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Chiral Lagrangian for strange hadronic matter
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A generalized Lagrangian for the description of hadronic matter based on the linear SU(3)L3SU(3)R s
model is proposed. Besides the baryon octet, the spin-0 and spin-1 nonets, a gluon condensate associated with
broken scale invariance is incorporated. The observed values for the vacuum masses of the baryons and mesons
are reproduced. In mean-field approximation, vector and scalar interactions yield a saturating nuclear equation
of state. We discuss the difficulties and possibilities to construct a chiral invariant baryon-meson interaction
that leads to a realistic equation of state. It is found that a coupling of the strange condensate to nucleons is
needed to describe the hyperon potentials correctly. The effective baryon masses and the appearance of an
abnormal phase of nearly massless nucleons at high densities are examined. A nonlinear realization of chiral
symmetry is considered, to retain a Yukawa-type baryon-meson interaction and to establish a connection to the
Walecka model.@S0556-2813~98!07005-8#

PACS number~s!: 12.39.Fe, 11.30.2j, 21.30.Fe, 21.65.1f
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I. INTRODUCTION

Recently, nuclear physicists have given new attention
the general principles of chiral symmetry and broken sc
invariance at finite densities. The underlying theory of stro
interactions, QCD, is presently not solvable in the nonper
bative regime of low energies. However, QCD constrai
may be imposed on effective theories for nuclear phys
through symmetries, which determine largely how the h
rons should interact with each other. In this spirit, mod
with SU(2)L3SU(2)R symmetry and scale invariance we
applied to nuclear matter at zero and finite temperature
to finite nuclei @1–5#. The success of these models esta
lished the applicability of this approach to relativistic nucle
many-body physics.

A simultaneous and self-consistent description of stra
and nonstrange particles in baryonic matter is of particu
interest, since many questions in heavy-ion physics and
trophysics are related to the effect of strangeness in ma
The possible large strangeness content of the nucleon
cates the importance of taking strangeness into account
deeper understanding of nuclear matter and nuclei@6#. When
extrapolating to hadronic systems with a large amount
strangeness, new phenomena as negatively charged m
strange objects may occur@7#. The possible onset of kao
condensation at high baryon densities in heavy-ion collisi
and the interior of neutron stars provides another motiva
for studying models which include the strange degree
freedom.

Hadrons can be classified in multiplets with~broken!
SU(3)V symmetry, in which they have~almost! degenerate
masses@8#. If there is one limit to the strong interactions,
which SU(3)V is exact, and another one, in which SU(2V
3SU(2)A symmetry holds, then there must be a joint limit
which SU(3)V is exactand all the axial-vector currents ar
conserved. In this limit thep, K, andh particles are Gold-
stone bosons and we are led to a Lagrangian invariant u
SU(3)L3SU(3)R .
570556-2813/98/57~5!/2576~13!/$15.00
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The linears model as a specific realization of SU(3)L

3SU(3)R symmetry was extensively studied in free spa
@9–11#. The spin-0 mass spectrum and meson-nucleon s
tering are satisfactorily described within this approach.

In this paper we investigate the applicability of chir
SU~3! symmetry to describe nuclear-matter properties
constructing a chiral Lagrangian for hadronic matter inclu
ing strange particles. To reproduce the binding energy
nuclear matter at saturation densityr50.15 fm23 with a
reasonable value for the compression modulus, an octe
vector mesons with axial mesons as chiral partners is
cluded.

The work is based on studies of nuclear matter with
SU(2)L3SU(2)R linear s model @1–5#. There, a logarith-
mic potential involving the dilaton fieldx introduced in@12#
to mimic the trace anomaly of QCD plays an essential role
eliminates unphysical bifurcations encountered in the lin
s model when applied to describe nuclear matter proper
@13#. A similar concept is adopted here, too. However, th
are some important differences to the SU~2! case: the exten-
sion to a chiral SU~3! symmetric model is nontrivial,
because—in contrast to the nucleon doublet—the baryon
tet cannot be assigned to a fundamental representation.
cause of this, difficulties in describing the baryon masses
the hyperon potentials simultaneously arise. Furtherm
one needs to reproduce the experimentally well-kno
masses of the baryon octet and the meson nonets. This l
necessarily to the inclusion of cubic and quartic se
interactions of spin-0 mesons, which were eliminated in@1#
to improve their results for nuclear matter and nuclei.

The specific form of baryon-meson interaction is cruc
for the properties of~hyper-!nuclear matter. The~relativistic!
potentials for nucleons and hyperons following from th
model depend strongly on the coupling constants of hyp
ons to vector and scalar mesons. Since these are constr
by chiral symmetry, it is of interest, whether or not the h
peron potentials are described correctly within this approa
Furthermore, the way hyperons are treated has impor
2576 © 1998 The American Physical Society
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57 2577CHIRAL LAGRANGIAN FOR STRANGE HADRONIC MATTER
consequences for the stability of multistrange hypernuc
systems and for the mass of neutron stars. Therefore, di
ent forms of coupling baryons to spin-0 mesons and th
influence to the hyperon potentials are examined.

The paper is organized as follows: In the first part
review the chiral transformations of mesons and baryons
their assignment to representations. Then, the Lagrangia
its general form is presented and discussed. The next pa
devoted to the approximation scheme used. The results
clude the investigation of the equation of state for nucl
matter, the hyperon potentials, the effective baryon mas
and a discussion whether a chiral phase transition occu
high densities. As an outlook, a nonlinear realization of c
ral symmetry is examined that is a convenient way to inclu
heavy hadrons.

II. THEORY

The s model has been used extensively in exploring
implications of chiral symmetry in low-energy hadron d
namics. Most of these investigations have employed
SU~2! model with mesons and nucleons and the SU~3! s
model with mesons only. In this section we will discuss t
transformation properties of spin-0 and spin-1 mesons
well as those of the baryons as the constituents of our ef
tive theory. This implies the choice of the proper repres
tation under which the particles transform.

A. Representations

The representations of the hadrons result from the di
product of the quark representations, however in the
grangian there will be no explicit reference to quarks. F
our purpose, they are used as guidance.

In the chiral limit, the quarks have to be massless. The
fore, it is sufficient to consider the two-component spinor

qL5
1

2
~12g5!q;~3,1!,

qR5
1

2
~11g5!q;~1,3!. ~1!

Since the quarks are massless, the chirality of the spino
linked to their spin. On the right-hand side, the quark rep
sentations are symbolized by the number of flavors, pla
left ~right! for the left ~right! subspace of SU(3)L
3SU(3)R .

TABLE I. Chiral transformations of spin-0 mesons (M5S
1 iP), spin-1 mesons (Vm5 l m1r m andAm5 l m2r m), and baryons
@see Eq.~10!#.

Hadrons JP Transformations

Spin-0 mesons 01,02 LMR† RM†L†

Spin-1 mesons 12,11 Ll mL† RrmR†

Baryons~nonet! 1
2

1 LCLR† RCRL†

Baryons~octet! 1
2

1 LCLL† RCRR†
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1. Mesons

The mesons as a bound system of a quark and antiq
correspond to the bilinear formq̄Oq where the 12312 ma-
trix O is the direct product of the 434 Dirac matrices and
the 333 Gell-Mann matrices (O5G ^ l). For the discussion
of the representations we will first suppress the explicit r
erence to the Gell-Mann matrixl.

Consider first the spin-0 mesons. If we suppose that t
are s-wave bound states, then the only spinless objects
can form are

q̄RqL , q̄LqR . ~2!

The combinationsq̄LqL and q̄RqR vanish, because the lef
and right subspaces are orthogonal to each other. The re
ing representation is (3,3* ) and (3* ,3), respectively~the an-
tiparticles belong to the conjugate representation!. We are
thus led to consider nonets of pseudoscalar and scalar
ticles.

For the vector mesons, we have to construct vecto
quantities fromqL andqR . Again, if we assume thats-wave
bound states are involved, the only vectors which can
formed are

q̄LgmqL , q̄RgmqR . ~3!

This suggests assigning the vector and axial vector meson
the representation~8,1! and~1,8!, coinciding with the tensor
properties of the currents conserved in the SU(3)3SU(3)
limit @14,15#.

2. Baryons

The discussion of baryons differs from that of the meso
in that the construction of baryon multiplets from the ba
fields qL andqR is not unique. The reason is that a left-or
right-handed quark can be added to the spin-0 diquark of
subspace. Consequently, the baryons can be assigned t
representation (3,3* ) and (3* ,3) or ~8,1! and ~1,8!, respec-
tively. For an explicit construction in terms of quark field
see@16,17#.

B. Transformations

Once the chiral-transformation properties of the elem
tary spinors are known it is straightforward to derive t
corresponding transformation properties of the compo
fields. An arbitrary element of SU(3)3SU(3) can be written
as

G~a,b!5e2[ iaaQa1 ibaQ5a]5e2 i ~a2b!•QL
•e2 i ~a1b!•QR

TABLE II. Mass termsBji for the baryons@see Eq.~15!#.

j 50 j 51 j 52

N s sz 2sz2

J s sz s3

L 1
3 (4s2A2z) A2

6
(s214z2)

A2s2z

S A2z 1

A2
s2

A2s2z



6

9
9
0
7
5
9

2578 57P. PAPAZOGLOUet al.
TABLE III. Hadron masses~in MeV! from fits with linear ~L!, quadratic~Q!, cubic baryon-meson
interaction with (Ca) and without (C) abnormal~chiral! phase.

Spin-0 particle masses
mp~139! mK~495! mh~547! mh8~958! ma0

(980) mK
0*

~1430! ms mf 0
~980!

L 139.0 498.0 540.0 931.1 973.3 1065.0 561.0 747.1
Q 139.0 498.0 540.0 972.4 1064.8 1169.3 728.9 993.1
C 139.0 498.0 540.0 954.6 1023.4 1122.8 774.0 1056.
Ca 139.0 495.0 540.0 946.0 966.8 1041.5 665.5 968.6
Lv 139.0 498.0 540.0 972.3 1064.8 1169.3 466.4 643.5
Cv 139.0 495.0 535.0 927.1 993.0 1095.0 566.5 1076.3

Spin-1 particle masses Spin-1
2 particle masses

mv(783) mK* (892) mr(770) mf(1020) mN(939) mL(1115) mS(1193) mJ(1315)

L 783.0 878.4 783.0 1020.0 939.0 1104.9 1193.1 1314.
Q 783.0 878.4 783.0 1020.0 939.0 1177.3 1198.5 1314.
C 783.0 864.0 783.0 1020.0 939.0 1071.5 1159.5 1339.
Ca 783.0 867.5 783.0 983.4 939.0 1057.0 1174.7 1348.
Lv 783.0 878.4 783.0 1020.0 939.0 1115.0 1196.0 1331.
Cv 783.0 878.4 783.0 1020.0 939.0 1039.4 1196.0 1314.
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wherea and b are eight-component vectors, andQa, Q5a

are the vector and axial generators of SU~3!, respectively.
The spinorsqL of SU(3)L generated byQL5(Q2Q5)/2 and
qR of SU(3)R generated byQR5(Q1Q5)/2 transform as

qk̄ ,qj85L j
kqk , q j̄

85Rj̄
k̄
qk̄ , ~5!

where we adopted the tensor notation. Here, the~un-!bared
indices belong to the~left! right subspace. The complex con
jugate spinors transform as

q8 j5~L j
k!* qk, q8 j̄ 5~Rj̄

k̄
!* qk̄. ~6!

Knowing the representation of the mesonic and baryo
fields, it is straightforward to derive their transformatio
properties. They are summarized in Table I, where we
pressed the meson and baryon fields conveniently in a b
of 333 Gell-Mann matrices. For example, the spin-0 m
sons may be written in the compact form

1

2 (
a50

8

~ q̄RlaqL1q̄Rlag5qL!la

[
1

A2
(
a50

8

~sa1 ipa!la5S1 iP5M , ~7!

1

2 (
a50

8

~ q̄LlaqR1q̄Llag5qR!la

[
1

A2
(
a50

8

~sa2 ipa!la5S2 iP5M†, ~8!

wheresa5q̄laq/A2 ~and similar for thepa fields! includ-

ing the diagonal matrixl05A2
3 1. The first and second row
ic

-
sis
-

are connected by the parity transformation, which transfor
left-handed quarks to right-handed ones. This is achieve
the matrix formulation by taking the adjoint. Therefore, sin
scalar and pseudoscalar particles have opposite parity
imaginary uniti is attached to the pseudoscalar matrixP.

C. Lagrangian formulation

1. Baryon-meson interaction

When generalizing from SU~2! to SU~3!, complications
arise from the baryon-meson sector, since not only
nucleon mass but the masses of the whole baryon multi
are generated spontaneously by the vacuum expectation
ues~VEV! of only two meson condensates: of the 18 mes
fields sa and pa only the VEV of the components propor
tional to l0 and the hyperchargeY;l8 are nonvanishing,
and the vacuum expectation value^M & reduces to

^M &5
1

A2
~s0l01s8l8![diagS s

A2
,

s

A2
,z D ,

in order to preserve parity invariance and assuming, for s
plicity, SU~2! symmetry1 of the vacuum. The quark conten
of these fields iss;^ūu1d̄d& andz;^ s̄s&. To see explic-
itly how these condensates generate the baryon masses,
consider the simplest ansatz for the baryon-meson inte
tion, namely the Yukawa-type coupling:

LBM
~0! 5b0@« āb̄c̄«

de f~C̄L!d
āMe

b̄~CR! f
c̄

1«abc«
d̄ē f̄ ~C̄R! d̄

a
M ē

b
~CL! f̄

c
#. ~9!

The indices are contracted appropriately to yield a chira
invariant term. Note that the chirally invariantlinear baryon-

1This implies that isospin breaking effects will not occur, i.e.,
hadrons of the same isospin multiplet will have identical masse
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TABLE IV. Derived quantities in nuclear matter and parameters from fits with linear~L!, quadratic~Q!,
cubic baryon-meson interaction with (Ca) and without~C! abnormal~chiral! phase.

UN UL US UJ s/s0 z/z0 x/x0 mN* /mN K ~MeV!

L 260.6 2149.9 22.5 2165.5 0.77 0.92 0.99 0.77 279.3
Q 260.9 2136.4 268.0 2169.7 0.86 0.88 0.99 0.76 313.6
C 262.1 227.9 227.9 228.5 0.93 0.89 0.98 0.74 329.9
Ca 261.3 229.8 235.0 247.0 0.96 0.89 0.96 0.76 306.3
Lv 269.3 2221.5 21.3 2252.4 0.63 0.88 0.98 0.63 261.1
Cv 266.6 230.4 230.4 237.0 0.91 0.86 0.94 0.67 191.1

33d gNv g4 /gNv k0 k1 k2 k3 k4 f K ~MeV!

L 6 9.04 0 3.77 5.0 29.25 20.28 20.27 117.0
Q 6 9.18 0 2.63 5.0 213.57 1.19 20.26 112.0
C 1.5 9.67 0 23.54 210.0 211.54 22.88 20.07 114.0
Ca 0 9.02 0 212.33 220.0 27.96 24.86 0.51 118.0
Lv 6 12.72 0.20 4.19 4.3 213.57 23.35 20.22 112.0
Cv 10 11.66 0.24 26.13 210.0 210.84 21.28 0.25 115.0
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meson interaction is only possible in the baryon represe
tion (3,3* ) and (3* ,3) and it is unique~since the product
33333511 . . . leads only to one singlet!. Furthermore,
the resulting coupling constants are given by the symme
(d-type! structure constants of SU~3!. The reason for this is
that three spinors can only be coupled to a singlet by a
symmetrizing them. Since this has to be done in the left
right space, respectively, the resulting coupling will be
symmetric one.

Using the decomposition of the baryon matrixC
5(1/A2)(k50

8 cklk by means of the projection operato
(16g5)/2,

~CL!b
ā5

12g5

2
Cb

a , ~CR! b̄
a
5

11g5

2
Cb

a , ~10!

one arrives at

LBM
~0! 5b0«abc«de fC̄ad~Sbe1 ig5Pbe!Cc f .

After insertion of the vacuum matrix̂M &, one obtains the
baryon masses generated by the VEV of the two me
fields. With this kind of coupling, it is not possible to de
scribe the correct baryon mass splitting as the nucleon
the J are degenerate~see Table II, first column!. To elimi-
nate this flaw, one can either use chirally invariant inter
tion terms of higher order in the meson fields or break
symmetry explicitly.

Taking the first possibility, one has to compute how t
nonlinear terms contribute to the baryon masses. Thequa-
dratic baryon-meson interaction term reads again for
(3,3* ) and (3* ,3) representation of the baryons2

2Except for the linear term of equation~9!, the quadratic and the
cubic interactions are also possible in the~8,1! and ~1,8! represen-
tation of the baryons. Specifically the quadratic contribution re

Tr(L̄MRM†1R̄M†LM ). However, this difference will not play a
role for the vacuum masses or in the mean-field approximat
since^M &5^M†&5diag(s/A2,s/A2,z).
a-

ic

i-
d

n

nd

-
e

e

LBM
~1! 5b1@~C̄L!b

āM c̄
b
~CR!d

c̄M ā
d
1~C̄R! b̄

a
Mc

b̄~CL! d̄
c
Ma

d̄#

5b1Tr~C̄LMCRM1C̄RM†CLM†!. ~11!

But, as can be observed from Table II~second column!, this
term also fails to remove the nucleon-J-mass degeneracy
Only the inclusion of acubic interaction term of the form

LBM
~2! 5b2@~C̄L!b

āM c̄
b
~CR!d

c̄Tā
d
1~C̄R! b̄

a
Mc

b̄~CL! d̄
c
Ta

d̄#

5b2Tr~C̄LMCRT1C̄RM†CLT†! ~12!

yields a mass splitting between nucleon andJ ~Table II,
third column!. Here, the dual tensor is defined as3

Ta
d̄5eamne

d̄ f̄ ḡM f̄
m

Mḡ
n , ~13!

so that it transforms in the same way as the meson matrixM .
The second alternative is to break the symmetry exp

itly. However, the transformation properties of the breaki
term is restricted due to the necessity to maintain the pa
concentration of axial-vector current~PCAC! relation for the
pion ~Sec. II C 3!. Assuming that the mass differences a
entirely due to the quark mass differences, we break the s

s

n,

3The cubic interaction allows for two independent invariants,
other one being analogous to Eq.~12! except for exchangingT and
M :

LBM
~3! 5b3@~C̄L!b

āTc̄
b
~CR!d

c̄M ā
d
1~C̄R! b̄

a
Tc

b̄~CL! d̄
c
Ma

d̄#

5b3Tr~C̄LTCRM1C̄RT†CLM†!.

However, this form will not be considered, because it gives p
results for the baryon mass splitting and it does not lead to acc
able nuclear-matter fits.
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metry along the hypercharge Y direction. This leads to G
Mann-Okubo~GMO! mass formulas. We take a term of th
type ~8,8! @18#,

LDm5m1Tr~C̄C2C̄CS!1m2Tr~C̄SC! ~14!

whereSb̄
a
52 1

3 @A3(l8) b̄
a
2d b̄

a
# †other types such as the~8,1!

and ~1,8!, (3,3* ) and (3* ,3) representations lead to simila
results and are discussed in@18#‡.

Since none of the baryon-meson interaction terms al
gives the correct baryon mass splitting, they will be inves
gated in combination with the explicit symmetry-breaki
term ~14!. The baryon masses read

mN5
bj

A2
BjN , mJ5

bj

A2
Bj J1m11m2 , j 50,1,2

mL5
bj

A2
Bj L1

m112m2

3
, mS5

bj

A2
Bj S1m1 , ~15!

with the baryon-meson interaction termsBji ( i 5N, L, S,
J) of Table II. From that one can see that only the stran
ness carrying baryon masses are modified~note, that in the
case ofm25m1[ms the explicit symmetry-breaking term
corresponds to the strange quark mass in the spirit of
additive quark model!. As only the nucleon mass enters th
fit to nuclear matter properties, the parametersbj shall be
fixed to reproduce the nucleon mass. The symmetry-brea
contributions are then adjusted to the remaining bar
masses.

The interaction terms of baryons with spin-0 meso
which lead to a saturating nuclear matter equation of s
~see Tables III and IV!, are

L: LBM5LBM
~0! 1LDm Q: LBM5LBM

~1! 1LDm

FIG. 1. Binding energy versus baryon densityrB for the linear
~L!, quadratic~Q!, and cubic~C! baryon-spin-0 meson interactio
~see Tables III and IV!.
l-

e
-

-

e

ng
n

,
te

C: LBM5LBM
~2! 1LDm .

Here, L, Q, and C stand for the meson fields entering in
baryon-meson interaction terms purely linearly, quadra
cally, and cubic, respectively.4 ~This notation is also used in
Tables III, IV and in Figs. 1, 2, and 3.!

The interaction of the vector meson and axial vector m
son nonets

Vm5
1

A2
(
i 50

8

vm
i l i , Am5

1

A2
(
i 50

8

am
i l i ~16!

with baryons is far less involved. For the baryons belong
to the (3,3* ) and (3* ,3) representation one has the antisy
metric, f -type coupling to baryons5

LBV5g8
VTr~C̄gm@Vm ,C#1C̄gmg5$Am ,C%!

1g1
VTr~C̄gmC!Tr~Vm1g5Am!. ~17!

4The sum of linear, quadratic, and cubic forms leads also t
realistic baryon mass splitting and to a saturating equation of s
even without an explicit symmetry-breaking term. However, it on
complicates the discussion without significantly improving resu
Therefore, we will not consider this option further.

5If the baryons are assigned to~8,1! and~1,8!, the analogous octe

term readsg8
VTr(C̄gm@Vm ,C#1C̄gmg5@Am ,C#). Since both rep-

resentations differ only as to how the axial mesons contribute, th
will be no difference in the mean-field approximation.

FIG. 2. Nonstrange (s), strange (z), and gluon (x) S conden-
sates versus baryon densityrB for the linear~L!, quadratic~Q!, and
cubic ~C! baryon-spin-0 meson interaction~see Tables III and IV!.
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In the mean-field treatment, the axial mesons have a z
VEV. The relevant fields in the SU~2! invariant vacuum,vm

0

and vm
8 , are taken to have the ideal mixing angle sinuv

51/A3, yielding

fm5vm
8 cosuv2vm

0 sinuv5
1

A3
~A2vm

0 1v8
m!,

vm5vm
8 sinuv1vm

0 cosuv5
1

A3
~vm

0 2A2v8
m!. ~18!

For g1
V5g8

V , the strange vector fieldfm; s̄gms does not
couple to the nucleon. The remaining couplings to
strange baryons are then determined by symmetry relati

gLv5gSv52gJv5
2

3
gNv52g8

V ,

gLf5gSf5
gJf

2
5

A2

3
gNv , ~19!

where their relative values are related to the additive qu
model. In contrast to the baryon/spin-0-meson interact
two independent interaction terms of baryons with spin
mesons can be constructed. They correspond to the anti
metric (f -type! and symmetric (d-type! couplings, respec-
tively. However, from the universality principle@19# and the
vector meson dominance model thed-type coupling should
be small. In mean-field models, large attractive and repuls
contributions from scalar and vector mesons cancel to g
the relatively shallow nucleon potential. When extended
the strange sector, a different treatment of the coupling c

FIG. 3. Baryon masses as a function of the baryon densityrB

for the linear~L!, quadratic~Q!, and cubic~C! baryon-spin-0 meson
interaction.
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stants disturbs the cancellation and unphysically large
peron potentials can emerge. We will elaborate on this pr
lem in Sec. III B.

2. Chirally invariant potential

The chirally invariant potential includes the mass ter
for mesons, their self-interaction and the dilaton potential
the breaking of scale symmetry. For the spin-0 mesonic
tential we take all independent combinations of mesonic s
interaction terms up to fourth order

2L0[V05
1

2
k0x2TrM†M2k1~TrM†M !22k2Tr~M†M !2

2k3x~detM1detM†!1k4x41
1

4
x4ln

x4

x0
4

2
d

3
x4ln

detM1detM†

2det̂ M &
. ~20!

Most of the constants are fixed by the vacuum masses of
pseudoscalar and scalar mesons, respectively~see Sec. III A
for details!. These are determined by calculating the seco
derivative of the potential in the ground state. Because of
determinant and the logarithmic terms, mixing betweenh8,
h0 ~in the pseudoscalar sector! ands, z, andx ~in the scalar
sector! occurs, which makes a diagonalization of the cor
sponding mass matrices necessary.

The quadratic and cubic form of the interaction is ma
scale invariant by multiplying it with an appropriate pow
of the dilaton fieldx @20#. Originally, the dilaton field was
introduced by Schechter in order to mimic the trace anom
of QCD um

m5(bQCD/2g)Gmn
a Ga

mn in an effective Lagrangian
at tree level@12# (Gmn is the gluon field strength tensor o
QCD!. The effect6 of the logarithmic term;x4lnx is two-
fold: First, it breaks the scale invariance and leads to
proportionalityum

m;x4 as can be seen from

um
m54L2x

]L
]x

22]mx
]L

]~]mx!
5x4, ~21!

which is a consequence of the definition of scale transform
tions @11#. Second, the logarithm leads to a nonvanish
vacuum expectation value for the dilaton field resulting in
spontaneous chiral symmetry breaking. This connect
comes from the multiplication ofk0 in Eq. ~20! with x2:
With the breakdown of scale invariance the resulting m
coefficient becomes negative for positivek0 and therefore
the Nambu-Goldstone mode is entered. The compariso
the trace anomaly of QCD with that of the effective theo
allows for the identification of thex field with the gluon
condensate:

um
m5 K bQCD

2g
Gmn

a Ga
mnL [~12d!x4. ~22!

6According to @12#, the argument of the logarithm has to b
chirally and parity invariant. This is fulfilled by the dilaton which i
a chiral singlet and a scalar.
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The parameterd originates from the second logarithmic ter
with the chiral and parity invariant combination detM
1detM†. The term is a SU~3! extension of the logarithmic
term proportional tox4ln(s21p2) introduced in@1#. An ori-
entation for the value ofd may be taken frombQCD at the
one-loop level, withNc colors andNf flavors,

bQCD52
11Ncg

3

48p2 S 12
2Nf

11Nc
D1O~g5!, ~23!

where the first number in parentheses arises from the~anti-
screening! self-interaction of the gluons and the second, p
portional to Nf , is the ~screening! contribution of quark
pairs. Equation~23! suggests the valued56/33 for three
flavors and three colors. This value gives the order of m
nitude about which the parameterd will be varied.

For the spin-1 mesons a mass term is needed. The
plest scale invariant form

Lvec
~1!5

1

2
mV

2 x2

x0
2
Tr~VmVm1AmAm! ~24!

implies a mass degeneracy for the meson nonet. To spli
masses one can add the chiral invariant@10,21#

Lvec
~2!5

1

8
mTr@~Fmn1Gmn!2M†M1~Fmn2Gmn!2M†M #,

~25!

with the vectorial and axial field strength tensorsFmn

5]nVm2]mVn and Gmn5]nAm2]mAn . In combination
with the kinetic energy term@see Eq.~31!#, one obtains for
the vector mesons

2
1

4F12m
s2

2 G~Fr
mn!22

1

4F12
1

2
mS s2

2
1z2D G~FK*

mn
!2,

2
1

4F12m
s2

2 G~Fv
mn!22

1

4
@12mz2#~Ff

mn!2. ~26!

Since the coefficients are no longer unity, the vector me
fields have to be renormalized, i.e., the newv field reads
v r5Zv

21/2v. The renormalization constants are the coe
cients in the square brackets in front of the kinetic ene
terms of Eq.~26!, i.e., Zv

21512ms2/2. The mass terms o
the vector mesons deviate from the mean massmV by the
renormalization factor,7 i.e.,

mv
2 5mr

25ZvmV
2 ; mK*

2
5ZK* mV

2 ; mf
2 5ZfmV

2 .
~27!

The constantsmV andm are fixed to give the correctv and
f masses. The other vector meson masses are display

7One could split ther2v mass degeneracy by adding a term
the form @10# (TrFmn)2 to Eq. ~26!. Alternatively, one could break
the SU~2! symmetry of the vacuum allowing for a nonvanishin
vacuum expectation value of the scalar isovector field. Howe
the r2v mass splitting is small (;2%), and wewill not consider
this complication.
-

-

m-

he

n

-
y

in

Table III. The axial vector mesons have a mass aroun
GeV. We refrain from giving their masses explicitly. To tre
them appropriately, additional terms are needed@10,22#. This
goes beyond the scope of the present paper.

3. Explicit breaking of chiral symmetry

The term

2LSB[VSB5
x2

x0
2
Tr~ f S!

5
x2

x0
2Fmp

2 f ps1S A2mK
2 f K2

1

A2
mp

2 f pD zG ~28!

breaks the chiral symmetry explicitly and makes the pseu
scalar mesons massive.8 It is scaled appropriately to hav
scale dimension equal to that of the quark mass te
;mqq̄q1mss̄s, which is present in the QCD Lagrangia
with massive quarks. This term leads to a nonvanishing
vergence of the axial currents. The matrix elements of
51/A2( f 0l01 f 8l8) were written as a function ofmp

2 f p and
mK

2 f K to satisfy the~approximately valid! PCAC relations for
the p andK mesons,

]mAp
m5mp

2 f pp, ]mAK
m5mK

2 f KK. ~29!

Then, by utilizing the equations of motion, the VEV ofs
andz are fixed in terms off p and f K , i.e.,

s052 f p , z05
1

A2
~ f p22 f K!. ~30!

Since no relation for a partially conserved dilatational c
rent is known, the VEV for the gluon condensate rema
undetermined.

D. Total Lagrangian

The kinetic energy terms for the fermions and mesons

Lkin5 iTrC̄gm]mC1
1

2
Tr~]mM†]mM !1

1

2
]mx]mx

2
1

4
Tr~FmnFmn!2

1

4
Tr~GmnGmn!. ~31!

The total general Lagrangian is the sum

L5Lkin1LBM1LBV1Lvec1L01LSB, ~32!

r,

8One may wonder why—besides the explicit symmetry-break
term ~14! in the baryon-meson sector—a second chiral noninvar
contribution is needed. This is due to our ignorance as to how
transform the current quark picture into the constituent quark p
ture.
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with Lvec5Lvec
(1)1Lvec

(2) . For LBM , we will discuss the effect
of various possibilities mentioned in Sec. II C 1 regardi
the nuclear-matter fits and the hyperon potentials.

E. Mean-field Lagrangian

To investigate hadronic matter properties at finite bary
density we adopt the mean-field approximation~see, e.g.,
@23#!. In this approximation scheme, the fluctuations arou
constant vacuum expectation values of the field operators
neglected:

s~x!5^s&1ds→^s&[s; z~x!5^z&1dz→^z&[z,

vm~x!5^v&d0m1dvm→^v0&[v;

fm~x!5^f&d0m1dfm→^f0&[f. ~33!

The fermions are treated as quantum-mechanical one-pa
operators. The derivative terms can be neglected and
the timelike component of the vector mesonsv[^v0& and
f[^f0& survive if we assume homogeneous and isotro
infinite baryonic matter. Additionally, due to parity conse
vation we havê p i&50. After performing these approxima
tions, the Lagrangian~32! becomes

LBM1LBV52(
i

c ī@givg0v01gifg0f01mi* #c i ,

Lvec5
1

2
mv

2 x2

x0
2
v21

1

2
mf

2 x2

x0
2
f2,

V05
1

2
k0x2~s21z2!2k1~s21z2!22k2S s4

2
1z4D2k3xs2z

1k4x41
1

4
x4ln

x4

x0
4

2
d

3
ln

s2z

s0
2z0

,

VSB5S x

x0
D 2Fmp

2 f ps1S A2mK
2 f K2

1

A2
mp

2 f pD zG ,

with the effective mass of the baryoni , which is defined
according to Sec. II C 1.

1. Grand canonical ensemble

It is straightforward to write down the expression for t
thermodynamical potential of the grand canonical ensem
V per volumeV at a given chemical potentialm and zero
temperature:

V

V
52Lvec2L02LSB2Vvac2(

i

g i

~2p!3

3E d3k@Ei* ~k!2m i* #. ~34!

The vacuum energyVvac ~the potential atr50) has been
subtracted in order to get a vanishing vacuum energyg i
denote the fermionic spin-isospin degeneracy factorsgN
n

d
re

cle
ly

c

le

54, gS56, gL52, gJ54). The single-particle energies ar
Ei* (k)5Aki

21mi*
2 and the effective chemical potentia

readm i* 5m i2gv iv2gf if.

2. Equations of motion

The mesonic fields are determined by extremizi
(V/V)(m,T50):

]~V/V!

]x
52v2mv

2 x

x0
2

1k0x~s21z2!2k3s2z

1S 4k41114ln
x

x0
24

d

3
ln

s2z

s0
2z0

D x3

12
x

x0
2Fmp

2 f ps1S A2mK
2 f K2

1

A2
mp

2 f pD zG
50, ~35!

]~V/V!

]s
5k0x2s24k1~s21z2!s22k2s322k3xsz

22
dx4

3s
1S x

x0
D 2

mp
2 f p1(

i

]mi*

]s
r i

s50, ~36!

]~V/V!

]z
5k0x2z24k1~s21z2!z24k2z32k3xs22

dx4

3z

1S x

x0
D 2FA2mK

2 f K2
1

A2
mp

2 f pG1(
i

]mi*

]z
r i

s50.

~37!

The vector fields v and f are determined from
](V/V)/]v50 and](V/V)/]f50, respectively. They may
be solved explicitly yielding

v5
givr ix0

2

mv
2 x2

, f5
gifr ix0

2

mf
2 x2

. ~38!

The scalar densitiesr i
s and the vector densitiesr i can be

calculated analytically, yielding

r i
s5g iE d3k

~2p!3

mi*

Ei*
5

g imi*

4p2 F kFiEFi* 2mi*
2lnS kFi1EFi*

mi*
D G ,

r i5g iE
0

kFi d3k

~2p!3
5

g ikFi
3

6p2
. ~39!

The energy density and the pressure follow from the Gib
Duhem relation,e5V/V1m ir

i and p52V/V. Applying
the Hugenholtz–van Hove theorem@24#, the Fermi surfaces
are given byE* (kFi)5AkFi

2 1mi*
25m i* .

III. RESULTS

The scope of the present paper is to explore whether
possible to describe nuclear-matter properties reason
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well within the framework of the SU(3)L3SU(3)R s model.
Therefore, we discuss only the results for the limit of va
ishing net strangeness. The case of finite strangeness wil
discussed in a forthcoming publication@25#. However, there
are strong implications of the Lagrangian for the hyper
potentials and for high densities, which will be elaborated
the following.

A. Fits to nuclear matter and the hadron masses

A salient feature of all chiral models are the stro
vacuum constraints. In the present case they fixk0, k2, and
k4, in order to minimize the thermodynamical potentialV in
vacuum for given values of the fieldss0, z0, andx0. Note
that these parameters could also be eliminated by ad
appropriate chirally invariant terms to ensure that
vacuum energy is minimal for given values ofs0, z0, and
x0. The parameterk3 is fixed to theh mass mh . There is
some freedom to vary parameters, mainly due to the
known mass of thes mesonms , which is determined byk1,
and due to the uncertainty of the value for the kaon de
constantf K . While the kaon decay constant is not know
precisely, the value forf p is known very well. Hence, we
keep f p fixed to 93 MeV and varyf K in the range 11565
MeV.

In order to reproduce the correct nuclear-matter prop
ties, two of the parameters have to be adjusted to the
dium. We choosegNv and x0 to fit the binding energy of
nuclear mattere/rB2mN5216 MeV at the saturation den
sity r050.15 fm23. It should be noted that a reasonab
nuclear-matter fit with acceptable compressibility@26# can be
found ~row L in Tables III and IV!, wherems'560 MeV.
This, in the present approach, allows for an interpretation
the s field as the chiral partner of thep field and as the
mediator of the midrange attractive force between nucleo
though we believe the phenomenon is in reality genera
through correlated two-pion exchange@27#. Experimentally,
the existence of a low-masss meson is still controversia
@28#. For the other scalar mesons also, the direct compar
with experimental data is problematic because of their la
decay widths and their mixing with higher resonances. N
ertheless, we adopted the notation of the particle data gr
~see Table III! to avoid confusion with notation and to mak
clear which quantum numbers the particles have.

Generally, the fits of Tables III and IV have a reasona
compressibility@26#. In contrast, the effective nucleon ma
of aboutmN* 50.75mN is definitely too high for an acceptabl
description of nuclei@29#. This shortcoming can be cured, i
in analogy to@1#, a quartic self-interaction of spin-1 meson
is added:

Lvec
~3!5~g4!4Tr@~ l ml m!21~r mr m!2#. ~40!

As can be seen from Tables III and IV, the effective nucle
mass, the compressibilityand the mass of thes meson~for
the Lv fit! is within an acceptable range allowing a reaso
able description of nuclei. The same tendency to lowermN*
can be observed for the cubic fit~row Cv), although the
effective nucleon mass is still too high. An investigation
nuclei properties is beyond our scope. A thorough analysi
nuclei will follow in @30#.
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Even from studies of infinite nuclear matter at zero n
strangeness one can conclude whether or not it is possib
describe hypernuclear data. Most important, the experim
tally known spin-orbit splitting ofL hypernuclei as well as
their potential depths have to be described satisfactorily
was shown in@31,32# that the small spin-orbit splitting ofL
hypernuclei can be obtained if an additional tensorial c
pling of baryons to spin-1 mesons is added. This can be d
in a chiral invariant manner, but, since tensor terms vanis
the mean-field approximation, we will not discuss this fu
ther. The main challenge is to investigate the potential dep
of hypernuclei. This issue will be addressed in the followin

B. Hyperon potentials

Besides the observables pressurep, energy per baryon
e/rB , compressibilityK, and effective nucleon massmN* /mN

at ground-state densityr0, there are some additional impo
tant constraints in the medium due to hypernuclear phys
The ~relativistic! potential depthsUi of the baryons atr0,
which can serve as input to restrict also the ‘‘nonstrang
parameters,

Ui5mi* 2mi1gv iv, i 5N,L,S,J. ~41!

Experimentally, one finds for theL hyperons a potential o
UL523063 MeV @33#. For theS potential the situation is
unclear, since there is no evidence for boundS hypernuclei.
The predictions range from completely unboundS ’s @34# to
US522565 MeV @35#. For J hyperons, several boun
J-hypernuclei candidates have been reported@33#. The po-
tential for theJ hyperon has been extracted toUJ5225
65 MeV.

The Yukawa-type chirally invariant baryon-meson inte
action gives an acceptable mass spectrum of mesons
baryons~row L of Tables III and IV!, and also, the com-
pressibility has a reasonable value (K'300 MeV!. However,
the potential depths of the hyperons are very deep. Thi
mainly due to the baryon-vector and baryon-scalar me
coupling constants, which determine the strength of the v
tor and scalar potential, respectively,@see Eq.~41!#. Once
gNs andgNv are fixed to the nucleon mass and the nucl
potential, the coupling constants of strange baryons to
sons are determined by symmetry relations. As discusse
Sec. II C 1, chiral symmetry restricts the coupling of spin
mesons to baryons to a symmetric (d-type! one. This de-
stroys the balance between repulsion and attraction, since
baryon-vector coupling is antisymmetric (f -type!, i.e., gSs

50, whereasgSv5 2
3 gNv . To cure this deficiency, nonlinea

baryon-meson interaction terms can be introduced, which
also chirally invariant. They lead to coupling constan
which differ from the Yukawa-type baryon-meson intera
tion.

The results of fits to nuclear matter are shown in ro
2–4 of Tables III and IV. If quadratic baryon-meson intera
tions ~Q fit! are used, the hyperon potentials are still t
deep.Cubic baryon meson interactions~C fit! allow for a
coupling of the strange condensate to the nucleon, such
all baryon potentials are acceptable. This is because the
lar coupling constants approach those for thef -type coupling
@Eq. ~19!#. This implies that nonstrange mesons couple
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cording to the Okubo-Zweig-Iizuka~OZI! rule, i.e., exclu-
sively to the up and down quark, but not to the strange qu
With such a coupling scheme, hypernuclei can be reason
well described@31,32#. The potentials of theS andL hyper-
ons are then equal since their density-dependent mass t
are the same~see fourth column of Table II!. It is remarkable
that in this nonlinear scheme a coupling of the strange c
densate to nucleons is necessary to yield aL potential of the
right magnitude.

Other possibilities than the cubic form of baryon-mes
interaction may exist to yield realistic hyperon potentia
The explicit symmetry-breaking term in Eq.~14! has no in-
fluence on the potential, since it is not medium depend
Other forms of explicit symmetry breaking, which involv
the meson fields~they are listed in@18#!, either fail to gen-
erate the experimentally known baryon mass spectrum
give unrealistically high/low potentials.9

We have also checked the inclusion of ad-type coupling
of baryons to spin-1 mesons. Then, the couplings in
baryon-scalar and baryon-vector meson sector can be ch
to be of the same magnitude. Indeed, a pured coupling of
baryons to spin-1 mesons leads to acceptable hyperon p
tials. However, this type of coupling contradicts the pheno
enologically successful vector meson dominance princ
@36,19# and is therefore discarded.

The nonlinear~cubic! baryon-meson interaction term th
gives reasonable hyperon potentials~row C in Table IV! can
be considered as an effective description of baryons inter
ing with multiquark states. This interpretation is analogous
the common view of thes meson in the one-boson-exchan
models as a effective parametrization of the correlated t
pion exchange.

C. Equation of state and effective baryon masses

In spite of all the differences in the baryon-meson int
action, all fits of Tables III and IV lead to almost10 identical
equations of state~see Fig. 1!. In contrast, the density depen
dence of the condensates is characteristic for the spe
form of the chirally invariant baryon-spin-0 meson coupli
used~Fig. 2!.

If the baryons are coupled linearly to spin-0 mesons,
~nonstrange! s field decreases linearly at low densities, a
then it saturates at nearly 40% of its VEV@Fig. 2~L!#. This
behavior is in contrast to the linear Walecka model wh
mN*→0. The strange condensatez changes only slightly in
the nuclear medium, since it does not couple to the sc
density of nucleons.

This is different for the quadratic@Fig. 2~Q!# and cubic
@Fig. 2~C!# forms of baryon-meson interaction. There, t
strange and nonstrange fields couple either equally to
nucleons~see column Q of Table II!, or even stronger thans
~column C of Table II!. Consequently, the medium depe
dence of the strange condensate becomes stronger, an

9If one includes four instead of two parameters, then it is of cou
possible to fit both the potentialsand the baryon masses simulta
neously, however for the price of losing the predictive power.

10At higher baryon densities the fits L, Q, and C deviate from e
other, since their compressibilities are slightly different.
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of s weakens with increasing the nonlinearity of the baryo
scalar meson coupling. The dilatonx changes negligible in
the medium for all kinds of interaction terms, since it corr
sponds to a heavy (.1 GeV! particle, and it does not coupl
to the scalar density of nucleons.

The baryon masses are generated dynamically through
strange and nonstrange condensates. Therefore, they are
sity dependent, too~Fig. 3!. Their medium behavior follows
from that of the condensates and from the chirally invari
‘‘mass terms’’ of Table II. At high densities, the mass
saturate~or even increase!, in contrast to the masses in th
Walecka model, which drop dramatically. The main diffe
ence between the various fits is the density dependenc
the mass of theJ hyperon, which is weakest for the cub
baryon-meson interaction, since there it couples only tos.

D. Chiral symmetry restoration

Although the Lagrangian with the three different types
baryon-meson interaction is chirally invariant, there is
chiral phase transition at high baryon densities. This is no
deficit of our ~purely hadronic! model, since at very high
densities the mean-field model with parameters fixed atr0 is
most probably out of its range of applicability. Furthermo
it is unclear, whether a chiral symmetry restoration at h
densities takes place or not@37#.

However, in the chirals2v model, a solution besides th
one describing normal nuclear matter can be found, wh
has the features of a chirally restored phase with, e.g
vanishing effective nucleon mass. This abnormal solut
exists only for a certain range of parameters. As pointed
in @5#, the abnormal phase does only exist, if the Lagrang
does not include terms which lead to a contribution in t
equation of motion proportional to 1/s or higher powers of
it. The logarithmic term ln det M is such an example. For t
linear baryon-meson interaction, the absence of such a t
leads to an unrealistically large nuclear matter compress
ity of K'1400 MeV @5#. This is not the case for the cubi
baryon-meson interaction. There, even withd50, the com-
pressibility is aboutK'300 MeV. Therefore, the nonlinea
coupling of baryons to scalar mesons reduces the compr
ibility as compared to the Yukawa-type of coupling an
makes the equations of state softer. However, the abno
solution following from such a fit is absolutely stable even
r0. It is possible to shift the abnormal phase to higher en
gies, so that it becomes metastable, if the term

Lvec
~4!5g2Tr@ l mMM†l m1r mM†Mr m# ~42!

is included, and the effectivev-meson mass is generate
predominantly bys, e.g.,

v5
givr i

mV
2x2/x0

21g2s2
, ~43!

wheremV andg2 are fixed to the massesmv andmf @here,
the renormalization of thev field is neglected by setting
m50, see Eq.~25!#. A fit with g2530.0 andmV5594.7
MeV, a reasonable compressibility and realistic hyperon
tentials is given in Tables III and IV (Ca fit, a stands for

e

h
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2586 57P. PAPAZOGLOUet al.
abnormal11!. As shown in Fig. 1, the abnormal phase
nearly massless nucleons has—at zero net strangene
always a higher energy than the phase describing nor
nuclear matter. In contrast to the SU~2! equation of state
@4,5#, the abnormal and normal branch do not cross e
other, so that no phase transition occurs at high baryon d
sities. Nevertheless, it is instructive to look at the cond
sates and the baryonic masses of the abnormal phase
though the onset of a phase transition is highly param
dependent, the features of the abnormal or chirally resto
phase are not.

In contrast to the nearly vanishings field, the strange
scalar fieldz has a high value in the abnormal phase~Fig. 4!.
This is connected to the absence of repulsion in the stra
sector: There is no contribution from thev ~since it does not
couple to the strange condensate!, and thef ~which depends
on z) does not couple to the nucleon density. In the abnor
~chiral! phase not all baryon masses vanish. Their mass
ference is due to the explicit symmetry-breaking term
baryons.12

A thorough analysis of the parameter dependence and
onset of the chiral phase transition at high densities and n
zero strangeness fraction will be postponed until finite nu
are described satisfactorily with the cubic baryon-meson
teraction@30#.

Although the cubic baryon–spin-0 meson interaction te
gives reasonable results for infinite nuclear matter, it seem
rather artificial construction. In addition, the effectiv
nucleon mass is still too high and indicates poor results
nuclei. The question still remains as to whether it is poss
to keep both the Yukawa-type baryon-meson inter

11For a correct description of the axial vector meson mass s
ting, a term of the form Tr@ l mMr mM†# should be added.
12For the Ca fit, Eq. ~14! is multiplied with the dilatonx which
reduces theL potential by approximately 20 MeV.

FIG. 4. Nonstrange (s), strange (z) and gluon (x) condensates
~above! and effective baryon masses~below! in the abnormal~chi-
ral! phase.
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tion and at the same time to yield reasonable hyperon po
tials in a chiral model. A model which gives a positiv
answer is proposed in the following section.

IV. A MODEL WITH HIDDEN CHIRAL SYMMETRY

The difficulties encountered when chirally invaria
baryon-meson interactions are introduced is presumably
lated to the large mass of the baryons as compared to
mass of the pion. At this energy scale chiral symmetry
known to be a useful concept. A general framework on h
to add ‘‘heavy particles’’ without destroying chiral symme
try was presented in the classic papers of Refs.@38–40#. The
idea is to go over to a representation where the heavy
ticles transform equally under left and right rotations. T
accomplish this, it is necessary to dress these particles
linearly with pseudoscalar mesons. The application of t
method to our approach has the following advantages:

~i! the Yukawa-type baryon/spin-0 meson interaction c
be retained,

~ii ! the strange baryons have reasonable potential dep
~iii ! the heavy particles transform in the SU(3)V space,

i.e., their interaction terms are not restricted by chiral sy
metry, which is expected to hold mostly for light particles

~iv! baryon masses can be fitted without expli
symmetry-breaking terms,

~v! a connection to the phenomenologically success
Walecka model exists.

In the following we will outline the argumentation. For
thorough discussion, see@30#.

Let the elementary spinors~5quarks! q introduced in Sec.
II A transform into ‘‘new’’ quarks q̃ by

qL~x!5U~x! q̃L~x!, qR~x!5U†~x! q̃R~x! ~44!

with the pseudoscalar octetpa arranged in U(x)5exp
@2ipal

a/2#. Since the algebraic composition of mesons
terms of quarks is known~see Sec. II A 1!, it is straightfor-
ward to transform form ‘‘old’’ mesonsS andP into ‘‘new’’
mesonsX andY:

M5S1 iP5U~X1 iY!U. ~45!

Here, the parity even partX is associated with the scala
nonet, whereasY is taken to be the pseudoscalar singlet@41#.
In a similar way, the ‘‘old’’ baryon octetC forming the
representation~8,1! and ~1,8! is transformed into a ‘‘new’’
baryon octetB:

CL5UBLU†, CR5U†BRU. ~46!

The transformations of the exponentialU are known@39,40#,

U85LUV†5VUR†, ~47!

and with the old fields from Table I, the new baryonsB and
the new scalar mesonsX transform as13

t-
13For vector transformations we haveL5R5V, whereas forL

ÞR,V is a complicated nonlinear function of the pseudoscal
pa(x).
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BL85VU†L†
•LCLL†

•LUV†5VBLV†,

BR85VUR†
•RCRR†

•RU†V†5VBRV†, ~48!

X85
1

2
~VU†L†

•LMR†
•RU†V†1VUR†

•RM†L†
•LUV†!

5VXV†.

The pseudoscalars reappear in the transformed model a
parameters of the symmetry transformation. Therefore, ch
invariants~without space-time derivatives! are independen
of the Goldstone bosons. Hence, in mean-field approxi
tion, the potential~20! does not change its form~see also
@42#!. Furthermore, the new fields allow for invariants whi
are forbidden for the old fields by chiral symmetry: Since t
baryons and scalar mesons now transform equally in the
and right subspace, thef -type coupling for the baryon-meso
interaction is now allowed. The invariant linear interacti
terms of baryons to scalar mesons are

LBX5A2g8
S~a@B̄BX#F1~12a!@B̄BX#D!1g1

STr~B̄B!TrX,
~49!

with @B̄BX#F :5Tr(B̄XB2B̄BX) and @B̄BX#D :5Tr(B̄XB

1B̄BX)2 2
3 Tr(B̄B)TrX. In contrast to Table II~first col-

umn!, the baryon masses have an additional dependenc
a:

mN5m02
1

3
g8

S~4a21!~A2z2s!,

mL5m02
2

3
g8

S~a21!~A2z2s!,

~50!

mS5m01
2

3
g8

S~a21!~A2z2s!,

mJ5m01
1

3
g8

S~2a11!~A2z2s!

with m05g1
S(A2s1z). The three parametersg1

S , g8
S anda

can be used to fit the baryon masses to their experime
values. Then, no additional explicit symmetry-breaking te
is needed. Fora50 andg1

S52A2/3g8
S , thed-type coupling

of Table II is recovered, and forz5s/A2 ~i.e., f p5 f K), the
masses are degenerate, and the vacuum is SU(3)V invariant.
The potentials following from the fit to nuclear matter are f
a51.13: UN5257.2 MeV, UL5231.3 MeV, US5
227.1 MeV, andUJ523.3 MeV. Note that the sumUL

1US is independent of the mixing anglea @this can be seen
by inserting Eq.~50! in Eq. ~41!#. As in the cubic fit, a
coupling of the strange condensate to the nucleon is ne
sary to obtain acceptable potential depths.

Since the construction of invariants is only governed
SU(3)V , the form of the new Lagrangian is analogous to t
one used in relativistic mean field~RMF! models@23# and
the
al

a-

ft

on

tal

s-

y
e

allows for equally good results when applied, e.g., to fin
nuclei @43,30#. In contrast to the Walecka model relation
following from chiral symmetry as PCAC and th
Goldberger-Treiman relation are incorporated. The model
lows also to predict the masses of the meson nonet at
and finite density@25#.

V. SUMMARY AND OUTLOOK

We have presented a chiral SU(3)L3SU(3)R linear s
model for finite baryon density. Besides the meson-me
interaction, which is widely used@9–12#, spin-1 mesons and
baryons with dynamically generated masses are im
mented. In addition, a dilaton field is used to render
Lagrangian scale invariant, except for a scale breaking lo
rithmic term which simulates the trace anomaly of QCD.

The parameters are fixed to the hadron masses and to
binding energy of nuclear matter at zero pressure. These
rameters can all be related to and are constrained by phy
quantities. The equation of state of nuclear matter then h
compressibility constant of about 300 MeV. Neverthele
the extension to SU~3! is nontrivial, because of the con
straints imposed by chiral symmetry on the baryon-me
interaction. The linear form of the interaction leads to co
pling constants given by thedi jk-structure constants. Com
bined with the baryon-vector interaction, which go likef i jk ,
they generate false hyperon potentials. This problem can
circumvented by using a cubic baryon-meson interacti
whose coupling constants are similar to thef -type ones.
However, the rather high value of the effective nucleon m
and the strong coupling of the nucleon to the strange c
densate corresponding to a mass of about 1 GeV indicat
possible failure of the cubic model to describe succesfu
finite nuclei. This is being investigated@30#.

Another possible way out of this dilemma~and maybe
more natural and more promising for a reasonable desc
tion of nuclei! is the nonlinear realization of thes model
@38,39#. With a nonlinear transformation into new scal
fields transforming linearly in SU(3)V and into new pseudo
scalar fields transforming nonlinearly, it is possible to co
struct anf -type baryon-scalar meson interaction. The mixi
angle betweend and f can then be used to adjust to th
known potential of theL hyperon. Furthermore, no add
tional explicit symmetry-breaking mass term for the baryo
is needed. The modified form of the Lagrangian can be re
to resemble the nonlinear Boguta-Walecka Lagrangian
Ref. @7#, which was successfully applied to finite nuclei an
hypernuclei. A thorough investigation of this modified mod
and its connection to the nonchiral mean-field models
presently under way@30#.

It is found that both in the cubic form of baryon-scal
meson interaction and in the nonlinear realization of ch
symmetry, the strange condensate needs to be coupled t
nucleon in order to obtain realistic hyperon potentials. T
may be viewed as for a large strangeness content of
nucleon@6#.

The cubic model (Ca), allows for an abnormal Lee-Wick
phase with nucleons of nearly vanishing mass. In contras
SU~2! models involving an abnormal phase@5#, here the nor-
mal phase, which describes ordinary nuclear matter, ha
reasonable compression modulus (K'300 MeV!. In the ab-
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normal phase, the strange condensate remains—in contra
the ~vanishing! s field—close to its VEV.

The cases of zero net strangeness as well as the effe
baryon masses at higher densities were studied here.
forthcoming publication@25# the extension to finite strange
ness and the behavior of the meson masses in matter wi
discussed in detail. The application of the model to fin
nuclei is currently under investigation.
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