian~33! has the following matrix elements fo
baryon states with spin and isospinl .1/2:

K l

mtms
UH„rW,qW ~ t !,F~r !…U l

mtms
L

5M„F~r !…1DMS j„F~r !…

1
A„F~r !…

2a2~F !
S l ~ l 11!2A2

3
p@3ms

22l ~ l 11!#

3Y2,0~q,w! D . ~35!

For nucleonsl 51/2 the dependence on angles is absent
the quantum skyrmion is therefore spherically symmetric
required. The states with larger spin than 1/2 are, howe
described as deformed.

IV. THE CHIRAL ANGLE AND THE PION MASS

The I 5J5l 51/2 andI 5J5l 53/2 skyrmions are to be
identified with the nucleons and theD33 resonances. Minimi-
zation of the classical expression for the massM (F) Eq. ~11!
leads to the conventional differential equation for the chi
angleF(r ) Eq. ~10! according to whichF(r ) falls as 1/r 2 at
large distances.

In the semiclassical approach the quantum mass t
DMS j is absent from the mass expression~30!. Its absence
has the consequence that variation of the truncated quan
mass expression yields no stable solution@5,6#. The semi-
classical approach describes the skyrmion as a ‘‘rotatin
rigid body with fixedF(r ) @12#. In contrast the full energy
expression~30! that is obtained in the consistent canonic
quantization procedure in the collective coordinates
proach gives stable solutions.

Minimization of the quantum mass expression~30!, leads
to the following integrodifferential equation for the chira
angleF(r ):
F9F22 r̃ 224sin2F1
e4 r̃ 2sin2F

15ã 2~F !
$80ã~F !DM̃S j~F !120l ~ l 11!14d128d2sin2F%G

1F82F22 sin 2F1
e4 r̃ 2sin2F

15ã 2~F !
$40ã~F !DM̃S j~F !110l ~ l 11!12d128d2sin2F%G

1F8F24 r̃ 1
e4 r̃ sin2F

15ã 2~F !
$160ã~F !DM̃S j~F !140l ~ l 11!18d1216d2sin2F%G

1sin 2FF212
sin2F

r̃ 2
2

e4

15ã 2~F !
$„40ã~F !DM̃S j~F !110l ~ l 11!…~ r̃ 212sin2F !

115r̃ 214d3sin2F18d2 r̃ 2sin2F%G50, ~36!
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with the usual boundary conditionsF(0)5p andF(`)50.
The state dependence of this equation of motion is a di
consequence of the fact that quantization preceded varia
~cf. Ref. @13#!.

At large distances this equation reduces to the asymp
form

r̃ 2F912 r̃ F82~21m̃p
2 r̃ 2!F50, ~37!

where the quantitym̃p
2 is defined as

m̃p
252

e4

3 ã~F !
H 8DM̃S j~F !1

2l ~ l 11!13

ã~F !
J . ~38!

The corresponding asymptotic solution takes the form

F~ r̃ !5kS m̃p

r̃
1

1

r̃ 2D exp~2m̃p r̃ !. ~39!

The requirement of stability of the quantum skyrmion is th
the integrals~11!, ~18!, and~26! converge. This requiremen
is satisfied only ifm̃p

2.0. For that the presence of the neg
tive quantum correctionDM j (F) is necessary. It is the ab
sence of this term which leads to the instability of the sk
mion in the semiclassical approach@6#. Note that in the
quantum treatment the chiral angle has the asympt
Yukawa behavior~39! even in the chiral limit@9#. The posi-
tive quantitymp5e fpm̃p should obviously be interpreted a
an effective mass for the pion field in the skyrmion mass

In contrast to the classical skyrmion the stability of t
quantum-mechanical skyrmion depends on the Lagran
ct
on

tic

t

-

-

ic

n

parameter valuesf p and e @10#. Moreover positivity of the
pion mass~38!, can obviously only be achieved for state
with sufficiently small values of spinl . This implies that the
spectrum of states with equal spin and isospin will neces
ily terminate at some finite value of the spin quantum nu
ber. As the negative quantum mass correctionDMS j in the
expression~26! grows in magnitude with the dimension o
the representation, it is always possible to find a represe
tion in which the nucleon and theD33 resonance are the onl
stable particles, as required by experiment. This argumen
more general than the method of self-consistent dynam
truncation of the spectrum suggested in Ref.@14#.

V. THE NOETHER CURRENTS

The Lagrangian density of the Skyrme model is invaria
under left and right transformations of the unitary fieldU.
The corresponding Noether currents can be expresse
terms of the collective coordinates~13!. The vector and axial
Noether currents that are associated with the transformat

U~x!→
V~A!

~12 i2A2vaĴa!U~x!@11~2 !i2A2vaĴa#, ~40!

are nevertheless simpler and directly related to physical
servables. The factor22A2 before generators is needed
the casej 51/2 to match the transformation~40! with the
infinitesimal transformation in@12#. The Noether currents ar
operators that depend on the generalized collective coo
natesqW and the generalized angular momentum operatorsĴa8
~24!.

The explicit expression for the spatial components of
vector current density is
me
V̂b
a5

]LV

]~¹bva!
52A2

sin2F

r F i H f p
2 1

1

e2S F821
sin2F

r 2
2

2d215

4•5•a2~F !
sin2F D J F1 1 1

u s bGDa,s
1 ~qW !x̂u

2
sin2F

A2•e2
•a2~F !

~2 !s$@ Ĵ83 r̂ #2sDa,s
1 ~qW !@@ Ĵ83 r̂ #3 r̂ #b1@@ Ĵ83 r̂ #3 r̂ #bDa,s

1 ~qW !@ Ĵ83 r̂ #2s%G . ~41!

Here¹k is a circular component of the gradient operator. The indicesa andb denote isospin and spin components. The ti
~charge! component of the vector current density has the expression

V̂t
a5

]LV

]~]0va!
5

2A2

a~F !
sin2FF f p

2 1
1

e2S F821
sin2F

r 2 D G ~2 !s$Da,2s
1 ~qW !Ĵs82Da,2s

1 ~qW !x̂s~ Ĵ8• r̂ !%. ~42!

The explicit expression for the axial current density takes the form

Âb
a5

]LA

]~¹bva!
5F H f p

2 sin2F

r
1

1

e2

sin 2F

r S F821
sin2F

r 2
2

sin2F

4•a2~F !
D J Da,b

1 ~qW !

1H f p
2 S 2F82

sin 2F

r D2
1

e2S F82
sin2F

r
24F8

sin2F

r 2
1

sin2F sin 2F

r 3
2

sin2Fsin2F

4•a2~F !•r
D J ~2 !sDa,s

1 ~qW !x̂2sx̂b

2
2F8 sin2F

e2
•a2~F !

~2 !s$Da,s
1 ~qW !x̂2sĴ821 Ĵ82Da,s

1 ~qW !x̂2s22Da,s
1 ~qW !x̂2s~ Ĵ8• r̂ !~ Ĵ8• r̂ !% r̂ b

2
sin2Fsin2F

e2
•a2~F !•r

~2 !s$@@ Ĵ83 r̂ #3 r̂ #2sDa,s
1 ~qW !@@ Ĵ83 r̂ #3 r̂ #b1@@ Ĵ83 r̂ #3 r̂ #bDa,s

1 ~qW !@@ Ĵ83 r̂ #3 r̂ #2s%G . ~43!
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The operators~41!–~43! are well defined for all representa
tions j of the classical soliton and for fixed spin and isosp
l of the quantum skyrmion. The new terms, which are
sent in the corresponding semiclassical expression, are t
that have the factora2(F) in the denominator.

The conserved topological current density in Skyrm
model is the baryon current density, the components
which are

Ba„rW,F~r !…5
1

A2p2a~F ! r
sin2F•F8@ Ĵ83 r̂ #a . ~44!

The matrix elements of the third component of the is
scalar magnetic moment operator have the form
d

-
se

f

-

K l

mtms
U@m I 50#3U l

mtms
L 5K l

mtms
U12E d3xr@ r̂ 3B#0U l

mtms
L

5
@ l ~ l 11!#1/2e

3• ã~F ! f p

^ r̃ I 50&

3F l 1 l

ms 0 ms
G . ~45!

Here the isoscalar mean-square radius is given as

^r E,I 50
2 &5

1

e2f p
2 ^ r̃ I 50&52

1

e2f p
2

2

pE r̃ sin2F•F8d r̃ , ~46!

and the quantityã is defined in Eq.~18!.
The matrix elements of the third component of the isov

tor part of the magnetic moment operator, which is obtain
from the vector current density~41!, have the form
K l

mtms
U@m I 51#3U l

mtms
L 5K l

mtms
U12E d3x•r @ r̂ 3V̂3#0U l

mtms
L

5F ã~F !

e3
• f p

1
8p•e

3• f p• ã ~F !
E d r̃ • r̃ sin4FS 12

d2

2•5
2

l ~ l 11!

3

1
~2 !2l

2 F5l ~ l 11!~2l 21!~2l 11!~2l 13!

2•3 G1/2H 1 2 1

l l l
J D G F l 1 l

ms 0 ms
GF l 1 l

mt 0 mt
G .

~47!
ex-

ex-
Here the symbol in the curly brackets is a 6j coefficient.
The volume integral of the axial current density~42!

yields the axial coupling constantgA as

gA53K 1/2

1/2,1/2
U E d3xA0

1U 1/2

21/2,1/2L
52

1

e2
g̃1~F !2

p2e2

3• ã ~F !
^ r̃ I 50&, ~48!

where

g̃1~F !5
4p

3 E d r̃ S r̃ F81 r̃ sin 2F1 r̃ sin 2F•F82

12 sin2F•F81
sin2F

r̃
sin 2F D . ~49!

For nucleons the the isovector charge mean-square ra
becomes
ius

^r E,I 51
2 &5

1

e2f p
2 ^ r̃ E,I 50&

5
1

e2f p
2

E d r̃ r̃ 4 sin2F@11F821sin2F/ r̃ #

E d r̃ r̃ 2 sin2F@11F821sin2F/ r̃ #

.

~50!

The isoscalar magnetic mean-square radius has the
pression

^r M ,I 50
2 &5

1

e2f p
2 ^ r̃ M ,I 50&52

1

e2f p
2

2

p

E d r̃ r̃ 4sin2F•F8

E d r̃ r̃ sin2F•F8

,

~51!

and the isovector magnetic mean-square radius has the
pression
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^r M ,I 51
2 &5

1

e2f p
2 ^ r̃ M ,I 50&5

1

e2f p
2

E d r̃ r̃ 4sin2FF11F821sin2F/ r̃ 1e2sin2F/ ã ~F !S 3

4
2

d2

10D G
E d r̃ r̃ 2sin2FF11F821sin2F/ r̃ 1e2sin2F/ ã ~F !S 3

4
2

d2

10D G
. ~52!
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The matrix element of the divergence of the vector c
rent ~41! vanishes

K l

mtms
U¹bV̂b

aU l

mtms
L 50. ~53!

The asymptotic equation of motion~37!, valid for larger ,
is recovered if the matrix element of the divergence of
axial current~43! for the proton is taken to be

K l

mtms
U¹bÂb

aU l

mtms
L 5 f p

2 mp
2 F~r !. ~54!

This is the usual equation for a ‘‘partially conserved ax
current’’ ~PCAC!, and supports the interpretation ofmp as
an effective pion mass.

VI. NUMERICAL RESULTS

The equation of motion for the quantum Skyrme mod
~36! depends—in contrast to the classical case—on the
rametere and representation. Moreover the differential equ
tion for the chiral angle is state dependent.

For nucleons (l 51/2) solutions for the chiral angle
which describe stable solitons with spin 1/2, exist whene
,7.5. The largest value ofe, which admits stable solutions
decreases with increasing dimensionality of the represe
tion. ForD33 resonances (l 53/2) there are no stable solito
solutions in the fundamental representation, nor in the re
sentation withj 51 in the quantum Skyrme model. In th
representations withj 53/2 and 2 there are stable solito
solutions only for baryons with spinl 51/2 and 3/2. A di-
mension withj 55/2 allows stable solitons with spinl 51/2,

TABLE I. The predicted static nucleon observables in differe
representations with fixed empirical values for the isoscalar ra
0.72 fm and nucleon mass 939 MeV.

j 1/2 1 3/2 5/2 1%
1
2 %

1
2 Expt.

mN Input Input Input Input Input 939 MeV
f p 59.8 58.5 57.7 56.6 58.8 93 MeV
e 4.46 4.15 3.86 3.41 4.24
mp 2.60 2.52 2.51 2.52 2.53 2.79
mn 22.01 21.93 21.97 22.05 21.93 21.91
gA 1.20 1.25 1.33 1.52 1.23 1.26
mp 79.5 180 248 336 155 138 MeV
A^r E

2& I 50 Input Input Input Input Input 0.72 fm

A^r E
2& I 51 1.33 1.03 0.97 0.93 1.07 0.88 fm

A^r M
2 & I 50 1.05 1.01 1.00 1.00 1.01 0.81 fm

A^r M
2 & I 51 1.32 1.03 0.97 0.93 1.07 0.80 fm
-

e

l

l
a-
-

a-

e-

3/2, and 5/2, and therefore appears to be empirically c
traindicated.

The two parameters of the model,f p ande, may be de-
termined in the usual way by fitting two empirical baryo
observables. The procedure adopted here was to first d
mine these two parameters by using the chiral angle of
classical Skyrme model, which is independent of both
model parameters and the dimension of the representa
@7#, by a fit to the nucleon mass~939 MeV! and its isoscalar
radius~0.72 fm! for different values of the dimensionj of the
representation. These parameters were then used in a nu
cal solution of Eq.~36!. That solution was subsequently use
to determine new values off p and e. This procedure was
iterated until a converged solution was obtained. The
merical results are shown in Table I. For the irreducible re
resentation withj 51 the proton magnetic moment calcu
lated in this way is within 10% of the empirical value. Th
calculated values of both the neutron magnetic moment
the axial coupling constant agree with the corresponding
pirical values to within 1%. TheD33 resonance observable
for different representations as obtained with fixed values
f p ande are presented in Table II.

VII. DISCUSSION

There are two main aspects of the quantum correction
the Skyrme model based description of the baryons. On
the treatment of the dynamical field variables of the Lagra
ian density as quantum-mechanical variablesab initio. This
very likely formed the basis for Skyrme’s conjecture for t
origin of the pion mass@4#. The development of theab initio
quantum-mechanical treatment of the model was pionee
in Ref. @9#, and was developed above to realize Skyrm
conjecture constructively. The other main aspect is the tr
ment of quantum fluctuations of the pion field as loop c
rections@15#.

Both types of quantum effects lead to substantial mod
cations of the phenomenological description of the bary

t
s

TABLE II. The predicted staticD33 resonance observables i
different representations with fixed values for the parametere
54.15 andf p558.5~determined by a fit to the nucleon observabl
mN5939, ^r 2& I 50

1/2 50.72, in a representation withj 51).

j 3
2 % 1%

1
2

3
2 2 Expt.

mD 1055 1029 910 1232 MeV
mD11 7.38 6.40 4.20 3.727.5
mD1 3.02 2.73 2.01
mD0 21.33 20.94 20.19
mD2 25.69 24.61 22.38
A^r E

2& I 50 0.91 0.87 0.72
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based on the Skyrme model. Both also lead to negative q
tum corrections to the skyrmion mass. In the present w
this negative mass correction was shown to allow sta
variational solutions for the quantized Hamiltonian and
generate a positive effective mass for the pion field in
skyrmion. Chiral symmetry is broken here only ‘‘spontan
ously’’ through the boundary conditionU(`)51 @4#,
whereas the Lagrangian density remains chiral symme
Perturbative treatments of the quantum corrections, wh
employ the classical solution for the chiral angle cannot
veal the presence of a finite effective pion mass, and henc
such the chiral symmetry has to be broken by an exp
pion mass term in the Lagrangian density.

The spectrum of states withI 5J terminates in the quan
tum Skyrme model, because the effective pion mass beco
v.
n-
k
le

e
-

c.
h
-
in
it

es

negative for sufficiently large spin. Moreover it describes t
states with spin larger than 1/2 as deformed. That defor
tion is inherent in Skyrme models with terminating spec
has also been been noted in@16#, although in that work the
absence of states with large spin and isospin was achieve
associating very large decay widths with those states.

The present systematic quantum-mechanical treatmen
the skyrmion was shown to imply the need to employ rep
sentations of larger dimension than the fundamental one
the description of the nucleon and theD33 resonance as
stable solitons with spin and isospin 1/2 and 3/2, resp
tively, in the same representation. The quantum treatm
implies that the tower of states withI 5J terminates, and tha
there therefore is no infinite tower of unphysical states as
the semiclassical approach.
.
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