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Free surface response in a finite Fermi system

V. I. Abrosimov,1 O. I. Davidovskaja,1 V. M. Kolomietz,1,2 and S. Shlomo2
1Institute for Nuclear Research, 252022 Kiev, Ukraine

2Cyclotron Institute, Texas A&M University, College Station, Texas 77843-3366
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Collective vibrations in a finite Fermi system are studied within a phase space approach which is based on
the Landau-Vlasov kinetic equation. The linear response theory is used and the semiclassical internal and
collective response functions are evaluated with a continuous single-particle angular momentuml . We focus
on the strength function and fragmentation width of the vibrations. We determine the contributions to the
collective strength function which are associated with different values of relevant single-particle angular
momentum. Applications to the nuclear isoscalar vibrations with multipolaritiesL50, 2, and 3 are presented.
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I. INTRODUCTION

A phase space description of collective motion in a fin
Fermi system on the basis of the kinetic equation with s
consistent mean field@the Landau-Vlasov kinetic equatio
~LVKE !# has been the subject of many investigations@1–8#.
For studying the excitations of the surface region of a ma
body system it is convenient to use explicitly macrosco
collective variables describing the displacement of the eff
tive surface of the system from its equilibrium position.
the present work we consider collective vibrations in a fin
Fermi system by using the semiclassical approach propo
in Refs. @9–11#. In contrast to the nuclear fluid dynamic
approximation @2,4#, where the LVKE is reduced to th
equations of motion for the local quantities like particle de
sity, current density, etc., we will solve the collisionle
Landau-Vlasov equation directly for the Wigner distributio
function. An advantage of such an approach is that this
lows us to study the fragmentation width of the collecti
excitations which is absent in the fluid dynamics approxim
tion. Similarly to the quantum random phase approximat
~RPA!, the fragmentation width is not related here to t
dissipation of the collective energy but caused by the in
action of particles with the time-dependent mean field@9#.

This paper is organized as follows. In Sec. II, we find t
response function of the finite Fermi system to a perio
external force. In Sec. III, we calculate the strength funct
for the nuclear isoscalar collective vibrations with multip
laritiesL50, 2, and 3. We pay attention to the contributio
of the different orbits, associated with single-particle angu
momentuml , to the strength function of the low-lying state
and the giant multipole resonance~GMR!. In contrast to
Refs. @5,9#, we do not assume here a discretization of
single-particle angular momentuml . We thus provide a con
sistent consideration ofl in the framework of the semiclas
sical Landau-Vlasov kinetic theory. The conclusions a
given in Sec. IV.

II. RESPONSE FUNCTION FOR A FINITE
FERMI SYSTEM

We consider a Fermi system bound by the surface

r 5R1dR~q,w,t !, ~1!
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which is a sphere with radiusR in equilibrium. The macro-
scopic variabledR(q,w,t) describes the local displaceme
of the surfaceR(q,w,t) from its equilibrium position.

A change inR induces motion of the particles inside th
sphere. The latter can be represented by a variation of
distribution functiondn(rW,pW ,t) in phase space. The equatio
of motion for dn(rW,pW ,t) is given by a linearized Landau
Vlasov equation@12#

]

]t
dn~rW,pW ,t !1vW

]

]rW
Fdn~rW,pW ,t !

2
dn0

de E dpW 8F~ p̂,p̂8!dn~rW,pW 8,t !G50, ~2!

wherevW 5pW /m. The amplitudeF( p̂,p̂8) describes the inter-
actions of the particles. In Landau-Migdal Fermi-liqu
theory @13,14#, the scattering amplitudeF( p̂,p̂8) depends
also on the spin-isospin variables and is given by the exp
sion

F~ p̂,p̂8!5(
l 50

`

@Fl1Fl8~tW•tW8!1Gl~sW •sW 8!

1Gl8~sW •sW 8!~tW•tW8!#Pl~ p̂• p̂8!. ~3!

Moreover, in a finite Fermi system, the Landau parame
Fl , Fl8 , Gl , andGl8 are functions ofr @14#. This last aspect
and the relation of Landau parametersFl , Fl8 , Gl , andGl8
to the saturated Skyrme forces were studied in Ref.@15#. An
explicit form of the amplitude~3! is important to provide a
self-consistent and detailed description of the ground s
and excitations in the nucleus; see Refs.@15,16#. In our ap-
proach to the nuclear collective excitations, the ground s
is assumed to be fixed by the external mean field. The
proach is based on the classical Landau-Vlasov equation~2!
applied to the finite Fermi system and we do not consi
here the spin degrees of freedom, related to theGl and Gl8
components in Eq.~3!. We point out also that the term with
Fl8 in Eq. ~3! is responsible for the isovector excitation
Below we will restrict ourselves to the isoscalar excitatio
2342 © 1998 The American Physical Society
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57 2343FREE SURFACE RESPONSE IN A FINITE FERMI SYSTEM
only. It was noted earlier@17# that the different choices ofFl
in Eq. ~3! do not affect much the description of the isosca
giant multipole resonances as long as one does not inc
Landau parametersFl with lÞ0. An inclusion of the Landau
parameterF1 reduces the effective massm* of the nucleon
and can be taken into consideration phenomenologic
through a corresponding change ofm* in the final result.
Finally, the highest components withl>2 in Eq. ~3! cannot
be derived from the Skyrme forces and they are usu
omitted @15,16#.

The main aim of this work is to study the contributions
different orbits~different single-particle angular momentum!
to the low-lying excited states and the giant multipole re
nances in the isoscalar channel; see also the WKB analys
the RPA response function given in Refs.@19–21#. Concep-
tually, this problem is analogous to that of a semiclass
study of the contributions of the different classical sing
particle orbits to the single-particle level density in the sta
case@22#. We point out that both considerations are not
fluenced significantly by the residual interactionF( p̂,p̂8) be-
cause the classical orbits represent here the gross-she
fects. Thus, we put belowF( p̂,p̂8)50 and reduce the
dynamical problem to a solution of the following simple k
netic equation~see also Refs.@5,8,9#!:

]

]t
dn~rW,pW ,t !1vW

]

]rW
dn~rW,pW ,t !50. ~4!

An additional reason for the applicability of Eq.~4! to the
nuclear problems is the fact that the Landau parameterF0 is
small enough in the nuclear interior@15,18#. It was, however,
shown in@15# that there is a significant enhancement ofF0 in
the surface region of the nucleus. We will take into acco
this feature ofF0 phenomenologically through the approp
ate choice of the boundary condition for the pressure on
nuclear surface; see below Eq.~6!. The Landau parameterF1
is approximately constant inside the nucleus and g
sharply to zero in the surface region@15#. This one can be
taken into consideration in our approach phenomenologic
by introducing a constant effective massm* of the nucleon.

In spite of the absence of the interparticle interaction
Eq. ~4!, the collective eigenmodes in a finite system can
described with Eq.~4! by an appropriate choice of th
boundary conditions. Following Refs.@10,23,24#, Eq. ~4!,
valid inside a system atr ,R, is augmented by mirror reflec
tion boundary conditions at the moving surfaces, Eq.~1!,

@dn~rW,pW' ,pr ,t !2dn~rW,pW' ,2pr ,t !#ur 5R

522pr

dn0

de

]

]t
dR~q,w,t !, ~5!

wherepr is the radial momentum,pW'5(0,pq ,pw), n0 is the
equilibrium distribution function, ande5p2/2m.

An essential property of a finite Fermi system having
free surface is that the motion of the surface should be c
sistent with the motion of the particles inside the syste
This can be achieved by imposing the following ‘‘subsidia
condition’’:

Prr ~rW,t !ur 5R1dR~q,w,t !5Ps~u,w,t !1F~q,w,t !. ~6!
r
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Here Prr (rW,t) is the normal component of the momentu
flux tensorPik(rW,t) ~see, e.g., Chap. 1 of Ref.@12#!,

Pik~rW,t !5E dpW

h3 pivkdn~rW,pW ,t !, ~7!

and Ps(q,w,t) is the additional pressure resulting from th
surface tension. We would like to point out that the bound
condition ~6! plays a central role in our description of th
eigenvibrations. An introduction of the phenomenologic
surface pressurePs(q,w,t) provides the self-consistenc
condition in lieu of the self-consistent mean field in Eq.~4!.
In part, the pressurePs(q,w,t) is created by the interparticle
interaction in the surface region. By adopting a phenome
logical Ps(q,w,t) @see Eq.~24!#, one can take into accoun
the above-mentioned enhancement of the Landau param
F0 in the surface region.

In Eq. ~6! we have also introduced an external press
F(q,w,t). This has been done simply to enable us to iden
later the response of the system to such an external probe
thus to benefit from the tools of the linear response theory
the present study, theF(q,w,t) is chosen to have the follow
ing form:

F~q,w,t !5(
M

FLM~v!YLM~q,w!cos~vt !exp~ht !, ~8!

with h510 representing an infinitesimally small quantity
guarantee that the external field is turned on adiabaticall
t52`. Similar expressions can also be written forPrr and
Ps .

To find solutions of Eqs.~4! and ~5! it is convenient to
change the variables (rW,pW ) to a new set of variables
(r ,e,l ,a,b,g) as proposed in Ref.@9#,

~rW,pW !→~r ,e,l ,a,b,g!. ~9!

The new variables are the single-particle energye, single-
particle angular momentuml 5urW3pW u, radius r , and Euler
angles (a,b,g). The Euler angles are defined by the rotati

of the laboratory frame (x,y,z) to (x8,y8,z8) with zW 8̂ along lW

and yW 8̂ along rW. Let us introduce the single-particle radi
velocity

v~r ,e,l !56$~2/m!@e2~\ l !2/2mr2#%1/2. ~10!

Here and below the single-particle angular momentuml is
given in units of\. Now the distribution functions with posi
tive radial velocities,dn1(r ,e,l ,a,b,g,t), and with negative
ones,dn2(r ,e,l ,a,b,g,t), are considered separately.

Of interest are those solutions of Eqs.~4! and ~5! for
dR(q,w,t) which are consistent with the special form of th
external pressure~8!. Thus we may write

dRL~q,w,t !5ReF(
M

dRLM~v!YLM~q,w!exp~2 ivt !G .
~11!

In terms of the new variables, Eq.~9!, these solutions can b
written as
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dRL~q,w,t !5ReF (
M ,N

dRLM~v!YLNS p

2
,
p

2 D
3@DMN

L ~a,b,g!#* exp~2 ivt !G , ~12!

where we used the following expansion:

YLM~q,w!5 (
N52L

L

@DMN
L ~a,b,g!#* YLNS p

2
,
p

2 D . ~13!

For thedn(rW,pW ,t), we seek aD-function expansion of the
form

dnL~rW,pW ,t !5
dn0

de
ReF (

M ,N
@ f N,LM

1 ~r ,e,l ,v!

1 f N,LM
2 ~r ,e,l ,v!#@DMN

L ~a,b,g!#*

3exp~2 ivt !G . ~14!

The functionsf 6(r ,e,l ,v) correspond to the distribution
dn6(r ,e,l ,a,b,g,t) and represent a change of the pha
space distribution for particles with energye and angular
momentuml at the distancer from the center of the system
They describe the Fermi-surface distortions.

Using in Eq. ~4! the new variables~9! and taking into
account the expansion~14! for dnL(rW,pW ,t) together with the
boundary condition~5!, we obtain a system of differentia
equations overr for the functionsf 6. Their solution is found
to be ~see also Ref.@10#!

f N,LM
6 ~r ,e,l ,v!5

exp$6 i @vt~r ,e,l !2Ng~r ,e,l !#%

sin$~1/2!@vT~R,e,l !2NG~R,e,l !#%

3YLNS p

2
,
p

2 Dvp~R,e,l !dRLM~v!.

~15!

Here p(r ,e,l )5muv(r ,e,l )u. The quantitiest(r ,e,l ) and
g(r ,e,l ) are introduced as in Ref.@9#,

t~r ,e,l !5E
r 1

r

dr8
1

uv~r 8,e,l !u
, ~16!

g~r ,e,l !5E
r 1

r

dr8
\ l

mr82

1

uv~r 8,e,l !u
. ~17!

The radial turning pointr 1 is a solution ofv(r 1 ,e,l )50. The
quantitiesT(R,e,l ) andG(R,e,l ) are, respectively, the radia
and angular periods for a particle orbit with givene and l .
Namely,

T~R,e,l !52t~R,e,l ! ~18!

and

G~R,e,l !52g~R,e,l !. ~19!
e

We may now present the solutions~12! in terms of the
response functionxPR

L (v). The latter may be defined as@25#

dRLM~v!/R52xPR
L ~v!FLM~v!/P0 , ~20!

where the equilibrium pressure of the Fermi gas,P0
5(2/5)eFr0, is introduced for convenience,r0 is the bulk
particle density, andeF is the Fermi energy. The quantit
xPR

L (v), defined by Eq.~20!, represents a nondiagona
surface-pressure response function. It describes the resp
of the nuclear surface to the external pressure. At the en
this section we will also introduce the diagonal pressu
pressure collective response function. The response func
xPR

L (v) can be expressed through the so-called internal
sponse functionx int

L (v) defined by the following relation:

Prr ,LM~R,v!/P05x int
L ~v!dRLM~v!/R. ~21!

Using Eqs.~7!, ~14!, and~15! the internal response functio
x int

L (v) is found to be

x int
L ~v!52

60p

2L11

vR

vF
(

N52L

L UYLNS p

2
,
p

2 D U2E
0

1

dll

3~12l2!ctgS vR

vF
~12l2!1/22N arccos~l! D ,

~22!

where the dimensionless angular momentuml5 l /(kFR) is
introduced,vF is the Fermi velocity, andkF5mvF /\.

The collective response functionxPR
L (v) can be found

now from Eqs.~6!, ~20!, and~21! as

xPR
L ~v!5F2x int

L ~v!1
s~L21!~L12!

P0R G21

5
k

12kx int
L ~v!

,

~23!

where

k5P0R/s~L21!~L12!.

To obtain Eq.~23!, it was assumed that the additional pre
surePs,LM(v) @see Eq.~6!# has the same form as for surfac
deformation of the liquid drop of the multipolarityL ~see,
e.g., Ref.@26#!,

Ps,LM~v!5s~L21!~L12!R22dRLM~v!, ~24!

wheres is the surface tension.
The diagonal collective pressure-pressure response f

tion xPP
L (v)[xL(v) can be derived through the followin

relation:

Prr ,LM~R,v!/P052xL~v!FLM~v!/P0 . ~25!

From this definition and Eqs.~6! and ~21! we obtain the
relation between the collective and internal response fu
tions. Namely,

xL~v!5
kx int

L ~v!

12kx int
L ~v!

. ~26!
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57 2345FREE SURFACE RESPONSE IN A FINITE FERMI SYSTEM
This relation is similar to the one derived for the quantu
collective response function in the case of separable part
particle interaction; see Eq.~6-243! of Ref. @27#. We point
out that the imaginary parts of both response functio
xPR

L (v) and xL(v), i.e., corresponding strength function
are proportional to each other,

Im xPR
L ~v!5k2

Im x int
L ~v!

@12Re x int
L ~v!#21@k Im x int

L ~v!#2

5k Im xL~v!. ~27!

The poles of the collective response functions~23! or ~26!
determine the eigenfrequencies for the oscillations in a fi
Fermi system. In the next section we study some proper
of the imaginary part of the response functions~22! and~26!
for the vibrations of multipolaritiesL50, 2, and 3.

In order to clarify the physical origin of both quantitiesl
andN in the internal response functionx int

L (v) of Eq. ~22!,
we point out that there is a close connection between
LVKE approach and the semiclassical WKB approximati
to the quantum RPA; see Refs.@9,19–21#. It can be shown
@20# that in the general case of the response of a finite Fe
system to an external field,

Vext~rW,t !5Q̂~rW !e2 ivt1c.c.,

one has

x int
L ~v,LVKE !'x int

L ~v,WKB!, ~28!

where x int
L (v,LVKE) [x int

L (v) is given by Eq. ~22! and
x int

L (v,WKB) is the internal~‘‘shell model’’! response func-
tion evaluated in the semiclassical WKB approximation. O
can expect that the relationship~28! is preserved in the par
ticular case of the response to the external pressure in
form of Eq. ~8!.

The structure of the WKB response functio
x int

L (v,WKB) is well known; see Refs.@9,20#. In particular,
the factoruYLN(p/2,p/2)u2 in Eq. ~22! emerges as that of th
classical limit of the Clebsh-Gordon coefficients in the m
trix element

^npl pmpuQ̂~rW !unhl hmh& ~29!

appearing in the quantum shell-model response function.
particle and hole angular momenta@correspondingly,l p and
l h in Eq. ~29!# are related to the valuesl andN in Eq. ~22!.
Namely, for l p ,l h@L one has

l h' l , N' l p2 l h . ~30!

We point out that, in contrast to the quantum integer num
l h , the classical angular momentuml in the LVKE approach
is a continuous variable.

Taking into account Eq.~30!, it is convenient to rewrite
the internal response function~22! as a sum~integral! of
contributions from the excited particles with angular mome
tum l 8[ l p5N1 l h[N1 l for l , l 8>0. One obtains from Eq
~22!
le-
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x int
L ~v!5 (

l 850

l max1L

x int
L ~v,l 8!, ~31!

wherel max5kFR. Assuming below thatl max.L, we have

x int
L ~v,l 8!52

60p

2L11

vR

vF

\2

l max
2 UYLNS p

2
,
p

2 D U2

3@g~ l 82N,N!u~ l 82N!u~ l max1N2 l 8!

1g~ l 81N,2N!~12dN0!u~ l 8!

3u~ l max2N2 l 8!#, ~32!

where

g~x,y!5x~12x2!ctg@~vR/vF!A12x22y arccos~x!#.
~33!

The collective response function of Eq.~27! can also be rep-
resented in a form similar to Eq.~31!. Namely,

Im xL~v!5 (
l 850

l max1L

Im xL~v,l 8!, ~34!

where

Im xL~v,l 8!5Im x int
L ~v,l 8! GL~v! ~35!

and

GL~v!5
k

@12Re x int
L ~v!#21@k Im x int

L ~v!#2 . ~36!

III. STRENGTH DISTRIBUTION
OF COLLECTIVE VIBRATIONS

The strength distribution of the collective vibrations in
finite Fermi system as a function of the external press
frequency@see Eq.~8!# is described by the imaginary part o
the collective response function~26!. To obtain this function
we have used a phase space approach based on the La
Vlasov equation. So in this theory the particle angular m
mentuml is a continuous variable. One usually replaces
integration over angular momentuml in Eq. ~22! with a sum
over discrete values@9#:

l→
\

pFR
Al ~ l 11!.

However, such a kind of replacement is not consistent w
the semiclassical character of the initial Landau-Vlas
equation and we will preserve belowl as a continuous vari-
able.

The approach presented above is general enough th
can be applied to any Fermi system. As an example we
consider below the isoscalar vibrations in finite nuclei. T
imaginary part of the collective response function~26! has
been evaluated for collective vibrations in a nucleus withA
5208 nucleons. The following values for the nuclear para
eters were used:s51 MeV/fm2, r050.17 fm23, eF
540 MeV, andr 051.12 fm. In the calculations we smea
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out the d functions in the imaginary part of Eq.~22! by
giving a finite value to the infinitesimal parameterh50.2
MeV at LÞ0 andh50.1 MeV atL50.

In Figs. 1~a!, 1~b!, and 1~c! the imaginary part,x int9 (v)
5Im x int

L (v), of the intrinsic response function, Eq.~22!, are
shown for isoscalar resonances withL50, 2, and 3, respec
tively. Similarly, in Figs. 2~a!, 2~b!, and 2~c! we show the
corresponding isoscalar collective response function,
~26!. A comparison of both sets of figures shows@see also
Eq. ~27!# that due to the consistency condition~6! one ob-
serves a considerable strength redistribution. The stre
functions shown in Figs. 2~a!, 2~b!, and 2~c! have a reso-
nance structure with significant resonance widths in the c
of L.0. We would like to stress that these widths a
closely associated with the so-called fragmentation width
quantum RPA calculations. In the case of the internal
sponse functionx int

L (v), our Figs. 1~a!, 1~b!, and 1~c! pro-
duce smooth curves for the corresponding partial parti
hole strength distributions in the quantum shell-mo
calculations; see also Refs.@5–7,9#. From the point of view
of Landau’s Fermi-liquid theory, the widths of the excite
states in the collective strength function ImxL(v) in Figs.
2~a!, 2~b!, and 2~c! appear due to the Landau~noncollisional!
damping. The full description of the widths must also i
clude the contribution from the two-body collisions. W
have neglected this collisional damping in our kinetic eq
tion ~4!. The collisional damping can be easily taken in
consideration by adding the collisional integral in thet ap-

FIG. 1. The imaginary part of the intrinsic response function
208Pb @see Eq.~22!# for the isoscalar excitations withL50, 2, and
3 in arbitrary units. The smearing parameterh50.1 MeV. The solid
and dashed lines correspond to the values ofF050 and 20.4,
respectively.
q.

th

se

in
-

-
l

-

proximation to the right-hand side of Eq.~4!. We point out
that the inclusion of the smearing parameterh in Eq. ~22!
simulates the collisional damping withh5\/t, wheret is
the relaxation time; see Ref.@29#.

We note also that the use of the small smearing param
h leads only to a slight spreading of the resonance struc
in Figs. 1 and 2. This can be seen directly in Fig. 2~a! for
L50, where the fragmentation width is absent and the wi
of the monopole resonance is due only to the smearing
rameterh.

It is seen from Fig. 2~a! that there is one collective isos
calar monopole mode at excitation energy\v0'17.2 MeV
which exhausts all the strength; see also Ref.@8#. The calcu-
lated value is higher than the experimental excitation ene
of 13.7 MeV @28#. We note that the bulk nucleon-nucleo
interactionF( p̂,p̂8) was omitted in our consideration; se
Eqs.~2! and~4!. Inclusion of the interactionF( p̂,p̂8) can be
easily done in the case of the simplest momentum-isotro
interactionF( p̂,p̂8)5F0, whereF0 is the Landau paramete
@12,13#. A better description of the energy of the GMR
then obtained with an appropriate choice of the param
F0520.4 @the dashed line in Fig. 2~a!#; see also Ref.@29#.
Note that the value of the parameterF0 can be different if the
Landau parameterF1, i.e., the effective mass of the nucleo
is taken into consideration.

Taking into account the bulk interactionF( p̂,p̂8) is more
important in the case of monopole excitations where
nuclear interior is involved. In Fig. 2~b! the strength distri-
bution is presented for the collective isoscalar quadrup
vibrations (L52). Most of the strength is distributed in th
energy range between the giant resonancev

f
FIG. 2. The same as Fig. 1, for the collective response funct

see Eq.~26!.
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57 2347FREE SURFACE RESPONSE IN A FINITE FERMI SYSTEM
'11 MeV/\) and the low-lying collective state (v
'4 MeV/\) for 208Pb. A small part of the strength is ob
served at energy which is about twice the giant resona
energy. As can be seen from Fig. 2~c!, the bulk part of the
strength of the collective isoscalar octupole excitationsL
53) is distributed in the energy region of the low-lying co
lective state (v'2.6 MeV/\), the low-frequency octupole
resonance (v'5 –8 MeV/\), and the high-frequency octu
pole resonance (v'17–20 MeV/\) for 208Pb. This
strength distribution is in agreement with the observed is
calar octupole response in208Pb @30,31#.

As can be seen from Figs. 2~b! and 2~c!, the strength
functions in the giant quadrupole and octupole resona
regions are quite small. This occurs due to the particu
choice of the external field in the form of the external pre
sure, Eq.~8!, instead of the commonly used electromagne
field. We will evaluate here the contribution of the gia
resonance region to the electromagnetic energy-weig
sum rule~EWSR! for the monopole case. The classical tra
sition density, i.e., the time-dependent variation of the p
ticle densitydrL50(rW,t), can be found from Eqs.~14! and
~15! and is given by the following expression~see also Refs
@29,32#!:

drL50~rW,t !5E dpW

~2p\!3
dnL50~rW,pW ,t !

5h~rW,t !r0u~R2r !1q~ t !r0Rd~R2r !,

~37!

where

h~rW,t !'2
3

RF11
v2R2

6vF
2 S 12

5

3

r 2

R2D GdR~ t ! ~38!

and

q~ t !5
1

R
dR~ t !. ~39!

We assume also that the conditions5vR/pvF,1 is ful-
filled. Taking into account the continuity equation and E
~37!, one can find the velocity fielduW (rW,t) in the following
form:

uW ~rW,t !52
rW

r 3r0
E

0

r

dr1r 1
2 d

dt
drL50~rW,t !

52
rW

RF11
v2R2

6vF
2 S 12

r 2

R2D G d

dt
dR~ t !. ~40!

Substituting the velocity field~40! in the expression for the
collective kinetic energy of the fluid, we can obtain the ma
coefficientBL50(v) with respect to the collective variabl
dR(t). Namely,

BL50~v!5mr0E drW
r 2

R2F11
v2R2

6vF
2 S 12

r 2

R2D G2
ce

s-

e
r
-
c

ed
-
r-

.

s

5
3

5
AmF11

2v2R2

21vF
2 G1O~s4!. ~41!

Let us consider now the quantum energy-weighted sum

SL505(
n

~En2E0!u^nur 2u0&u25
6

5

\2

m
AR2. ~42!

The partial contributionSL(v0) of the classical eigenexcita
tion with certain eigenfrequencyv0 to the quantum energy
weighted sumSL can be derived using the corresponden
principle ~see Ref.@27#, Chap. 6, Appendix 6A!. It reads

SL50~v0!5
\2

2BL50~v0!
ML50

2 ~v0!, ~43!

whereML50(v0) is given by

ML50~v0!5E drWr 2drL50~rW,t !/dR~ t !5
6

5
ARF11

v0
2R2

21vF
2 G .
~44!

Using Eqs.~43!, ~44!, and~41!, we obtain

SL50~v0!5
6

5

\2

m
AR21O~s4!. ~45!

Comparing this expression with the EWSR given by E
~42!, we can see that only one resonance state atv5v0
exhausts about all the EWSR forL50. Thus, at least in the
case of the isoscalar giant monopole resonance, the m
used does not lead to an underestimate of the fraction of
giant resonance in the EWSR. The contribution of the gi
quadrupole and octupole resonance regions to the EW
will be reported in a forthcoming publication.

In Fig. 3 we show, as a function ofl 8, the energy-
averaged contributions ImxL(v,l 8 )̄ to the strength of octu-
pole vibration defined as

Im xL~v,l 8 !̄5
1

v22v1
E

v1

v2
dv8 Im xL~v8,l 8!. ~46!

The energy-averaging intervals are chosen in the chara
istic regions of the strength local maxima~the intervals are
determined by the condition that the strength decrease b
factor of 2 compared with the value at the correspond
local maximum!. We consider averaging in the characteris
regions of excitation energies: the low-lying collective sta
~0.5–4.5 MeV!, the low-frequency octupole resonance~5–8
MeV!, and the high-frequency octupole resonance~14–18
MeV!. We can see that at a given excitation energy,
contribution to the strength function is coming from orb
with well-defined angular momentuml 8. The resonance

structures of Imx3(v,l 8 )̄ as a function of the particle angu
lar momentuml 8, displayed in Fig. 3, are generated by th
poles of the intrinsic response function in a given region
frequencies; see Eqs.~46!, ~35!, and ~32!. They are not re-
lated to the resonance behavior of the collective respo
function ~26! as a function ofv.
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FIG. 3. The contribution to the imaginary part of the isosca
octupole collective response function (L53) @see Eq.~26!# as a
function of the single-particle angular momentuml 8 averaged over
the energy in different regions of\v: ~a! \v50.5–4.5 MeV,~b!
\v55 –8 MeV, and~c! \v514–18 MeV. The smearing param
eterh50.2 MeV.

FIG. 4. The same as Fig. 3, but for the ‘‘hole’’ angular mome
tum l ; see Eq.~30!.
In Fig. 4 we have also plotted the energy-averaged c

tributions ImxL(v,l )̄ to theL53 strength as a function o
the ‘‘hole’’ angular momentuml ; see Eq.~30!. One can see
from Figs. 3 and 4 that there exists a correlation in the sh
of the strength for different energy regions. We point out th
the large contribution associated with the high ‘‘hole’’ ang
lar momentuml , seen in Fig. 4, does not mean that the c
responding collective motion has surface character. Thi
because the transition density involves both ‘‘hole’’ a
‘‘particle’’ orbits and the enhancement in the ‘‘hole
strength can be compensated through the hindrance of
‘‘particle’’ high angular momentum orbits@compare Fig.
3~c! and Fig. 4~c!#.

We will also consider the contribution from different pa
ticle orbits to the strength function for monopole cas
L50. Taking into account Eqs.~32! and~35!, one finds~we
point out thatl 5 l 8 for L50)

x0~v,l 8!5215
vR

vFl max
2

G~v!l 8A12 l 82ctgS vR

vF
A12 l 82D .

~47!

For comparison, the partial strength function Imx0(v,l 8) is
plotted in Fig. 5 for the isoscalar excitation at energy 17
MeV @see Fig. 2~a!# as a function of the particle angula
momentuml 8. In contrast to the case ofLÞ0 vibrations, it is
seen from Fig. 5 that orbits with a wide range of orbit
angular momentuml 8 contribute to the giant monopole reso
nance. The intrinsic response function Imx0(v,l 8) has no
poles at this energy~or corresponding frequency!; see Eq.
~47!.

Two effects, the shift and the deformation of the Fer
surface in the momentum space, are responsible for the fo
ing of the collective excitations in the Fermi liquid. We wi
analyze both of them as a function of the particle angu
momentuml 8 in the case of the monopole resonance. Let
rewrite Eq.~14! for L50 in the following form:

dn0~rW,pW ,t !5
dn0

de
@Re f 0~r ,e,l ,v!cos~vt !

1Imf 0~r ,e,l ,v!sin~vt !#. ~48!

r

-

FIG. 5. The same as Fig. 3, for the isoscalar monopole col
tive response function (L50) at the resonance excitation energ
\v517.2 MeV. The smearing parameterh50.1 MeV.
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Here the quantities Ref 0(r ,e,l ,v) and Im f 0(r ,e,l ,v) rep-
resent the amplitudes of the local~at givenr ) distortions of
the Fermi surface. Using the solution~15! for L50, these
amplitudes can be written as

a1~r ,l ,v0![
Re f 0~r ,eF ,l ,v0!

eF

5
2

Ap

dR00~v0!

R

v0R

vF
A12S lr

kFR2D 2

3
cos@~v0r /vF!A12~ l /kFR!2#

sin@~v0r /vF!A12~ lr /kFR2!2#
~49!

and

a2~r ,l ,v0![
Imf 0~r ,eF ,l ,v0!

eF

5
2

Ap

dR00~v0!

R

v0R

vF
A12S lr

kFR2D 2

3
sin@~v0r /vF!A12~ l /kFR!2#

sin@~v0r /vF!A12~ lr /kFR2!2#
, ~50!

wherev0 is the eigenfrequency of the monopole giant re
nance. The values Ref 0(r ,e,l ,v) and Im f 0(r ,e,l ,v) pro-
vide, respectively, a change of the particle density and
current density at the collective excitation. Corresponding
the amplitudesa1(r ,l ,v0) anda2(r ,l ,v0) describe the de-
formation and the shift of the Fermi surface.

In Fig. 6, the amplitudesa6(r ,l ,v0) are shown as func
tions of the single-particle angular momentum near
nuclear surface (r 5R). The deformation amplitude
a1(r ,l ,v0) reaches the value of 0.08 atl 5 l max ~solid line!.
The shift amplitudea2(r ,l ,v0) has a maximum of abou
0.16 atl 50 ~dashed line! and decreases with the increase
the single-particle angular momentum. It can be seen fr
Figs. 5 and 6 that the region ofl 8'4 where the strength

FIG. 6. The amplitudes of the Fermi surface distortio
a1(r ,l ,v0) ~solid line! and a2(r ,l ,v0) ~dashed line! at r 5R as
functions of the particle angular momentuml 5 l 8. The calculation
was performed for the giant monopole resonance for the nuc
208Pb.
-

e
,

e

f
m

function is more pronounced corresponds to the region of
hindrance of the deformation of the Fermi surface.

IV. CONCLUSIONS

We have studied the strength distribution of collecti
vibrations in a finite Fermi system within a phase space
proach. A simple analytical expression for small variatio
of the phase space distribution function was obtained
used to determine the collective response functions~23! and
~26!. In the present calculations we neglected the resid
particle interaction in the bulk of the system, except for t
monopole case, as well as effects from collisions. Introd
ing the moving effective surface in lieu of the nucleo
nucleon interaction, we include in a macroscopic way a co
plicated particle interaction in the surface region.

We found that in the case of nuclei the effective partic
interaction in the surface region leads to a significant red
tribution @see Figs. 1 and 2 and Eqs.~22!, ~23!, and~27!# of
the isoscalar strength in the giant resonance region as we
in the low-lying collective state region. The results obtain
are in reasonable agreement with the quantum ones@33–36#.

The bulk nucleon-nucleon interactionF( p̂,p̂8) was omitted
in our consideration except for theL50 excitations, taking
into account that the bulk interaction is more important in t
case of monopole excitations, where the nuclear interio
involved, than for the higher multipoles. A better descripti
of the energy of the isoscalar giant monopole resonance
achieved with an appropriate choice of the Landau param
F0520.4. The strength distribution for quadrupole vibr
tions is characterized by a larger fragmentation in the ene
region between the giant resonance and the low-lying col
tive state@see Fig. 2~b!# as compared to the one found in th
quantum RPA calculations@33,34#. We have also pointed ou
that the strength functions in the giant quadrupole and o
pole resonance regions are quite small. This is associ
with the surface character of the external pressure form
tor used in the present approach; see Eq.~8!. We demon-
strated that in our model the monopole giant resonance
hausts about all the EWSR.

We have presented an analysis of the single-particle o
contributions to different energy regions of the collecti
strength function. We have observed the enhancement of
tain orbits in both ‘‘particle’’ and ‘‘hole’’ channels for the
quadrupole and octupole strength functions for wide int
vals of the excitation energy. The correspondingl depen-
dence of the monopole strength function at the resona
energy shows rather smooth behavior. We noted that the
namical distortion of the Fermi surface, accompanying
collective excitation of the Fermi-liquid drop, is also man
fested in thel dependence of the strength. This fact can
used in the analysis of the particle emission from the c
excited Fermi-liquid drop. Some results in this direction w
be reported in a forthcoming publication.

In this work we focused on the applications of our a
proach to collective vibrations in nuclei. However, the d
namical phenomena in nuclei do not differ in a qualitati
way from the ones in other finite Fermi systems. So o

us
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approach can be extended to the study of collective mode
systems such as small metal clusters or atomic systems.
present approach can be easily modified to take into acc
the effects of collisions as well as to study the collect
motion of a finite Fermi system at finite temperature.
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