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A generalized Lagrangian for the description of hadronic matter based on the linear, SI83§3)z o
model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with
broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons
are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation
of state. We discuss the difficulties and possibilities to construct a chiral invariant baryon-meson interaction
that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is
needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an
abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral
symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the
Walecka model[S0556-281&8)07005-9

PACS numbgs): 12.39.Fe, 11.36:j, 21.30.Fe, 21.65:f

[. INTRODUCTION The linearo model as a specific realization of SU(3)
X SU(3)z symmetry was extensively studied in free space

Recently, nuclear physicists have given new attention t¢9—11]. The spin-0 mass spectrum and meson-nucleon scat-
the general principles of chiral symmetry and broken scaleering are satisfactorily described within this approach.
invariance at finite densities. The underlying theory of strong In this paper we investigate the applicability of chiral
interactions, QCD, is presently not solvable in the nonperturSU(3) symmetry to describe nuclear-matter properties by
bative regime of low energies. However, QCD constraintsconstructing a chiral Lagrangian for hadronic matter includ-
may be imposed on effective theories for nuclear physicéng strange particles. To reproduce the binding energy of
through symmetries, which determine largely how the hadnuclear matter at saturation densjpy=0.15 fm 2 with a
rons should interact with each other. In this spirit, modelsreasonable value for the compression modulus, an octet of
with SU(2), X SU(2)z symmetry and scale invariance were vector mesons with axial mesons as chiral partners is in-
applied to nuclear matter at zero and finite temperature anduded.
to finite nuclei[1-5]. The success of these models estab- The work is based on studies of nuclear matter with the
lished the applicability of this approach to relativistic nuclearSU(2), X SU(2)g linear & model[1-5]. There, a logarith-
many-body physics. mic potential involving the dilaton fielg introduced in12]

A simultaneous and self-consistent description of strangéo mimic the trace anomaly of QCD plays an essential role. It
and nonstrange particles in baryonic matter is of particulaeliminates unphysical bifurcations encountered in the linear
interest, since many questions in heavy-ion physics and asr model when applied to describe nuclear matter properties
trophysics are related to the effect of strangeness in mattef13]. A similar concept is adopted here, too. However, there
The possible large strangeness content of the nucleon indare some important differences to the (8Ucase: the exten-
cates the importance of taking strangeness into account forsion to a chiral S(B) symmetric model is nontrivial,
deeper understanding of nuclear matter and n{i6leMhen  because—in contrast to the nucleon doublet—the baryon oc-
extrapolating to hadronic systems with a large amount otet cannot be assigned to a fundamental representation. Be-
strangeness, new phenomena as negatively charged multiause of this, difficulties in describing the baryon masses and
strange objects may occyif]. The possible onset of kaon the hyperon potentials simultaneously arise. Furthermore,
condensation at high baryon densities in heavy-ion collision®ne needs to reproduce the experimentally well-known
and the interior of neutron stars provides another motivatiormasses of the baryon octet and the meson nonets. This leads
for studying models which include the strange degree ohecessarily to the inclusion of cubic and quartic self-

freedom. interactions of spin-0 mesons, which were eliminatedilih
Hadrons can be classified in multiplets withroken  to improve their results for nuclear matter and nuclei.
SU(3)y symmetry, in which they havélmos) degenerate The specific form of baryon-meson interaction is crucial

masseg8]. If there is one limit to the strong interactions, in for the properties ofhyperinuclear matter. Théelativistic

which SU(3), is exact, and another one, in which SU(2) potentials for nucleons and hyperons following from this

X SU(2), symmetry holds, then there must be a joint limit in model depend strongly on the coupling constants of hyper-
which SU(3), is exactand all the axial-vector currents are ons to vector and scalar mesons. Since these are constrained
conserved. In this limit ther, K, and » particles are Gold- by chiral symmetry, it is of interest, whether or not the hy-
stone bosons and we are led to a Lagrangian invariant undg@eron potentials are described correctly within this approach.
SU(3). X SU(3)k. Furthermore, the way hyperons are treated has important
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TABLE I. Chiral transformations of spin-0 meson$1&>, TABLE Il. Mass termsB;; for the baryongsee Eq(15)].
+ill), spin-1 mesons\(,,=1,+r, andA =1 ,—r ), and baryons
[see Eq{(10)]. j=0 ji=1 j=2
2
Hadrons JP Transformations N g ol 20¢
" - =] o ol a®
Spin-0 mesons D,O+ LM RT RM LT A Lao—20) E( 2 ag? o2t
Spin-1 mesons 1,1 Ll,L Rr,R 6 \9
Baryons(nonej i+ LY R RWgLT 3 V2¢ 1, V20%;
——= 0
Baryons(octe} i+ Ly, LT R¥LR' 2
1. Mesons

consequences for the stability of multistrange hypernuclear

systems and for the mass of neutron stars. Therefore, differ- The mesons as a bound system of a quark and antiquark

ent forms of coupling baryons to spin-0 mesons and theicorrespond to the bilinear form®q where the 1X 12 ma-

influence to the hyperon potentials are examined. trix O is the direct product of the ¥4 Dirac matrices and
The paper is organized as follows: In the first part wethe 3x 3 Gell-Mann matrices@=I"® \). For the discussion

review the chiral transformations of mesons and baryons andf the representations we will first suppress the explicit ref-

their assignment to representations. Then, the Lagrangian irence to the Gell-Mann matrix.

its general form is presented and discussed. The next part is Consider first the spin-0 mesons. If we suppose that they

devoted to the approximation scheme used. The results irare s-wave bound states, then the only spinless objects we

clude the investigation of the equation of state for nucleacan form are

matter, the hyperon potentials, the effective baryon masses, - .

and a discussion whether a chiral phase transition occurs at grdL, OLOR- 2

high densities. As an outlook, a nonlinear realization of chi- . .

ral symmetry is examined that is a convenient way to includeThe combinationsy, g, and qggg Vvanish, because the left

heavy hadrons. and right subspaces are orthogonal to each other. The result-

ing representation is (33 and (3*,3), respectivelythe an-

tiparticles belong to the conjugate representatidile are

thus led to consider nonets of pseudoscalar and scalar par-

The o model has been used extensively in exploring theficles. .
implications of chiral symmetry in low-energy hadron dy- For_ _the vector mesons, we _have to construct vectorial
namics. Most of these investigations have employed th&uantities fromg, andgg. Again, if we assume thatwave
SU(2) model with mesons and nucleons and the(BUr bound states are involved, the only vectors which can be
model with mesons only. In this section we will discuss theformed are
transformation properties of spin-0 and spin-1 mesons as — —
well as those of the baryons as the constituents of our effec- Q7w ArYulr- ©)

tive theory. Th's. implies th_e choice of the proper represenTyis suggests assigning the vector and axial vector mesons to
tation under which the particles transform.

the representatio(8,1) and(1,8), coinciding with the tensor
properties of the currents conserved in the SU(SJJ(3)
A. Representations limit [14,15.

Il. THEORY

The representations of the hadrons result from the direct
product of the quark representations, however in the La- . _ _
grangian there will be no explicit reference to quarks. For ~The discussion of baryons differs from that of the mesons
our purpose, they are used as guidance. in that the construction of baryon multiplets from the basic

In the chiral limit, the quarks have to be massless. Therefields g, andqgg is not unique. The reason is that a left

fore, it is sufficient to consider the two-component spinors fight-handed quark can be added to the spin-0 diquark of one
subspace. Consequently, the baryons can be assigned to the

2. Baryons

1 representation (3% and (3*,3) or (8,1) and(1,8), respec-
qL_z( 75)0~(3.0), tively. For an explicit construction in terms of quark fields
see[16,17).
1 .
QR:§(1+ ys)a~(1,3). (1) B. Transformations

Once the chiral-transformation properties of the elemen-
tary spinors are known it is straightforward to derive the
Since the quarks are massless, the chirality of the spinors orresponding transformation properties of the composite
linked to their spin. On the right-hand side, the quark reprefields. An arbitrary element of SU(3)SU(3) can be written
sentations are symbolized by the number of flavors, placeds
left (right) for the left (right) subspace of SU(3) _ . _ .
X SU(3)g. G(a”g):e—[laaQaﬂﬁaQ =g i(e=B) QL. g=i(a+B)-Qr
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TABLE Ill. Hadron massegin MeV) from fits with linear (L), quadratic(Q), cubic baryon-meson
interaction with (@) and without (C) abnorma(chiral) phase.

Spin-0 particle masses
m,(139 mg(499 m,(547) m, (958 mao(980) M (1430 m, my, (980

L 139.0 498.0 540.0 931.1 973.3 1065.0 561.0 747.1
Q 139.0 498.0 540.0 972.4 1064.8 1169.3 728.9 993.1
C 139.0 498.0 540.0 954.6 1023.4 1122.8 774.0 1056.6
C. 139.0 495.0 540.0 946.0 966.8 1041.5 665.5 968.6
L, 139.0 498.0 540.0 972.3 1064.8 1169.3 466.4 643.5
C, 139.0 495.0 535.0 927.1 993.0 1095.0 566.5 1076.3
Spin-1 particle masses Spﬁwparticle masses
m,(783) m«(892) m,(770) m,(1020) my(939) m,(1115) my(1193) mz(1315)
L 783.0 878.4 783.0 1020.0 939.0 1104.9 1193.1 1314.9
Q 783.0 878.4 783.0 1020.0 939.0 1177.3 1198.5 1314.9
C 783.0 864.0 783.0 1020.0 939.0 1071.5 1159.5 1339.0
C, 783.0 867.5 783.0 983.4 939.0 1057.0 1174.7 1348.7
L, 783.0 878.4 783.0 1020.0 939.0 1115.0 1196.0 1331.5
C, 783.0 878.4 783.0 1020.0 939.0 1039.4 1196.0 1314.9
=L-R, (4) are connected by the parity transformation, which transforms

left-handed quarks to right-handed ones. This is achieved in
where @ and 8 are eight-component vectors, a@f, Q%  the matrix formulation by taking the adjoint. Therefore, since
are the vector and axial generators of (3)) respectively. scalar and pseudoscalar particles have opposite parity, an
The spinorgy, of SU(3), generated b, =(Q—Q°)/2 and  imaginary uniti is attached to the pseudoscalar maftix
qr of SU(3)s generated byQg=(Q+ Q°)/2 transform as

C. Lagrangian formulation

— ' 1 k r_ K.
90 =Ljak,  aj=Rjdi, ) 1. Baryon-meson interaction
where we adopted the tensor notation. Here, (the)bared ‘When generalizing from S@) to SU3), complications
indices belong to théeft) right subspace. The complex con- arise from the baryon-meson sector, since not only the
jugate spinors transform as nucleon mass but the masses of the whole baryon multiplet
- are generated spontaneously by the vacuum expectation val-
rj ' k K .
q J:(L}‘)* k g J:(RT)*qk_ (6)  ues(VEV) of only two meson condensates: of the 18 meson

fields o, and 7, only the VEV of the components propor-
Knowing the representation of the mesonic and baryonidional to Ao and the hypercharg¥~A\g are nonvanishing,
fields, it is straightforward to derive their transformation and the vacuum expectation valiél) reduces to
properties. They are summarized in Table I, where we ex- 1
pressed the meson and baryon fields conveniently in a basis M= —— (ghnt ool o) =dia o o
of 3x3 Gell-Mann matrices. For example, the spin-0 me- (M) \/E(UO 0t oghe) J2' \/E'g ’
sons may be written in the compact form ) o _ ) )

in order to preserve parity invariance and assuming, for sim-

18 _ plicity, SU(2) symmetry of the vacuum. The quark content
2 aZO (GrAadL+ArNaYsALAa of these fields isr~(uu+dd) and{~(ss). To see explic-
itly how these condensates generate the baryon masses, let us
1 8 _ _ consider the simplest ansatz for the baryon-meson interac-
= N ZO (Tatim)N=2+ilI=M, (7)  tion, namely the Yukawa-type coupling:
&
L@ Liw=Dbol £a5ce (T )IMAV R)]
5 NaOrT LA N -
2 ago (QL adrT 0L a75QR) a +8abc£dEf(\I,R)%M%(\PL)%|- (9)

1 B The indices are contracted appropriately to yield a chirally

2 20 (ga—im)Na=2—iIlI=MT, (8) invariant term. Note that the chirally invariaimear baryon-
a:

where oy = q)\aq/‘/i (and similar for ther, fields) includ- IThis implies that isospin breaking effects will not occur, i.e., all
ing the diagonal matrix = \/§1. The first and second row hadrons of the same isospin multiplet will have identical masses.
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TABLE IV. Derived quantities in nuclear matter and parameters from fits with lifiearquadratic(Q),
cubic baryon-meson interaction with {ICand without(C) abnormal(chiral) phase.

Un Up Us Uz olag e x!xo my/my K (MeV)
L —-60.6 —149.9 —-2.5 —165.5 0.77 0.92 0.99 0.77 279.3
Q —-609 —1364 —-68.0 —169.7 0.86 0.88 0.99 0.76 313.6
C —-62.1 —-27.9 —-27.9 —28.5 0.93 0.89 0.98 0.74 329.9
C, —-61.3 —29.8 —-35.0 —-47.0 0.96 0.89 0.96 0.76 306.3
L, —-69.3 —221.5 21.3 —252.4 0.63 0.88 0.98 0.63 261.1
G, —66.6 —-30.4 —30.4 —-37.0 0.91 0.86 0.94 0.67 191.1

336 INw 94/ Ko Ky Kz K3 Ky fx (MeV)
L 6 9.04 0 3.77 5.0 -9.25 -0.28 -0.27 117.0
Q 6 9.18 0 2.63 5.0 —13.57 1.19 —0.26 112.0
C 1.5 9.67 0 —-3.54 —-10.0 -—-1154 -—2.88 —-0.07 114.0
C. 0 9.02 0 —1233 —-20.0 -—7.96 —4.86 0.51 118.0
L, 6 12.72 0.20 4.19 43 —1357 -3.35 —-0.22 112.0
G, 10 11.66 0.24 —6.13 —-10.0 -10.84 -—1.28 0.25 115.0

meson interaction is only possible in the baryon representa-
tion (3,3") and (3*,3) and it is unique(since the product
3X3X3=1+ ... leads only to one singletFurthermore,

the resulting coupling constants are given by the symmetric
(d-type) structure constants of §B). The reason for this is
that three spinors can only be coupled to a singlet by antiBut, as can be observed from Tablg(second colump this
symmetrizing them. Since this has to be done in the left anderm also fails to remove the nucleocB-mass degeneracy.

right space, respectively, the resulting coupling will be aOnly the inclusion of acubic interaction term of the form
symmetric one.

Using the decomposition of the baryon matri¥ 2 — = T4 = T e q
=(1N2)28_,yn\ by means of the projection operators L= (Y )pM AV R) T+ (VR M (V) §Tal
(1+vs)/2,

_— = b - d - b, d-
LEG=D1[ (Y EMATR)EM o+ (PR eMA(W )5MY]

=b,TH(¥ MWLM+ W MW MT). (11)

=b,TH(W MWLT+W¥ MW, TH (12)
T 1= 1+vs
(VOR=—5—¥5, (Yrhp=—%—¥5, (10 N 3
yields a mass splitting between nucleon aid(Table II,
one arrives at third column. Here, the dual tensor is defined®as
LEn=bosabcE deVadEpeti vslTne) Wer - TE: Eamnmemega (13

After insertion of the vacuum matri¥M ), one obtains the

baryon masses generated by the VEV of the two mesoBgo that it transforms in the same way as the meson mislrix
fields. With this kind of coupling, it is not possible to de-  The second alternative is to break the symmetry explic-
scribe the correct baryon mass splitting as the nucleon andy. However, the transformation properties of the breaking
the E are degeneratésee Table II, first columin To elimi-  term is restricted due to the necessity to maintain the partial
nate this flaw, one can either use chirally invariant interac-concentration of axial-vector curre@CAC) relation for the
tion terms of higher order in the meson fields or break thepion (Sec. Il C 3. Assuming that the mass differences are

symmetry explicitly. entirely due to the quark mass differences, we break the sym-
Taking the first possibility, one has to compute how the

nonlinear terms contribute to the baryon masses. qinee
dratic baryon-meson interaction term reads again for the 3The cubic interaction allows for two independent invariants, the
(3,3) and (3*,3) representation of the barydns other one being analogous to E@2) except for exchanging and
M:
3 aTh cppd arb Cppd
2Except for the linear term of equati@®), the quadratic and the Le=bsl (VOFTHVR)GM+ (PRIGTE(PL)GMS]
cubic interactions are also possible in #&1) and (1,8 represen-
tation of the baryons. Specifically the quadratic contribution reads
Tr(L_MRMT+§MTLM). However, this difference will not play a However, this form will not be considered, because it gives poor
role for the vacuum masses or in the mean-field approximationtesults for the baryon mass splitting and it does not lead to accept-
since(M)=(M"=diag(o/\2,0/1/2,¢). able nuclear-matter fits.

=Dy THW TP M + W TP MT).
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FIG. 1. Binding energy versus baryon .dengiuyfor the Iineqr 0-00.0 01 02 03 04 05 06 07 os
(L), quadratic(Q), and cubic(C) baryon-spin-0 meson interaction o [fm’3]
(see Tables Ill and 1Y/ B

) _ _ FIG. 2. Nonstranged), strange {), and gluon §) S conden-
metry along the hypercharge Y direction. This leads to Gellsates versus baryon density for the linear(L), quadratiqQ), and
Mann-Okubo(GMO) mass formulas. We take a term of the cubic (C) baryon-spin-0 meson interactigsee Tables IIl and Y
type (8,8) [18],

_ — C: Lom=LEZ)+ Lam.
Lam=m IV —VTS)+m,Tr(¥SY)  (14) BM 7B T Am

WhereSbi: - %[\/5()\8)2__ 52_] [other types such as th8,1)  Here, L, Q, and C stand for the meson fields entering in the

and(1,8), (3,3") and (3,3) representations lead to similar baryon—meson Interaction terms purely Injearly, quad_ratl—

results and are discussed[it8]]. cally, and cubic, re_:spgctlvefS/(Tms notation is also used in
Since none of the baryon-meson interaction terms alont-al_"’lbles .”I' v a.nd in Figs. 1, 2, and B. .

gives the correct baryon mass splitting, they will be investi- 1€ interaction of the vector meson and axial vector me-

gated in combination with the explicit symmetry-breaking SON nonets

term (14). The baryon masses read

8 8
1 : 1 .
b; b. V,=— > vin, A,=— > ax (16
my _JBJ'N, mE:_JBjE+ml+m2, j=0,1,2 a \/E 1=0 w . \/E =0 w
V2 V2
with baryons is far less involved. For the baryons belonging
mA:ﬂB_AJr my +2m, mzzﬁB'erml (15 tothe (3,3) and (3 ,3) representation one has the antisym-
V2! 3 V2! ' metric, f-type coupling to baryoris
with the baryon-meson interaction terrBs (i=N, A, X, Ve —
Z) of Table Il. From that one can see that only the strange- Lgy=ggTr(W y*[V,, W]+ Wy ys{A,, ¥})
ness carrying baryon masses are modifiecte, that in the Ve
case ofm,=m;=mj the explicit symmetry-breaking term T Tr(WyHI)Tr(V , + vsA,). (17)

corresponds to the strange quark mass in the spirit of the

additive quark model As only the nucleon mass enters the

fit to nuclear matter properties, the parameteysshall be “The sum of linear, quadratic, and cubic forms leads also to a

fixed to reproduce the nucleon mass. The symmetry-breakingalistic baryon mass splitting and to a saturating equation of state,

contributions are then adjusted to the remaining baryoreven without an explicit symmetry-breaking term. However, it only

masses. complicates the discussion without significantly improving results.
The interaction terms of baryons with spin-O mesonsTherefore, we will not consider this option further.

which lead to a saturating nuclear matter equation of state®if the baryons are assigned (®,1) and(1,8), the analogous octet

(see Tables Ill and 1y are term readsgyy Tr(W y*[V,,, W]+ V¥ y*ys[ A, , ¥]). Since both rep-

resentations differ only as to how the axial mesons contribute, there

. _ p(0 . _
L: EBM—EEI\%"'ﬁAm Q: EBM_EEI\;I-"EAm will be no difference in the mean-field approximation.
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stants disturbs the cancellation and unphysically large hy-
o e peron potentials can emerge. We will elaborate on this prob-
' lem in Sec. Il B.

2. Chirally invariant potential

200 The chirally invariant potential includes the mass terms
""" e © for mesons, their self-interaction and the dilaton potential for
the breaking of scale symmetry. For the spin-0 mesonic po-
tential we take all independent combinations of mesonic self-
interaction terms up to fourth order

—_—

g8

S © ©
7 -

@x
(=3
(=]

5

1
— Lo=Vo=5kox*TM M —ky (TrM M)~k Tr(M TM)?

[
[
(= =

1 X4
1000 —kgx(detM +detM ™)+ kyx*+ 7 x*In=;

Effective baryon masses [MeV]
g o
8 S

Xo
5 4, deM +detm’ -
— — n—
3X I deMy 20
200 ©
%0 01 02 03 04 05 06 07 os Most of the constants are fixed by the vacuum masses of the
P [fm~] pseudoscalar and scalar mesons, respectigely Sec. 11l A

for detaily. These are determined by calculating the second

FIG. 3. Baryon masses as a function of the baryon densgjty derivative of the potential in the ground state. Because of the
for the linear(L), quadratiolQ), and cubidC) baryon-spin-0 meson  determinant and the logarithmic terms, mixing betwegn
interaction. 70 (in the pseudoscalar sect@ndo, £, andy (in the scalar

] ) sectoj occurs, which makes a diagonalization of the corre-
In the mean-field treatment, the axial mesons have a zergyonding mass matrices necessary.

VEV. The relevant fields in the SB) invariant vacuumy ) The quadratic and cubic form of the interaction is made
and v, are taken to have the ideal mixing angle &in scale invariant by multiplying it with an appropriate power
=1/\3, yielding of the dilaton fieldy [20]. Originally, the dilaton field was
introduced by Schechter in order to mimic the trace anomaly
1 0, u of QCD 0Z=(,3QCD/29)QT,,VQ§V in an effective Lagrangian
ﬁ(\/zvlﬁvs)' at tree level[12] (G, is the gluon field strength tensor of
QCD). The effect of the logarithmic term~ y*Iny is two-
fold: First, it breaks the scale invariance and leads to the

¢,=v5cod, —vosing, =

_ 1 fst, 1t breaks
w,=v8sing, +v’cos, = ﬁ(vz_ J2v#). (18  Pproportionality§,~x" as can be seen from
N - o,
For gy=gy, the strange vector field,~sy,s does not ‘9#_45_)(&_2&#)( 3(3,%) =X (21

couple to the nucleon. The remaining couplings to the
strange baryons are then determined by symmetry relationsvhich is a consequence of the definition of scale transforma-
tions [11]. Second, the logarithm leads to a nonvanishing
e =20 2 —oqV vacuum expectation value for the dilaton field resulting in a
9r0=0x0= <020 3gN‘“ 9s spontaneous chiral symmetry breaking. This connection
comes from the multiplication ok, in Eq. (20) with x?2:
Oz 4 V2 With the breakdown of scale invariance the resulting mass
9r¢=0934= 5 =3 o> (19 coefficient becomes negative for positikg and therefore
the Nambu-Goldstone mode is entered. The comparison of
where their relative values are related to the additive quarkhe trace anomaly of QCD with that of the effective theory
model. In contrast to the baryon/spin-0-meson interactionallows for the identification of they field with the gluon
two independent interaction terms of baryons with spin-1condensate:
mesons can be constructed. They correspond to the antisym-
metric (f-type) and symmetric d-type) couplings, respec- 0M=<EQCD a g,uv>
tively. However, from the universality princip[@ 9] and the ® 2g “#nrTa
vector meson dominance model taype coupling should
be small. In mean-field models, large attractive and repulsive—
contributions from scalar and vector mesons cancel to give 8According to [12], the argument of the logarithm has to be
the relatively shallow nucleon potential. When extended tcchirally and parity invariant. This is fulfilled by the dilaton which is
the strange sector, a different treatment of the coupling cona chiral singlet and a scalar.

i

(1—8)x*. (22)
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The paramete# originates from the second logarithmic term Table Ill. The axial vector mesons have a mass around 1
with the chiral and parity invariant combination Wet GeV. We refrain from giving their masses explicitly. To treat
+detM™. The term is a S(B) extension of the logarithmic them appropriately, additional terms are neede®j22. This

term proportional toy*In(o?+ ) introduced in[1]. An ori-  goes beyond the scope of the present paper.
entation for the value o6 may be taken fromBcp at the

one-loop level, withN, colors andN; flavors, 3. Explicit breaking of chiral symmetry
ﬂ 11Ncg3/ 2Nf .\ O( 5) (23) The term
QT T g2 | T TN O

2

=X
where the first number in parentheses arises from(dhé- ~Lss=Ven= XSTr(fE)

screening self-interaction of the gluons and the second, pro-

portional to N¢, is the (screening contribution of quark X° 1
2
0

\/EmifK_ quszﬂrr) g

pairs. Equation(23) suggests the valué=6/33 for three =
flavors and three colors. This value gives the order of mag-
nitude about which the parametémwill be varied.

For the spin-1 mesons a mass term is needed. The sinreaks the chiral symmetry explicitly and makes the pseudo-
plest scale invariant form scalar mesons massitdt is scaled appropriately to have
scale dimension equal to that of the quark mass term
~mgy0q+msss, which is present in the QCD Lagrangian
with massive quarks. This term leads to a nonvanishing di-
vergence of the axial currents. The matrix elementsf of
implies a mass degeneracy for the meson nonet. To split the 12 (foho+ fghg) Were written as a function oﬁifv and
masses one can add the chiral invarigir@,21] mﬁfK to satisfy thelapproximately valiglPCAC relations for

the = andK mesons,

mif -0t (28

1 2
Loe=5my ;(—zTr(VMV’H—AMA“) (249
0

1
LE= GUTH(F 1t G ’M M+ (F = G,) M MY,

25 9 AE=m2f o, 3,Ak=mif K. (29)

with the vectorial and axial field strength tensofs,,  Then, by utilizing the equations of motion, the VEV of
=dV,—d,V, and G,,=d,A,—d,A,. In combination and{ are fixed in terms of ; andfy, i.e.,

with the kinetic energy terrisee Eq.(31)], one obtains for

the vector mesons

1
o=—Tr Lo="s(f—2f). (30)
(FD?, V2

1 Since no relation for a partially conserved dilatational cur-
FAN2_ 11— n21(F~AY)2. 26 rent is known, the VEV for the gluon condensate remains
(Fu)" =z 1= ndI(FG) 26 undetermined.

4

0,2
1—,&7

Since the coefficients are no longer unity, the vector meson

fields have to be renormalized, i.e., the newfield reads D. Total Lagrangian

w,=Z,"w. The renormalization constants are the coeffi- The kinetic energy terms for the fermions and mesons are
cients in the square brackets in front of the kinetic energy
terms of Eq.(26), i.e., Z,'=1—wo?/2. The mass terms of
the vector mesons deviate from the mean magsby the
renormalization factof,i.e.,

= 1 1
Lin=iTr¥y, "V + 5Tr(I,M TorM) + 59X X

1 1
_ uvy_ nv
M2=m2=Z,M%; Mi=Zsmg; mM3=Z,m7. 2 "(F P = 271G, G, (31)

(27)

The constantsn,, and u are fixed to give the correed and
¢ masses. The other vector meson masses are displayed in

The total general Lagrangian is the sum

L= Lyint Lan+ Loyt Lyect Lot Lsp, (32

"One could split thep— w mass degeneracy by adding a term of
the form[10] (TrFM)2 to Eq.(26). Alternatively, one could break  8One may wonder why—besides the explicit symmetry-breaking
the SU2) symmetry of the vacuum allowing for a nonvanishing term(14) in the baryon-meson sector—a second chiral noninvariant
vacuum expectation value of the scalar isovector field. Howevergontribution is needed. This is due to our ignorance as to how to
the p— w mass splitting is small+2%), and wewill not consider  transform the current quark picture into the constituent quark pic-
this complication. ture.
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With Lyec= L8+ £2) For Lgy, we will discuss the effect =4, ys=6, ¥, =2, y==4). The single-particle energies are
of various possibilities mentioned in Sec. Il C 1 regardingE;* (k) = \/k2+ m*2 and the effective chemical potentials
the nuclear-matter fits and the hyperon potentials. readu = ui—g,iw— 04 .

E. Mean-field Lagrangian 2. Equations of motion

To investigate hadronic matter properties at finite baryon The mesonic fields are determined by extremizing
density we adopt the mean-field approximati@ee, e.g., (/V)(u,T=0):
[23]). In this approximation scheme, the fluctuations around
constant vacuum expectation values of the field operators are J({/V) — —w?m

neglected: ax @ X_(z)

o(X)=(o)+do—(a)y=0; {(X)=()+{—({)=(,

+k0)((0'2+§ )—kgzo §

5 o
4k4+1+4ln— 4=In——

3
w,(X)=(w) 8y, + dw,—(wo) =, Xo 3 a'ogo X
6u0=($) 30, + 08, ~(bo)=¢. (33 v 2X] w2t ot | Vet T wfw) 4
Xo

The fermions are treated as quantum-mechanical one-particle
operators. The derivative terms can be neglected and only =0, (35
the timelike component of the vector mesans={ wy) and

d=(¢y) survive if we assume homogeneous and isotropic  J(Q/V)

infinite baryonic matter. Additionally, due to parity conser- oo —=kox?o — 4ky(0?+ {?) 0= 2ky0°— 2kgx0'¢
vation we have m;)=0. After performing these approxima-
tions, the Lagrangiai32) becomes sx* X z am’
“255 e fﬁZ —oPi=0. (39)
EBM+£BV:_E il 010 Y00+ Gi g Yo'+ m* 14, 4
i (QIV) ) o o 5 , X
Y =Kox“¢—4ky(0°+ %) {— 4K —kaxo _3_5
1 ,x° 2, 1 X 2
Lyec= 2m — ot 2m qS
Xo 2m +
( \/— K \/E 17' T EI (9( pl
Lo 2 2, 2 2. 42y2 o 2 (37)
Voziko)( (o°+ %) —ky(o°+ )~k - e —ksxol
The vector fields ® and ¢ are determined from
ko 1X4InX—4— éln 0% g(m\{)/fjw:Ol'a'nlda(glg()/a(b:0’ respectively. They may
4 TN e solved explicitly yielding
i 2 i 2
2 JiwP' X0 JisP Xo
X w= R . (39)
V =<—) m2f o+ | V2maf— —=mif. | Z], m? y2 2.2
SB Xo \/_ KIK™ \/E )§‘| myx m(/)X

The scalar densitiep; and the vector densities; can be
calculated analytically, yielding

ke +EF;
kFI mi*zln(u)

m

with the effective mass of the barydn which is defined
according to Sec. 11 C 1.

3
1. Grand canonical ensemble pS= f d’k m? _ _yim
' 2m)? EF  4n?

It is straightforward to write down the expression for the
thermodynamical potential of the grand canonical ensemble

Q) per volumeV at a given chemical potential and zero B kei d3k Y kﬁi
temperature: Pi=i 2m° 6n2 (39
9_ B S S _z Yi The energy density and the pressure follow from the Gibbs-
Voo Tvee TOESE e L5 )3 Duhem relation,e=Q/V+ u;p' and p=—Q/V. Applying
the Hugenholtz—van Hove theord@4], the Fermi surfaces
i — * 2 __ *
Xf d3K[EF (K) — w* 1. (34) are given byE* (kg;) = \/kzFﬁ—mi 2—,ui .
IIl. RESULTS

The vacuum energy,,. (the potential ato=0) has been
subtracted in order to get a vanishing vacuum enengy. The scope of the present paper is to explore whether it is
denote the fermionic spin-isospin degeneracy factorg ( possible to describe nuclear-matter properties reasonably
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well within the framework of the SU(3)X SU(3)s o model. Even from studies of infinite nuclear matter at zero net
Therefore, we discuss only the results for the limit of van-Strangeness one can conclude whether or not it is possible to
ishing netstrangeness. The case of finite strangeness will béescribe hypernuclear data. Most important, the experimen-
discussed in a forthcoming publicatip®5]. However, there tally known spin-orbit splitting ofA hypernuclei as well as
are strong implications of the Lagrangian for the hyperon’[heil’ potential depths have to be described satisfactorily. It
potentials and for high densities, which will be elaborated inwas shown i{31,37 that the small spin-orbit splitting of

the following. hypernuclei can be obtained if an additional tensorial cou-
pling of baryons to spin-1 mesons is added. This can be done
in a chiral invariant manner, but, since tensor terms vanish in
the mean-field approximation, we will not discuss this fur-

A salient feature of all chiral models are the strongther. The main challenge is to investigate the potential depths
vacuum constraints. In the present case the{ixk,, and  of hypernuclei. This issue will be addressed in the following.
k4, in order to minimize the thermodynamical potentihlin
vacuum for given values of the fieldsy, {o, and xo. Note
that these parameters could also be eliminated by adding
appropriate chirally invariant terms to ensure that the Besides the observables presspreenergy per baryon
vacuum energy is minimal for given values @f, {;, and  €/pg, compressibilityk, and effective nucleon mass\,/my
Xo- The parametek; is fixed to then mass my. There is  at ground-state density,, there are some additional impor-
some freedom to vary parameters, mainly due to the untant constraints in the medium due to hypernuclear physics:
known mass of ther mesonm,., which is determined bi,;, = The (relativistic potential depthdJ; of the baryons ap,,
and due to the uncertainty of the value for the kaon decayvhich can serve as input to restrict also the “nonstrange”
constantf, . While the kaon decay constant is not known parameters,
precisely, the value fof ;. is known very well. Hence, we ) _
keepf, fixed to 93 MeV and vanyfy in the range 1155 U=mf—m+g,w, i=NAZE. (41
MeV.

In order to reproduce the correct nuclear-matter propergxperimentally, one finds for thA hyperons a potential of
ties, two of the parameters have to be adjusted to the mej, = —30+3 MeV [33]. For the3, potential the situation is
dium. We choosey, and x, to fit the binding energy of unclear, since there is no evidence for bothtétypernuclei.
nuclear mattee/pg—my=—16 MeV at the saturation den- The predictions range from completely unbounis [34] to
sity po=0.15 fm 3. It should be noted that a reasonable Usy=—25+5 MeV [35]. For £ hyperons, several bound
nuclear-matter fit with acceptable compressibil2$] can be E-hypernuclei candidates have been repof@g]. The po-
found (row L in Tables Ill and IV, wherem,~560 MeV.  tential for the= hyperon has been extracted lth-= — 25
This, in the present approach, allows for an interpretation of-5 pev.
the o field as the chiral partner of the field and as the The Yukawa_type Chira”y invariant baryon_meson inter-
mediator of the midrange attractive force between nUC'eon%Ction gives an acceptab|e mass spectrum of mesons and
though we believe the phenomenon is in reality generategaryons(row L of Tables Ill and |\J, and a|50, the com-
through correlated two-pion exchanfi7]. Experimentally,  pressibility has a reasonable value< 300 MeV). However,
the existence of a low-mass meson is still controversial the potential depths of the hyperons are very deep. This is
[28]. For the other scalar mesons also, the direct comparisomainly due to the baryon-vector and baryon-scalar meson
with experimental data is problematic because of their larg@oupling constants, which determine the strength of the vec-
decay widths and their mixing with higher resonances. Nevtor and scalar potential, respective[see Eq.(41)]. Once
ertheless, we adopted the notation of the particle data groug, andgy, are fixed to the nucleon mass and the nuclear
(See Table “] to avoid confusion with notation and to make potentiaL the Coup"ng constants of strange baryons to me-
clear which quantum numbers the particles have. sons are determined by symmetry relations. As discussed in

Generally, the fits of Tables Il and IV have a reasonablesec, || C 1, chiral symmetry restricts the coupling of spin-0
compressibility{26]. In contrast, the effective nucleon mass mesons to baryons to a symmetrid-type) one. This de-
of aboutmy =0.75my is definitely too high for an acceptable stroys the balance between repulsion and attraction, since the
description of nuclef29]. This shortcoming can be cured, if, baryon-vector coupling is antisymmetri¢-fype), i.e., Oso
in analogy to[1], a quartic self-interaction of spin-1 mesons =Q, whereag)s ,= 29y, . TO cure this deficiency, nonlinear
is added: baryon-meson interaction terms can be introduced, which are

3)_ 4 2 w2 also chirally invariant. They lead to coupling constants
Lyec=(9a) TrL(1,1#)7+(r,r#)<]. (40 \which differ from the Yukawa-type baryon-meson interac-
tion.
As can be seen from Tables Ill and 1V, the effective nucleon The results of fits to nuclear matter are shown in rows
mass, the compressibilignd the mass of ther meson(for ~ 2—4 of Tables Il and IV. If quadratic baryon-meson interac-
the L, fit) is within an acceptable range allowing a reason-tions (Q fit) are used, the hyperon potentials are still too
able description of nuclei. The same tendency to lomgr  deep.Cubic baryon meson interaction fit) allow for a
can be observed for the cubic fitow C,), although the coupling of the strange condensate to the nucleon, such that
effective nucleon mass is still too high. An investigation of all baryon potentials are acceptable. This is because the sca-
nuclei properties is beyond our scope. A thorough analysis dfar coupling constants approach those for tigpe coupling
nuclei will follow in [30]. [Eq. (19)]. This implies that nonstrange mesons couple ac-

A. Fits to nuclear matter and the hadron masses

B. Hyperon potentials
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cording to the Okubo-Zweig-lizuk&ZI) rule, i.e., exclu- of o weakens with increasing the nonlinearity of the baryon-
sively to the up and down quark, but not to the strange quarkscalar meson coupling. The dilatgnchanges negligible in
With such a coupling scheme, hypernuclei can be reasonabthe medium for all kinds of interaction terms, since it corre-
well described31,32. The potentials of th& andA hyper-  sponds to a heavyf1 GeV) particle, and it does not couple
ons are then equal since their density-dependent mass termtsthe scalar density of nucleons.
are the samésee fourth column of Table)ll It is remarkable The baryon masses are generated dynamically through the
that in this nonlinear scheme a coupling of the strange constrange and nonstrange condensates. Therefore, they are den-
densate to nucleons is necessary to yield potential of the  sity dependent, to@Fig. 3). Their medium behavior follows
right magnitude. from that of the condensates and from the chirally invariant
Other possibilities than the cubic form of baryon-meson“mass terms” of Table Il. At high densities, the masses
interaction may exist to yield realistic hyperon potentials.saturate(or even increagein contrast to the masses in the
The explicit symmetry-breaking term in E¢L4) has no in-  Walecka model, which drop dramatically. The main differ-
fluence on the potential, since it is not medium dependenience between the various fits is the density dependence of
Other forms of explicit symmetry breaking, which involve the mass of thé&g hyperon, which is weakest for the cubic
the meson fieldsthey are listed if18]), either fail to gen- baryon-meson interaction, since there it couples only to
erate the experimentally known baryon mass spectrum or
give unrealistically high/low potentia?s. D. Chiral symmetry restoration
We have also checked the inclusion ofldype coupling
of baryons to spin-1 mesons. Then, the couplings in th

baryon-scalar and baryon-vector meson sector can be chosefi. e . " L
chiral phase transition at high baryon densities. This is not a

to be of the same magnitude. Indeed, a pdireoupling of - . i .
. eficit of our (purely hadroni¢ model, since at very high
baryons to spin-1 mesons leads to acceptable hyperon pOteg]ensities the mean-field model with parameters fixeg,as

tials. However, this type of coupling contradicts the phenom-

enologically successful vector meson dominance principlém.)St probably out of its range of applicability. Fu_rthermore,
[36,19 and is therefore discarded it is unclear, whether a chiral symmetry restoration at high

; ; ; ; densities takes place or ni@&7].
The nonlinearcubic) baryon-meson interaction term that ) . . .
( ) y However, in the chiratr— w model, a solution besides the

ives reasonable hyperon potenti@isw C in Table 1) can " .
d vp P Y ne describing normal nuclear matter can be found, which

be considered as an effective description of baryons interacc:ﬁ he f ¢ hirall d oh ith
ing with multiquark states. This interpretation is analogous t as the features of a chirally restored phase with, e.g., a
vanishing effective nucleon mass. This abnormal solution

the common view of the- meson in the one-boson-exchange ™. . .
exists only for a certain range of parameters. As pointed out

models as a effective parametrization of the correlated two: 51 the ab | oh d | st if the L .
pion exchange. in [5], the abnormal phase does only exist, if the Lagrangian

does not include terms which lead to a contribution in the
equation of motion proportional to &/or higher powers of

C. Equation of state and effective baryon masses it. The Iogarithmic term In det M is such an example. For the
linear baryon-meson interaction, the absence of such a term
leads to an unrealistically large nuclear matter compressibil-
ity of K~1400 MeV[5]. This is not the case for the cubic
Ibaryon—meson interaction. There, even with 0, the com-
ﬁressibility is abouK~300 MeV. Therefore, the nonlinear

Although the Lagrangian with the three different types of
ryon-meson interaction is chirally invariant, there is no

In spite of all the differences in the baryon-meson inter-
action, all fits of Tables Il and IV lead to almdSidentical
equations of statésee Fig. 1 In contrast, the density depen-
dence of the condensates is characteristic for the specif

L‘?;;Tjgi thez)chwally invariant baryon-spin-0 meson coupling coupling of baryons to scalar mesons reduces the compress-
9. 9. ibility as compared to the Yukawa-type of coupling and

(n;L;?;r?a)gyogselgrs;?gglseeds Illir:]eeaarrlly tgt Tg\',\?'ge?;tsiggségé%akes the equations of state softer. However, the abnormal
geo y ! solution following from such a fit is absolutely stable even at

then it saturates at nearly 40% of its VEWig. 2(L)]. This ; . . . :
behavior is in contrast to the linear Walecka model where’?: Itis possible to shift the abnormal phase to higher ener

m¥ 0. The strange condensajechanges only slightly in gies, so that it becomes metastable, if the term
:jheensnitjydc?fa;unc]lz(z)irl:;n’ since it does not couple to the scalar d’g: g, T ,M MTI"+rMM TMr#] (42)
This is different for the quadratifFig. 2(Q)] and cubic
[Fig. 2C)] forms of baryon-meson interaction. There, the
strange and nonstrange fields couple either equally to th
nucleongsee column Q of Table )l or even stronger tham
(column C of Table I). Consequently, the medium depen- Jiop'

dence of the strange condensate becomes stronger, and that W= S, (43)
mux/xot 920

is included, and the effective-meson mass is generated
gredominantly byo, e.g.,

°If one includes four instead of two parameters, then it is of coursavherem,, andg, are fixed to the masses,, andm, [here,
possible to fit both the potentiaknd the baryon masses simulta- the renormalization of thev field is neglected by setting
neously, however for the price of losing the predictive power. ~ ©=0, see Eq.(25)]. A fit with g,=30.0 andm,=594.7

10t higher baryon densities the fits L, Q, and C deviate from eachMeV, a reasonable compressibility and realistic hyperon po-
other, since their compressibilities are slightly different. tentials is given in Tables Il and IV (Lfit, a stands for
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tion and at the same time to yield reasonable hyperon poten-
tials in a chiral model. A model which gives a positive

I
N

=10 T answer is proposed in the following section.

=

30.8

T o6 IV. A MODEL WITH HIDDEN CHIRAL SYMMETRY

Zo0.

\g 0.4 — The difficulties encountered when chirally invariant
o2t e o/ a, baryon-meson interactions are introduced is presumably re-
00 e G lated to the large mass of the baryons as compared to the
T — m mass of the pion. At this energy scale chiral symmetry is

120017 known to be a useful concept. A general framework on how
1000 f -~

VPRSP P PR S PE LR to add “heavy particles” without destroying chiral symme-
"""""""""""" try was presented in the classic papers of R&8-40. The
idea is to go over to a representation where the heavy par-
ticles transform equally under left and right rotations. To
accomplish this, it is necessary to dress these particles non-
linearly with pseudoscalar mesons. The application of this
method to our approach has the following advantages:

3 (i) the Yukawa-type baryon/spin-0 meson interaction can
pg [fm ] be retained,

FIG. 4. Nonstranged), strange ¢) and gluon §) condensates (ii) the strange baryons have reasonable potential depths,

(above and effective baryon masséselow) in the abnormalchi- . (i ) t_he_ heavy_ particles transform in_the SU(,3$pace,
ral) phase. i.e., their interaction terms are not restricted by chiral sym-

metry, which is expected to hold mostly for light particles,

abnormat}). As shown in Fig. 1, the abnormal phase of (iv) baryon masses can be fitted without explicit
symmetry-breaking terms,

nearly massless nucleons has—at zero net strangeness—* . :
always a higher energy than the phase describing norm% (v) a connection to the phenomenologically successful
nuclear matter. In contrast to the &Y equation of state alecka mode_l exists. . . .
[4,5], the abnormal and normal branch do not cross eac In the fo_llowmg we will outline the argumentation. For a
other, so that no phase transition occurs at high baryon delji- orough discussion, se{@O]. . .
sities. Nevertheless, it is instructive to look at the conden- Letthe elementary spmo(?quirks) g introduced in Sec.
sates and the baryonic masses of the abnormal phase: Al-A transform into “new” quarksq by
though the onset of a phase transition is highly parameter - -
dependent, the features of the abnormal or chirally restored q(x)=Ux)qux), dr¥)=UT(x)qr(x) (44
phase are not. ) i

In contrast to the nearly vanishing field, the strange With thae pseudoscalar octet, arranged inU(x)=exp
scalar field has a high value in the abnormal phaBig. 4. L 17=\7/2]. Since the algebraic composition of mesons in
This is connected to the absence of repulsion in the strang€™M$ Of quarks is knowfsee Sec. Il A1, it is straightfor-
sector: There is no contribution from tee(since it does not Ward to transform form “old” meson& andIl into “new
couple to the strange condengatnd theg (which depends MesonsX andY:
on ) does not couple to the nucleon density. In the abnormal _ S .
(chiral) phase not all baryon masses vanish. Their mass dif- M=Z+II=U(X+iY)U. (45)
ference izs due to the explicit symmetry-breaking term forHere, the parity even paiX is associated with the scalar
baryons. ) nonet, whereay is taken to be the pseudoscalar singukit].

A thorough analysis of the parameter dependence and tqﬁ a similar way, the “old” baryon octet? forming the

onset of the chiral phase transition at high densities and NONapresentation8,1) and (1,8 is transformed into a “new”
zero strangeness fraction will be postponed until finite nuclebaryon octeB: ’ '

are described satisfactorily with the cubic baryon-meson in-

teraction[30]. . . . . ‘I’L:UBLUT, \I’R:UTBRU. (46)
Although the cubic baryon—spin-0 meson interaction term

gives reasonable results for infinite nuclear matter, it seems fhe transformations of the exponentialare known 39,40,

rather artificial construction. In addition, the effective

nucleon mass is still too high and indicates poor results for U'=LUVT=VURT, 47

nuclei. The question still remains as to whether it is possible

to keep both the Yukawa-type baryon-meson interacand with the old fields from Table I, the new baryddsand
the new scalar mesoné transform a¥’

o®©
>3
(=3

[CEE
8 8

effective baryon masses [MeV]
(=23
[=3
f=

QO
(=]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

For a correct description of the axial vector meson mass split-
ting, a term of the form 'I[II#Mr“MT] should be added. BFor vector transformations we hate= R=V, whereas forL
2For the G fit, Eq. (14) is multiplied with the dilatony which #R,V is a complicated nonlinear function of the pseudoscalars
reduces the\ potential by approximately 20 MeV. a(X).
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B,=VU'L".Lw LT LUV'=VB V', allows for equally good results when applied, e.g., to finite
nuclei [43,30. In contrast to the Walecka model relations
Br=VUR'- RVgR" RUVI=VBRV, (48)  following from chiral symmetry as PCAC and the

Goldberger-Treiman relation are incorporated. The model al-

1 lows also to predict the masses of the meson nonet at zero
X’ =§(VUTLT. LMRT-RUVT+VUR'-RMTLT-LUVT) and finite density25].

=VXV'.
V. SUMMARY AND OUTLOOK

The pseudoscalars reappear in the transformed model as theWe have presented a chiral SU(3)SU(3)g linear o

parameters 9f the symmetry transformation. Therefore, chirgfyodel for finite baryon density. Besides the meson-meson
invariants (without space-time derivativegre independent interaction, which is widely use®—12], spin-1 mesons and

of the Goldstone bosons. Hence, in mean-field approximag,yong with dynamically generated masses are imple-
tion, the potential(20) does not change its forrfsee also opteq 1n addition, a dilaton field is used to render the

[42]). Furthermore, the new fields allow for invariants which L ; lei ; f | Kina loda-
are forbidden for the old fields by chiral symmetry: Since the agrangian scale invariant, except for a scale breaking loga

: T[tithmic term which simulates the trace anomaly of QCD.
baryons and scalar mesons now transform equally in the lett o )arameters are fixed to the hadron masses and to the

and nght sqbspace, tfetype couplmg fc_)r the_ baryqn—mesc_)n binding energy of nuclear matter at zero pressure. These pa-
interaction is now allowed. The invariant linear interaction rameters can all be related to and are constrained by physical
terms of baryons to scalar mesons are quantities. The equation of state of nuclear matter then has a
compressibility constant of about 300 MeV. Nevertheless,
Lex=295(a[BBX]r+(1—a)[BBX]p) +g5Tr(BB)TrX, the extension to S(@3) is nontrivial, because of the con-
(49 straints imposed by chiral symmetry on the baryon-meson
_ _ _ _ _ interaction. The linear form of the interaction leads to cou-
with [BBX]g:=Tr(BXB—BBX) and [BBX]p:=Tr(BXB  pling constants given by the;,-structure constants. Com-
+BBX)—5Tr(BB)TrX. In contrast to Table li(first col-  bined with the baryon-vector interaction, which go likg; ,
umn), the baryon masses have an additional dependence dhey generate false hyperon potentials. This problem can be
a circumvented by using a cubic baryon-meson interaction,
whose coupling constants are similar to thdéype ones.
1 However, the rather high value of the effective nucleon mass
my=Mgy— §g85(4a—1)(\/§§—o), and the strong coupling of the nucleon to the strange con-
densate corresponding to a mass of about 1 GeV indicates a
possible failure of the cubic model to describe succesfully
2 o finite nuclei. This is being investigatd80].
My =Mo— §98(a—1)(\/§§—0), Another possible way out of this dilemm@and maybe
more natural and more promising for a reasonable descrip-
(50 tion of nuclej is the nonlinear realization of the model
[38,39. With a nonlinear transformation into new scalar
2 o fields transforming linearly in SU(3)and into new pseudo-

My = Mo+ §98(01_ 1H(V2¢-0), scalar fields transforming nonlinearly, it is possible to con-
struct anf-type baryon-scalar meson interaction. The mixing
angle betweerd and f can then be used to adjust to the
known potential of theA hyperon. Furthermore, no addi-
tional explicit symmetry-breaking mass term for the baryons
_ s s is needed. The modified form of the Lagrangian can be recast
with mo=g5(y20+¢). The three parametegs, g5 anda  to resemble the nonlinear Boguta-Walecka Lagrangian of
can be used to fit the baryon masses to their experimentgdef.[7], which was successfully applied to finite nuclei and
values. Then, no additional explicit symmetry-breaking termhypernuclei. A thorough investigation of this modified model
is needed. For=0 andg?= — 2/3g3, thed-type coupling  and its connection to the nonchiral mean-field models is
of Table Il is recovered, and faf=o/+2 (i.e., f,=fy), the  presently under waj30].

1
Mz =M+ 3 g5(2a+1)(V2{~ o)

masses are degenerate, and the vacuum is SU8ariant. It is found that both in the cubic form of baryon-scalar
The potentials following from the fit to nuclear matter are formeson interaction and in the nonlinear realization of chiral
a=1.13: Uy=-57.2 MeV, U,=-31.3 MeV, Us= symmetry, the strange condensate needs to be coupled to the

—27.1 MeV, andUz=—3.3 MeV. Note that the sun , nucleon in order to obtain realistic hyperon potentials. This
+Us is independent of the mixing angte[this can be seen may be viewed as for a large strangeness content of the
by inserting Eq.(50) in Eq. (41)]. As in the cubic fit, a nucleon[6].
coupling of the strange condensate to the nucleon is neces- The cubic model (§), allows for an abnormal Lee-Wick
sary to obtain acceptable potential depths. phase with nucleons of nearly vanishing mass. In contrast to
Since the construction of invariants is only governed bySU(2) models involving an abnormal phas, here the nor-
SU(3)y, the form of the new Lagrangian is analogous to themal phase, which describes ordinary nuclear matter, has a
one used in relativistic mean fielRMF) models[23] and reasonable compression modull&~300 MeV). In the ab-
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