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Free surface response in a finite Fermi system
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Collective vibrations in a finite Fermi system are studied within a phase space approach which is based on
the Landau-Vlasov kinetic equation. The linear response theory is used and the semiclassical internal and
collective response functions are evaluated with a continuous single-particle angular morhewanfocus
on the strength function and fragmentation width of the vibrations. We determine the contributions to the
collective strength function which are associated with different values of relevant single-particle angular
momentum. Applications to the nuclear isoscalar vibrations with multipolatitie, 2, and 3 are presented.
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I. INTRODUCTION which is a sphere with radiuR in equilibrium. The macro-
scopic variableSR( 9, ¢,t) describes the local displacement
A phase space description of collective motion in a finiteof the surfaceR(%, ¢,t) from its equilibrium position.
Fermi system on the basis of the kinetic equation with self- A change inR induces motion of the particles inside the
consistent mean fielfthe Landau-Vlasov kinetic equation sphere. The latter can be represented by a variation of the

(LVKE)] has been the subject of many investigatiphs8§]. ST - > ;
For studying the excitations of the surface region of a manyfjlsmbl’ltIon functionsn(r,p,t) in phase space. The equation

body system it is convenient to use explicitly macroscopic®! motion for én(r,p,t) is given by a linearized Landau-
collective variables describing the displacement of the effec1asov equatior{12]
tive surface of the system from its equilibrium position. In

the present work we consider collective vibrations in a finite ian(F,ﬁ,t)+5i sn(r,p,t)

Fermi system by using the semiclassical approach proposed at ar

in Refs.[9-11]. In contrast to the nuclear fluid dynamics q

approximation[2,4], where the LVKE is reduced to the _dng >, o~ N
equations of motion for the local quantities like particle den- de dp’F(p,p")dn(r.p’.t)|=0, (2)

sity, current density, etc., we will solve the collisionless
Landau-Vlasov equation directly for the Wigner distribution wherey = p/m. The amplitudeZ(p,p’) describes the inter-
function. An advantage of such an approach is that this alyctions of the particles. In Landau-Migdal Fermi-liquid

lows us to study the fragmentation width of the collective . . A~
excitations which is absent in the fluid dynamics approxima—theory [13’14]’. the SC?‘“e””.g amphtud'é-‘(p,p ) depends
Iso on the spin-isospin variables and is given by the expan-

tion. Similarly to the quantum random phase approximatiorf".
(RPA), the fragmentation width is not related here to theS'on

dissipation of the collective energy but caused by the inter- o
action of particles with the time-dependent mean fl&lH FD.D' )= E+E (774G o'
This paper is organized as follows. In Sec. Il, we find the (P.p") Eo [Fi+Fi(r7) (oo’

response function of the finite Fermi system to a periodic ... o

external force. In Sec. Ill, we calculate the strength function +G/(o-a")(7-7)]P|(p-p’). )

for the nuclear isoscalar collective vibrations with multipo- ] o )

laritiesL =0, 2, and 3. We pay attention to the contributionsMoreover, in a finite Fermi system, the Landau parameters
of the different orbits, associated with single-particle angulafFi. Fi , G, andGy are functions of [14]. This last aspect
momentum, to the strength function of the low-lying states and the relation of Landau parametéts, F|, G|, and G|

and the giant multipole resonan¢&MR). In contrast to  to the saturated Skyrme forces were studied in Rid]. An
Refs.[5,9], we do not assume here a discretization of theexplicit form of the amplitudg3) is important to provide a
single-particle angular momentumWe thus provide a con- self-consistent and detailed description of the ground state
sistent consideration dfin the framework of the semiclas- and excitations in the nucleus; see R¢fs,16. In our ap-
sical Landau-Vlasov kinetic theory. The conclusions areproach to the nuclear collective excitations, the ground state

given in Sec. IV. is assumed to be fixed by the external mean field. The ap-
proach is based on the classical Landau-Vlasov equé®pon
Il. RESPONSE FUNCTION FOR A FINITE applied to the finite Fermi system and we do not consider
FERMI SYSTEM here the spin degrees of freedom, related toGheaind G,

components in Eq3). We point out also that the term with
F/ in Eq. (3) is responsible for the isovector excitations.
r=R+ 6R(%,0,1), (1) Below we will restrict ourselves to the isoscalar excitations

We consider a Fermi system bound by the surface

0556-2813/98/5(5)/23429)/$15.00 57 2342 © 1998 The American Physical Society



57 FREE SURFACE RESPONSE IN A FINITE FERMI SYSTEM 2343

only. It was noted earlie[ﬂ?] that the different choices Cﬁ| Here Prr(Fat) is the normal component of the momentum
in Eq. (3) do not affect much the description of the isoscalar. lux tensorP. (F t) (see, e.g., Chap. 1 of RetL2])
giant multipole resonances as long as one does not include At T ’ '
Landau parametefs; with | #0. An inclusion of the Landau ) d5 L
parameteir; reduces the effective mass*® of the nucleon Pi(r,t)= f Fpivkﬁn(r,p,t), @)
and can be taken into consideration phenomenologically
through a corresponding change mf in the final result.
Finally, the highest components witk=2 in Eq. (3) cannot
be derived from the Skyrme forces and they are usuall
omitted[15,14.

The main aim of this work is to study the contributions of
'?olﬁt?]reerlgv(\?rlbylitﬁédgirite;(; Ssltrell?Iei-g%gliﬁeag;gﬂia%mg?oelgﬂrjgo condition in lieu of the self-consistent mean field in E4).
nances in the isoscalar channel; see also the WKB analysis In part, the pressure (9, ¢,t) is created by the interparticle

. . ; teraction in the surface region. By adopting a phenomeno-
the RPA_response f‘%”C“O” given in Ref$9-21. Cor'1cep-' ogical P,(3,¢,t) [see Eq(24)], one can take into account
tually, this problem is analogous to that of a semiclassica

S . ; . he above-mentioned enhancement of the Landau parameter

study of the contributions of the different classical smgle-F : .
; ) ; . o . Fg in the surface region.

particle orbits to the single-particle level density in the static In Eq. (6) we have also introduced an external pressure
case[22]. We point out that both consideration§ f:lre not in'F(ﬂ 0 tj. This has been done simply to enable us to identify
fluenced 3|gn|f|c§mtly by'the residual interacti(p,p’) be-  |5ter the response of the system to such an external probe and
cause the classical orbits represent here the gross-shell gfys to benefit from the tools of the linear response theory. In
fects. Thus, we put belowF(p,p’)=0 and reduce the the present study, tHe(¥,¢,t) is chosen to have the follow-
dynamical problem to a solution of the following simple ki- ing form:
netic equation(see also Refd5,8,9)):

and P (9, ¢,t) is the additional pressure resulting from the
surface tension. We would like to point out that the boundary
Yondition (6) plays a central role in our description of the
eigenvibrations. An introduction of the phenomenological
surface pressuré  (9,¢,t) provides the self-consistency

o .. . .. F(3,0,0=2 FLm(®)Y (9, ¢)cod wt)exp(nt), (8
E6n(r,p,t)+va—F§n(r,p,t)=O. (4) M

with =+ 0 representing an infinitesimally small quantity to
An additional reason for the applicability of E¢#) to the  guarantee that the external field is turned on adiabatically at
nuclear problems is the fact that the Landau paranfé{és  t=—o. Similar expressions can also be written Ry and
small enough in the nuclear interi#5,18. It was, however, p_.
shown in[15] that there is a significant enhancemenEgfin To find solutions of Eqs(4) and (5) it is convenient to
the surface region of the nucleus. We will take into accoun(:hange the variables ;,@ to a new set of variables
this feature ofF, phenomenologically through the appropri- (r,el,a,B,y) as proposed in Ref9],
ate choice of the boundary condition for the pressure on the
nuclear surface; see below E§). The Landau parametér; (1, p)—(r,el,a,B,7). (9)
is approximately constant inside the nucleus and goes

sharply to zero in the surface regiph5]. This one can be The new variables are the single-particle eneegysingle-
taken into consideration in our approach phenomenolog|call¥)article angular momenturflzlfxﬁ radiusr. and Euler

by introducing a constant effective mas8 of the nucleon. ’ ;
X . S ~ . angles @,8,v). The Euler angles are defined by the rotation
In spite of the absence of the interparticle interaction in gles &.5,7) 9 y

Eq. (4), the collective eigenmodes in a finite system can bedf the laboratory framexy,z) to (x,y",z") with z' alongl’
described with Eq.(4) by an appropriate choice of the andy’ alongr. Let us introduce the single-particle radial
boundary conditions. Following Ref$10,23,24, Eq. (4), velocity

valid inside a system at<R, is augmented by mirror reflec-

tion boundary conditions at the moving surfaces, €, v(r,e,)=*={(2/m)[e—(Al)%/2mr?]} 2. (10
[on(r,p, .p; )= on(r.p, . —pr.H]1li—r Here and below the single-particle angular momentuis
dne 9 given in units ofi. Now the distribution functions with posi-
_ 5 AN J tive radial velocitiespn™ (r,e,l, @, 8, v,1), and with negative
2P de &téR(ﬁ’(P’t)’ ®) ones,én” (r,e,l,,8,7,1), are considered separately.

R Of interest are those solutions of Eqg) and (5) for
wherep, is the radial momentunm, =(0,ps,p,), N is the  SR(Y,¢,t) which are consistent with the special form of the
equilibrium distribution function, ané= p2/2m. external pressuré8). Thus we may write

An essential property of a finite Fermi system having a
free surface is that the motion of the surface should be con- .
sistent with the motion of the particles inside the system. 5RL(’9"P’U:R{% SRm(@) Y m(F, p)exp —iwt)|.
This can be achieved by imposing the following “subsidiary (1)
condition:
) In terms of the new variables, E(), these solutions can be
P (D] =r+ sr(0.0)= Pal 0,0, +F (3, p,t).  (6)  written as
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T oar We may now present the solutiofi$2) in terms of the
ORL(F,¢,t)=R % 5RLm(w)YLN(§-§) response functioypg(w). The latter may be defined §25]

SRLm(w)/R=— xpr(@)F y(w)/Py, (20)

X[ Dyn( . B,7)]*exp—iwt) |, (12)

where the equilibrium pressure of the Fermi gd%
=(2/5)erpy, is introduced for convenience, is the bulk
particle density, and¢ is the Fermi energy. The quantity
L X,L;R(w), defined by EQq.(20), represents a nondiagonal
_ L * ™ surface-pressure response function. It describes the response
YLM(ﬁ,(p)_N;L [Pun(a..7)] YLN( 2 '2)' (13 of the ntljoclear surfacg to the external pressure. At the erllod of
this section we will also introduce the diagonal pressure-
For the 5n(F,5,t), we seek aD-function expansion of the pressure collective response function. The response function
form )(I,SR(w) can be expressed through the so-called internal re-
sponse functior)(iLm(w) defined by the following relation:

where we used the following expansion:

N dng . L
an(rp.)= 5 Re 2 [ m(relw) Pr in(R,0)/Po=xh(@) SR w(w)/R.  (21)
+igm(r.el,) ][ Dyn(e,B8,7)]1* Using Eqgs.(7), (14), and(15) the internal response function
’ Xt () is found to be
oo} O
Xim(w)__ZL'f'lEN:fL Ny . AN

The functionsf (r,€,l, ) correspond to the distributions
on*(r,el,a,B8,v,t) and represent a change of the phase .2 w_R 12
space distribution for particles with energyand angular X (1=\")ctg VE (1=29 N arccogr) |,
momentum at the distance from the center of the system.
They describe the Fermi-surface distortions.

Using in Eq.(4) the new variableg9) and taking into  where the dimensionless angular momentuml/(keR) is
account the expansiofl4) for én,(r,p,t) together with the introducedy is the Fermi velocity, anéte=mv¢/%.
boundary condition5), we obtain a system of differential  The collective response functiogsg(w) can be found
equations over for the functionsf . Their solution is found  now from Egs.(6), (20), and(21) as
to be (see also Ref.10])

(22

L-1)(L+2)]t
£ | w)= exg{=i[o7(r,el)—Ny(r,el)]} Xbp(w)= _X:}n(w)‘FU( P)IEQ +2) :1_ KL -
nm(r € ’w)_sin{(1/2)[wT(R,e,l)—NF(R,e,I)]} 0 KXim(aEZB)
a T
XYLN(E.E)wp(R,e,I)ﬁRLM(a)), where
(15) k=PoR/a(L—-1)(L+2).

To obtain Eq.(23), it was assumed that the additional pres-
sureP,  u(w) [see Eq(6)] has the same form as for surface
deformation of the liquid drop of the multipolarity (see,

Here p(r,e,l)=m|v(r,e,l)|. The quantities7(r,e,l) and
v(r,e,l) are introduced as in Reff9],

; 1 e.g., Ref[26]),
T(r,e,l)=f dr' ———, (16)
no o’ el) Pom(@)=a(L—1)(L+2)R 2R y(w), (24
r Al 1 whereo is the surface tension.
Y(F,EJ)ZJ dr’ mrZ o (e (17) The diagonal collective pressure-pressure response func-
" a tion x5p(@)=x"(w) can be derived through the following

The radial turning point; is a solution of (r;,e,1)=0. The  relation:

guantitiesT(R, e,l) andI' (R, €,1) are, respectively, the radial
and angular periods for a particle orbit with giverandl.
Namely, From this definition and Eqs6) and (21) we obtain the

relation between the collective and internal response func-
T(R,e,1)=27(R,€,l) (18 tions. Namely,

P (R @)/ Po=—x"(@)F y(w)/Pg. (25

and

L)=—Cm0 2 26
I'(Re)=2v(R,el). (19) x-(w) 1— kX o) (28
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This relation is similar to the one derived for the quantum ImaxtL
collective response function in the case of separable particle- Xl @)= > Xid@,1"), (31
particle interaction; see Ed6-243 of Ref.[27]. We point I’=0

out that the imaginary parts of both response functions .
. ) . =k-R. >
xbr(®) and x-(w), i.e., corresponding strength functions, wherel mg,=keR. Assuming below thalma>L, we have

are proportional to each other, 607 R hZJ (77 77) 2
LN

2 Y22

L N — _
T

2
Im X:_m(w) Ima

Im xpr(@)=K?

[1-Re xi( @) 12+ [« IM xi(w)]? X[g(l"=N,N) (1" = N) O(1 it N—17)
=k Im x"(w). (27) +g(I"+N, = N) (1= Syo) 6(1")
The poles of the collective response functi¢8) or (26) X O(Imax—N=1")], (32)

determine the eigenfrequencies for the oscillations in a finite

Fermi system. In the next section we study some propertie‘é’here
of the imaginary part of the response functig@g) and(26) (12 e 2
for the vibrations of multipolaritie =0, 2, and 3. g0y =x(Ixetd (oR/vp) VI =Xy arcco$x)](.33)

In order to clarify the physical origin of both quantities

andN in the internal response functiof,(») of Eq.(22),  The collective response function of E7) can also be rep-
we point out that there is a close connection between theesented in a form similar to E¢31). Namely,
LVKE approach and the semiclassical WKB approximation
to the quantum RPA; see Ref8,19-21. It can be shown L L .
[20] that in the general case of the response of a finite Fermi Im x~(w)= 2 Im x~(w,1"), (34)
system to an external field, I'=0

Imaxt L

. o where
Ver(r,1)=0Q(r)e ''+c.c.,

ex Im x~(w,1")=Im y:(o,1") G-(w) (35)

one has
and
Xint( @, LVKE) =~ xir( @, WKB), (28) } B
G(w)= C 2 C 7. (36

where xi(o,LVKE) = xk () is given by Eq.(22 and [1-Re xin(@) "+« IM Xip(w)]
XiLm(w,WKB) is the internal(“shell model”) response func-
tion evaluated in the semiclassical WKB approximation. One lll. STRENGTH DISTRIBUTION
can expect that the relationsh(p8) is preserved in the par- OF COLLECTIVE VIBRATIONS

ticular case of the response to the external pressure in the

form of Eq. (8). The strength distribution of the collective vibrations in a

The structure of the WKB response  function finite Fermi system as a function of the external pressure
L ) ) ) frequency[see Eq(8)] is described by the imaginary part of

Xin(@, WKB) is well knozvx{n, see Refd9,20]. In particular, o colective response functid@6). To obtain this function
the factor| Y, y(7/2,/2)|" in Eq. (22) emerges as that of the \ye haye used a phase space approach based on the Landau-
classical limit of the Clebsh-Gordon coefficients in the ma-y;j550y equation. So in this theory the particle angular mo-
trix element mentum\ is a continuous variable. One usually replaces the

o integration over angular momentumin Eqg. (22) with a sum

(npl Mgl Q(r) [Nl pmy,) (29 over discrete valueg]:

appearing in the quantum shell-model response function. The

particle and hole angular momerforrespondingly|, and A— DR [(1+1).
l,, in Eq. (29)] are related to the valuédsandN in Eqg. (22).
Namely, forl,,|>L one has However, such a kind of replacement is not consistent with
the semiclassical character of the initial Landau-Vlasov
lh=1, N=~Il,—I. (30 equation and we will preserve belowas a continuous vari-

able.

We point out that, in contrast to the quantum integer number The approach presented above is general enough that it
l,,, the classical angular momentunn the LVKE approach can be applied to any Fermi system. As an example we will
is a continuous variable. consider below the isoscalar vibrations in finite nuclei. The

Taking into account Eq(30), it is convenient to rewrite imaginary part of the collective response functi@®) has
the internal response functiof22) as a sum(integra) of been evaluated for collective vibrations in a nucleus with
contributions from the excited particles with angular momen-= 208 nucleons. The following values for the nuclear param-
tuml’=1,=N+I,=N+Iforl, |’=0. One obtains from Eq. eters were used:c=1 MeV/fm? py=0.17 fm 3, e
(22 =40 MeV, andry=1.12 fm. In the calculations we smear
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) ) o ) FIG. 2. The same as Fig. 1, for the collective response function;
FIG. 1. The imaginary part of the intrinsic response function of ¢, Eq(26).

20%pp [see Eq(22)] for the isoscalar excitations with=0, 2, and
3 in arbitrary units. The smearing paramete+ 0.1 MeV. The solid proximation to the right-hand side of E(). We point out
and da;hed lines correspond to the valuesFg&0 and —0.4, that the inclusion of the smearing parametein Eq. (22)
respectively. simulates the collisional damping with=#/7, where r is
the relaxation time; see RdR29].

We note also that the use of the small smearing parameter
n leads only to a slight spreading of the resonance structure

out the § functions in the imaginary part of Eq22) by
giving a finite value to the infinitesimal parametgr=0.2

MeV atL+#0 and»=0.1 MeV atL=0. ., in Figs. 1 and 2. This can be seen directly in Figa)Xor

In Figs. 1@, 1(b), and 1c) the imaginary partyin(®) | =0, where the fragmentation width is absent and the width
=Im Xin(®), of the intrinsic response function, E@2), are  f the monopole resonance is due only to the smearing pa-
shown for isoscalar resonances witk-0, 2, and 3, respec- rameters.
tively. Similarly, in Figs. 2a), 2(b), and Zc) we show the It is seen from Fig. &) that there is one collective isos-
corresponding isoscalar collective response function, Ecgg|ar monopole mode at excitation energy,~17.2 MeV
(26). A comparison of both sets of figures shofsge also  \yhich exhausts all the strength; see also R&f. The calcu-
Eq. (27)] that due to the consistency conditié8) one ob-  |ated value is higher than the experimental excitation energy
serves a considerable strength redistribution. The strengigr 13.7 MeV [28]. We note that the bulk nucleon-nucleon
functions shown in Figs. @), 2(b), and 2c) have a reso- interaction]-‘(f),f)’) was omitted in our consideration; see

nance structure with significant resonance widths in the case ] . . A,
of L>0. We would like to stress that these widths are=dS:(2) and(4). Inclusion of the interactiotF(p,p’) can be

closely associated with the so-called fragmentation widths iff@Sily done in the case of the simplest momentum-isotropic
quantum RPA calculations. In the case of the internal reinteractionF(p,p’) =F,, whereF, is the Landau parameter
sponse functiony:(w), our Figs. 1a), 1(b), and 1c) pro- [12,13. A better description of the energy of the GMR is
duce smooth curves for the corresponding partial particlethen obtained with an appropriate choice of the parameter
hole strength distributions in the quantum shell-modelFo=—0.4[the dashed line in Fig.(@]; see also Ref.29].
Ca|cu|ati0ns; see also Re[ﬁ_?yq_ From the point of view Note that the value of the paramerﬂj’ can be different if the

of Landau’s Fermi-liquid theory, the widths of the excited Landau parametdft,, i.e., the effective mass of the nucleon,
states in the collective strength function lph(w) in Figs. IS taken into consideration. -

2(a), 2(b), and Zc) appear due to the Land#&moncollisional Taking into account the bulk interactigf(p,p’) is more
damping. The full description of the widths must also in-important in the case of monopole excitations where the
clude the contribution from the two-body collisions. We nuclear interior is involved. In Fig.(B) the strength distri-
have neglected this collisional damping in our kinetic equa-bution is presented for the collective isoscalar quadrupole
tion (4). The collisional damping can be easily taken intovibrations {=2). Most of the strength is distributed in the
consideration by adding the collisional integral in th@p- energy range between the giant resonances (
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~11 MeV/t) and the low-lying collective state «f 3 w?’R? .
~4 MeV/h) for 2%b. A small part of the strength is ob- =gAm 1+ oz +0(sY). (41)

served at energy which is about twice the giant resonance
energy. As can be seen from Figcp the bulk part of the | et ys consider now the quantum energy-weighted sum rule
strength of the collective isoscalar octupole excitatiobhs (

=3) is distributed in the energy region of the low-lying col- 6 %2

lective state p~2.6 MeV/4), the low-frequency octupole Si_o=2> (En—Eo)|<n|f2|0>|2=g EARZ- (42)
resonance ¢~5-8 MeV/), and the high-frequency octu- n

pole resonance «~17-20 MeVk) for 2%%Pb. This . - . . -
strength distribution is in agreement with the observed isos--rhe partial contributior, (wo) of the classical eigenexcita

; tion with certain eigenfrequency, to the quantum energy-
calar octupole response M%b[30,31). . : :
As can be seen from Figs.(® and Zc), the strength weighted sumS_ can be derived using the correspondency

functions in the giant quadrupole and octupole resonancBrmC”Ole(See Ref{27], Chap. 6, Appendix 65 It reads

regions are quite small. This occurs due to the particular 52
choice of the. external field in the form of the external pres- S _o(wg)= —Mf=o(wo), (43
sure, Eq.(8), instead of the commonly used electromagnetic 2B —o(wo)

field. We will evaluate here the contribution of the giant o
resonance region to the electromagnetic energy-weighte@nereM —o(wo) is given by
sum rule(EWSR for the monopole case. The classical tran-

2p2

sition density, i.e., the time-dependent variation of the par- f > 5 > 6 0 }
N M - = | drreép_-o(r,1)/6R(t)= =AR 1+ ——|.

ticle density 5p, —o(r,t), can be found from Eqg14) and L-o(wo) PL-o(T 1)/ OR() S) 2lvg
(15) and is given by the following expressigsee also Refs. (44)

[29,32)): . .
Using Eqgs.(43), (44), and(41), we obtain

. dp -
5PL:0(rrt):f—5nL:0(rip’t)

6 42
(2mh)3 S -o(wo) =g AR+ O(s). (45)

=7(r,t)pof(R—=r)+q(t)poRS(R—T), Comparing this expression with the EWSR given by Eq.

(37 (42), we can see that only one resonance stateatw
exhausts about all the EWSR fbr=0. Thus, at least in the
where case of the isoscalar giant monopole resonance, the model
used does not lead to an underestimate of the fraction of the

(F)~— |1+ w’R? 12 r’ sR(t) (3 9iantresonance in the EWSR. The contribution of the giant
e R 6sz 3R?2 quadrupole and octupole resonance regions to the EWSR

will be reported in a forthcoming publication.
and In Fig. 3 we show, as a function df, the energy-
averaged contributions Ingt(w,l”) to the strength of octu-
pole vibration defined as

1
a(t)= 5 SR(V). (39)

—1 w2
L ’y — ’ L oy
We assume also that the conditisfr wR/7ve<1 is ful- m x~(w)] )_wz—wl lew Im x“(@",1"). (48)

filled. Taking into account the continuity equation and Eg.

(37), one can find the velocity fieI&(F,t) in the following  The energy-averaging intervals are chosen in the character-
form: istic regions of the strength local maxinfthhe intervals are
determined by the condition that the strength decrease by a
.. ro[r d . factor of 2 compared with the value at the corresponding
u(r,t)=-— 3—f drlria OpL=o(r,t) local maximum. We consider averaging in the characteristic
"po’0 regions of excitation energies: the low-lying collective states
d (0.5—-4.5 MeV, the low-frequency octupole resonanée-8
—SR(1). (40) MeV), and the high-frequency octupole resonarité—18
dt MeV). We can see that at a given excitation energy, the
contribution to the strength function is coming from orbits

Substituting the velocity field40) in the expression for the with well-defined angular momenturt/. The resonance

collective kinetic energy of the fluid, we can obtain the mass T3 o - . .
coefficientB, _o(w) with respect to the collective variable structures of Imy*(w,1") as a function of the particle angu

lar momentuml’, displayed in Fig. 3, are generated by the
dR(t). Namely, poles of the intrinsic response function in a given region of

r

R

w?R2? 2
1+ ——{1-
6UF( RT)

i w2R2 12112 frequencies; see Eq#6), (35), and(32). They are not re-
BL:o(w)=mPof dr—s 1+_2(1__2” lated to the resonance behavior of the collective response
R 6ug R function (26) as a function ofw.
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ot - FIG. 5. The same as Fig. 3, for the isoscalar monopole collec-

tive response functionL(=0) at the resonance excitation energy
hw=17.2 MeV. The smearing parametgr=0.1 MeV.

0.0

(©
In Fig. 4 we have also plotted the energy-averaged con-
tributions Im x*(w,|) to theL=3 strength as a function of
the “hole” angular momentun; see Eq.(30). One can see
1 from Figs. 3 and 4 that there exists a correlation in the shifts
4 of the strength for different energy regions. We point out that
the large contribution associated with the high “hole” angu-
s 8 10 lar momentum, seen in Fig. 4, does not mean that the cor-
I responding collective motion has surface character. This is
because the transition density involves both “hole” and
FIG. 3. The contribution to the imaginary part of the isoscalar“particle” orbits and the enhancement in the “hole”
octupole collective response functioh€3) [see Eq.(26)] as a  strength can be compensated through the hindrance of the
function of the single-particle angular momentufraveraged over “particle” high angular momentum orbit§compare Fig.
the energy in different regions dfw: (a) Aw=0.5-4.5 MeV,(b) 3(c) and Fig. 40)].
hw=5-8 MeV, and(c) iw=14-18 MeV. The smearing param- e will also consider the contribution from different par-
eter =0.2 MeV. ticle orbits to the strength function for monopole case,
L=0. Taking into account Eq$32) and(35), one finds(we
point out thatl=1" for L=0)

— ] Wlwl)=—15-2% G(w)vmctg(w—R 1—|'2).
0.07f E UFImax VE
0.05¢ 1 (47)
°~°3: 1 For comparison, the partial strength function ¥¥(w,!’) is
0.01F | plotted in Fig. 5 for the isoscalar excitation at energy 17.2
g— MeV [see Fig. 2a)] as a function of the particle angular
oosp T T T T T momentur’. In contrast to the case &f# 0 vibrations, it is
= o.07} ®) ] seen from Fig. 5 that orbits with a wide range of orbital
m@ 0.05k ] angular momenturh’ contribute to the giant monopole reso-
>§ 003 . nance. The intrinsic response function ¥ w,l’) has no
=t ﬁ poles at this energyor corresponding frequengysee Eq.
0.01F - (47).
0.025————————— Two effects, the shift and the deformation of the Fermi
0.02L © i surface in the momentum space, are responsible for the form-
0.015L | ing of the collective excitations in the Fermi liquid. We will
’ analyze both of them as a function of the particle angular
0.01F T momentum’ in the case of the monopole resonance. Let us
0.005} . rewrite Eq.(14) for L=0 in the following form:
o/ A ;

| . dng
Sng(r,p,t)= E[Re fo(r,e,l,w)coq wt)

FIG. 4. The same as Fig. 3, but for the “hole” angular momen-
tum; see Eq(30). +Imfy(r,e,l,w)sin(wt)]. (48)
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O e s — function is more pronounced corresponds to the region of the
I ] hindrance of the deformation of the Fermi surface.

012 | S i

’S‘o 009 | A

= o6t ) IV. CONCLUSIONS

0 [ . S .

w s We have studied the strength distribution of collective
0,00 vibrations in a finite Fermi system within a phase space ap-
003 L ] proach. A simple analytical expression for small variations
o6l 1 of the phase space distribution function was obtained and

used to determine the collective response functi@3s and
I (26). In the present calculations we neglected the residual
particle interaction in the bulk of the system, except for the
FIG. 6. The amplitudes of the Fermi surface distortions monopole case, as well as effects from collisions. Introduc-
a’(r,l,wo) (solid ling) anda™(r,l,wo) (dashed lingatr=R as  ing the moving effective surface in lieu of the nucleon-
functions of the particle gngular momentura|’. The calculation  nycleon interaction, we include in a macroscopic way a com-
\;\g%;b?erformed for the giant monopole resonance for the n”deuﬁlicated particle iqteraction in the Surfgce region: .
We found that in the case of nuclei the effective particle
interaction in the surface region leads to a significant redis-
tribution [see Figs. 1 and 2 and Eq22), (23), and(27)] of
the isoscalar strength in the giant resonance region as well as
in the low-lying collective state region. The results obtained
are in reasonable agreement with the quantum {B®@s34.

Re fo(r. x| o) The bulk nucleon-nucleon interactich(p,p’) was omitted
at(r,l,wg)= LA in our consideration except for tHe=0 excitations, taking
€F into account that the bulk interaction is more important in the
case of monopole excitations, where the nuclear interior is
_ 2 SRgo(wg) woR /1_( Ir )2 involved, than for the higher multipoles. A better description
B Jr R UE keR? of the energy of the isoscalar giant monopole resonance was
achieved with an appropriate choice of the Landau parameter
cos{(wor/vp)\/TkFR)z] Fo=—0.4. The strength distribution for quadrupole vibra-
X — — tions is characterized by a larger fragmentation in the energy
sin (worlvg)v1—(Ir/kgR%)“] region between the giant resonance and the low-lying collec-
(49) tive state[see Fig. 2b)] as compared to the one found in the
and guantum RPA calculatior83,34]. We have also pointed out
that the strength functions in the giant quadrupole and octu-
B Imfo(r,ee,l,wg) pole resonance regions are quite small. This is associated
a (r,l,wo)= G—F with the surface character of the external pressure form fac-
tor used in the present approach; see B). We demon-
2 SRy wq) woR Ir strated that in our model the monopole giant resonance ex-
- \/_; TR v VOO (W) hausts about all the EWSR.
We have presented an analysis of the single-particle orbit

sin (worlve)V1—(17keR)?] contributions to different energy regions of the collective
X— =R (50)  strength function. We have observed the enhancement of cer-
sin (wor fve) V1= (Ir/keR%)%] tain orbits in both “particle” and “hole” channels for the

wherew, is the eigenfrequency of the monopole giant resO_quadrupole and octupole strength functions for wide inter-

nance. The values Riy(r,e,l,@) and Imfo(r,e,l,) pro- vals of the excitation energy. The correspondingepen-

vide, respectively, a change of the particle density and thgence of the monopole strength function at the resonance

current density at the collective excitation. Correspondingly N€rgy shows rather smooth behavior. We noted that the dy-

the amplitudesa™ (r,I,wg) anda™(r,l,w,) describe the de- namical distortion of the Fermi surface, accompanying the
formation and the shift of the Fermi surface. collective excitation of the Fermi-liquid drop, is also mani-

In Fig. 6, the amplitudes™ (r,|,w,) are shown as func- fested in the dependence of the strength. This fact can be
tions of the single-particle angular momentum near theused in the analysis of the particle emission from the cold
nuclear surface r=R). The deformation amplitude excited Fermi-liquid drop. Some results in this direction will
a*(r,l,0p) reaches the value of 0.08 lat | ;4 (solid line).  be reported in a forthcoming publication.

The shift amplitudea™(r,l,wy) has a maximum of about In this work we focused on the applications of our ap-
0.16 atl =0 (dashed lingand decreases with the increase ofproach to collective vibrations in nuclei. However, the dy-
the single-particle angular momentum. It can be seen frommamical phenomena in nuclei do not differ in a qualitative
Figs. 5 and 6 that the region ¢f~4 where the strength way from the ones in other finite Fermi systems. So our

Here the quantities R&y(r,e,l,w) and Imfy(r,e,l,w) rep-
resent the amplitudes of the lod@t givenr) distortions of
the Fermi surface. Using the solutigh5) for L=0, these
amplitudes can be written as
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