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Analytical expressions for electromagnetic transition rates in the SU„3… limit of the spdf
interacting boson model
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Analytical expressions forE1, E2, E3, M1, andM2 transition rates for low-lying negative-parity states in
the SU~3! limit of the spd f IBM are given. Applications to some deformed nuclei in theA5150 region and
Uranium isotopes have yielded good agreement between calculation and data forE1 transitions. These for-
mulas are useful in studying both positive- and negative-parity states of deformed nuclei.
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I. INTRODUCTION

Collective negative parity states are believed to be rela
to octupole degrees of freedom in the nucleus in the g
metrical model@1#. In the algebraic model, their descriptio
is the interacting boson model~IBM ! includings, p, d, andf
bosons@2–7#. One advantage of the algebraic model is t
availability of analytical expressions for many physic
quantities. The SU~3! limit describes a rotational spectrum
@3–5#. Analytical expressions for the energy can be writt
explicitly in terms of the Casimir operators of the corr
sponding group chain. Besides the energy spectrum, ele
magnetic transition properties are important in determin
the structure of a nucleus. In thesd-IBM, electromagnetic
transition rates are obtained analytically@6,8#. Numerical
studies have shown that the low-lying positive parity sta
are well-described byN sd bosons, and the low-lying nega
tive parity states are well described by coupling onep f bo-
son withN21 sd bosons. In this limit, thesd bosons andp f
bosons interact only via the quadrupole interaction. This
the weak correlation case. In this study, we adopt this
sumption. In the strong correlation,sd bosons andp f bosons
interact strongly, and thep f bosons andsd bosons are mixed
strongly. Lac and Morrison@9# have derived analytical ex
pressions in the strong correlation case using the 1/N expan-
sion technique. It is the purpose of this paper to give anal
cal expressions ofE1, E2, E3, M1, andM2 transition rates
involving low-lying negative parity states in the SU(3)sd
3SU(3)p f limit. The paper is organized as follows. In Se
II, we give a brief description of the method of the calcu
tion. In Sec. III we give the results. In Sec. IV we apply t
results to some deformed nuclei. In Sec. V we give a b
summary.

II. THE FORMALISM

The group chain under study is

U~16!

N
. U~6!

N1

3 U~10!

N2

. SU~3!1

~l1,m1!

3 SU~3!2

~l2,m2!

. SU~3!

v~l,m!

. O~3!

KL . ~1!
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The numbers in the second row represent the correspon
irreducible representations of the groups.v andK are float-
ing index to indicate the mutiplicity in the reductio
SU(3)13 SU(3)2. SU(3) and the reduction SU(3). O(3),
respectively.N is the total number of bosons,N1 is the total
number of positive-parity bosons, andN2 is the total number
of negative-parity bosons. It has been shown that@3,4# the
low-lying collective states are generated fromN sd bosons
through the SU~3! irreducible representations (2N,0) and
(2N24,2). The low-lying negative-parity states are gen
ated by the coupling of onep f boson withN21 sd bosons
through the SU~3! irreducible representations (2N11,0) and
(2N21,1).

In this paper, we give~1! E1 transition rates betwee
(2n13,0)L1

2 and (2n12,0)L2
1 ; ~2! the intrabandE2 tran-

sition rates in the (2n13,0) negative parity state band;~3!
E3 transitions between (2n13,0)L1

2 and (2n12,0)L2
1 ; ~4!

intrabandM1 transitions in the (2n11,1) negative parity
state band;~5! M2 transitions between (2n11,1)L1

1 and
(2n12,0)L2

1 ; and ~6! M2 transition from (2n11,1)L1
2 to

(2n22,2)K50,L2
1(b-band! and to (2n24,2)K52,L2

1

(g-band! band. Heren5N21, the total boson number mi
nus 1 for the sake of simplicity. In Fig. 1, we give a illustr
tion picture for the parity conserved transitions. In Fig. 2
schematic picture for parity changing transitions is given

The wave functions for the states involved are

~ i! ground state bandu~2n,0!1LM &,

~ ii ! b band u~2n24,2!1K50LM &,

~ iii ! g band u~2n24,2!1K52LM &,

~ iv! Kp502 -band u~2n22,0!1~3,0!2~2n11,0!LM &,
~2!

~v! Kp512 -band u~2n22,0!1~3,0!2~2n21,1!LM &.

The positive parity states in~i!–~iii ! of Eq. ~2! are the
SU~3! limit wave functions in thesd-IBM. The negative
parity states in~iv! and~v! can be written explicitly in terms
of the coupling of thesd boson wave functions and thep f
boson wave functions:
2301 © 1998 The American Physical Society
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u~2n22,0!1~3,0!2~2n11,0!LM &

5 (
L1L2

K ~2n22,0! ~3,0!

L1 L2
U~2n11,0!

L L
3$u~2n,0!L1&u~3,0!L2&%M

L , ~3!

u~2n22,0!1~3,0!2~2n21,1!LM &

5 (
L1L2

K ~2n22,0! ~3,0!

L1 L2
U~2n21,1!

L L
3$u~2n,0!L1&u~3,0!L2&%M

L , ~4!

where$ua&ub&%M
L stands for the ordinary vector coupling o

two statesua& and ub&. The angled bracketed quantity is th
SU(3). O(3) reduced Wigner coefficients. Most of th
SU~3! Wigner coefficients forsd shell model calculation
have been given by Vergados@10#. Those needed in this
calculation have been given in Ref.@11#. Using these coeffi-
cients, the wave functions in thespd f IBM can be written
explicitly in the sd andp f wave functions.

The transition operators are

T~E1!5a1~s† p̃1p†s!~1!1b1~p†d̃1d† p̃ !~1!

1c1~d† f̃ 1 f †d̃ !~1!,

T~E2!5a2F ~s†d̃1d†s!~2!2A7

4
~d†d̃ !~2!G1b2~p† p̃ !~2!

1c2~p† f̃ 1 f † p̃ !~2!1d2~ f † f̃ !~2!,

T~E3!5a3~s† f̃ 1 f †s!~3!1b3~p†d̃1d† p̃ !~3!

1c3~d† f̃ 1 f †d̃ !~3!,

T~M1!5gp~p† p̃ !~1!1gd~d†d̃ !~1!1gf~ f † f̃ !~1!,

FIG. 1. Parity conserving transitions.
T~M2!5hpd~d† p̃2p†d̃ !~2!1hd f~d† f̃ 2 f †d̃ !~2!, ~5!

where b̃ lm5(21)l 2mbl 2m . The signs of (d† p̃)(2) and
(d† f̃ )(2) are opposite to those of (p†d̃)(2) and (f †d̃)(2) in
T(M2). This is to ensure the hermiticity of the operator.

The wave functions can be seen as the coupling of st
in thesd space with the states in thep f space. For transition
operators involving onlysd or p f operators, e.g., (d†s)(2)

and (p† f̃ )(2), we can calculate the matrix elements using t
following formula:

^a1 j 1a2 j 2JiT1
~k!3I ia8 j 18a28 j 28J8&

5~21!~ j 11 j 21J81k!A~2J11!~2J811!H j 1 J j2

J8 j 18 k J
3^a j 1iT1

~k!ia8 j 18&d~a2a28!d~ j 2 j 28!,

^a1 j 1a2 j 2Ji I 3T2
~k!ia18 j 18a28 j 28J8&

5~21!~ j 11 j 281J1k!A~2J11!~2J811!H j 2 J j1

J8 j 28 k J
3^a2 j 2iT2

~k!ia28 j 28&d~a18a1!d~ j 1 j 18!, ~6!

where 1 refers top f space and 2 refers tosd space.
For operators involving onesd and onep f operators, e.g.,

(s† p̃)(1), the matrix elements can be calculated from the f
lowing formula:

FIG. 2. Parity changing transitions.
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^a1 j 1a2 j 2Ji~bk1

† b̃k2
!~k!ia18 j 18a28 j 28J8&

5A~2J11!~2k11!~2J811!H j 1 j 2 J

j 18 j 28 J8

k1 k2 k
J

3^a1 j 1ibk1

† ia18 j 18&^a2 j 2i b̃k2
ia28 j 28&. ~7!

The negative parity wave function involves only onep f
boson, and its matrix elements can be given quite ea
Since the coupling of thep f boson relates manysd wave
functions, the calculation of the matrix elements in thesd
space is cumbersome. By applying Rosensteel’s results@12#,
y.

many of the calculations can be simplified. The reduced m
trix element can be obtained through

~2Lb11!21/2^~lbmb!xbLbiTxL
~ab!i~lamb!xaLa&

5(
r

K ~lama! ~ab!

xaLa xL
U~lbmb!

xbLb
L

r

3^~lbmb!iuT~ab!iu~lama!&r . ~8!

The triple barred quantity is the SU~3! reduced matrix
element, and many of them have been given by Rosens
@12#. Those that are not given in Ref.@12# are calculated by
ourselves using a standard theoretic method as in Ref.@13#.
III. THE RESULTS

A. E1 transitions

The matrix element is a sum of several terms. We give each of them here.
~a! (2n13,0)k50L2→(2n12,0)k50(L21)1 transitions, e.g., 32→21:

^~L21!1i~s† p̃1p†s!1iL2&5
~2n2L13!~2n1L12!

2~2n11!
A L~2n1L14!

5~n11!~2n13!
,

^~L21!1i~d† p̃1p†d̃ !1iL2&52
~2n2L13!~4n2L11!

10~2n11!
A L~2n1L14!

~n11!~2n13!
,

^~L21!1i~d† f̃ 1 f †d̃ !1iL2&5
~8n21L214nL14n1L22!

10~2n11!
A 3L~2n1L14!

7~n11!~2n13!
. ~9!

~b! (2n13,0)k50L2→(2n12,0)k50(L11)1 transitions, e.g., 12→21:

^~L11!1i~s† p̃1p†s!1iL2&52
~2n2L11!~2n1L14!

2~2n11!
A~L11!~2n2L13!

5~n11!~2n13!
,

^~L11!1i~d† p̃1p†d̃ !1iL2&5
~2n1L14!~4n1L12!

10~2n11!
A~L11!~2n2L13!

~n11!~2n13!
,

^~L11!1i~d† f̃ 1 f †d̃ !1iL2&52
~8n21L224nL1L22!

10~2n11!
A3~L11!~2n2L13!

7~n11!~2n13!
. ~10!

B. E2 transitions

For intraband transition (L12)2→L2 in the (2n13,0)02 band, the corresponding matrix element of the differentE2
operators are

^~L12!2i~s†d̃1d†s!22A7

4
~d†d̃ !2iL2&5

n

~2n13!
A3~2n2L13!~2n1L16!~L11!~L12!

~2L13!
,

^~L12!2i~p† p̃ !2iL2&52
3~2n2L11!~2n1L14!

10~2n11!~n11!~2n13!
A~2n2L13!~2n1L16!~L11!~L12!

~2L13!
,

^~L12!2i~p† f̃ 1 f † p̃ !2iL2&5
~4L2124n2112L130n19!

10~2n11!~n11!~2n13!
A3~2n2L13!~2n1L16!~L11!~L12!

7~2L13!
,

^~L12!2i~d†d̃ !2iL2&52
~L2116n213L24!

10~2n11!~n11!~2n13!
A2~2n2L13!~2n1L16!~L11!~L12!

7~2L13!
. ~11!

When the parameters in theE2 transition operator take the SU~3! limit, i.e., a251, b252A7/4, c2529A3/10, d2

53A7/5, ande2523A42/10, the matrix element ofT(E2) between the two states becomes the familiar SU~3! limit result
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2
1

2
A3~2n2L13!~2n1L16!~L11!~L12!

~2L13!
.

In the largen limit, B(E2) approaches the rigid rotor value

B~E2!}
~L11!~L12!

~2L13!~2L15!
.

C. E3 transitions

We give theE3 transition elements for transition (2n13,0)L2→(2n12,0)L81.
~a! L2→(L23)1:

^~L23!1i~s† f̃ 1 f †s!3iL2&5
~2n1L !

2~2n11!
A~2n2L15!~2n1L12!~2n1L14!~L21!~L22!L

3~n11!~2n13!~2L23!~2L21!
,

^~L23!1i~d† p̃1p†d̃ !3iL2&5
~2n2L13!

2~2n11!
A3~2n2L15!~2n1L12!~2n1L14!~L21!~L22!L

5~n11!~2n13!~2L23!~2L21!
,

^~L23!1i~d† f̃ 1 f †d̃ !3iL2&52
~8n1L23!

6~2n11!
A~2n2L15!~2n1L12!~2n1L14!~L21!~L22!L

10~n11!~2n13!~2L23!~2L21!
. ~12!

~b! L2→(L21)1:

^~L21!1i~s† f̃ 1 f †s!3iL2&52
~2n2L13!~2n1L12!

~2n11!~2n12!
A~2n1L14!~L21!L~L11!~n11!

5~2n13!~2L23!~2L13!
,

^~L21!1i~d† p̃1p†d̃ !3iL2&52
~2n1L12!~6n1L19!

10~2n11!
A 7~2n1L14!~L21!L~L11!

3~2n13!~2L23!~2L13!~n11!
,

^~L21!1i~d† f̃ 1 f †d̃ !3iL2&5
~16n2128n22nL17L212L224!

15~2n11!~2n12!
A3~2n1L14!~L21!L~L11!~n11!

2~2n13!~2L23!~2L13!
. ~13!

~c! L2→(L11)1:

^~L11!1i~s† f̃ 1 f †s!3iL2&5
~2n2L11!~2n1L14!

~2n11!~2n12!
A~2n2L13!L~L11!~L12!~n11!

5~2n13!~2L21!~2L15!
,

^~L11!1i~d† p̃1p†d̃ !3iL2&5
~2n1L14!~6n2L18!

5~2n11!~2n12!
A7~2n2L13!L~L11!~L12!

3~2n13!~2L21!~2L15!
,

^~L11!1i~d† f̃ 1 f †d̃ !3iL2&52
~16n2130n12nL17L2112L219!

15~2n11!~2n12!
A3~2n2L13!L~L11~L12!!~n11!

2~2n13!~2L21!~2L15!
. ~14!

~d! L2→(L13)1:

^~L13!1i~s† f̃ 1 f †s!3iL2&5
~2n2L21!

~2n11!~2n12!
A~2n2L11!~2n2L13!~2n1L16!~L11!~L12!~L13!~n11!

3~2n13!~2L13!~2L15!
,

^~L13!1i~d† p̃1p†d̃ !3iL2&52
~2n1L14!

~2n11!~2n12!
A3~2n2L11!~2n2L13!~2n1L16!~L11!~L12!~L13!~n11!

5~2n13!~2L13!~2L15!
,

^~L13!1i~d† f̃ 1 f †d̃ !3iL2&5
~8n2L24!

3~2n11!~2n12!
A~2n2L11!~2n2L13!~2n1L16!~L11!~L12!~L13!~n11!

10~2n13!~2L13!~2L15!
.

~15!
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D. M1 transitions

We give expressions for the intraband transitions in (2n11,1).
~a! L2→(L21)2, with L odd, e.g., 12→02:

^~L21!2i~p† p̃ !1iL2&52
~2n1L12!~2n23L13!

10n~2n11!
A~2n2L13!~L11!~L21!

2~2n13!L
,

^~L21!2i~ f † f̃ !1iL2&52
~3L214nL13L116n2240n26!

20n~2n11!
A~2n2L13!~L11!~L21!

7~2n13!L
,

^~L21!2i~d†d̃ !1iL2&5
~2n23!

~2n11!
A~2n2L13!~L11!~L21!

10~2n13!L
. ~16!

~b! L2→(L11)2, with L odd, e.g., 12→22:

^~L11!2i~p† p̃ !1iL2&5
~2n2L11!~2n13L16!

10n~2n11!
A~2n1L14!~L12!L

2~2n13!~L11!
,

^~L11!2i~ f † f̃ !1iL2&5
~3L224nL13L116n2244n26!

20n~2n11!
A~2n1L14!~L12!L

7~2n13!~L11!
,

^~L11!2i~d†d̃ !1iL2&52
~2n23!

~2n11!
A~2n1L14!~L12!L

10~2n13!~L11!
. ~17!

E. M2 transitions

~a! (2n11,1)L2→(2n12,0)(L22)1 with L even, e.g., 22→0g
1 ~to ground state band!:

^~L22!1i~d† p̃2p†d̃ !2iL2&5
~2n2L12!

~2n11!
A~2n2L14!~2n1L13!~L21!~L11!

30~2L21!n
,

^~L22!1i~d† f̃ 2 f †d̃ !2iL2&52
~8n1L22!

2~2n11!
A~2n2L14!~2n1L13!~L21!~L11!

105~2L21!n
. ~18!

~b! (2n11,1)L2→(2n12,0)(L12)1 with L even, e.g., 22→4g
1 ~to ground state band!:

^~L12!1i~d† p̃2p†d̃ !2iL2&52
~2n1L13!

~2n11!
A~2n1L15!~2n2L12!~L12!L

30~2L13!n
,

^~L12!1i~d† f̃ 2 f †d̃ !2iL2&5
~8n2L23!

2~2n11!
A~2n1L15!~2n2L12!~L12!L

105~2L13!n
. ~19!

~c! (2n11,1)L2→(2n22,2)k50(L22)1 with L even, e.g., 22→0b
1 ~to b band!:

^~L22!1i~d† p̃2p†d̃ !2iL2&52
~2n2L12!~2n1L22!

~2n11!
A ~2n1L11!~2n1L13!~L21!~L11!

15n~2n21!~2L21!~8n22L213L22!
,

^~L22!1i~d† f̃ 2 f †d̃ !2iL2&5
~16n21L229L114!

~2n11!
A ~2n1L11!~2n1L13!~L21!~L11!

210n~2n21!~2L21!~8n22L213L22!
. ~20!

~d! (2n11,1)L2→(2n22,2)k52(L22)1 with L even, e.g., 22→0g
1 ~to g-band!:

^~L22!1i~d† p̃2p†d̃ !2iL2&5A2~2n2L12!~2n1L21!~2n1L11!~2n1L13!~L23!~L22!~L11!

15L~2n21!~2n11!~2L21!~8n22L213L22!
,

^~L22!1i~d† f̃ 2 f †d̃ !2iL2&5A12~2n2L12!~2n1L21!~2n1L11!~2n1L13!~L23!~L22!~L11!

35L~2n21!~2n11!~2L21!~8n22L213L22!
. ~21!
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~e! (2n11,1)L2→(2n22,2)k52(L22)1 with L odd,
e.g., 52→3g

1 :

^~L22!1i~d† p̃2p†d̃ !2iL2&

5~2n23L13!

3A~2n1L !~2n1L12!~L11!~L22!~L23!

15~2n11!~2n13!~2n!~2n21!L~2L21!
,

^~L22!1i~d† f̃ 2 f †d̃ !2iL2&

5~4n2L16!

3A3~2n1L !~2n1L12!~L11!~L22!~L23!

70~2n11!~2n13!~2n!~2n21!~2L21!L
.

~22!

IV. APPLICATIONS: DEFORMED NUCLEI

The expressions for the matrix elements are genera
order to study the electromagnetic transitions of deform
nuclei, one has to choose appropriate coefficients for all
terms in the corresponding transition operators. This can
done by either a microscropic derivation, or by fitting
experimental data. For simplicity, one can also take the tr
sition operators as generators of the group. This will simp
the expressions quite a lot. We must emphasize that th
merely for the sake of simplicity. Sometimes this approa
does not bring meaningful results. For example, in theM1
transition case, if one takes the transition operator as
generator ofO(3), the angular momentum operator, the
will be no M1 transitions since angular momentum is a go
quantum number. Nevertheless this property does provid
cross check on the correctness of the calculation. Somet
it offers a simple formula that contains meaningful resu
For instance, ifE2 operator is taken as the SU~3! generator
Q, one obtains the familiar results.

We have applied the results in Sec. III to some deform
nuclei with negative parity states. In this section, we g
two applications. In the first application, we compare direc
B(E1) values. For simplicity, we choose the generator ofDm

1

of O(10):

TABLE I. Comparison of absoluteB(E1) values.

Nucleus I i I f B(E1,I i→I f)cal~W.u.! B(E1,I i→I f)exp~W.u.!

152Sm 11
2 01

1 0.0042 0.0042~4!

21
1 0.0081 0.0077~7!

31
2 21

1 0.0055 0.0081~16!

41
1 0.0067 0.0082~16!

154Sm 11
1 01

1 0.0046 0.0046~8!

21
1 0.0089 0.0093~15!

156Gd 11
1 01

1 0.0016 0.0016~12!

21
1 0.0031 0.0020~15!

160Gd 11
1 01

1 0.0032 0.0032~9!

21
1 0.0062 0.0060~17!

236U 11
1 01

1 2.5931028 2.5931028(11)
21

1 5.0331028 5.8131028(22)
In
d
e
e

n-
y
is

h

e

d
a

es
.

d
Dm

1 5A1

2
~s† p̃1p†s!m

1 2A4

5
~p†d̃1d†1d† p̃ !m

1

1A 7

10
~d† f̃ 1 f †d̃ !m

1 , ~23!

TABLE II. Comparisons of relative intensities.

Nucleus Elevel~keV! I i I f Cal Expt.

152Sm 963 11
1 01

1 78 82.3~7!

21
1 100 100~2!

1041 31
2 21

1 100 100~4!

41
1 48 40.4~19!

1221 51
2 41

1 100 100~4!

61
1 23 24~3!

1505 71
2 61

1 100 100~3!

81
1 11 12

1879 91
2 81

1 100 100~3!

101
1 4 15

154Sm 921 11
2 01

1 68 65~2!

21
1 100 100~2!

1012 31
2 21

1 100 100~2!

41
1 63 60~1!

1181 51
2 41

1 100 100~3!

61
1 36 29.0~7!

156Sm 804 11
2 01

1 69 100~18!

21
1 100 82~18!

876 31
2 21

1 100 100~11!

41
2 59 17~3!

1021 51
2 41

1 100 100~12!

61
1 30 12~4!

158Gd 1264 12
2 01

1 63 67~4!

21
1 100 100~6!

1403 32
2 21

1 100 100~6!

41
1 80 85~5!

230U 367 11
2 01

1 82 81~13!

21
1 100 100~13!

435 31
2 21

1 100 100~8!

41
1 41 39~6!

232U 563 11
2 01

1 67 67~4!

21
1 100 100~4!

629 31
2 21

1 100 100~4!

41
1 66 69~3!

234U 786 11
2 01

1 61 58~2!

21
1 100 100~2!

849 31
2 21

1 100 100~7!

41
1 84 90~5!

963 51
2 41

1 100 100~6!

61
1 58 62~4!

1125 71
2 61

1 100 100~30!

81
1 42 66~12!

238U 680 11
2 01

1 63 74~4!

21
1 100 100~2!

732 31
2 21

1 100 100~2!

41
1 77 83~2!

826 51
2 41

1 100 100~4!

61
1 49 57~6!
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as ourE1 transition operator,T(E1)m
1 5e1Dm

1 . e1 is deter-
mined by fitting to one of the experimental data. In Table
we compare the calculatedB(E1) with those of the experi-
mental data in152,154Sm @14,15#, 156,160Gd @16,17#, and 236U
@18#.

AbsoluteB(E1) data are rare, we compare relative inte
sities in the second application. If one assumes thatE1 is
dominant in parity changing transitions and ignore high
order transitions, then the transition probabilities and he
the intensities are

int}Eg
3B~E1!. ~24!

Using formulas obtained in the previous section for t
B(E1)’s, we have calculated the relative intensities
152,154,156Sm @14–16#, 158Gd @19#, and 2302238U @20,21#. The
experimental data are taken from the references after e
nucleus and/or from Ref.@20#. The calculated results ar
compared with experimental data in Table II.

It is seen from Table I that the agreement between ca
lation and experiment is very good for absoluteB(E1)’s for
all the five nuclei studied. One interesting observation is t
the absoluteB(E1) in 236U is 4–5 orders less than those
the rare earth.

The agreement for the relative intensities is also v
good with the exception of156Sm. In all other nuclei listed in
Table II, the intensity from 11

2 to 01
1 is weaker than tha

from 11
2 to 21

1 . But in 156Sm, this situation is reversed. Th
can not be explained in the present model. Further efforts
needed to understand this inversion. Apart from this nucle
the agreement is good, and in some nuclei, excellent.

V. SUMMARY

We have given analytical expressions forE1, E2, E3,
M1, andM2 transitions involving low-lying negative parit
ys

ed
,

-

r
e

ch

u-

t

y

re
s,

states in the SU~3! limit. In real nuclei, the SU~3! symmetry
will be more or less broken. Then a detailed calculati
should take into account the symmetry breaking. This can
done numerically or by perturbation method. When t
breaking is not big, the analytical results derived here can
used in the first order approximation. A preliminary applic
tion of E1 transition formula to some deformed nuclei yiel
promising results. With more experimental knowledge
E/M transitions, these SU~3! transition prediction can be
checked.

One question is the role of theg bosons. As is well
known, in the uranium isotopes, theg boson is necessary in
order to describe theE2 transitions and to remove the ear
cutoff of band in thesd IBM for the positive parity states
~for instance, see,@22,23#!. If the g boson is included, the
low-lying positive parity states are fromN sdgbosons. The
low-lying negative parity states are the coupling of onep f
boson with N21 sdg bosons. The formulas of theE/M
transitions in thesdgp f IBM are beyond the scope of th
present study. In the present study, thespd f IBM calculation
gave good agreement with the data forE1 transitions. It is
presumed that because of the common SU~3! algebraic struc-
ture in the two models (spd f and sdgp f IBM !, it is prob-
ably that the results for the low-lying states are similar.
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