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Analytical expressions for electromagnetic transition rates in the S(B) limit of the spdf
interacting boson model
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Analytical expressions foE1l, E2, E3, M1, andM2 transition rates for low-lying negative-parity states in
the SUJ) limit of the spdfIBM are given. Applications to some deformed nuclei in the 150 region and
Uranium isotopes have yielded good agreement between calculation and d&th faansitions. These for-
mulas are useful in studying both positive- and negative-parity states of deformed nuclei.
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[. INTRODUCTION The numbers in the second row represent the corresponding
irreducible representations of the groupsandK are float-
Collective negative parity states are believed to be relatethg index to indicate the mutiplicity in the reduction
to octupole degrees of freedom in the nucleus in the geoSU(3), X SU(3)_D SU(3) and the reduction SU(3) O(3),
metrical model1]. In the algebraic model, their description respectivelyN is the total number of bosonil,, is the total
is the interacting boson mod@BM ) includings, p, d, andf number of positive-parity bosons, aNd is the total number
bosons[2-7]. One advantage of the algebraic model is theof negative-parity bosons. It has been shown {i34] the
availability of analytical expressions for many physical low-lying collective states are generated frédnsd bosons
quantities. The S(B) limit describes a rotational spectrum through the S(B) irreducible representations Kg0) and
[3-5]. Analytical expressions for the energy can be written(2N—4,2). The low-lying negative-parity states are gener-
explicitly in terms of the Casimir operators of the corre- ated by the coupling of onpf boson withN—1 sd bosons
sponding group chain. Besides the energy spectrum, electréarough the S(B) irreducible representations K2+ 1,0) and
magnetic transition properties are important in determining2N—1,1).
the structure of a nucleus. In trsz-IBM, electromagnetic In this paper, we givegl) E1 transition rates between
transition rates are obtained analyticall§,8]. Numerical (2n+3,0)L; and (n+2,0)L, ; (2) the intrabandE?2 tran-
studies have shown that the low-lying positive parity statessition rates in the (8+ 3,0) negative parity state ban¢g)
are weII.—described b sd bosoqs, and the Iovy—lying nega- E3 transitions between (2+3,0)L; and (N+2,0)L; ; (4)
tive parity states are well described by coupling q@febo-  intrabandM1 transitions in the (8+1,1) negative parity
son Wlth.N—l sd bosor!s. In this limit, thesq bosong angf . state band;(5) M2 transitions between (2+1,1)L; and
bosons interact oply via the quadrupole interaction. Th|s 'S(2n+2,0)L§; and (6) M2 transition from (2+1,1)L; to
the weak correlation case. In this study, we adopt this as('Zn—Z,Z)KZO,L;(B-band and to (h—42K=2L;
sumption. In the strong correlatiosd bosons angh f bosons - .
interact strongly, and thef bosons andd bosons are mixed (y-band band. Heren=N—1, the total boson number mi-
’ ! . : nus 1 for the sake of simplicity. In Fig. 1, we give a illustra-
strongly. Lac and Morrisof9] have derived analytical ex- .. . for th it d transitions. In Fia. 2. a
pressions in the strong correlation case using theekpan- tion picture for the parity conserve ons. In Hg. <,
schematic picture for parity changing transitions is given.

sion technique. It is the purpose of this paper to give analyti- . .
cal expressions dt1, E2,E3, M1, andM2 transition rates The wave functions for the states involved are

involving low-lying negative parity states in the SU3) (i) ground state band(2n,0).LM),
X SU(3)p¢ limit. The paper is organized as follows. In Sec.
II, we give a brief description of the method of the calcula- (i) Bband |(2n—4,2) ,K=0LM),
tion. In Sec. Il we give the results. In Sec. IV we apply the
results to some deformed nuclei. In Sec. V we give a brief (i) yband |[(2n—4,2) ,K=2LM),
summary.
(iv) KP=0" -band [(2n—2,0,(3,0_(2n+1,0LM),
IIl. THE FORMALISM )
The group chain under study is (v) KP=1" -band |[(2n—2,0,(3,0_(2n—1,1))LM).
U(16) D U(6) X U(10) D SU3). The positive parity states iG)—(iii) of Eq. (2) are the
N N, N_ (Mg ps) SU(3) limit wave functions in thesd-IBM. The negative
parity states ir(iv) and(v) can be written explicitly in terms
X SU3)- D SUB3) D 0O(3) 1 of the coupling of thesd boson wave functions and thef
A_,us) o) KL~ @) boson wave functions:
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FIG. 1. Parity conserving transitions.
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ot
= (2n=2,0 (30 |(2n+1,0 FIG. 2. Parity changing transitions.
LEL L L L
+Lo + -
x{[(2n,0L)I(3,0L )}y 3 o o
T(M2)=hp4(d"p—pTd)@+hg(d"F —£7d)?, (5
1(2n—2,0),(3,0_(2n—1,1LM)
(2n-2,00 (3,0 |(2n—1,) where Bim=(-1)""b,_,,. The signs_of dTE)f) and
:LEE L, L L (d1)@ are opposite to those op{d)® and Td)? in

T(M2). This is to ensure the hermiticity of the operator.

x{](2n,00L )| (3,0L_ )}, (4) The wave functions can be seen as the coupling of states
in the sd space with the states in tipef space. For transition

where{|a)|b)}, stands for the ordinary vector coupling of operators involving onlysd or pf operators, e.g.,d's)®

two statega) and|b). The angled bracketed quantity is the and ('), we can calculate the matrix elements using the

SU(3)> O(3) reduced Wigner coefficients. Most of the following formula:

SU(3) Wigner coefficients forsd shell model calculation

have been given by Vergadd40]. Those needed in this

calculation have been given in RgL1]. Using these coeffi-  (aijiazj [ T X 1] a’jiasj3d")

cients, the wave functions in trepdf IBM can be written

explicitly in the sd andpf wave functions.

The transition operators are

=(—1)U1t2t'+0 [(23+1)(23 +1)

i J 2
ook

T(EL)=ay(s'p+pTs) D+ by (pid+dTp)® X(ajy[ T’ j1) 8 apaz) 8(jai5),

+ey(dif + 1)@, )
(eaj10) 1 X TY | afjiabjsd")

T(E2)=a,

~ 7
(s'd+d's)@— \[Z(de)@)

+eo(pT T +1Tp) P +da(F71) 12,

+b(pp)® =(—1)“1*J’£“*W<2J+1)<ZJ’+1>[33 ¥ Jl]

X{agj ol TSl agi ) S(agay) 8(jaj 1), (6)

T(E3)=ay(s"f +1's)® +ba(p'd+dip)®
o where 1 refers t@pf space and 2 refers &d space.
+ca(dTF+£1d) @, For operators involving oned and onep f operators, e.g.,
_ B N (s"p)®), the matrix elements can be calculated from the fol-
T(M1)=g,(p )M +gq(d"d) M +gs(f1F)D), lowing formula:
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many of the calculations can be simplified. The reduced ma-

. J bT’b" (k) 1 /-IJI
(@rj1asi2dll(by bi,) " egjieszd") trix element can be obtained through

ji J2 J
L 2L+ 1) VX (N Lol TSP NN L
_RITDKI DIl iy i Y (2Lp+ 1) ((Npren) XoLol Tl (N apen) Xal a)
k, k, kK _s (Napa) (aB) (Abﬂb)>
U 7\ Xaka  xL | xolo
X (eujalloy |eni1){aziallbillaziz)- (7
X oo TP (N apea)),p - 8)

The negative parity wave function involves only opé
boson, and its matrix elements can be given quite easily. The triple barred quantity is the $B) reduced matrix
Since the coupling of th@f boson relates mangd wave element, and many of them have been given by Rosensteel
functions, the calculation of the matrix elements in #e¢ [12]. Those that are not given in R¢fL2] are calculated by
space is cumbersome. By applying Rosensteel’'s regiflfs  ourselves using a standard theoretic method as in[R8}.

IIl. THE RESULTS
A. E1 transitions

The matrix element is a sum of several terms. We give each of them here.
(@ (2n+3,00k=0L"—(2n+2,0k=0(L—1)* transitions, e.g., 3—2*:

. __(@n-L+3)(2n+L+2) [L(2n+L+4)
O N TPLEEY 5(n+1)(2n+3)’
~ = (2n—L+3)(4n—L+1) [L(2n+L+4)
(L=l +pTd) L) =~ 10(2n+1) (n+1)(2n+3)’
P T _(8n*+L2+4nL+4n+L-2) [3L(2n+L+4)
(L=D)"[ld™F+ ) YL )= 102n+1) 7(n+1)(2n+3) ©

(b) (2n+3,0k=0L~—(2n+2,0k=0(L+1)" transitions, e.g., 1—2":

(2n—L+1)(2n+L+4) [(L+1)(2n—L+3)
2(2n+1) 5(n+1)(2n+3) ’

(L+D)*(s"p+p's)IL )=~

2n+L+4)(4n+L+2) [(L+1)(2n—L+3)
10(2n+1) (n+1)(2n+3) ’

(L+ 1) *(dTB+ pTay L) =

(8n?+L%—4nL+L—-2) [3(L+1)(2n—L+3)
10(2n+1) 7(n+1)(2n+3)

(L+D)F | dF+fTd)YL)y=— (10)
B. E2 transitions

For intraband transitionl(+2)”—L™ in the (2n+3,0)0" band, the corresponding matrix element of the diffefeat
operators are

. 7 . n 3(2n—L+3)(2n+L+6)(L+1)(L+2)
(L+2)7[(s"d +d"s)* \/;mfd)zllL >—(2n+3)\/ L3 ,

e 3(2n—L+1)(2n+L+4) [2n—L+3)(2n+L+6)(L+1)(L+2)
(L+27P A =~ T DT Dzn+3) (2L+3) !

(4L2+24n°+12L+30n+9) [3(2n—L+3)(2n+L+6)(L+1)(L+2)
10(2n+1)(n+1)(2n+3) 7(2L+3) ’

(L+2) | (p"T+1Tp)?L )=

(11)

(L>+16n%+3L—4) \/2(2n—L+3)(2n+L+6)(L+1)(L+2)

(L+2) @ DL =~ o Ty (nF D (2n < 3) 7(2L+3)

When the parameters in tHe2 transition operator take the &) limit, i.e., a,=1, b,=—\7/4, c,=—9/3/10, d,
=3./7/5, ande,= —3./42/10, the matrix element &f(E2) between the two states becomes the familiaf33Umit result
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\/3(2n L+3)(2n+L+6)(L+1)(L+2)
2 (2L+3)

In the largen limit, B(E2) approaches the rigid rotor value

(L+1)(L+2)
BB B3y 2L+5)

C. E3 transitions

We give theE3 transition elements for transition 1§2-3,0)L ~—(2n+2,0)L" *.
(@ L —(L-3)":

, (2n+L) [(2n—L+5)(2n+L+2)(2n+L+4)(L—1)(L—2)L
L™= 2(2n+1) 3(n+1)(2n+3)(2L—3)(2L—1)

(L=3)"||(s"F+fTs)

(2n—L+3) [3(2n—L+5)(2n+L+2)(2n+L+4)(L—1)(L—2)L

(=37l T+ p I ) =550 5(n+1)(2n+3)(2L—3)(2L—1)

(8n+L—3) [(2n—L+5)(2n+L+2)(2n+L+4)(L—1)(L—2)L

(L=3)7l(@F+fTDL )=~ 6(2n+1) 10(n+1)(2n+3)(2L—3)(2L—1) (12
(b) L™ —(L—1)":
(T - S [ T
(L=D)*(@"p+pTd)¥L )=~ 2 le(zz)rfin1? =2 3(;(r124:]3+)|(_214—)(:3|;(_2i):g;;?1)
(© L —(L+1)*:
e N
R NG LU L
<(|_+1)+||(dTT+fT’a)3|||_—>:_(16“2+3m+2m‘+7|‘2+12|'_19) 3(2n—L+3)L(L+1(L+2))(n+1) 14

152n+1)(2n+2) 2(2n+3)(2L—1)(2L+5)

(d) L™ —(L+3)*:

, (2n-L-1)  [(2n—L+1)(2n— L+3)(2n+L+6)(L+1)(L+2)(L+3)(n+1)
L™= (2n+1)(2n+2) 3(2n+3)(2L+3)(2L+5)

(L+3)T|(s"F+fTs)

((L+3)"[(d"p+pTd)3IL)=—

(2n+L+4) \/3(2n L+1)(2n— L+3)(2n+L+6)(L+1)(L+2)(L+3)(n+1)
(2n+1)(2n+2) 5(2n+3)(2L+3)(2L+5)

(8n—L—4) \/(Zn L+1)(2n—L+3)(2n+L+6)(L+1)(L+2)(L+3)(n+ 1)

(L3 T+ DL ) =3 e 2) 10(2n+3)(2L+3)(2L+5)

(15
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D. M1 transitions

We give expressions for the intraband transitions in{2,1).
(@ L —(L-21)",withL odd, e.g., I—0":

e (2n+L+2)(2n-3L+3) f(2n—L+3)(L+1)(L-1)
(L=l =~ 10n(2n+1) 2(2n+3)L

(L= (FHYL)=—

(3L2+4nL+3L+16n?—40n— 6)\/(2n L+3)(L+1)(L-1)
20n(2n+1) 72n+3)L

) (2n-3) [(2n—L+3)(L+1)(L-1)
L™= (2n+1) 10(2n+3)L

((L—1)"[(d"d) (16)

(b) L"—(L+1)",withL odd, e.g., T—2":

- (2n-L+1)(2n+3L+6) [(2n+L+4)(L+2)L
O L e [ ELEY) 2(2n+3)(L+1)

(3L2—4nL+3L+16n2—44n—6) [(2n+L+4)(L+2)L
20n(2n+1) 7(2n+3)(L+1)

(L+1)7[[(FTHYL )=

(2n—3) [(2n+L+4)(L+2)L

(LD =~ G N oz sy

17

E. M2 transitions

(@ (2n+1,1)L"—(2n+2,0)(L—2)" with L even, e.g., 2%03— (to ground state band

(2n—L+2) [(2n—L+4)(2n+L+3)(L—1)(L+1)
(2n+1) 30(2L—1)n '

(L=2)"[[(d"p—pTd)3IL )=

(8n+L=2) [2n-L+&@n+L+3)(L-D(L+1)

(L=2)*[(d"T = fTd)?|L )=~ 22n+1) 1052L—1)n

(18

(b) (2n+1,1)L™—(2n+2,0)(L+2)" with L even, e.g., 2—4, (to ground state band

(2n+L+3) [(2n+L+5)(2n—L+2)(L+2)L
(2n+1) 30(2L+3)n

(L+2)*[(dp—pTd)L ) =—

(8n—L—3) [(2n+L+5)(2n—L+2)(L+2)L

((L+2)*(dTF—fTd)2L )= 2020+ 1) 1052L+3)n

(19

(¢) (2n+1,1)L~—(2n—2,2)k=0(L—2)" with L even, e.g., 2—>OE (to B bang:

(2n—L+2)(2n+L—-2) [(2n+L+1)(2n+L+3)(L—1)(L+1)
(2n+1) 15n(2n—1)(2L—1)(8n*>—L%+3L—2)’

(L=2)"[[(d"p—pTd)3L )=~

(16n%+L%—9L +14) (2n+L+1)(2n+L+3)(L—1)(L+1)

(L=2)"(d"F = fTd)?|L )= 2n+ 1) 21n(2n—1)(2L—1)(8n?— L2+ 3L-2)’

(20

(d) (2n+1,1)L”—(2n—2,2k=2(L—2)" with L even, e.g., 2—0; (to y-band:

2(2n—L+2)(2n+L-1D)(2n+ L+ 1)(2n+ L+ 3)(L—3)(L-2)(L+1)
(L=2)"[(d"p—p"d)?|L7)= \/ 150(2n—1)(2n+1)(2L - 1)(8n°~L?3L-2)

122n—L+2)(2n+ L-1)(2n+ L+ 1)(2n+L+3)(L—3)(L-2)(L+1)
((L=2)"(d"F = fTd)?L >:\/ 35L(2n—1)(2n+1)(2L—1)(8n?~ L2+ 3L 2) '

(21)



2306 G. L. LONG, T. Y. SHEN, H. Y. JI, AND E. G. ZHAO 57
TABLE |. Comparison of absolutB(E1) values. TABLE Il. Comparisons of relative intensities.
Nucleus I; Iy B(ELli—=lg)ca(W.u) B(ELli—l¢)ex(W.U) Nucleus EjevelkeV) I; I Cal Expt.
%28m 17 of 0.0042 0.004@) 1525m 963 11 0f 78 82.37)
27 0.0081 0.007@) 2+ 100 1042)
3; 2 0.0055 0.008(16) 1041 3; 27 100 10@4)
a; 0.0067 0.0082.6) aF 48 40.419
¥Sm 1] of 0.0046 0.0046) 1221 5, af 100 1004)
27 0.0089 0.009@aL5) 67 23 243)
1%Gd 1] o] 0.0016 0.0016.2) 1505 7] 6, 100 10@3)
2{ 0.0031 0.002Q5) 81+ 11 12
18Gd 1] of 0.0032 0.003®) 1879 9] 8 100 10G3)
2I 0.0062 0.006Q.7) 101+ 4 15
3y 17 0f 2.59x10°8 2.59x10 §(11) 154Sm 921 1; 0 68 652)
2f 5.03x 1078 5.81x10 §(22) 2f 100 10G2)
1012 37 2] 100 10G2)
. a7 63 601)
(e) (2n++1,1)L’—>(2n—2,2)k:2(L—2)* with L odd, 1181 5, 41+ 100 10G3)
eg.,5—3,: 6 36 29.Q7)
— 15%6sm 804 17 0 69 10418
((L=2)*](d"p—pTd)?L™) 2; 100 8219
—(2n—3L+3) 876 3; 27 100 10@12)
4y 59 173)
(2n+L)(2n+L+2)(L+1)(L—2)(L—3) 1021 5. 47 100 10G12)
152n+1)(2n+3)(2n)(2n—1)L(2L—1)’ 6; 30 124)
1%8Gd 1264 1; o7 63 674)
(L=2)" (" T-FD)?L") & 0 1009
1403 3, 2; 100 10@6)
=(4n—L+86) af 80 855)
20y 367 17 0 82 8113
\/3(2n+L)(2n+L+2)(L+1)(L—2)(L—3) 2 100 10013
70(2n+1)(2n+3)(2n)(2n—1)(2L—l)L ’ 435 3; 2: 100 10G8)
(22) 47 41 396)
2 563 1] 0 67 674)
+
IV. APPLICATIONS: DEFORMED NUCLEI _ 21 100 10a4)
629 3; 2; 100 10@4)
The expressions for the matrix elements are general. In 47 66 693)
order to study the electromagnetic transitions of deformed34y 786 17 oF 61 582)
nuclei, one has to choose appropriate coefficients for all the 27 100 10a2)
terms in the corresponding transition operators. This can be 849 37 27 100 10G7)
done _by either a micro_scro_pi_c derivation, or by fitting to 4; 84 905)
e_x_penmental data. For simplicity, one can also_ tak_e the tran- 963 5, 4 100 1006)
sition operators as generators of the group. This will simplify 6+ 58 624)
the expressions quite a lot. We must emphasize that this is - '
I ; : 1125 7] 6; 100 10@30)
merely for the sake of simplicity. Sometimes this approach 8 42 6612)
does not bring meaningful results. For example, in kh& - 680 1 01 63 744
transition case, if one takes the transition operator as the ! L
generator ofO(3), the angular momentum operator, there B 21 100 1002)
will be no M1 transitions since angular momentum is a good 732 3 2 100 10@2)
quantum number. Nevertheless this property does provide a 49 " 832)
cross check on the correctness of the calculation. Sometimes 826 51 47 100 10@4)
it offers a simple formula that contains meaningful results. 6/ 49 576)
For instance, ifE2 operator is taken as the 8) generator
Q, one obtains the familiar results. 1 a
We have applied the results in Sec. Il to some deformed ~ ~ ~
nuclei with nggpative parity states. In this section, we give Dfltz \/;(STerst)flL_ \/;(pTderTerTp)/li
two applications. In the first application, we compare directly -
B(E1) values. For simplicity, we choose the generathf;f " \/;)(dTT-F fTH)Iﬁ, 23)

of O(10):
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as ourE1l transition operatorT(E1),=e;D . ; is deter-  states in the S(B) limit. In real nuclei, the S(B) symmetry

mined by fitting to one of the experimental data. In Table I,will be more or less broken. Then a detailed calculation
we compare the calculatd8 E1) with those of the experi- should take into account the symmetry breaking. This can be
mental data int521%5m[14,15, 1°01%Gd[16,17, and?*®U  done numerically or by perturbation method. When the
[18]. breaking is not big, the analytical results derived here can be

AbsoluteB(E1) data are rare, we compare relative inten-used in the first order approximation. A preliminary applica-
sities in the second application. If one assumes Etfhtis  tion of E1 transition formula to some deformed nuclei yields
dominant in parity changing transitions and ignore higherpromising results. With more experimental knowledge of
order transitions, then the transition probabilities and hence;p transitions, these SB) transition prediction can be
the intensities are checked.

One question is the role of thg bosons. As is well
known, in the uranium isotopes, tlgeboson is necessary in
Using formulas obtained in the previous section for theorder to describe thE2 transitions and to remove the early
B(E1)’s, we have calculated the relative intensities incutoff of band in thesd IBM for the positive parity states
152,154,156 m [14-16, 1°8Gd[19], and 2% 238U [20,21. The  (for instance, sed,22,23). If the g boson is included, the
experimental data are taken from the references after eadbw-lying positive parity states are frold sdgbosons. The
nucleus and/or from Ref.20]. The calculated results are low-lying negative parity states are the coupling of quie
compared with experimental data in Table II. boson withN—1 sdg bosons. The formulas of thE/M

It is seen from Table | that the agreement between calcutransitions in thesdgpf IBM are beyond the scope of the
lation and experiment is very good for absol@€E1)’s for  present study. In the present study, sped f IBM calculation
all the five nuclei studied. One interesting observation is thagjave good agreement with the data &t transitions. It is
the absoluteB(E1) in U is 4-5 orders less than those in presumed that because of the commor{®aligebraic struc-
the rare earth. ture in the two modelsgpdfandsdgpfIBM), it is prob-

The agreement for the relative intensities is also veryably that the results for the low-lying states are similar.
good with the exception of°®Sm. In all other nuclei listed in
Table Il, the intensity from 1 to 0, is weaker than that
from 17 to 2; . Butin 1%Sm, this situation is reversed. This ACKNOWLEDGMENTS
can not be explained in the present model. Further efforts are

needed to understand this inversion. Apart from this nucleus, 1he authors thank Professor F. lachello for encourage-
the agreement is good, and in some nuclei, excellent. ment and interest. The authors acknowledge the financial

support of the National Natural Science Foundation of
China, and Science Fund of China Nuclear Industry Incorpo-
ration, China National Education Committee and Cao

We have given analytical expressions f6i, E2, E3,  Guangbiao High Technology Development Fund of Tsing-
M1, andM2 transitions involving low-lying negative parity hua University.

int E3B(E1). (24)
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